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SUMMARY 29 

Identifying the processes that limit populations is a foundational objective of ecology and an 30 

urgent need for conservation. For migratory animals, researchers must study individuals 31 

throughout their annual cycles to determine how environmental conditions limit demographic 32 

rates within each period of the annual cycle and also between periods through carry-over effects 33 

and seasonal interactions1–6. Our poor understanding of the rates and causes of avian migration 34 

mortality7 hinders identification of limiting factors and reversal of widespread avian population 35 

declines8,9. Here, we implement new methods to estimate apparent survival (hereafter survival) 36 

during migration directly from automated telemetry data10 in Kirtland’s Warblers (Setophaga 37 
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kirtlandii) and indirectly from mark-recapture data in Black-throated Blue Warblers (S. 38 

caerulescens). Previous experimental and observational studies of our focal species and other 39 

migratory songbirds have shown strong effects of Caribbean precipitation and habitat quality on 40 

food availability11–14, body condition12–19, migration timing11,12,15,16,20–23, natal dispersal24,25, 41 

range dynamics26, reproductive success20,22,27, and annual survival18–20,23,28–31. Building on this 42 

research, we test the hypotheses that environmental conditions during the non-breeding period 43 

affect subsequent survival during spring migration and breeding. We found that reduced 44 

precipitation and environmental productivity in the non-breeding period strongly influenced 45 

survival in both species, primarily by reducing survival during spring migration. Our results 46 

indicate that climate-driven environmental conditions can carry over to affect survival in 47 

subsequent periods and thus likely play an important role in year-round population dynamics. 48 

These lethal carry-over effects may be widespread and are likely magnified by intensifying 49 

climate change. 50 

 51 

RESULTS 52 

Weekly survival was lower during migration than in stationary periods 53 

We found that weekly survival probabilities for both species were lower during migration than in 54 

the stationary periods. In Kirtland’s Warblers (Setophaga kirtlandii), we leveraged the species’ 55 

restricted breeding range, small population size32–34, and a continent-wide automated telemetry 56 

network (i.e., Motus Wildlife Tracking Network10) to directly estimate apparent survival 57 

(hereafter survival) during the stationary non-breeding (hereafter non-breeding), spring 58 

migration, and breeding periods using a novel extension of a multi-state robust-design Cormack-59 

Jolly-Seber (CJS) model (Figure 1). In Black-throated Blue Warblers (S. caerulescens), we used 60 
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14 years of mark-recapture data from geographically- and demographically-linked populations29–61 

31,35,36 to estimate non-breeding, spring migration, breeding, and fall migration survival using a 62 

full-annual-cycle, integrated survival model37. Weekly survival probability for Kirtland’s 63 

Warblers during spring migration was 0.899 (95% Credible Interval = 0.846-0.944), 64 

considerably lower than in the non-breeding or (0.968 [0.948-0.985]) or breeding (0.963 [0.944-65 

0.979]) periods. Black-throated Blue Warblers also had lower weekly survival during spring 66 

(0.975 [0.942-0.996]) and fall migration (0.975 [0.940-0.997]), compared to the breeding (0.994 67 

[0.985-0.999]) or non-breeding (0.997 [0.991-1.00]) periods.  68 

 69 

Reduced environmental productivity and precipitation carry over to affect survival during 70 

migration and breeding  71 

We found that environmental conditions in the Caribbean affected non-breeding survival of 72 

Kirtland’s Warblers and carried over to influence survival during migration and breeding in both 73 

species (Figure 2, Figure S1). In Kirtland’s Warblers, non-breeding home ranges with higher 74 

Enhanced Vegetation Index (EVI) values, a measure of environmental productivity38, were 75 

associated with higher survival during the end of the non-breeding period (0.651 [0.370-0.855]; 76 

Bayesian probability of direction [hereafter Bayesian pd] ≥ 0.99), on spring migration (0.620 77 

