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Abstract 31 

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. 32 

Existing methodologies, such as tissue engineering, bioprinting and organoids, only offer partial 33 

solutions. This Perspective focuses on two emerging approaches promising for engineering human 34 

organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both 35 

approaches exploit the premise of guiding stem cells to mimic natural development. We begin by 36 

summarizing what is known about early human development, as a blueprint for recapitulating 37 

organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields 38 

are discussed, before highlighting the technological and knowledge gaps to be addressed before 39 

the goal of developing human organs could be achieved using the two approaches. We conclude 40 

by discussing challenges facing embryo modeling and interspecies organogenesis and outline 41 

future prospects for advancing both fields towards the generation of human tissues and organs for 42 

basic research and translational applications.      43 
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Introduction 44 

For a wide range of life-threatening diseases such as end-stage kidney, liver, heart and lung failure, 45 

whole organ transplantation often stands as the only viable treatment option. However, a global 46 

shortage of donor organs has exacerbated the issue. Notably, in the United States alone, more than 47 

100,000 individuals find themselves on the national transplant waiting list at any given time, with 48 

17 people dying daily as they wait for an organ transplant 49 

(https://www.organdonor.gov/learn/organ-donation-statistics). The scarcity of donor organs has 50 

prompted physicians and scientists to look for alternative solutions, including xenotransplantation 51 

of animal organs with close anatomical / physiological similartities to human ones. However, even 52 

though there is notable progress in using genetically modified organs from animals, such as those 53 

of pigs, for xenotransplantation therapies,1 it remains uncertain whether animal organs are suitable 54 

for long-term human transplants. 55 

 In addition to xenotransplantation, there are other strategies available for organ engineering 56 

based on cultured human cells, including tissue engineering, bioprinting, and organoid 57 

technologies. Decades of tissue engineering studies have led to successful applications of various 58 

engineered tissue constructs, including most recent ones for skin and corneal tissue grafting to treat 59 

skin disease and restore vision, respectively.2,3 Another emerging tissue engineering approach 60 

utilizes decellularized extracellular matrix (ECM) from different organs, such as the heart, liver, 61 

kidney and lung, to provide biomimetic scaffolds that support the generation of bioartificial 62 

organs.4 Bioprinting allows precise deposition of bioinks (often containing cells) and support 63 

structures to create three-dimensional (3D) tissue architectures with unparalleled topological 64 

complexities.5,6 The advent of organoids, 3D structures derived from self-organizing tissue-65 

specific stem cells and progenitors, has shown considerable promise in modeling human organ 66 

development and disease.7,8 There are notable recent progresses in enhancing the complexity of 67 

organoids, including incorporating vascular networks within organoids and assembling multi-68 

tissue organoids to study intra- and inter-organ communication.9 Although organ engineering 69 

studies based on tissue engineering, bioprinting and organoid technologies are becoming 70 

increasingly sophisticated, they still offer imperfect solutions. For instance they fall short in their 71 

ability to recapitulate essential functional elements, including vasculature, innervation, lymphatics, 72 

and the accurate number, diversity and organization of functional and supporting cell types from 73 

different germ layer lineages within solid organs.10 74 
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The focus of this Perspective is two cutting-edge strategies based on human stem cells that 75 

are promising for addressing the challenges of organ engineering: stem cell-based embryo models 76 

and interspecies organogenesis (Figure 1). Both approaches are grounded in a unified conceptual 77 

framework that emphasizes the replication of natural processes of germ layer lineage development 78 

and organization and microenvironments essential for organ formation. Mimicking the trajectory 79 

of natural embryonic development, formation of human organ primordia using both approaches 80 

would follow the canonical developmental blueprint, progressing from gastrulation to 81 

organogenesis. In vivo, the foundational cells for gastrulation and organogenesis are the pluripotent 82 

epiblast (EPI) cells. They differentiate and self-organize into patterned embryonic germ layers 83 

during gastrulation, setting the stage for subsequent tissue development and interaction. This, 84 

combined with tissue-level morphogenetic processes, leads to the formation of early organ 85 

structures.  86 

Contrary to tissue engineering and bioprinting approaches that add layers of complexity in 87 

increments to primitive tissues composed of scaffolds and cultured cells, embryo models and 88 

interspecies organogenesis initiate organ development with inherent structural complexity through 89 

self-organization and -construction of embryonic germ layers guided by genetic programs. Both 90 

approaches, in theory, could enable human organs to develop in an environment that closely mimic 91 

their natural growth conditions, whether provided by embryo models themselves or in an 92 

interspecies host, as opposed to taking organ development out of its natural context as in tissue 93 

engineering or bioprinting. Similarly, despite their promise for modeling organ development, 94 

organoids are often generated in culture conditions distintly different from natural embryonic 95 

environments, such as missing supporting cell types from different embryonic germ layers. As 96 

such, organoids tend to lack the complex structural organization and tissue architecture of different 97 

germ layer lineages found in native organs that are essential for their physiological functions.  98 

The rapid emergence of stem cell-based embryo models takes advantage of the recent 99 

knowledge that pluripotent stem cells (PSCs) largely follow the natural developmental programs 100 

of the epiblast cells when differentiated in vitro and their progenies possess remarkable self-101 

organizing properties, giving rise to organized multicellular structures that mimic embryonic 102 

tissues.7,11 In addition, the ever increasing knowledge of early post-implantation human 103 

development, leading to organogenesis, derived from studies on cultured and aborted human 104 

embryos,12-19 provide critical information for guilding human embryo model development as well 105 
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as for their authentication and benchmarking. The exciting prospect of using embryo models for 106 

organ engineering has been further elevated by recent advancements of mouse embryo models, 107 

which recapitulate certain aspects of the germ layer lineage diversification and organization during 108 

gastrulation and early organogenesis, albeit with low efficiencies and developed organ primordia 109 

showing notable defects.20-22 Similar progress in human embryo models, although currently 110 

lagging, would, in principle, lead to useful experimental systems for dissecting the molecular and 111 

cellular events driving human gastrulation and early organogenesis. Furthermore, such advanced 112 

human embryo models would contain most, if not all, foundational embryonic cell types essential 113 

for complex solid organ formation. We speculate that with proper spatial organization and 114 

interactions between embryonic germ layer lineages, like inherent programmed organogenesis in 115 

vivo, these embryo models would have the self-organizing potential to form different organ 116 

primordia, thereby opening up exciting new frontiers for organ engineering and related 117 

applications.  118 

Human-animal chimeras and blastocyst complementation represent another promising 119 

route for generating transplantable human tissues and organs. Nature’s intricate system for 120 

embryonic development creates functional tissues and organs through a dynamic interplay between 121 

genetic programming and extrinsic developmental niche. This guides embryonic cells in their 122 

differentiation and complex tissue formation. Advances in gene-targeting technologies and PSCs 123 

have greatly enhanced our understanding of how genetic and epigenetic factors drive embryonic 124 

development. Disruptions in these factors can lead to developmental defects, including missing 125 

cell lineages or organs, in embryos. This creates "empty" developmental niches that may be filled 126 

using donor PSCs, a strategy known as blastocyst complementation.23 Initially demonstrated with 127 

mouse embryonic stem cells (ESCs) in 1993,24 this technique was later adapted to interspecies 128 

contexts, successfully producing functional rat pancreas in mice.25 These groundbreaking studies 129 

have continuously motivated interspecies organogenesis research towards the goal of growing 130 

human tissues and organs in other species.  131 

Though numerous challenges remain, it is now techanically conceivable for the formation 132 

of human organ primordia in stem cell-derived embryo models or within animal hosts. It is the 133 

belief of the authors of this Perspective that with further optimizations, organ rudiments in embryo 134 

models or animal hosts could, in principle, develop and grow into fully functional organs, 135 

supported by in vivo-like developmental niches and nurtured by blood circulation systems 136 
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provided by embryo models or through advanced culture systems, such as artificial placentas, or 137 

animal hosts.  138 

Even though functional human organs have yet to be generated through embryo modeling 139 

and interspecies organogenesis, this Perspective aims to encapsulate recent advances in both fields 140 

and speculate about their promise for regenerative medicine. We start by briefly summarizing 141 

human pluripotent and extraembryonic stem cells, which constitute the starting cell populations 142 

for both approaches. We then discuss the natural development program up to early organogenesis, 143 

side by side with the latest advancements in embryo modeling and interspecies organogenesis. We 144 

emphasize the importance of closely mimicking natural developmental processes to ensure proper 145 

germ layer diversification, interactions and organization, which are fundamental for tissue lineage 146 

specification and morphogenesis, ultimately leading to organ formation. We then elaborate on the 147 

challenges and expectations and conclude by addressing the future prospects and ethical 148 

considerations in embryo modeling and interspecies organogenesis. Given the numerous technical 149 

and ethical hurdles facing the two fields, it is our hope that this Perspective will provide a useful 150 

framework for guiding both fields towards one of the main goals of regenerative medicine: the 151 

generation of functional human tissues and organs for fundamental and translational applications. 152 

 153 

Embryonic and Extra-embryonic Stem Cells 154 

Different types of human PSCs (hPSCs) and/or extraembryonic stem cells have been utilized as 155 

starting cell populations in embryo modeling (Table 1) and interspecies organogenesis (Table 2). 156 

Stem cells of the three foundational lineages of early mouse embryos - epiblast, trophectoderm, 157 

and primitive endoderm - have all been well established in vitro as ESCs, trophoblast stem cells 158 

