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SUMMARY

Identifying the processes that limit populations is a foundational objective of ecology and an
urgent need for conservation. For migratory animals, researchers must study individuals
throughout their annual cycles to determine how environmental conditions limit demographic
rates within each period of the annual cycle and also between periods through carry-over effects
and seasonal interactions'~°. Our poor understanding of the rates and causes of avian migration
mortality’ hinders identification of limiting factors and reversal of widespread avian population
declines®®. Here, we implement new methods to estimate apparent survival (hereafter survival)

during migration directly from automated telemetry data!® in Kirtland’s Warblers (Setophaga
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kirtlandii) and indirectly from mark-recapture data in Black-throated Blue Warblers (S.
caerulescens). Previous experimental and observational studies of our focal species and other

migratory songbirds have shown strong effects of Caribbean precipitation and habitat quality on

12-19 11,12,15,16,20-23 124,25
b

food availability!!~!4, body condition!?"!, migration timing , natal dispersa

202227 and annual survival'®-20-232831 Byilding on this

range dynamics?S, reproductive success
research, we test the hypotheses that environmental conditions during the non-breeding period
affect subsequent survival during spring migration and breeding. We found that reduced
precipitation and environmental productivity in the non-breeding period strongly influenced
survival in both species, primarily by reducing survival during spring migration. Our results
indicate that climate-driven environmental conditions can carry over to affect survival in
subsequent periods and thus likely play an important role in year-round population dynamics.

These lethal carry-over effects may be widespread and are likely magnified by intensifying

climate change.

RESULTS

Weekly survival was lower during migration than in stationary periods

We found that weekly survival probabilities for both species were lower during migration than in
the stationary periods. In Kirtland’s Warblers (Sefophaga kirtlandii), we leveraged the species’

restricted breeding range, small population size3?-3*

, and a continent-wide automated telemetry
network (i.e., Motus Wildlife Tracking Network!?) to directly estimate apparent survival
(hereafter survival) during the stationary non-breeding (hereafter non-breeding), spring

migration, and breeding periods using a novel extension of a multi-state robust-design Cormack-

Jolly-Seber (CJS) model (Figure 1). In Black-throated Blue Warblers (S. caerulescens), we used
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14 years of mark-recapture data from geographically- and demographically-linked populations®®-
31,3536 to estimate non-breeding, spring migration, breeding, and fall migration survival using a
full-annual-cycle, integrated survival model’’. Weekly survival probability for Kirtland’s
Warblers during spring migration was 0.899 (95% Credible Interval = 0.846-0.944),
considerably lower than in the non-breeding or (0.968 [0.948-0.985]) or breeding (0.963 [0.944-
0.979]) periods. Black-throated Blue Warblers also had lower weekly survival during spring
(0.975 [0.942-0.996]) and fall migration (0.975 [0.940-0.997]), compared to the breeding (0.994

[0.985-0.999]) or non-breeding (0.997 [0.991-1.00]) periods.

Reduced environmental productivity and precipitation carry over to affect survival during
migration and breeding

We found that environmental conditions in the Caribbean affected non-breeding survival of
Kirtland’s Warblers and carried over to influence survival during migration and breeding in both
species (Figure 2, Figure S1). In Kirtland’s Warblers, non-breeding home ranges with higher
Enhanced Vegetation Index (EVI) values, a measure of environmental productivity’®, were
associated with higher survival during the end of the non-breeding period (0.651 [0.370-0.855];
Bayesian probability of direction [hereafter Bayesian pd] > 0.99), on spring migration (0.620
[0.335-0.835]; Bayesian pd > 0.99), and in the following breeding period (0.620 [0.341-0.832];
Bayesian pd > 0.99). In Black-throated Blue Warblers, precipitation during the non-breeding

period, as indexed by the Southern Oscillation Index (SOI)*#!