[0.335-0.835]; Bayesian pd ≥ 0.99), and in the following breeding period (0.620 [0.341-0.832]; 78 

Bayesian pd ≥ 0.99). In Black-throated Blue Warblers, precipitation during the non-breeding 79 

period, as indexed by the Southern Oscillation Index (SOI)39–41, was not significantly associated 80 

with non-breeding survival for either sex (males: -0.68 [-2.88-1.24], Bayesian pd = 0.76; 81 

females: -0.34 [-2.03-1.19], Bayesian pd = 0.67). Survival probability on spring migration was 82 

positively associated with SOI in both sexes (males: 0.92 [0.02-2.04], Bayesian p = 0.98; 83 
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females: 0.72 [-0.27-1.96], Bayesian pd = 0.94). SOI was significantly and negatively associated 84 

with male survival in the subsequent breeding period (-1.47 [-3.34-0.34], Bayesian pd = 0.96), 85 

but only weakly associated with breeding survival of females (-0.88 [-3.17-1.10], Bayesian pd = 86 

0.80). Thus, following dry, El Niño winters in the Caribbean, Black-throated Blue Warbler 87 

survival was lower during spring migration and at least for males, higher over the following 88 

breeding season. 89 

 90 

DISCUSSION 91 

Using new analytical approaches, we demonstrate that non-breeding period environmental 92 

conditions have lethal effects that carry over into migration and the subsequent breeding period 93 

in two species of migratory songbirds. These effects were evident at local and regional spatial 94 

scales and were confirmed in two species with different geographic ranges, using both direct and 95 

indirect methods for estimating seasonal survival. By extending a multi-state robust-design CJS 96 

model to incorporate the timing of one-way transitions during the annual cycle and account for 97 

the spatially heterogeneous layout of the automated-telemetry stations (see STAR Methods), we 98 

were able to directly estimate survival of Kirtland’s Warblers during an entire migration, 99 

whereas previous studies of small birds have provided indirect estimates25,28,29,42–44 or direct 100 

estimates from one leg of the migratory journey45. We found that poor environmental 101 

productivity within individual non-breeding home ranges in The Bahamas was associated with 102 

lower survival during the non-breeding, spring migration, and breeding periods. In Black-103 

throated Blue Warblers, we extended previously-developed indirect estimation methods to assess 104 

the influence of environmental covariates on seasonal survival, the first such application of these 105 

methods in non-simulated data37. Spring migration survival of both sexes was lower following 106 
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dry, El Niño winters in the Caribbean, and males showed higher breeding survival after dry 107 

winters. Collectively, these results support previous findings showing that non-breeding climate 108 

influences annual survival28,30,46–49, and extend these findings by pinpointing where and when in 109 

the annual cycle the effects on mortality manifest. Our results have important implications for 110 

forecasting how climate change will influence the population dynamics of migratory birds. 111 

Moreover, we argue that they also highlight the need to estimate season-specific vital rates and to 112 

determine the factors that affect those vital rates in other imperiled taxa. 113 

 114 

Seasonal survival on a rapidly changing planet  115 

Our results suggest that the negative effects of non-breeding drought on survival during 116 

migration and the breeding period may be an important, but previously undocumented threat to 117 

the survival of birds during migration. The Caribbean has been drying since at least the 1950s50 118 

and climate change is predicted to increase both the frequency and severity of drought across this 119 

region51–53. A drying Caribbean has the potential to degrade non-breeding habitat quality and 120 

reduce food availability, thereby reducing the ability of individual birds to adequately prepare for 121 

migration and to survive through the breeding period.   122 

Climate-induced impacts on population vital rates represent a looming and under-123 

quantified threat for species’ sustained existence54 because the changes to seasonal survival that 124 

we documented have the potential to negatively affect population trajectories (Figure 3). Most 125 

migratory bird populations are already exhibiting precipitous declines, the drivers of which 126 

remain poorly understood8. Our findings that environmental conditions in the non-breeding 127 