(TSCs), and extraembryonic endoderm stem cells (XENs), respectively.26-29 Human TSCs (hTSCs) 159 

have only been derived recently from cytotrophoblasts, blastocysts or naïve hPSCs.30-33 Although 160 

human stem cells analogous to mouse XENs have not yet been fully established, XEN-like cells 161 

have been reported through differentiation from naïve or intermediate hPSCs.34-36 162 

 The in vivo human pluripotency continuum has been recapitulated in vitro with various 163 

types of hPSCs representing distinct pluripotency states.37 These hPSCs in different pluripotency 164 

states are believed to be suitable for modeling the behaviors of pluripotent epiblast cells at different 165 

stages of early human development. Conventional hPSCs represent post-implantation (or 166 

embryonic day or E10-12) rather than blastocyst stage (E6-7) human epiblast cells and reside in 167 
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the primed pluripotency state that show limited potential in differentiation towards extraembryonic 168 

cell lineages.38 The unrestricted developmental potential of naïve mouse PSCs has inspired 169 

intensive efforts to derive naïve hPSCs. Assessment of naïve pluripotency in hPSCs, due to ethical 170 

challenges associated with stringent functional tests like germline transmission in chimeras and 171 

tetraploid complementation,39 relies exclusively on molecular benchmarking. hPSCs cultured 172 

under various conditions, such as 5i/L/A,40 t2iLGöY,41 4CL42 and HENSM,43 have met most, if 173 

not all, of the established molecular criteria. These naïve hPSCs exhibit transcriptomic profiles 174 

similar to pre-implantation E6-7 human epiblast cells, a result that supports multiple culture 175 

conditions to stabilize naïve pluripotency in humans. In contrast, some hPSCs initially thought of 176 

as naïve or naïve-like display transcriptomic features more similar to post-implantation E8-9 177 

human epiblast cells, suggesting that these cells reside in intermediate states between naïve and 178 

primed pluripotency.44-46 Formative pluripotency, one such intermediate state, has recently 179 

garnered some attention.47 This state represents a developmental window when naïve pluripotency 180 

is reconfigured to prepare for multilineage competency, including germ cell specification. 181 

Although hPSCs with formative pluripotency have recently been reported,38,48 currently there is a 182 

lack of well accepted criteria for authenticating the human formative pluripotency state.  183 

 Recent studies have identified mouse PSCs that display some characteristics consistent 184 

with totipotency; herein, these cells are collectively referred to as totipotent-like pluripotent stem 185 

cells (TPSCs). So far, reported mouse TPSCs include extended and expanded potential stem cells 186 

(EPSCs),49,50 totipotent blastomere-like cells (TBLCs),51 chemically induced totipotent stem cells 187 

(ciTotiSCs),52 totipotent-like stem cells (TLSCs),53 and totipotent potential stem (TPS) cells.54 188 

Although the establishment of stable human TPSCs remains elusive, several recent studies have 189 

successfully identified metastable human eight cell-like cells (8CLCs) under naïve hPSC cultures 190 

that activate a range of zygotic genome activation (ZGA) genes.42,55,56 These putative human 191 

totipotent-like cells, whether transient or stable, provide a starting cell population likely useful for 192 

modeling pre-implantation human developmental events, ranging from early blastomere 193 

development to blastocyst formation. They also hold potential for applications in interspecies 194 

organogenesis.  195 

 196 

Recapitulating Embryonic Development Leading to Organogenesis 197 
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Embryonic development serves as a blueprint for embryo modeling and interspecies organogenesis 198 

to form functional organs through spatiotemporally dynamic intercellular interactions and 199 

organizations. Organ formation in vivo necessitates stereotypical developmental progression, from 200 

the implantation, gastrulation to organogenesis (Figure 2A). Pre-implantation human 201 

development has been well characterized, thanks to in vitro culture conditions developed for 202 

fertilized embryos used in assisted human reproduction.57 Human development from implantation 203 

to early organogenesis, however, is much less clear, due to both technical and ethical difficulties 204 

associated with intrauterine development after implantation. Our knowledge of post-implantation 205 

human development primarily comes from descriptive analyses of historical human embryo 206 

collections,58 recent research on primary human embryonic samples,17,18 and studies on cultured 207 

human embryos.12-14,16,59,60 In this section, we discuss the current understanding of early human 208 

development, focusing on lineage development, morphogenetic events and dynamic tissue 209 

organizations that culminate in the formation of organ primordia. Alongside the exploration into 210 

the current understanding of early human development, we discuss what has been achieved in 211 

embryo modeling and interspecies organogenesis. For detailed discussions on human development 212 

from blastocyst formation to gastrulation, we direct readers to some recent comprehensive 213 

reviews.61,62 It is important, however, to acknowledge that our discussion, especially regarding 214 

peri- and post-implantation development, is based on knowledge that may be incomplete or subject 215 

to revision by future research. Current understanding of the molecular and cellular mechanisms of 216 

human development should be best considered as evolving hypotheses rather than established facts. 217 

To serve this goal, we try to highlight issues of particular uncertainty or controversy and to indicate 218 

the limits of our knowledge.  219 

 220 

Pre-implantation development  221 

Pre-implantation human development displays notable autonomy and self-organization. Human 222 

embryos, from fertilization to implantation, progress through an ordered series of cell-fate 223 

decisions and symmetry-breaking events. This developmental sequence results in the formation of 224 

a blastocyst, composed oftrophectodermsurrounding the blastocoel and an inner cell mass (ICM) 225 

(Figure 2A[i]). Post-implantation, thetrophectodermcontributes to placental development. Within 226 

the blastocyst, the ICM differentiates into two distinct cell lineages: epiblast, forming the embryo, 227 

and hypoblast (HYP), or called primititve endodermin mice. Before implantation the epiblast and 228 
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hypoblast compartments are separated by a basal lamina, with hypoblast cells forming a polarized 229 

cuboidal epithelium lining the blastocoelic cavity (Figure 2A[i]).  230 

 Human blastocyst implantation initiates notable tissue reorganization and lineage 231 

development.61-64 However, knowledge about dynamic cell lineage specification and 232 

differentiation, fate patterning, morphogenetic tissue organization, and underlying molecular and 233 

cellular mechanisms during early post-implantation human development remains limited. 234 

Histochemical analyses of early post-implantation human embryos reveal that invasive trophoblast 235 

cells at the embryonic pole of implanting blastocysts proliferate and establish connections with the 236 

maternal uterine tissue. Some of these cells lose plasma membranes, forming syncytiotrophoblasts, 237 

which grow and enclose the implanting blastocyst. Remaining trophoblast cells along the 238 

blastocyst wall maintain their membranes and constitute the cytotrophoblast.  239 

 240 

Modeling blastocyst development 241 

Recent years have witnessed significant advancements in the development of human blastocyst 242 

models, known as ‘blastoids’65-72 (Table 1). These models encompass all the founding cell lineages 243 

of the fetus and its supporting tissues and as such are considered as integrated embryo models 244 

(Figure 2B[i]). The generation of human blastoids was inspired by initial success in mouse 245 

blastoid formation.73-75 Mouse blastoids are created by combining mTSCs with mESCs73 or 246 

mEPSCs74 in confining microwells, or by differentiating mEPSCs into EPI-, TE-, and PE-like cells 247 

in microwells75 (Table 1). Additionally, mouse blastoids have been developed through chemical 248 

reprogramming of primed mouse epiblast stem cells (mEpiSCs) to form induced blastocyst-like 249 

precursors that subsequently self-organize into blastoids76 (Table 1). Recently, mouse blastoids 250 

have also been derived from mouse TPSCs53,54,77 (Table 1).    251 

Providing mouse stem cells with geometric confinements is a critical step to promote cell-252 

cell interactions and self-organization. This yields mouse blastoids with morphological features, 253 

lineage compositions and organization, and gene expression patterns showing different levels of 254 

similarities to mouse blastocysts.53,54,73-77 Even though mouse blastoids transferred into the uteri 255 

of pseudopregnant mice could initiate an implantation-like process and induce decidualization, 256 

they exhibit very limited growth or development before resorption.73-76 This suggests that mouse 257 

blastoids do not have the same developmental potential as mouse blastocysts. Optimizing mouse 258 

blastoids to progress through implantation, gastrulation and organogenesis, ultimately leading to 259 
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the formation of functional organs in surrogate mouse uteri or in vitro, remains an unrealized goal 260 

in embryo modeling. If achieved, this would represent a significant milestone in the use of 261 

mammalian embryo models for organ engineering.     262 

 Current methods for generating human blastoids are similar to those used for mouse 263 

blastoids generated from a single starting cell type.53,54,75,77 Given their developmental potential 264 

for both embryonic- and extraembryonic-like cells,31,32,34,49,78 naïve hPSCs and hEPSCs have been 265 

the cells of choice to create human blastoids (Table 1). These cells, sometimes with their 266 

derivatives, are placed in microwells and subjected to chemical inductions, promoting 267 

differentiation and self-organization into segregated EPI-, TE-, and HYP-like compartments. This 268 

process results in blastoids with different levels of similarities in morphology, global gene 269 

expression, and lineage composition to human blastocysts.65-72 Human blastoids have also been 270 

generated with chemically reprogrammed hPSCs that resemble eight-cell stage blastomeres (i.e. 271 

8CLCs)42,55 (Table 1). It remains unclear whether human 8CLCs have the intrinsic capacity to 272 

differentiate and self-organize into blastoids without the influence of external factors. 273 