, was not significantly associated
with non-breeding survival for either sex (males: -0.68 [-2.88-1.24], Bayesian pd = 0.76;
females: -0.34 [-2.03-1.19], Bayesian pd = 0.67). Survival probability on spring migration was

positively associated with SOI in both sexes (males: 0.92 [0.02-2.04], Bayesian p = 0.98;
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females: 0.72 [-0.27-1.96], Bayesian pd = 0.94). SOI was significantly and negatively associated
with male survival in the subsequent breeding period (-1.47 [-3.34-0.34], Bayesian pd = 0.96),
but only weakly associated with breeding survival of females (-0.88 [-3.17-1.10], Bayesian pd =
0.80). Thus, following dry, El Nifio winters in the Caribbean, Black-throated Blue Warbler
survival was lower during spring migration and at least for males, higher over the following

breeding season.

DISCUSSION

Using new analytical approaches, we demonstrate that non-breeding period environmental
conditions have lethal effects that carry over into migration and the subsequent breeding period
in two species of migratory songbirds. These effects were evident at local and regional spatial
scales and were confirmed in two species with different geographic ranges, using both direct and
indirect methods for estimating seasonal survival. By extending a multi-state robust-design CJS
model to incorporate the timing of one-way transitions during the annual cycle and account for
the spatially heterogeneous layout of the automated-telemetry stations (see STAR Methods), we
were able to directly estimate survival of Kirtland’s Warblers during an entire migration,

25,28,29,42-44 or direct

whereas previous studies of small birds have provided indirect estimates
estimates from one leg of the migratory journey*. We found that poor environmental
productivity within individual non-breeding home ranges in The Bahamas was associated with
lower survival during the non-breeding, spring migration, and breeding periods. In Black-
throated Blue Warblers, we extended previously-developed indirect estimation methods to assess

the influence of environmental covariates on seasonal survival, the first such application of these

methods in non-simulated data’’. Spring migration survival of both sexes was lower following
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dry, El Nifio winters in the Caribbean, and males showed higher breeding survival after dry
winters. Collectively, these results support previous findings showing that non-breeding climate

128:30.46-49 "and extend these findings by pinpointing where and when in

influences annual surviva
the annual cycle the effects on mortality manifest. Our results have important implications for
forecasting how climate change will influence the population dynamics of migratory birds.

Moreover, we argue that they also highlight the need to estimate season-specific vital rates and to

determine the factors that affect those vital rates in other imperiled taxa.

Seasonal survival on a rapidly changing planet

Our results suggest that the negative effects of non-breeding drought on survival during
migration and the breeding period may be an important, but previously undocumented threat to
the survival of birds during migration. The Caribbean has been drying since at least the 1950s°
and climate change is predicted to increase both the frequency and severity of drought across this
region®'~3, A drying Caribbean has the potential to degrade non-breeding habitat quality and
reduce food availability, thereby reducing the ability of individual birds to adequately prepare for
migration and to survive through the breeding period.

Climate-induced impacts on population vital rates represent a looming and under-
quantified threat for species’ sustained existence>* because the changes to seasonal survival that
we documented have the potential to negatively affect population trajectories (Figure 3). Most
migratory bird populations are already exhibiting precipitous declines, the drivers of which
remain poorly understood®. Our findings that environmental conditions in the non-breeding
period can lead to changes in vital rates across multiple seasons and that those vital rate changes

could endanger population persistence (Figure 3) highlight the urgency for additional research
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focused on identifying the specific mechanisms that limit populations throughout the annual

cycle.

What are the mechanisms of lethal carry-over effects?

Our results confirm predictions that environmental conditions during the non-breeding period
can have a lethal carry-over effect during spring migration, but do not identify the precise
mechanism(s) responsible. Previous work on songbirds has found that dry conditions and poor-

11-14 and reduced

quality habitat on the non-breeding grounds result in lower food availability
body condition prior to spring migration'?"!°. Limited food resources and poor body condition
could increase non-breeding period mortality and are known to delay departure on spring
migration! 12151655 Food and body condition in the non-breeding period also presumably limit
the ability of birds to meet the physiological demands of spring migration and ultimately, to
survive migration. Departing on migration late relative to conspecifics could further enhance risk
of mortality if individuals attempt to compensate for late departure by increasing their migration
rate?®. Future research will be needed to confirm the precise mechanism(s), but our findings
suggest that observed effects on survival during migration and breeding are the result of a chain
of sublethal effects that begins on the non-breeding grounds.