period can lead to changes in vital rates across multiple seasons and that those vital rate changes 128 

could endanger population persistence (Figure 3) highlight the urgency for additional research 129 
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focused on identifying the specific mechanisms that limit populations throughout the annual 130 

cycle. 131 

 132 

What are the mechanisms of lethal carry-over effects? 133 

Our results confirm predictions that environmental conditions during the non-breeding period 134 

can have a lethal carry-over effect during spring migration, but do not identify the precise 135 

mechanism(s) responsible. Previous work on songbirds has found that dry conditions and poor-136 

quality habitat on the non-breeding grounds result in lower food availability11–14 and reduced 137 

body condition prior to spring migration12–19. Limited food resources and poor body condition 138 

could increase non-breeding period mortality and are known to delay departure on spring 139 

migration11,12,15,16,55. Food and body condition in the non-breeding period also presumably limit 140 

the ability of birds to meet the physiological demands of spring migration and ultimately, to 141 

survive migration. Departing on migration late relative to conspecifics could further enhance risk 142 

of mortality if individuals attempt to compensate for late departure by increasing their migration 143 

rate23. Future research will be needed to confirm the precise mechanism(s), but our findings 144 

suggest that observed effects on survival during migration and breeding are the result of a chain 145 

of sublethal effects that begins on the non-breeding grounds.  146 

The carry-over effects of non-breeding environmental conditions on spring migration 147 

survival continued to manifest during the breeding period in both species, but in opposite 148 

directions. Poor non-breeding conditions were associated with lower breeding survival in 149 

Kirtland’s Warblers but with higher breeding survival in male Black-throated Blue Warblers. We 150 

attribute this discrepancy to differences in the scale at which we estimated environmental 151 

conditions. At the individual level in Kirtland’s Warblers, high environmental productivity on 152 
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individual non-breeding home ranges likely improved the chances of surviving spring migration 153 

(see above), and the following breeding period due to increased body condition, earlier arrival 154 

timing, and priority access to high-quality breeding territories56,57. At the population level in 155 

Black-throated Blue Warblers, reduced rainfall across the non-breeding range may result in 156 

fewer individuals reaching the breeding grounds (see above). This could lead to lower population 157 

density during the breeding period, which then increases survival during the breeding season. 158 

Previous investigations have not found evidence of density-dependent survival in Black-throated 159 

Blue Warblers at Hubbard Brook31, but the demographic processes suggested by our integrated 160 

models may be operating at a spatial scale larger than the study site. Nevertheless, our results 161 

support the hypothesis that non-breeding environmental conditions can have important carry-162 

over effects on survival during both migration and the subsequent breeding season.  163 

A possible alternative explanation of our findings for Black-throated Blue Warblers is 164 

that reduced survival during migration is not a carry-over effect, but instead a direct effect of 165 

ENSO-driven weather during migration and breeding. Although the El Niño-Southern 166 

Oscillation (ENSO) has strong and predictable effects on dry and wet season precipitation in the 167 

Caribbean, including in Jamaica39–41, it also has teleconnections across the hemisphere. Black-168 

throated Blue Warblers migrate through the southeastern, eastern, and northeastern United States 169 

in April and May58. Along this migration route, effects of ENSO on temperature and 170 

precipitation are only apparent in the southeast between October and March, and are in the 171 

opposite direction from the effects observed in Jamaica (i.e., when conditions are dry in Jamaica, 172 

they are cool and wet in the southeast)59,60. This regionally variable effect, or lack thereof, of 173 

ENSO on weather along the migratory route suggests that a direct effect of ENSO during 174 

migration is unlikely. Nonetheless, we cannot entirely rule out that ENSO-related weather 175 
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patterns along the migratory route, or other unmeasured factors, directly contribute or interact 176 

with non-breeding effects to influence survival during migration. However, our conclusion that 177 