Alternatively, human blastoids have been generated from transitioning intermediates of somatic 274 

cell reprograming (iBlastoids)79 and primed-to-naïve conversion80 (Table 1). However, 275 

comparative transcriptome studies suggest that TE-like cells in iBlastoids may actually represent 276 

post-implantation amniotic ectoderm cells.81,82 As an integrated embryo model, human blastoid 277 

research warrents careful scientific and ethical oversight processes.83 Ethical constraints prohibit 278 

in vivo implantation studies of human blastoids.83   279 

Besides mouse and human blastoids, researchers have recently created monkey84 and 280 

bovine blastoids85 using naïve-like monkey ESCs and through assembling bovine TSCs86 and 281 

EPSCs,87 respectively. Prolonged culture of monkey blastoids shows cellular features and 282 

molecular markers consistent with peri-gastrulation primate development.84 Monkey and bovine 283 

blastoids, when transferred into surrogate uteruses, appear capable of establishing early pregnancy 284 

based on ultrasound observations and/or hormone level detections.84,85 These in vivo 285 

transplantation assays provide the most stringent test of blastoid developmental potential. However, 286 

it is yet to be shown whether implanted monkey or bovine blastoids can exhibit stereotypical tissue 287 

organization and lineage diversification consistent with post-implantation development. 288 

 289 

Interspecies chimeric contributions to blastocyst formation 290 
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Generation of human organs in animals via blastocyst complementation requires donor hPSCs to 291 

effectively contribute to the ICM of host blastocysts. Studies in mice reveal that ICM incorporation 292 

and chimera competency positively correlates with the developmental potential of donor PSCs: 293 

mouse TPSCs exhibit the highest capacity to form chimeras in embryonic tissues,49,51,52 followed 294 

by naïve and intermediate/formative mouse PSCs, while primed mouse EpiSCs rarely contribute 295 

to mouse blastocyst ICMs.39,88  Likewise, 8CLCs, naïve, naïve-like and intermediate hPSCs have 296 

shown robust colonization into ICMs of mouse, pig, rabbit and monkey blastocysts42-45,89-93 297 

(Figure 2C[i] and Table 2). In contrast, primed hPSCs were inefficiently incorporated into mouse, 298 

rabbit, cow or pig ICMs, and the cells undergo apoptosis following blastocyst injection90,94,95 299 

(Table 2).  300 

 301 

Peri-implantation development 302 

During peri-implantation human development, hypoblast proliferates, extending beyond the 303 

epiblast, differentiating into visceral and parietal endoderm. The visceral endoderm lies beneath 304 

the epiblast, forming a continuous, polarized cuboidal epithelium, while peripheral hypoblast cells 305 

transform into spindle-shaped parietal endoderm, creating the inner lining for the cytotrophoblast. 306 

The parietal endoderm expands gradually to line the entire inner cavity of the cytotrophoblast, 307 

leading to primary yolk sac formation (Figure 2A[ii]).  308 

 During primary yolk sac formation, extraembryonic mesoderm arises as spindle-shaped 309 

cells situated between parietal endoderm and cytotrophoblast. The origin of early extraembryonic 310 

mesoderm in humans is a subject of debate. One hypothesis suggests it may derive from either 311 

visceral or parietal endoderm. Another theory proposes that it could originate from peri-312 

implantation epiblast cells while they form the amniotic cavity and undergo symmetry breaking to 313 

generate the amniotic ectoderm.96,97 As human peri-implantation development progresses, 314 

extraembryonic mesoderm expands, enveloping the epiblast compartment and primary yolk sac, 315 

thereby separating them from the cytotrophoblast (Figure 2A[ii]). 316 

 During human peri-implantation development, the epiblast compartment forms the 317 

amniotic cavity through lumenogenesis59 (Figure 2A[ii]). This lumenal epiblast sac gradually 318 

resolves into a bipolar structure, with epiblast cells neighboring invading cytotrophoblast cells 319 

becoming squamous amniotic ectoderm and remaining epiblast cells on the opposite pole 320 

maintaining pluripotency and forming a discoid embryonic disc. At this stage, the epiblast and 321 
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visceral endoderm form the bilaminar embryonic disc, positioned between the amniotic cavity 322 

(dorsally) and the primary yolk sac cavity (ventrally) (Figure 2A[ii]). Prior to gastrulation, a 323 

chorionic cavity forms in the extraembryonic mesoderm by dividing it into two layers. At this 324 

stage, the yolk sac structure beneath the bilaminar embryonic disc transitions from the primary to 325 

definitive yolk sac. How the definitive yolk sac forms to replace the primary yolk sac remains 326 

elusive. One theory suggests that the definitive yolk sac takes shape by visceral endoderm 327 

expansion, giving rise to a new membrane that pushes the primary yolk sac forward. It eventually 328 

pinches off from the primary yolk sac, with the primary yolk sac tissue degenerating into vesicles 329 

at the abembryonic end of the chorionic cavity. Simultaneously, the chorionic cavity expands, 330 

separating the human embryo with its attached amnion and yolk sac from the blastocyst's outer 331 

wall (now called chorion), suspended solely by a thick stalk of tissue, the connecting stalk. The 332 

cellular composition of human connecting stalk remains to be fully characterized and likely 333 

contains mainly extraembryonic mesoderm.  334 

 There are many fundamental questions unanswered about peri-implantation human 335 

development. Compared to mice, human amniotic ectoderm and extraembryonic mesoderm 336 

emerge earlier. Even though differentiations of amniotic ectoderm- and extraembryonic 337 

mesoderm-like cells from cultured hPSCs have been demonstrated,98,99 the origins of these two 338 

lineages, molecular mechanisms underlying their specifications, and their roles in human peri-339 

implantation development remain to be elucidated. Recent studies using cultured human embryos 340 

support the role of ECM signaling in the lumenogenesis and formation of the amniotic cavity in 341 

the epiblast during peri-implantation human development.13,59 Another in vitro study suggests a 342 

role of ECM rigidity-dependent BMP signaling in regulating amniotic differentiation of primed 343 

hPSCs.98 How ECM and developmental signaling, tissue mechanics and morphogenetic events, 344 

and lineage fate decisions are interconnected during peri-implantation human development 345 

remains elusive. It also remains to be clarified the molecular and cellular mechanisms underlying 346 

the primary and definitive yolk sac formation in humans. During human peri-implantation 347 

development, thetrophectodermderivatives become physically separated from the bilaminar 348 

embryonic disc by the amnion, a distinction from the pre-gastrulation structure of the mouse egg 349 

cylinder (Figure 2A[ii]).  350 

 351 

Modeling peri-implantation development 352 
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Notable differences exist between mouse and human peri-implantation development.61-64,100 353 

Mouse models of peri-implantation development, made using embryonic and extraembryonic stem 354 

cells, have successfully mimicked tissue organization and lineage segregation seen in early post-355 

implantation mouse embryos (Table 1). More recently, improvements of a rotating bottle 356 

culture system initially pioneered by Dennis New101 have allowed for prolonged ex utero mouse 357 

embryo culture.102 Importantly, this rotating bottle culture system has also enabled stem cell-358 

derived mouse peri-implantation embryo models to progress beyond gastrulation, initiating early 359 

organogenesis, albeit with a very low efficiency and organ primordia exhibiting notable defects 360 

(Table 1).20-22 Specifically, these mouse embryo models develop structures mimicking headfolds 361 

with brain subdivisions, a heart, a trunk structure with a neural tube and somites, a tail bud 362 

containing neuromesodermal progenitors (NMPs), and a gut tube.20-22 These mouse studies 363 

showcase the exciting promise of stem cell-based embryo models for generating organ primordia 364 

through progressive development from the gastrulation to early organogenesis. 365 

In extended 3D cultures, human blastoids show features of early post-implantation 366 

development, including amniotic cavity and primary yolk sac formation, growth and 367 

differentiation of thetrophectodermlineage, and the emergence of gastrulating cells.71,80 However, 368 

the low efficiency of human blastoids exhibiting these developmental events limits their 369 

applications for studying peri- and post-implantation human development. Advancements in this 370 

area may be facilitated by ongoing research aimed at improving prolonged human blastocyst 371 

cultures in vitro, along with efforts in developing models of implantation and placentation using 372 

human endometrial cells.69,70  373 

Besides prolonged 3D cultures of human blastoids,71,80 there are other embryo models 374 

developed for studying human peri-implantation development. Early studies showed lumen 375 

formation as an intrinsic property of primed hPSCs, supporting their use for modeling amniotic 376 

cavity formation.103 Additional studies revealed that naïve hPSCs could not readily form lumens, 377 

and the epiblast compartment of in vitro cultured human blastocysts only forms the amniotic cavity 378 

after epiblast cells exit the naïve pluripotency.59 Recently, a study demonstrated that clusters of 379 

primed hPSCs in a 3D culture underwent lumenogenesis before evolving into a bipolar structure 380 

mimicking post-implantation amnion-EPI patterning (Table 1).104 Progressive development of this 381 

structure showed delamination of gastrulating cells from the EPI-like pole, a feature consistent 382 

with the onset of gastrulation. More recently, a microfluidic amniotic sac model was developed, 383 
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allowing for controlled formation of primed hPSC clusters. This was followed by asymmetrical 384 

chemical stimulations of hPSC clusters in the microfluidic device, which improved the efficiency 385 

and controllability of the amniotic sac model (Table 1).105 This model also demonstrated features 386 

consistent with induction of human primordial germ cells (PGCs) during peri-gastrulation human 387 

development.105 This microfluidic amniotic sac model highlights the promising applications of 388 

bioengineering tools in controlling tissue geometry, as well as biochemical and biophysical 389 

conditions, for embryo modeling to boost their efficiency and controllability.    390 