The carry-over effects of non-breeding environmental conditions on spring migration
survival continued to manifest during the breeding period in both species, but in opposite
directions. Poor non-breeding conditions were associated with lower breeding survival in
Kirtland’s Warblers but with higher breeding survival in male Black-throated Blue Warblers. We

attribute this discrepancy to differences in the scale at which we estimated environmental

conditions. At the individual level in Kirtland’s Warblers, high environmental productivity on
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individual non-breeding home ranges likely improved the chances of surviving spring migration
(see above), and the following breeding period due to increased body condition, earlier arrival

timing, and priority access to high-quality breeding territories>®>’

. At the population level in
Black-throated Blue Warblers, reduced rainfall across the non-breeding range may result in
fewer individuals reaching the breeding grounds (see above). This could lead to lower population
density during the breeding period, which then increases survival during the breeding season.
Previous investigations have not found evidence of density-dependent survival in Black-throated
Blue Warblers at Hubbard Brook?!, but the demographic processes suggested by our integrated
models may be operating at a spatial scale larger than the study site. Nevertheless, our results
support the hypothesis that non-breeding environmental conditions can have important carry-
over effects on survival during both migration and the subsequent breeding season.

A possible alternative explanation of our findings for Black-throated Blue Warblers is
that reduced survival during migration is not a carry-over effect, but instead a direct effect of
ENSO-driven weather during migration and breeding. Although the El Nifio-Southern
Oscillation (ENSO) has strong and predictable effects on dry and wet season precipitation in the

Caribbean, including in Jamaica®*!

, it also has teleconnections across the hemisphere. Black-
throated Blue Warblers migrate through the southeastern, eastern, and northeastern United States
in April and May®®. Along this migration route, effects of ENSO on temperature and
precipitation are only apparent in the southeast between October and March, and are in the
opposite direction from the effects observed in Jamaica (i.e., when conditions are dry in Jamaica,
they are cool and wet in the southeast)®>%°. This regionally variable effect, or lack thereof, of

ENSO on weather along the migratory route suggests that a direct effect of ENSO during

migration is unlikely. Nonetheless, we cannot entirely rule out that ENSO-related weather
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patterns along the migratory route, or other unmeasured factors, directly contribute or interact
with non-breeding effects to influence survival during migration. However, our conclusion that
ENSO-driven changes in Jamaican precipitation carries over to affect migration survival is also
bolstered by multiple observational and experimental studies that have documented the effects of
non-breeding precipitation and habitat quality on food availability, body condition, migration

timing, natal dispersal, reproductive success, and range dynamics (see references above).

Implications
Estimating seasonal survival and documenting how climate-driven environmental conditions
affect survival throughout the annual cycle are key to advancing our understanding of migratory
bird population dynamics and the conservation of these imperiled species. As we demonstrate
here, the Motus Wildlife Tracking System!® provides new opportunities for directly estimating
migration survival. However, continued expansion of the Motus network and analytical advances
will be needed to realize this potential for the vast majority of other species, which have larger
ranges and more complex migration patterns than Kirtland’s Warblers*>34, In the meantime, the
indirect approach we developed and implemented for estimating the effects of environmental
conditions on seasonal survival in Black-throated Blue Warblers can be replicated for any
species with the necessary data from demographically-linked populations. Regardless, more
research and innovation in tracking technology will be needed to understand the immediate
causes of mortality (e.g., starvation, collisions, predation).