ENSO-driven changes in Jamaican precipitation carries over to affect migration survival is also 178 

bolstered by multiple observational and experimental studies that have documented the effects of 179 

non-breeding precipitation and habitat quality on food availability, body condition, migration 180 

timing, natal dispersal, reproductive success, and range dynamics (see references above). 181 

 182 

Implications 183 

Estimating seasonal survival and documenting how climate-driven environmental conditions 184 

affect survival throughout the annual cycle are key to advancing our understanding of migratory 185 

bird population dynamics and the conservation of these imperiled species. As we demonstrate 186 

here, the Motus Wildlife Tracking System10 provides new opportunities for directly estimating 187 

migration survival. However, continued expansion of the Motus network and analytical advances 188 

will be needed to realize this potential for the vast majority of other species, which have larger 189 

ranges and more complex migration patterns than Kirtland’s Warblers32,34. In the meantime, the 190 

indirect approach we developed and implemented for estimating the effects of environmental 191 

conditions on seasonal survival in Black-throated Blue Warblers can be replicated for any 192 

species with the necessary data from demographically-linked populations. Regardless, more 193 

research and innovation in tracking technology will be needed to understand the immediate 194 

causes of mortality (e.g., starvation, collisions, predation).  195 

Documenting survival throughout the annual cycle is a critical next step, but seasonal 196 

survival estimates must be combined with other demographic data (e.g., reproduction, dispersal, 197 

population size) to develop full-annual-cycle population models that can pinpoint where and 198 
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when in the annual cycle populations are limited and/or regulated25,43,61. Such models will allow 199 

researchers to explore how processes throughout the annual cycle combine and interact in 200 

potentially nuanced ways to determine the population dynamics of migratory species. Only by 201 

further adoption of these approaches will we able to identify the multiple and likely interacting 202 

causes of widespread migratory species declines and begin to slow and reverse them through 203 

conservation and management. Similar efforts will be needed across migratory taxa, many of 204 

which are also experiencing alarming declines5,62.  205 
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 231 

Figure 1. Seasonal survival estimation and predicted effects of environmental conditions on 232 

spring migration survival 233 

Conceptual figure illustrating: (A) non-breeding and breeding locations for the two species and 234 

differences in survival estimation methodology, (B) the periods where survival was either 235 

directly (solid) or indirectly (dashed) estimated throughout the annual cycle for each species, and 236 

(C) the predicted effects of non-breeding environmental conditions on spring migration survival. 237 

Artwork by Sally L. Bornbusch. 238 

 239 

Figure 2.  Reduced environmental productivity and precipitation carry over to affect 240 

survival during migration and breeding  241 

Conditional effect (lines) and 95% credible intervals (shaded areas) of environmental conditions 242 

on apparent weekly survival. Conditional effect of March enhanced vegetation index (EVI) on 243 
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weekly survival of Kirtland's Warblers (left) during late non-breeding (blue), migration (green), 244 

and breeding (red) periods. Tick marks along x-axis depict the distribution of observations across 245 

the domain of EVI. Conditional effects of non-breeding Southern Oscillation Index (SOI) on 246 

female (top right) and male (bottom right) Black-throated Blue Warblers during non-breeding 247 

(blue), spring migration (green), and breeding (red) periods. As with Kirtland's Warbler, 248 

tick marks along the x-axis depict the distribution of observations across the domain of SOI. See 249 

also Figure S1. 250 

 251 

Figure 3. Potential effects of non-breeding grounds drying on population growth 252 

Indicative population growth rate (i.e., lambda) as a function of non-breeding Enhanced 253 

Vegetation Index (EVI). To characterize the potential for variance in non-breeding 254 

environmental conditions to drive population growth trends via the survival dynamics described 255 

in this paper, we developed an ad hoc population projection model based on our conditional 256 

survival estimates and estimates from the literature. Briefly, this projection matrix estimates 257 

population growth as a single-age class, four-season "cyclic" model. We derived estimated per 258 

capita fecundity from Bocetti et al.63 and a static estimate of fall migration survival from 259 