Another 3D peri-implantation human development model was also developed using primed 391 

hPSCs to model anterior (A)-posterior (P) symmetry breaking of the epiblast at the onset of 392 

gastrulation (Table 1).106 A follow-up study utilized an assembloid approach to combine primed 393 

hPSCs and extraembryonic-like cells to examine the role of embryonic-extraembryonic 394 

interactions during the same developmental event (Table 1).107 395 

 Very recently, several new human embryo models have been reported, utilizing either 396 

naïve hPSCs or hEPSCs, and sometimes with their derivatives, to simulate human peri-397 

implantation development up to the gastrulation60,108-112 or early organogenesis113 (Figure 2B[ii] 398 

and Table 1). Some of these embryo models exhibit complex cellular developments and 399 

organizations consistent with the development of nearly all known lineages and structures of peri-400 

implantation human embryos. These structures include bilaminar disc formation, epiblast 401 

lumenogenesis for amniotic cavity formation, patterned amniogenesis, A-P symmetry breaking in 402 

the epiblast, human PGC specification, primary yolk sac formation, extraembryonic mesoderm 403 

and chorionic cavity development, and atrophectodermlineage-surrounding compartment. 404 

Although one such model reports signs of a trilaminar disc-like structure and primary 405 

neurulation,113 it remains to be fully validated whether these most recent peri-implantation human 406 

development models can faithfully emulate the multifaceted human gastrulation process and even 407 

reach the early organogenesis stage.60,108-112 Since the development of these embryo models relies 408 

on spontaneous aggregation and differentiation of naïve hPSCs or hEPSCs, they often exhibit 409 

suboptimal efficiency and/or disorganized cellular structures. Even though it remains to be seen 410 

how these models will be utilized as experimental tools to advance fundamental knowledge of 411 

peri-implantation human development, they represent the most recent advances of human embryo 412 

modeling. 413 

 414 
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Interspecies chimeric contributions to peri-implantation development 415 

Despite exhibiting robust colonization of host blastocyst ICM,  naïve hPSCs, such as those cultured 416 

in 5i/L/A and PXGL conditions, surprisingly show limited chimeric contribution in mouse, pig, 417 

and monkey peri-implantation or early post-implantation embryos90-92 (Table 2). In comparison, 418 

hPSCs in intermediate states show improved contributions in early post-implantation chimera 419 

formation in pig (E20-E28),90 mouse (E9.5-10.5)43-45,89 and monkey (E15)114 embryos (Figure 420 

2C[iii] and Table 1). These findings indicate that intermediate or naïve-like hPSCs might be more 421 

effective as donor cells for interspecies blastocyst complementation, or that the culture condtions 422 

for naïve hPSCs need refinement for optimal use in interspecies chimera applications. Supporting 423 

this idea, naïve hPSCs cultured under 5i/L/A and PXGL conditions have been found to exhibit 424 

genomic instabilities and a loss of DNA methylation at primary imprints.115,116  425 

 Studies of mouse TPSCs suggest that, if successfully developed, human TPSCs could be 426 

valuable for interspecies chimera formation and blastocyst complementation. Several recent 427 

studies support this hypothesis (Table 2), with human EPSCs demonstrating increased chimera 428 

competency in both mouse and monkey embryos.49,114,117 In addition, human cells were readily 429 

detected in E10.5 mouse embryos following blastocyst injection of human 8CLCs.42  430 

Although primed hPSCs undergo apoptosis and cannot contribute to chimera formation 431 

following blastocyst injection, they can effectively engraft the posterior epiblast compartment in 432 

gastrula-stage mouse embryos and differentiate into cell lineages from all the three germ 433 

layers118,119 (Figure 2C[ii]). Thus, utilizing primed hPSCs for interspecies organogenesis via an 434 

"EPI complementation" in gastrula-stage mouse embryos appears as an attractive alternative 435 

strategy.88 To achieve this goal, a prolonged ex utero embryo culture system, like the one recently 436 

reported,102 will be needed for prolonged culture of mouse gastrula, due to a lack of effective 437 

methods for transferring gastrula-stage embryos into a surrogate uterus. By grafting primed hPSCs 438 

into the posterior epiblast of an organogenesis-disabled, pre-gastrulation mouse embryo, it might 439 

be possible to generate human organ primordia through prolonged ex utero culture of these 440 

chimeric embryos.   441 

 442 

Gastrulation and organogenesis 443 

Gastrulation in vivo involves the formation of the primitive streak in the epiblast and differentiating 444 

epiblast cells moving through the PS, intercalating with underlying visceral endoderm cells, and 445 
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eventually replacing them with embryonic endoderm cells. The transition of visceral endoderm to 446 

definitive endoderm and the role of definitive endoderm in definitive yolk sac development in 447 

humans are yet to be clarified. In mice, a fraction of visceral endoderm cells persists at least until 448 

the formation of the early gut tube.120 Other gastrulating cells migrate bilaterally from the PS and 449 

then cranially or laterally between the endoderm and epiblast, coalescing to form the embryonic 450 

mesoderm. epiblast cells that do not ingress through the PS are fated to become the embryonic 451 

ectoderm. Thus, through gastrulation, the epiblast in human embryos transforms into a trilaminar 452 

germ disc structure. 453 

 Current molecular understanding of mammalian gastrulation is primarily derived from 454 

mouse studies, emphasizing how interactions between the epiblast and surrounding 455 

extraembryonic tissues lead to gene expression patterns that initiate symmetry breaking and body 456 

axis formation.121 In mouse embryos, signals from the anterior visceral endoderm inhibit epiblast 457 

differentiation. Developmental signaling, involving BMP, WNT and NODAL pathways, at the 458 

posterior epiblast prompts epithelial-mesenchymal transition (EMT) and cell ingression through 459 

the PS, acquiring mesendoderm identities. The precise molecular mechanisms for symmetry 460 

breaking in human epiblast at the onset of gastrulation remain unclear. Recent studies on monkey 461 

and human embryos reveal a population of putative visceral endoderm cells at the anterior end 462 

expressing WNT and NODAL antagonists,122-124 akin to the mouse anterior visceral endoderm, 463 

suggesting shared mechanisms in mammalian species for epiblast symmetry breaking during 464 

gastrulation. 465 

 During mouse gastrulation, PGCs develop from somatic gastrulating epiblast cells due to 466 

BMP signals from adjacent extraembryonic tissues.125-127 Knowledge about early PGC 467 

development in primate embryos is limited.123,128 Unlike mice, cynomolgus monkey PGCs seem 468 

to emerge in the nascent amniotic ectoderm compartment before gastrulation.123 Observations 469 

from in vitro cultured human embryos, in vivo post-implantation human and monkey embryos, and 470 

human embryo models also support the emergence of human PGCs firstly in nascent amniotic 471 

ectoderm prior to the gastrulation.105,128,129 This observation requires further confirmation using 472 

other peri-gastrulation human and monkey embryonic tissues. It remains to be elucidated the 473 

molecular and cellular differences between human PGCs originated in the amniotic ectoderm 474 

compartment vs. those from somatic gastrulating epiblast cells. 475 
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 Human gastrulation remains a profound mystery.130 Prior to gastrulation, the human 476 

epiblast compartment is surrounded by two extraembryonic tissues, dorsal amniotic ectoderm and 477 

ventral visceral endoderm. Data from human embryo models support a possible inductive role of 478 

posterior amniotic ectoderm in triggering the onset of gastrulation in the posterior epiblast 479 

compartment.105 How the amniotic ectoderm and visceral endoderm coordinate to mediate 480 

symmetry breaking, body axis formation, and PS development in human gastrula remains an 481 

important question to address in the future. Additionally, the mechanisms governing how 482 

gastrulating human cells segregate and give rise to organized germ layer lineages, as well as the 483 

development of human PGCs – including their origin and underlying genetic and molecular 484 

mechanisms - during human gastrulation, remain largely unresolved. These fundamental questions 485 

have profound implications for reproductive and regenerative medicine.  486 

 During gastrulation, germ layer subpopulations in the trilaminar embryonic disc come 487 

together, facilitating interactions that shape tissue layers, specify cell types, and initiate organ 488 

rudiment development (Figure 2A[iii]). A critical event in embryonic ectoderm is neural 489 

induction,131 where it divides into the neuroectoderm (central) and surface ectoderm (lateral, future 490 

epidermis). The neuroectoderm forms the neural plate, which subsequently folds into the neural 491 

tube, covered by the surface ectoderm through the process of primary neurulation.132 The rostral 492 

neural tube,from the brain to the rostral part of the spinal cord up to its mid-thoracic region is 493 

formed through primary neurulation. Caudal spinal cord, in contrast, is developed during the 494 

elongation of the embryo, through a less characterized secondary neurulation process. It is 495 

hypothesized that during gastrulation, caudal epiblast cells first ingress to give rise to a part of the 496 

tail bud mesenchyme, which contains a population of bipotent NMPs that give rise to both caudal 497 

spinal cord and paraxial mesoderm derivatives during the elongation of the embryo.133 This tail 498 

bud mesenchyme subsequently epithelializes and undergoes cavitation, leading to the formation 499 

of one or several lumens (i.e., secondary neurulation). Both primary and secondary neurulation 500 

have been observed in human embryos;134,135 however, their exact contribution to human neural 501 

tube formation is still a matter of debate.   502 

 During neural tube formation, neural crest cells arise from the neural plate’s edges.136 503 