Documenting survival throughout the annual cycle is a critical next step, but seasonal
survival estimates must be combined with other demographic data (e.g., reproduction, dispersal,

population size) to develop full-annual-cycle population models that can pinpoint where and
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when in the annual cycle populations are limited and/or regulated®>#>!. Such models will allow
researchers to explore how processes throughout the annual cycle combine and interact in
potentially nuanced ways to determine the population dynamics of migratory species. Only by
further adoption of these approaches will we able to identify the multiple and likely interacting
causes of widespread migratory species declines and begin to slow and reverse them through
conservation and management. Similar efforts will be needed across migratory taxa, many of

which are also experiencing alarming declines™>%2.
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Figure 1. Seasonal survival estimation and predicted effects of environmental conditions on
spring migration survival

Conceptual figure illustrating: (A) non-breeding and breeding locations for the two species and
differences in survival estimation methodology, (B) the periods where survival was either
directly (solid) or indirectly (dashed) estimated throughout the annual cycle for each species, and
(C) the predicted effects of non-breeding environmental conditions on spring migration survival.

Artwork by Sally L. Bornbusch.

Figure 2. Reduced environmental productivity and precipitation carry over to affect
survival during migration and breeding
Conditional effect (lines) and 95% credible intervals (shaded areas) of environmental conditions

on apparent weekly survival. Conditional effect of March enhanced vegetation index (EVI) on

10
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weekly survival of Kirtland's Warblers (left) during late non-breeding (blue), migration (green),
and breeding (red) periods. Tick marks along x-axis depict the distribution of observations across
the domain of EVI. Conditional effects of non-breeding Southern Oscillation Index (SOI) on
female (top right) and male (bottom right) Black-throated Blue Warblers during non-breeding
(blue), spring migration (green), and breeding (red) periods. As with Kirtland's Warbler,

tick marks along the x-axis depict the distribution of observations across the domain of SOI. See

also Figure S1.

Figure 3. Potential effects of non-breeding grounds drying on population growth
Indicative population growth rate (i.e., lambda) as a function of non-breeding Enhanced
Vegetation Index (EVI). To characterize the potential for variance in non-breeding
environmental conditions to drive population growth trends via the survival dynamics described
in this paper, we developed an ad hoc population projection model based on our conditional
survival estimates and estimates from the literature. Briefly, this projection matrix estimates
population growth as a single-age class, four-season "cyclic" model. We derived estimated per

capita fecundity from Bocetti et al.5

and a static estimate of fall migration survival from
Rockwell et al.?®. The conditional estimates for the other three seasons came from our fitted
survival models and considered EVI conditions ranging from the 10-90% quantiles of EVI
observed in our dataset. At or above median EVI, population growth is relatively stable and near
1 but drops quickly for below-normal EVI conditions. This suggests that drying conditions may
impact population abundance via reduced survival. These findings should be treated as indicative

of a possible effect and future work to develop a more complete population abundance model is

underway.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the

lead contact, Nathan W. Cooper (coopern@si.edu).

Materials Availability

This study did not generate unique reagents.

Data and Code Availability

All data has been deposited at Figshare and is publicly available as of the date of publication.
The DOI is listed in the key resources table. All original code has been deposited at GitHub and
is publicly available as of the date of publication. The DO is listed in the key resources table.
Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We used mist nets and conspecific song playback to capture 136 adult male Kirtland’s Warblers
on their non-breeding grounds on Cat Island, The Bahamas (24.33° N, 75.45° W). We used mist
nest to capture 314 (89 @, 205 &) adult Black-throated Blue Warblers at Hubbard Brook
Experimental Forest in New Hampshire, USA (43.94°N, -71.70°W) and 116 (45 @, 71 &) adults

at Copse Mountain, Jamaica, West Indies (18.29°N, -77.96°W). All handling of birds was

12
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approved by Animal Care and Use Committee Permits from the Smithsonian Institution and

Dartmouth.

METHOD DETAILS
Field methods
From 2017-2019, we captured and color-banded male Kirtland’s Warblers (2017 n = 58, 2018 n
=40, 2019 n = 38) across Cat Island, The Bahamas (24.67°N, -75.74°W). After capture, we
attached a 0.35 g coded radio tag (NTQBW-2, Lotek Wireless) using a leg-loop harness®*. In
2017, we used handheld telemetry to estimate departure date on spring migration by searching at
least once every three days from April 1 through May 5'5. In 2018 and 2019, we used an array of
four automated-telemetry stations (hereafter stations) to determine departure date on spring
migration®*%, We acquired detections during migration from the Motus Wildlife Tracking
System!?, using the package morus®® in Program R®’. To resight individuals on the breeding
grounds in the Lower Peninsula of Michigan (44.62°N, -84.27°W), where 95-97% of the
Kirtland’s Warbler population breeds®?, we used handheld telemetry and detections from 12
stations located in breeding habitat**. Once located, we attempted to re-sight each individual and
determine their fate once per week through June.