Rockwell et al.28. The conditional estimates for the other three seasons came from our fitted 260 

survival models and considered EVI conditions ranging from the 10-90% quantiles of EVI 261 

observed in our dataset. At or above median EVI, population growth is relatively stable and near 262 

1 but drops quickly for below-normal EVI conditions. This suggests that drying conditions may 263 

impact population abundance via reduced survival. These findings should be treated as indicative 264 

of a possible effect and future work to develop a more complete population abundance model is 265 

underway. 266 
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 267 

STAR METHODS 268 

RESOURCE AVAILABILITY 269 

Lead Contact 270 

Further information and requests for resources should be directed to and will be fulfilled by the 271 

lead contact, Nathan W. Cooper (coopern@si.edu).  272 

 273 

Materials Availability 274 

This study did not generate unique reagents. 275 

 276 

Data and Code Availability 277 

All data has been deposited at Figshare and is publicly available as of the date of publication. 278 

The DOI is listed in the key resources table. All original code has been deposited at GitHub and 279 

is publicly available as of the date of publication. The DOI is listed in the key resources table. 280 

Any additional information required to reanalyze the data reported in this paper is available from 281 

the lead contact upon request. 282 

 283 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 284 

We used mist nets and conspecific song playback to capture 136 adult male Kirtland’s Warblers 285 

on their non-breeding grounds on Cat Island, The Bahamas (24.33º N, 75.45º W). We used mist 286 

nest to capture 314 (89 ♀, 205 ♂) adult Black-throated Blue Warblers at Hubbard Brook 287 

Experimental Forest in New Hampshire, USA (43.94°N, -71.70°W) and 116 (45 ♀, 71 ♂)  adults 288 

at Copse Mountain, Jamaica, West Indies (18.29°N, -77.96°W). All handling of birds was 289 
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approved by Animal Care and Use Committee Permits from the Smithsonian Institution and 290 

Dartmouth.  291 

 292 

METHOD DETAILS 293 

Field methods 294 

From 2017-2019, we captured and color-banded male Kirtland’s Warblers (2017 n = 58, 2018 n 295 

= 40, 2019 n = 38) across Cat Island, The Bahamas (24.67°N, -75.74°W). After capture, we 296 

attached a 0.35 g coded radio tag (NTQBW-2, Lotek Wireless) using a leg-loop harness33. In 297 

2017, we used handheld telemetry to estimate departure date on spring migration by searching at 298 

least once every three days from April 1 through May 515. In 2018 and 2019, we used an array of 299 

four automated-telemetry stations (hereafter stations) to determine departure date on spring 300 

migration64,65. We acquired detections during migration from the Motus Wildlife Tracking 301 

System10, using the package motus66 in Program R67. To resight individuals on the breeding 302 

grounds in the Lower Peninsula of Michigan (44.62°N, -84.27°W), where 95-97% of the 303 

Kirtland’s Warbler population breeds32, we used handheld telemetry and detections from 12 304 

stations located in breeding habitat33. Once located, we attempted to re-sight each individual and 305 

determine their fate once per week through June.  306 

Black-throated Blue Warblers were studied at Hubbard Brook Experimental Forest in 307 

New Hampshire, USA (43.94°N, -71.70°W) from 1986 – 2000 and at Copse Mountain, Jamaica, 308 

West Indies (18.29°N, -77.96°W) from 1986 –1998. Birds were captured in mist nets and color-309 

banded. The Hubbard Brook study plot (64 ha) was searched for color-banded individuals every 310 

1-7 days during breeding (mid-May to mid-August). Sampling on the Jamaica study plot (7 ha) 311 

occurred during 3–5-day periods in mid-October–early November, and during 2–5-day periods in 312 
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mid-March. Following Sillett and Holmes29, we built encounter histories from two periods per 313 

site: mid-May to early June and late July to mid-August at Hubbard Brook, and October and 314 