These cells delaminate from the closing neural tube and migrate to various locations to generate 504 

diverse cell types. The identity of neural crest derivatives correlates with their position along the 505 

rostral-caudal body axis, with cranial neural crest cells preferentially generating mesenchymal 506 
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derivatives in the head, and trunk neural crest cells giving rise to sympathoadrenal cells. It remains 507 

poorly understood how mammalian neural crest cells are regionalized with different differentiation 508 

potentials along the rostral-caudal axis.137 Within the neural tube,cells differentiate into distinct 509 

classes of neuronal progenitors at defined positions along both the rostral-caudal and dorsal-ventral 510 

body axes under the influence of inductive factors emanating from adjacent tissues, including two 511 

organizer regions that extend along the dorsal and ventral midlines of the embryo: dorsal surface 512 

ectoderm and ventral notochord.  513 

 Gastrulation organizes embryonic mesodermal cells into various regions, including 514 

cardiogenic mesoderm, axial mesoderm of the prechordal plate and notochord, paraxial mesoderm, 515 

intermediate mesoderm and lateral plate mesoderm.  Each of these mesodermal regions undergoes 516 

some form of segmentation. The most notable segmentation occurs in the trunk and tail paraxial 517 

mesoderm, leading to somite formation, which contributes to skeletal muscles, axial skeleton, and 518 

dermis. This process, known as somitogenesis, is accompanied by a molecular oscillator called the 519 

segmentation clock.138,139 The interaction of the segmentation clock with a signal wave traveling 520 

in the paraxial mesoderm along the cranial-caudal axis (the clock-and-wavefront model) is 521 

generally believed to control somite number, size, and axial identity in developing embryos.140-142    522 

 After gastrulation, the trilaminar embryonic disc undergoes folding due to differential 523 

growth rates. As a result, the cranial, lateral, and caudal edges of the embryonic disc converge 524 

along the ventral midline. The endodermal, mesodermal, and ectodermal layers fuse to their 525 

corresponding layers on the opposite side, creating the basic tube-within-a-tube body plan. This 526 

process transforms the flat embryonic endoderm into a primitive gut tube surrounded by mesoderm.  527 

Initially, the gut tube consists of foregut and hindgut separated by the midgut, which remains open 528 

to the definitive yolk sac. As the lateral edges of embryonic disc layers continue to join along the 529 

ventral midline, the midgut progressively transforms into a tube, and the definitive yolk sac neck 530 

narrows into a slender vitelline duct. Reciprocal interactions with mesoderm lead to regionalization 531 

of the gut tube along the rostral-caudal and dorsal-ventral body axes and the budding of 532 

endodermal organ domains. These organ buds develop as outgrowths of endodermal epithelium 533 

that intermingle with surrounding mesenchyme, and together they grow, branch, and eventually 534 

form functional endodermal organs. The foregut gives rise to the esophagus, trachea, stomach, 535 

lungs, thyroid, liver, biliary system, and pancreas; the midgut forms the small intestine, while the 536 

hindgut forms the large intestine.   537 
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 After gastrulation, the cardiogenic mesoderm forms a cardiac crescent at the cranial end of 538 

the embryo, giving rise to a pair of lateral endocardial tubes through vasculogenesis. These tubes 539 

later fuse along the ventral midline in the future thoracic region to form a single heart tube, which 540 

consists of a single endocardial tube with adjacent mesoderm differentiating into contractile 541 

cardiomyocytes. The primary heart tube undergoes morphogenetic processes, like looping, 542 

remodeling, realignment, and septation, eventually leading to the development of a four-chamber 543 

heart, facilitating the separation of pulmonary and systemic circulations. 544 

 545 

Modeling gastrulation and early organogenesis 546 

The first human gastrulation model was created based on micropatterned two-dimensional (2D) 547 

colonies of primed hPSCs (Table 1), displaying a thickened PS-like ring structure and concentric 548 

regions of ectodermal, mesodermal, and endodermal tissues, surrounded by extraembryonic 549 

domains at colony boundaries.143 The precision, reproducibility, and compatibility with high-550 

resolution imaging of this model facilitate mechanistic investigations of molecular and cellular 551 

events involved in human gastrulation. Given its 2D topology, this model has been integrated with 552 

bioengineering tools, such as hydrogel substrates with tunable mechanical stiffnesses144 and 553 

microfluidic gradient devices,145 to study the roles of biophysical and biochemical signals in the 554 

gastrulation and aixal patterning of germ layer lineages (Table 1).    555 

3D models of gastrulation and early organogenesis have been most successfully 556 

demonstrated using mouse stem cells (Table 1). In one such model, termed gastruloids, aggregated 557 

mESCs are embedded in culture medium containing diluted natural ECM molecules and are 558 

stimulated with exogeneous signals, typically WNT molecules, to induce cell differentiation and 559 

tissue patterning (Table 1).146,147 Early mouse gastruloids were shown to model trunk development, 560 

exhibiting symmetry breaking, axial elongation, spinal cord-like structure and bilateral somite 561 

formation, a gut tube-like structure, a tail bud-like structure containing NMPs, and development 562 

of PGC-like cells (PGCLCs).146-149 Recent mouse gastruloids showed features associated with 563 

cardiogenesis150 and hematopoietic precursor- and erythroid-like cells spatially localized to a 564 

vascular-like structure,151 mimicking in vivo blood cell development (Table 1). To promote 565 

development of anterior neural tissues, surrounding hydrogel signals in mouse gastruloids were 566 

modulated, together with WNT inhibition instead of WNT activation (Table 1).152 When mESC 567 

aggregates were assembled with another mESC aggregate pre-treated with exogenous BMP4, 568 
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resulting mouse gastruloids developed organ primordia similar to those in neurula-stage mouse 569 

embryos, including patterned neural tube- and gut tube-like structures, somitic and intermediate 570 

mesodermal tissues, cardiac tissues, and a vasculature network (Table 1).153 Moreover, including 571 

mTSCs or XEN cells in mouse gastruloids facilitated the development of neuroepithelial structures, 572 

such as regions resembling the anterior brain (Table 1).154,155   573 

3D models of mouse gastrulation have also been developed by assembling mESCs and 574 

mTSCs (Table 1).156 These models replicated morphogenetic events in embryonic and 575 

extraembryonic tissues during the mouse egg cylinder development. They also successfully 576 

induced the formation of definitive mesoderm and PGCLCs.156 Further incorporation of XEN cells 577 

in these models resulted in the development of tissue structures resembling those in mouse 578 

gastrula.20,21,157-159 Additionally, as previously discussed, ex utero culture of co-aggregated mESCs 579 

and mESC-derived TE- and extraembryonic endoderm-like cells in an improved rotating bottle 580 

culture system yielded advanced 3D mouse embryo models that could progress into early stages 581 

of organogenesis, albeit with a very low efficiency and organ primordia showing notable 582 

abnomalities.20-22    583 

Significant progress has also been achieved in developing human 3D gastruloids (Figure 584 

2B[iii] and Table 1). Using culture protocols similar to those for mouse gastruloids, free-floating 585 

aggregates of primed hPSCs under uniform chemical treatments break symmetry and form an A-586 

P axis.160,161 Human gastruloids undergo axial elongation with spatial cellular organizations of the 587 

three definitive germ layer lineages.160,161 Under shaking cultures, human gastruloids demonstrate 588 

more organized trunk-like development, featuring spinal cord-like and gut tube-like structures 589 

integrated with peripheral neurons derived from neural crest cells.161   590 

Interestingly, axial progenitor-like cells derived from primed hPSCs, which likely contain 591 

NMPs, could self-organize and exhibit in vivo-like co-morphogenesis of multiple tissues and their 592 

topographic organization in the trunk region, including spinal cord and bilateral somites (Table 593 

1).162-164 Furthermore, recent research further utilized primed hPSCs to specifically model 594 

somitogenesis165-167 (Figure 2B[iii] and Table 1).   595 

There are other human embryo models created to recapitulate early neural developmental 596 

events, such as the formation of the neural plate and neural fold, closure of neural folds, and neural 597 

tube regional patterning (Table 1). Following an early work using mESCs168, dorsal-ventral neural 598 

patterning was imitated using hPSC-derived lumenal neural cysts in 3D cultures under caudalizing 599 
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and ventralizing chemical environments.169-172 Many of the human neural developmental models 600 

were achieved using micropatterned 2D colonies of primed hPSCs subjected to chemical induction 601 

of ectodermal lineage development.173-177 In one of these models, a self-organized ectodermal 602 

structure or “neuruloid” was generated, featuring a central lumenal neural epithelial structure 603 

overlaid by neural crest cells, with the entire structure covered with a layer of a prospective 604 

epidermis.175 Thus, the tissue morphology and spatial cellular organization of the neuruloid is 605 

reminiscent of the ectodermal organization observed in vivo at the neurulation stage. Another 606 

neuruloid study further recapitulated the morphogenetic cellular events during the folding and 607 

closure of the neural plate in neurulation.176 In addition, microfluidic gradient generation devices 608 

have been successfully utilized to superimpose exogenous patterning signals on hPSC-derived 609 

neural tissues to achieve their regional patterning.178 In one pioneering study, patterned by 610 

microfluidic WNT signal gradients, hPSC-derived, planar neural tissues were generated that 611 

exhibit progressive caudalization from forebrain to midbrain to hindbrain, including formation of 612 

isthmic organizer characteristics.179 Very recently, using two orthogonal and independently 613 

controllable microfluidic gradients, an hPSC-based, microfluidic neural tube-like structure (or 614 