Black-throated Blue Warblers were studied at Hubbard Brook Experimental Forest in
New Hampshire, USA (43.94°N, -71.70°W) from 1986 — 2000 and at Copse Mountain, Jamaica,
West Indies (18.29°N, -77.96°W) from 1986 —1998. Birds were captured in mist nets and color-
banded. The Hubbard Brook study plot (64 ha) was searched for color-banded individuals every
1-7 days during breeding (mid-May to mid-August). Sampling on the Jamaica study plot (7 ha)

occurred during 3—5-day periods in mid-October—early November, and during 2—5-day periods in

13
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mid-March. Following Sillett and Holmes?®, we built encounter histories from two periods per
site: mid-May to early June and late July to mid-August at Hubbard Brook, and October and
March in Jamaica. Although no banded individuals were encountered during both the breeding
and non-breeding period, the Hubbard Brook and Jamaica populations have been shown to be
geographically linked via stable isotopes® and light-level geolocators®S, and demographically
linked via correlation of reproductive rates in Hubbard Brook and juvenile recruitment rates in

Jamaica?®3!,

QUANTIFICATION AND STATISTICAL ANALYSIS
Kirtland’s Warbler Seasonal Survival
To characterize non-breeding environmental conditions experienced by Kirtland’s Warblers, we
estimated an individual-specific Enhanced Vegetation Index (EVI) value as a proxy for relative
environmental productivity*8. We used EVI values measured during March because of previous
research indicating the relevance of March rainfall for annual differences in arrival timing and
reproductive success on the breeding grounds®® and apparent annual survival?®. We gathered EVI
values from within a 250-meter radius of the centroid of individual non-breeding locations
(calculated using the sfpackage®®) in Program R%” and took the mean of these values across both
the spatial and temporal buffer to generate an individual-level covariate for survival modeling
(see below). All environmental annotations were done using the rstoat package® in Program R®7,
which draws from the NASA MODIS daily EVI dataset
(https://modis.gsfc.nasa.gov/data/dataprod/mod09.php).

To estimate seasonal survival for Kirtland’s Warblers, we constructed a variation of a

three-state Cormack-Jolly-Seber (CJS) survival model’®"2. We defined states based on

14
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individual migratory progression such that detections on Cat Island (known non-breeding
grounds) were assigned to the non-breeding state, detections on the breeding grounds were
assigned to the breeding state, and all other observations were considered migratory. Because our
period of study extended from the end of the non-breeding period through breeding, we restricted
transitions between states to be “one way” — individuals could only transition from non-breeding
to migration and migration to breeding (and from any living state to the “dead” state). Kirtland’s
Warblers are obligate migrants; therefore, we modeled the transitions between states using the
Weibull cumulative distribution function’74, This function increases the probability of transition
from one state to the next as time proceeds, asymptotically approaching one. Thus, individuals
were not permitted to remain in a lower order state indefinitely but instead must eventually either
proceed with migration or die. In this way, the model also estimated population-level migration
phenology.

The clustered distribution of Motus stations resulted in detection patterns that
superficially resembled “trap happy” and “trap shy” individuals; given that a bird was detected
on one day, the probability of detection was substantially higher than for individuals that had not
been detected on the previous day because detected birds were more likely to be in a high-
density portion of the array (and vice versa). To account for this potential source of bias, we used

the “robust design”7>

, wherein primary occasions were defined as weeks and secondary
occasions were defined as days.