March in Jamaica. Although no banded individuals were encountered during both the breeding 315 

and non-breeding period, the Hubbard Brook and Jamaica populations have been shown to be 316 

geographically linked via stable isotopes35 and light-level geolocators36, and demographically 317 

linked via correlation of reproductive rates in Hubbard Brook and juvenile recruitment rates in 318 

Jamaica29–31.  319 

 320 

QUANTIFICATION AND STATISTICAL ANALYSIS 321 

Kirtland’s Warbler Seasonal Survival  322 

To characterize non-breeding environmental conditions experienced by Kirtland’s Warblers, we 323 

estimated an individual-specific Enhanced Vegetation Index (EVI) value as a proxy for relative 324 

environmental productivity38. We used EVI values measured during March because of previous 325 

research indicating the relevance of March rainfall for annual differences in arrival timing and 326 

reproductive success on the breeding grounds20 and apparent annual survival28. We gathered EVI 327 

values from within a 250-meter radius of the centroid of individual non-breeding locations 328 

(calculated using the sf package68) in Program R67 and took the mean of these values across both 329 

the spatial and temporal buffer to generate an individual-level covariate for survival modeling 330 

(see below). All environmental annotations were done using the rstoat package69 in Program R67, 331 

which draws from the NASA MODIS daily EVI dataset 332 

(https://modis.gsfc.nasa.gov/data/dataprod/mod09.php).  333 

To estimate seasonal survival for Kirtland’s Warblers, we constructed a variation of a 334 

three-state Cormack-Jolly-Seber (CJS) survival model70–72. We defined states based on 335 



 15 

individual migratory progression such that detections on Cat Island (known non-breeding 336 

grounds) were assigned to the non-breeding state, detections on the breeding grounds were 337 

assigned to the breeding state, and all other observations were considered migratory. Because our 338 

period of study extended from the end of the non-breeding period through breeding, we restricted 339 

transitions between states to be “one way” – individuals could only transition from non-breeding 340 

to migration and migration to breeding (and from any living state to the “dead” state). Kirtland’s 341 

Warblers are obligate migrants; therefore, we modeled the transitions between states using the 342 

Weibull cumulative distribution function73,74. This function increases the probability of transition 343 

from one state to the next as time proceeds, asymptotically approaching one. Thus, individuals 344 

were not permitted to remain in a lower order state indefinitely but instead must eventually either 345 

proceed with migration or die. In this way, the model also estimated population-level migration 346 

phenology. 347 

The clustered distribution of Motus stations resulted in detection patterns that 348 

superficially resembled “trap happy” and “trap shy” individuals; given that a bird was detected 349 

on one day, the probability of detection was substantially higher than for individuals that had not 350 

been detected on the previous day because detected birds were more likely to be in a high-351 

density portion of the array (and vice versa). To account for this potential source of bias, we used 352 

the “robust design”75, wherein primary occasions were defined as weeks and secondary 353 

occasions were defined as days. 354 

We fit a model that estimated seasonal survival as a function of non-breeding EVI 355 

conditions for all three seasons. We also fit a null model that considered survival as constant 356 

within seasons. We used Deviance Information Criterion (DIC) to evaluate relative support 357 

between the fitted models76. We used uninformative priors for most parameters in the model, but 358 
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parameters estimating constant seasonal survival probabilities were approximately based on 359 

Rockwell et al. 28 (note that exact moment-matching from those estimates resulted in impossible 360 

parameter combinations so we used more permissive prior distributions). We also constrained 361 

prior distributions associated with transition processes to exclude biologically implausible 362 

transitions (e.g., transitions from non-breeding to migration deep into the breeding season). 363 

We fit models in a Bayesian frameworks using JAGS77, which was called from within R 364 

using the jagsUI package78.We drew four chains of 500,000 MCMC samples with a burn-in 365 

period of 50,000, thinned to every 250th sample to reduce serial autocorrelation within the chains. 366 