µNTLS) was demonstrated, whose development recapitulates some critical aspects of neural 615 

patterning in both brain and spinal cord regions and along both rostral-caudal and dorsal-ventral 616 

axes180 (Figure 2B[iii]). Studying neuronal lineage development using µNTLS revealed pre-617 

patterning of axial identities of neural crest progenitors and functional roles of NMPs in spinal 618 

cord and trunk neural crest development.180 The µNTLS approach is promising for studying 619 

interregional and long-range cellular interactions in neural development that are critical for 620 

complex network functions.    621 

 622 

Interspecies chimeric contributions to early organogenesis 623 

While there have been considerable advancements in intraspecies organogenesis via blastocyst 624 

complementation, success in the interspecies context remains limited even among closely related 625 

species like rats and mice, largely due to alleged xenogeneic barriers (discussed below). The 626 

challenges are even more pronounced in the realm of human-animal blastocyst complementation, 627 

where only a handful of attempts have been made, yielding variable outcomes.   628 

 Despite these obstacles, recent progress in human-animal interspecies organogenesis is 629 

encouraging23 (Figure 2C[iii] and Table 2). The initial successful attempt at generating human 630 
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tissues in animals via blastocyst complementation came from a study by Garry and colleagues. 631 

This team successfully generated human endothelium in E17-E18 ETV2-null pig embryos from 632 

injected hPSCs.181 Following this pioneering work, a subsequent study from the same group 633 

created human skeletal muscle tissue in MYF5/MYOD/MYF6-null pig embryos (E20 and E27) 634 

using hiPSCs.182 In a major step forward, Lai and colleagues utilized multiple technologies to 635 

improve human chimerism in animal embryos and early-stage organs, leading to the production of 636 

a humanized pig mesonephros, comprising 40% to 60% human cells, within 3-4 weeks old pig 637 

fetuses.183 These advances, in large part, can be attributed to continuous efforts in understanding 638 

and overcomeing the xenogeneic barriers that exist between donor hPSCs and animal embryo 639 

hosts.23  640 

 641 

Challenges and Expectations 642 

Challenges for organ generation using stem cell-based embryo models 643 

There remains numerous challenges in stem cell-based embryo modeling for organ engineering. 644 

Addressing these challenges will require concerted and dedicated efforts in optimizing human stem 645 

cell cultures, standardizing protocols, and improving characterization methods and controllability 646 

of embryo modeling (Figure 3).  647 

 648 

Efficiency, reproducibility and standardization. Despite significant strides in embryo modeling, 649 

achieving models with high fidelity, efficiency, controllability, and in vivo-like cellular 650 

organization and tissue architecture remains a substantial challenge. This difficulty is primarily 651 

attributed to the inherent variabilities in the self-organization and differentiation capabilities of 652 

human stem cells and their derivatives within the uncontrolled culture environments typical of 653 

most current embryo modeling efforts. As a result, embryo models are often influenced by 654 

transcriptional and epigenetic noise as well as unpredicatable cellular interactions within their local 655 

culture microenvironment. Moreover, the use of various stem cell types as starting populations for 656 

embryo modeling, each requiring different culture conditions to encourage differentiation and self-657 

organization, introduces additional complexity. The establishment of cultures that accurately 658 

represent different human embryonic and extraembryonic cells are still in progress. The inherent 659 

variability and poorly understood characteristics of human stem cells further complicate the robust 660 

development of embryo models, thereby limiting their utility. Additionally, the absence of 661 
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standardized protocols for embryo modeling exacerbates variability in culture conditions and 662 

experimental results across different research laboratories, obstructing reproducibility and the 663 

ability to compare findings from embryo modeling studies effectively.  664 

 To overcome the challenges of limited efficiency and reproducibility in embryo modeling, 665 

it is imperative to harness advanced bioengineering tools capable of precisely managing tissue 666 

topological boundaries and dynamic chemical and mechanical signals in culture environments. 667 

These tools will be instrumental in creating high-fidelity, high-efficiency embryo models.9,184 668 

Recent advancements have yielded bioengineered human embryo models featured by enhanced 669 

precision, reproducibility, and compatibility with high-resolution imaging techniques, facilitating 670 

detailed mechanistic studies of the molecular and cellular processes underlying human 671 

development.105,143,145,162,175,176,179,180 Looking ahead, the field of embryo modeling stands to gain 672 

substantially from integrative efforts that apply bioengineering strategies, including 673 

micropatterning, microfluidics, 3D bioprinting, and synthetic biology techniques like optogenetics, 674 

as well as cell-instructive biomaterials. These approaches aim to meticulously direct pattern 675 

formation, morphogenesis, and cell differentiation, thereby achieving more accurate control over 676 

the development of embryo models. This will enhance their efficiency, reproducibility, 677 

controllability, complexity, and in vivo relevance. Parallel efforts in establishing and thoroughly 678 

characterizing various human stem cell lines, especially those representing genuine human 679 

extraembryonic stem cells, will further advance these endeavors, making it possible to generate 680 

more accurate and useful models of human development.30-36,78  681 

 682 

Recaptulating gastrulation and organogenesis in embryo models. Organ primordia in current 683 

embryo models often show notable structural defects and variations, are small in size, and lack 684 

organ-specific functionalities. In vivo, organogenesis occurs after gastrulation, a process where 685 

embryonic germ layers and their subpopulations within the trilaminar embryonic disc structure 686 

come together, promoting tissue-tissue interactions to specify cell types, drive morphogenetic 687 

events and initiate organ rudiment development. Thus, the most important outcome of gastrulation 688 

is the emergence of a recognizable structure containing organized germ layer lineages with 689 

spatially distinct identities in a fully-defined coordinate system.130 Current 3D human embryo 690 

models fall short of replicating the intricate structural organization of embryonic germ layer 691 

lineages during peri-gastrulation development, posing a significant obstacle in accurately 692 
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modeling organogenesis. There are certain human embryo models containing axial progenitor-like 693 

cells that exhibit organized development of trunk regions, featuring the formation of structures 694 

such as the primitive gut tube, spinal cord, and bilateral somites.162-164 These studies highlight the 695 

importance of future embryo modeling in promoting proper differentiation and spatial organization 696 

of embryonic germ layer lineages and their subpopulations, which will facilitate autonomous 697 

cellular interactions and provide an effective morphogenetic environment for organ formation.  698 

The ongoing efforts in deriving bona fide human extraembryonic stem cells30-36,78 and in 699 

developing in vitro implantation models69,70,185 using endometrial cells will promote future 700 

development of more advanced human embryo models containing embryonic, extraembryonic 701 

and/or maternal components. The extraembryonic and maternal tissues will likely be pivotal in 702 

providing structural stability, managing topological boundaries, and facilitating endogenous, 703 

multidirectional tissue interactions. Together, they create a conductive morphogenetic 704 

environment that fosters cell differentiation and organization reminiscent of the gastrulation 705 

process. Continuous developments and refinements, particularly those incorporating 706 

bioengineering tools and cell-instructive biomaterial systems to precisely modulate dynamic 707 

biophysical and biochemical niche signals, will lead to more sophisticated human embryo models 708 

exhibiting proper organogenesis processes, with improved efficiency and controllability. 709 

Additionally, harnessing advanced bioreactor systems, including artificial placentas, is crucial for 710 

long-term culture of human embryo models. These systems, equipped with a continuous medium 711 

supply, automated sampling, real-time sensing, and meticulous control over culture conditions—712 

including physiological and mechanical forces—might enable the growth of organ primordia into 713 

sizable, functional organs in embryo models.  714 

 715 

Challenges for interspecies organogenesis 716 

While successful in closely related rodent species like rats and mice, applying blastocyst 717 

complementation to humans remains challenging.181,182 Key steps for successful human-animal 718 

blastocyst complementation include generating hPSCs that can robustly contribute to interspecies 719 

chimeras and overcoming developmental barriers between species to fully unlock this technique’s 720 

potential for growing human organs in animals.  721 

Despite various attempts using different hPSC types and host species, the chimeric 722 

contribution of human cells in interspecies chimeras remains markedly low. Furthermore, there 723 
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are inconsistent results about the efficiency and the extent to which hPSCs can integrate into 724 

embryos of evolutionarily distant host species. This uncertainty largely stems from the technical 725 

challenges in detecting and analyzing low levels of chimerism, especially in later stages of embryo 726 

and fetal development.  To tackle this challenge, developing more effective quantification methods 727 

for low chimerism is crucial. Additionally, exploring how interspecies differences in early 728 

development contribute to the limited human chimerism observed in animal embryos, an issue 729 

often  referred to as ‘xenogeneic barriers’,23,186 is essential. A better understanding of xenogeneic 730 

barriers will be the key in addressing the challenge of low human chimerism, thereby advancing 731 

the use of interspecies blastocyst complementation for human organ generation in animals. 732 

 It necessitates a deeper understanding of the molecular and cellular events triggered by 733 

interspecies cell mixing in early development, in order to overcome xenogeneic barriers and 734 

translate the success of rat-mouse to human-animal blastocyst complementation. In contrast to 735 

chimera formation within the same species or between closely related species, numerous factors 736 

can differ significantly between humans and host animals of distant evolutionary origin, hindering 737 

efficient and extensive chimerism. Here, we discuss several key barriers that limit successful 738 

chimeric formation, including cell competition, incompatibility in cell adhesion, heterochrony, and 739 

ligand-receptor mismatches (Figure 4). 740 

 741 

Cell competition. Cell competition describes a vital cell-cell interaction essential for multicellular 742 

life. It was initially studied in Drosophila melanogaster during wing disc development within 743 

genetic mosaics, where cells carrying a heterozygous Minute mutation are eliminated through 744 

apoptosis by surrounding wild-type cells.187  More recently, cell competition has been observed in 745 

various mammalian tissues, supporting that this process is conserved.188  During early mammalian 746 

development, epiblast cells undergo drastic changes in proliferation rate and reorganization of 747 

transcriptional, epigenetic, metabolic, and signaling networks. The complexity of these changes 748 

raises the likelihood of aberrant cells emerging, requiring intrinsic cellular mechanisms to detect 749 

and eliminate such cells to ensure normal development. In the context of interspecies chimera 750 

formation, xenogeneic hPSCs might be perceived as unfit or aberrant cells by neighboring host 751 

cells and targeted for elimination through cell competition. In aggreement, strategies to suppress 752 

hPSCs apoptosis improved human chimerism in mouse and pig embryos.43,94,95,181,182,189    753 
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To model cell competition in interspecies chimeras, researchers utilized an interspecies 754 