We fit a model that estimated seasonal survival as a function of non-breeding EVI
conditions for all three seasons. We also fit a null model that considered survival as constant

within seasons. We used Deviance Information Criterion (DIC) to evaluate relative support

between the fitted models’s. We used uninformative priors for most parameters in the model, but

15
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parameters estimating constant seasonal survival probabilities were approximately based on
Rockwell et al. 28 (note that exact moment-matching from those estimates resulted in impossible
parameter combinations so we used more permissive prior distributions). We also constrained
prior distributions associated with transition processes to exclude biologically implausible
transitions (e.g., transitions from non-breeding to migration deep into the breeding season).

We fit models in a Bayesian frameworks using JAGS”’, which was called from within R
using the jagsUI package’® . We drew four chains of 500,000 MCMC samples with a burn-in
period of 50,000, thinned to every 250% sample to reduce serial autocorrelation within the chains.

We considered models converged at R-hat <1.05.

Black-throated Blue Warbler Seasonal Survival

We used an integrated survival model®” to estimate seasonal survival probabilities of male and
female Black-throated Blue Warblers. For each data set (breeding and non-breeding), the
integrated model fits a Cormack-Jolly-Seber (CJS) model to estimate apparent survival within
and between stationary periods while accounting for imperfect detection”. In New Hampshire,
the survival of individuals between re-sighting occasions was determined by either the 3-month
breeding period survival probability (May — August; q>§_‘gm) or the 9-month between-breeding
period survival (August — May; ¢p5¢), where s denotes sex-specific survival probabilities in year
t. In Jamaica, the survival of individuals between re-sighting occasions was determined by the 6-
month non-breeding survival probability (October — April; q)‘slff[i“) or the 6-month between-non-
breeding survival (April — Oct; ¢p5{"). We accounted for imperfect detection by modeling the

observed status of individuals as a function of the sex- and occasion-specific detection

probabilities ( psj't), where j denotes occasion (May, August, October, or March). In their original
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analysis of these data, Sillett and Holmes?® found no support for sex-specific detection
probabilities in October and March, so we did not model sex variation on that parameter.
Furthermore, because observer effort was consistent during the May and October sampling
periods, we followed Sillett and Holmes? and did not include annual variation in those detection
probabilities.

The two survival models can be integrated by parameterizing the between-period survival

probabilities in terms of the underlying seasonal survival rates:

BW _ Spr , Sum 4. Aut
st — Wst t s,t
BB _ 4 Aut 4 Win 4.5pr
st — st t+1 Yst+1

which allows estimation of the latent 2-month spring and fall survival probabilities and the
inclusion of covariates on seasonal survival probabilities®’. We chose covariates based on
previous research linking environmental conditions to annual survival in Black-throated Blue
Warblers. In Jamaica, annual survival of Black-throated Blue Warblers from 1986-1999 was
strongly associated with the phase of the El Nifio Southern Oscillation (ENSO;?°*?). During El
Nifio years in Jamaica, reduced rainfall’*#° likely led to decreased availability of arthropod prey
in the winter dry season and, hence, to lower survival. Wetter La Nifia years likely resulted in
increased food availability and higher survival. We hypothesized that ENSO mediates warbler
survival via direct effects on non-breeding survival or by influencing body condition at
departure, which should influence subsequent survival during spring migration or over the
following breeding season. We included mean monthly values of the standardized Southern
Oscillation Index (SOI) as a predictor of non-breeding, spring, and breeding survival
probabilities for both sexes and predicted that survival would be positively associated with SOI

(positive SOI values indicate La Nifia conditions; negative values signify El Nifio conditions).
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Posterior distributions for parameters were estimated using Markov chain Monte Carlo

implemented using the nimble package®® in R®”. Encounter histories were summarized using the

multi-state array (m-array) format for computational efficiency. Model fitting revealed that the

default random walk samplers used by nimble resulted in high correlation between the posterior

samples for the latent fall and spring mean survival probabilities and thus poor mixing. Nimble’s

automated factor slice sampler resulted in lower correlation and improved mixing. We used the

default samplers for all other parameters. We ran three chains for 75,000 iterations each after

discarding the first 25,000 iterations as burn-in and saving every 5" sample to reduce

autocorrelation in the posterior samples, resulting in 30,000 posterior samples of each parameter.

Convergence was confirmed when R-hat was <1.05 and through visual inspections of trace plots.
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