We considered models converged at R-hat <1.05.  367 

 368 

Black-throated Blue Warbler Seasonal Survival  369 

We used an integrated survival model37 to estimate seasonal survival probabilities of male and 370 

female Black-throated Blue Warblers. For each data set (breeding and non-breeding), the 371 

integrated model fits a Cormack-Jolly-Seber (CJS) model to estimate apparent survival within 372 

and between stationary periods while accounting for imperfect detection79. In New Hampshire, 373 

the survival of individuals between re-sighting occasions was determined by either the 3-month 374 

breeding period survival probability (May – August; ϕ!,#$%&) or the 9-month between-breeding 375 

period survival (August – May; ϕ!,#''), where s denotes sex-specific survival probabilities in year 376 

t. In Jamaica, the survival of individuals between re-sighting occasions was determined by the 6-377 

month non-breeding survival probability (October – April; ϕ!,#()*) or the 6-month between-non-378 

breeding survival (April – Oct; ϕ!,#'+). We accounted for imperfect detection by modeling the 379 

observed status of individuals as a function of the sex- and occasion-specific detection 380 

probabilities (	𝑝,,-
. ), where j denotes occasion (May, August, October, or March). In their original 381 
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analysis of these data, Sillett and Holmes29 found no support for sex-specific detection 382 

probabilities in October and March, so we did not model sex variation on that parameter. 383 

Furthermore, because observer effort was consistent during the May and October sampling 384 

periods, we followed Sillett and Holmes29 and did not include annual variation in those detection 385 

probabilities.    386 

The two survival models can be integrated by parameterizing the between-period survival 387 

probabilities in terms of the underlying seasonal survival rates: 388 

ϕ!,#/( =	ϕ!,#
$01	ϕ#$%&	ϕ!,#2%# 389 

ϕ!,#// =	ϕ!,#34-	ϕ#56()*	ϕ!,#56
$01  390 

which allows estimation of the latent 2-month spring and fall survival probabilities and the 391 

inclusion of covariates on seasonal survival probabilities37. We chose covariates based on 392 

previous research linking environmental conditions to annual survival in Black-throated Blue 393 

Warblers. In Jamaica, annual survival of Black-throated Blue Warblers from 1986-1999 was 394 

strongly associated with the phase of the El Niño Southern Oscillation (ENSO;29,30). During El 395 

Niño years in Jamaica, reduced rainfall39,40 likely led to decreased availability of arthropod prey 396 

in the winter dry season and, hence, to lower survival. Wetter La Niña years likely resulted in 397 

increased food availability and higher survival. We hypothesized that ENSO mediates warbler 398 

survival via direct effects on non-breeding survival or by influencing body condition at 399 

departure, which should influence subsequent survival during spring migration or over the 400 

following breeding season. We included mean monthly values of the standardized Southern 401 

Oscillation Index (SOI) as a predictor of non-breeding, spring, and breeding survival 402 

probabilities for both sexes and predicted that survival would be positively associated with SOI 403 

(positive SOI values indicate La Niña conditions; negative values signify El Niño conditions). 404 
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Posterior distributions for parameters were estimated using Markov chain Monte Carlo 405 

implemented using the nimble package80 in R67. Encounter histories were summarized using the 406 

multi-state array (m-array) format for computational efficiency. Model fitting revealed that the 407 

default random walk samplers used by nimble resulted in high correlation between the posterior 408 

samples for the latent fall and spring mean survival probabilities and thus poor mixing. Nimble’s 409 

automated factor slice sampler resulted in lower correlation and improved mixing. We used the 410 

default samplers for all other parameters. We ran three chains for 75,000 iterations each after 411 

discarding the first 25,000 iterations as burn-in and saving every 5th sample to reduce 412 

autocorrelation in the posterior samples, resulting in 30,000 posterior samples of each parameter. 413 

Convergence was confirmed when R-hat was <1.05 and through visual inspections of trace plots.   414 

 415 
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