PSC co-culture strategy to uncover a previously unknown competive interaction between primed, 755 

but not naïve, PSCs from evolutionarily distant species (e.g., humans vs. mice; humans vs. cows)190 756 

(Figure 4A). Comparative transcriptomic analysis of hPSCs in co-cultures vs. separate cultures 757 

revealed that genes related to the NF-κB signaling pathway, among others, were upregulated in 758 

"loser" hPSCs.190 Genetic perturbation of the NF-κB signaling pathway by knocking out a core 759 

component of NF-κB complex, P65 (also known as RELA), and an upstream adaptor MyD88 in 760 

hPSCs prevented their apoptosis during co-culture with mEpiSCs and furthermore, improved their 761 

survival and chimerism in early mouse embryos190 (Figure 4A). MyD88 is one of the primary 762 

adaptors for most mammalian Toll-like receptors (TLRs). The TLRs/MyD88/RELA-dependent 763 

loser cell apoptosis observed in human-mouse primed PSC competition is strikingly similar to the 764 

role Toll-related receptors (TRRs)-NF-κB played during cell competition in Drosophila wing disc 765 

development,191 suggesting that the innate immunity pathway acts as a conserved gatekeeper to 766 

ensure normal development. 767 

In contrast to loser cells, little is known regarding what enacts the winner status during 768 

interspecies PSC competition. A recent preprint study suggests that RNA sensing and innate 769 

immunity operates in "winner" cells during interspecies PSC competition.192  By suppressing the 770 

retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) pathway in mouse embryos, researchers 771 

observed improved survival and chimerism from unmodified donor human PSCs (Figure 4A).  772 

This study suggests an alternative approach to promote interspecies chimerism of donor hPSCs by 773 

modifying host embryos. 774 

 775 

Cell adhesion. Interspecies incompatibility may also result from mismatches in cell adhesion 776 

molecules (CAMs) between different species. During development, cell adhesion is crucial for the 777 

assembly of individual cells into 3D tissues, and differential cell adhesion is important for cell 778 

sorting and tissue boundary formation. For interspecies chimera formation, differential cell 779 

adhesion may impede donor hPSCs from effectively integrating with host counterparts and 780 

contributing to host development (Figure 4B). Mismatches of CAMs can result from structural 781 

and sequence differences between homologous adhesion proteins or from varying expression 782 

patterns and levels of adhesion molecules in embryos of different species. For donor hPSCs not 783 

expressing CAMs compatible with host embryos, they might not participate effectively in the 784 
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development of the epiblast lineage, ultimately leading to their expulsion from the embryo.  To 785 

address this issue, strategies to modify key components of CAMs in hPSCs to render them more 786 

compatible with corresponding proteins from host species can be explored.  For instance,  the first 787 

extracellular loop of CLAUDIN, a tight junction (TJ) protein, plays a significant role in 788 

recognizing other CLAUDINs on neighboring cells. Thus, any divergence in its sequence may 789 

impair CLAUDIN binding and TJ formation. Consequently, it might serve as a useful strategy to 790 

replace this part of human CLAUDIN in hPSCs with the sequence from host species, thus allowing 791 

hPSCs to form proper TJs with host epiblast cells for more effective interspecies chimera 792 

formation. 793 

The prospect of modifying each CAM involved in cell-cell adhesion incompatibility 794 

between species at different developmental stages can be very challenging. An alternative 795 

approach can employ synthetic biology to regulate adhesive interactions between cells through 796 

membrane-localized nanobody-antigen interactions193,194 (Figure 4B). Nanobodies, which are 797 

single monomeric domain antibody fragments derived from camelid heavy chain IgG antibodies, 798 

offer several advantages, such as the ability to bind small antigens and robust expression in various 799 

model systems.195 Recent studies have successfully utilized nanobody-antigen pairs to induce 800 

artificial cell adhesion in bacterial systems.193 A recent study further expanded on this strategy for 801 

mammalian systems by developing synthetic CAMs (synCAMs) that combine orthogonal 802 

(nanobody-antigen) extracellular interactions with intracellular domains of native adhesion 803 

molecules.194 This orthogonal system does not interfere with natural adhesion processes in 804 

mammalian cells and can be easily modified using multiple nanobody-antigen pairs or by altering 805 

the nanobody sequence to adjust adhesion strength. It will be intriguing to explore whether 806 

synCAMs can be utilized to enhance cell-cell adhesion between species, thus improving human 807 

cell chimerism in animal embryos. 808 

 809 

Heterochrony. First proposed by Ernst Haeckel in 1875, heterochrony is a concept that 810 

encompasses any genetically regulated variations in the timing, rate, or duration of the 811 

developmental process in an organism, in comparison to its ancestral lineage or other species. 812 

Heterochrony can present a potential xenogeneic barrier to interspecies chimerism, as 813 

discrepancies in the developmental timing, rate, and duration between donor and host species may 814 

obstruct donor cells from effectively responding to environmental cues for proliferation and 815 
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differentiation in synchronization with host cells, thus hindering the harmonious integration of 816 

donor and host cells (Figure 4C). 817 

Consistent with the concept of heterochrony, mammals exhibit considerable variation in 818 

the rate of embryonic development, which is often correlated with differences in body shape and 819 

size, age of sexual maturity, and lifespan. Interestingly, species-specific pace of development is 820 

often corroborated by directed differentiation of PSCs of various species outside the uterus. For 821 

example, one study showed that, using the same neural differentiation protocol, hPSCs took 822 

significantly longer to generate target neuronal cell types compared to mouse PSCs.196  823 

Intriguingly, human-specific neural differentiation rate could even persist in teratomas generated 824 

from hPSCs in a mouse host, suggesting that external host factors could not accelerate the 825 

developmental clock of donor human cells.197 In addition to sequential gene regulation mediating 826 

developmental timing, oscillators, such as the "segmentation clock", can serve as timers 827 

controlling the tempo of morphogenesis and tissue formation. Recent studies show that the 828 

periodicity of the segmentation clock during somitogenesis in utero is retained in somite precursors 829 

derived from PSCs in vitro, adhering to the species-specific tempo.198-201  These findings support 830 

that developmental timing requires a significant degree of cell autonomy, likely involving species-831 

specific biochemical reaction speeds196,198 and/or mitochondria metabolism.202  832 

Despite inherent developmental timing differences among species, there are studies 833 

showing that some xenogeneic donor cells could adopt the developmental pace of host species 834 

when injected into preimplantation blastocysts. Successful generation of several human-animal 835 

chimeric embryos, as mentioned earlier, implies that a small portion of hPSCs accelerate their 836 

developmental rate to match that of their embryonic host species.43,45,90 Supporting this notion, 837 

another study shows that PSCs from horses, which have a significantly longer gestation period 838 

(~11-12 months) compared to mice (~20 days), could contribute to chimera formation in early 839 

mouse embryos.38 Adding to this evidence, a recent paper demonstrates that co-differentiation with 840 

the presence of mouse PSCs could accelerate the differentiation speed of hPSCs.203 Additionally, 841 

two very recent preprint studies reveal that rat neurons could adjust to the developmental pace of 842 

their mouse hosts following blastocyst injection of rat PSCs into mouse blastocysts.204,205 Together, 843 

these studies support that given their inherent plasticity, PSCs may be more adaptive in terms of 844 

differentiation pace than initially believed. Furthermore, non-cell-autonomous mechanisms may 845 

exist to regulate developmental timing of both donor and host cells during embryogenesis. This 846 
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highlights the need for future studies to improve foundamental understanding of how 847 

developmental tempo is enacted during interspcies chimera formation.  848 

A recent study conducted a comparative analysis of chimera formation success rates 849 

following injection of primary neural crest cells (NCCs) into blastocysts or ESCs into E8.5 mouse 850 

embryos (heterochronic injection), versus injecting ESCs into blastocysts or NCCs into E8.5 851 

mouse embryos (isochronic injection).206 Efficient chimera formation was observed under 852 

isochronic injection conditions, and conversely, no functional chimeric contribution was detected 853 

in heterochronic injections. Notably, human NCCs contribute to coat pigmentation in postnatal 854 

mice chimeras after in utero injection into gastrulating mouse embryos, albeit at an very low 855 

efficiency.206 In agreement with this, primed hPSCs seldom contribute to chimera formation 856 

following injection into mouse blastocysts but could successfully integrate and differentiate after 857 

grafting into the epiblast of gastrulating mouse embryos118,119 (Figure 4C). These findings support 858 

that isochronic injection could improve successful engraftment of human cells into animal 859 

embryos. 860 

 861 

Ligand-receptor incompatibility. Another potential barrier is the interspecies incompatibility 862 

between ligands and receptors, stemming from genetic diversification (Figure 4D). This often 863 

results from ligand-receptor co-evolution aimed at refining binding affinity and specificity. 864 

Consequently, ligands from one species might either fail to recognize or manifest reduced potency 865 

in activating receptors from another species. For instance, while stem cell factor (SCF)  across 866 

diverse mammalian species shares over 75% sequence similarity, there's a marked difference in 867 

their receptor activation across species. Specifically, human SCF displays restricted potency in 868 

activating the mouse KIT, yet the efficacy of rodent SCF in engaging and activating the human 869 

KIT nearly parallels that of human SCF.207 It is a daunting task to identify and optimize all 870 

mismatched ligand-receptor pairs across species. A strategic approach could be to pinpoint critical 871 

signaling pathways hindered by such incompatibilities and the use of genetic replacement or 872 

modification of pivotal receptors to help further improve interspecies chimerism.  873 

 874 

Current developments and future persectives in interspecies organogenesis. As of now, 875 

interspecies chimerism and blastocyst complementation remain inefficient. Even in experiments 876 

between closely related species like rats and mice, chimeric efficiency is still notably lower than 877 
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intraspecies chimeras, despite a lack of PSC competition190 and their closely aligned 878 

developmental timing - differing by just 1-2 days in gestation period. Notably, a high degree of rat 879 

chimerism in mice can lead to embryonic lethality due to developmental incompatibilities.208 880 

These observations underscore the inherent challenges of cross-species chimerism, even among 881 

evolutionary neighbors. Consequently, when considering chimerism and blastocyst 882 

complementation between more distantly related species, such as humans and mice or humans and 883 

pigs, expectations should be adjusted accordingly. Despite the substantial challenges, the vision of 884 

generating human organs in animals - to mitigate the global organ donor shortage - persists with 885 

renewed hope. A recent study achieved a significant advancement by successfully generating a 886 

humanized mesonephros within pig fetuses.183 This feat was accomplished by improving multiple 887 

aspects of interspecies organogenesis, including an optimized human PSC culture, enhancing the 888 

survival and competitiveness of human donor cells, and utilizing a genetically emptied host 889 

developmental organ niche.183  890 

 It should be noted that interspecies organogenesis through the generation of chimeras is 891 

different from the xenotransplantation approach, aiming to produce organs in pigs that are 892 

predominantly human-cell derived. Future studies stand to benefit by merging these two strategies: 893 

enriching genetically modified pig organs with human cells through blastocyst complementation. 894 

This combination could further diminish immune barriers and render the organs more analogous 895 

to human ones. 896 

 897 

Conclusion and Future Outlook  898 

In the past 25 years, we have made great strides since first capturing human embryonic 899 

pluripotency in culture.  Human PSCs have revolutionized regenerative medicine, paving the way 900 

for fundamental discoveries and translations. Recently, the identification of a variety of human 901 

pluripotency states has provided exciting opportunities to explore fresh, intriguing aspects of 902 

human development and organ engineering.  Human PSCs are notable for their ability to proliferate 903 

indefinitely in vitro, coupled with their inherent  developmental potential and exceptional capacity 904 

for self-organization. These properties of hPSCs have granted us access to an extensive array of 905 

human embryo models, some of which showing promising potential of generating different organ 906 

primordia, such as the heart, gut tube, neural tube and somites. There is little doubt now that stem 907 

cell-based embryo models have become useful experimental tools for advancing molecular and 908 
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cellular understanding of human development. Additionally, when used in interspecies chimeras 909 

and paired with gene-editing technologies and methods to overcome early interspecies 910 

developmental barriers, hPSCs could be used for the generation of human organ primordia within 911 

animal hosts. Given the rapid progress in embryo modeling and interspecies organogenesis, it is 912 

the authors’ prediction that successful creations of human organ primordia, either in vitro using 913 

stem cell-derived embryo models or in vivo within interspecies chimeras, will be achieved in the 914 

near future.   915 

Compared to embryo models and interspecies chimeras, tissue engineering, bioprinting, 916 

and organoid technologies are more established approaches for organ engineering. In this 917 

Perspective, we suggest that embryo models and interspecies chimeras offer alternative strategies 918 

promising for human organ engineering. Nonetheless, organ engineering remains a distant goal for 919 

both fields that requires careful strategic and integrative efforts to address the remaining numerous 920 

technical and ethical hurdles. Some of the technical difficulties have been discussed in previous 921 

sections. There is another critical challenge about how to grow hPSC-derived organ primordia 922 

from embryo models or animal hosts into fully functional and sizeable organs suitable for human 923 

transplants. Unfortunately, there is no direct solution currently available for this signifcant 924 

difficulty. We envision addressing this challenge will require parallel developments of related 925 

emerging technologies, such as advanced bioreactor-based culture systems or artificial placentas 926 

that can effectively connect with the vasculature of growing organs or embryo models to supply 927 

oxygen and nutrients while removing carbon dioxide and waste products. Such technological 928 

innovations are needed for prolonging the development of hPSC-derived organ primordia into 929 

fully functional organs. Another potential solution involves ectopical transplantation of hPSC-930 

derived organ primordia, for example, into the kidney capsule or omentum of animal hosts, to 931 

integrate human organ primordia with the animal host’s blood circulation for oxygen and nutrient 932 

supplies. Regarding interspecies organogenesis, the success observed in generating fully 933 

functional organs between mice and rats supports that the production of human organs in animals 934 

that are evolutionarily closer to humans could be technically more achievable. Needless to say, 935 

these proposed technological developments and chimera approaches themselves are technically 936 

challenging and ethically sensitive. Nonetheless, they hold the key for advancing embryo modeling 937 

and interspecies organogenesis towards the goal of creating complex, functional solid human 938 

organs in the laboratory.  939 
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Besides technical difficulties, there are abundant ethical challenges facing both embryo 940 

models and interspecies chimeras for human organ engineering. This is especially true when 941 

certain human tissues develop in embryo models and interspecies chimeras, particularly those 942 

involving neural cells in the central nervous system and germ cells - a situation often referred to 943 

as "moral humanization". To navigate these ethical considerations, precise genome engineering 944 

technologies such as CRISPR-Cas9 can be utilized to selectively deactivate genes necessary for 945 

neural development and germ cell specification. This way, hPSCs could be genetically modified 946 

to only differentiate into endodermal and mesodermal lineages - those responsible for the 947 

production of desired organs - thereby eliminating the risk of producing human neural cells derived 948 

from the ectodermal lineage or germ cells. In addition, there are several recent reviews and 949 

commentaries on current ethical considerations surrounding embryo modeling and interspecies 950 

organogenesis.83,209 Readers are encouraged to consult these references to understand the complex 951 

ethical considerations and landscapes. Crucially, continuous and proactive ethical discussions 952 

involving scientists, bioethicists, policymakers, and the public are essential to establish, maintain 953 

and update ethical guidelines. These ethical guidelines should be in place before research on 954 

embryo models and interspecies organogenesis can proceed with due caution to prevent ethical 955 

dilemmas. Such ethical guidelines should be regularly updated, and in some cases, anticipate 956 

scientific and technological advances to ensure responsible research conduct.  957 

 958 

  959 
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Figure Legends 976 

 977 

Figure 1.  A schematic overview of two innovative strategies for creating human organs from 978 

pluripotent stem cells (PSCs). (A) In vitro generation of organ via stem cell-derived embryo 979 

models. Such models, mimicking the initial stages of embryonic development, could potentially 980 

be advanced through cultivation in bioreactors and other ex vivo methods to nurture the growth of 981 

organ primordia into sizable, functional organs. (B) In vivo generation of organ via interspecies 982 

chimeras. Chimera competent human PSCs can be injected into animal embryos that lack essential 983 

genes for organ formation. This process facilitates the production of human organs in animal 984 

within the animal host as it undergoes its natural developmental processes.  985 

 986 

Figure 2.  A summary of human stem cell derived embryo models and the developmental 987 

stages in vivo they represent.  (A) During early human development, the embryo develops from 988 

a zygote and proceeds through specific recognizable stages of (i) pre-implantation, (ii) peri-989 

implantation, and  (iii) organogenesis.  During this process, cells in the human embryo differentiate 990 

and diversify while acting in a coordinated fashion to enact tissue morphogenesis and patterning 991 

programs to shape the body plan.  (B) PSC-derived human embryo models are generated to mimic 992 

various in vivo developmental stages. (C) Chimera competent human PSCs are introduced into 993 

pre-implantation blastocysts or early post-implantation embryos of host animals. This process is 994 

designed to produce human-animal chimeras, along with tissues and organs enriched with humanb 995 

cells.   996 

 997 

Figure 3. Challenges and future improvements in utilizing stem cell based embryo models 998 

for organ engineering.  999 

 1000 

Figure 4. Xenogeneic barriers. (A) A notable competitive interaction was identified between 1001 

primed PSCs from evolutionarily distant species (e.g., human-mouse, human-cow, human-rat) 1002 

based on interspecies PSC co-culture experiments. The elimination of the “loser” cells (e.g., human 1003 

PSCs when co-cultured with mouse epiblast stem cells [EpiSCs]) is governed by the NF-κB 1004 

signaling pathway. Disabling the P65 gene (also known as RELA) or an upstream regulator 1005 

(MYD88) of the NF-κB complex in human cells can overcome this competition, thus enhancing 1006 
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the survival and chimerism of human cells within early mouse embryos. In “winner” cells (e.g., 1007 

mouse EpiSCs), the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway, 1008 

an RNA sensor, appears to play an important role in determining the outcome of competitive 1009 

interactions between co-cultured mouse and human PSCs. (B) Incompatibilities in cell adhesion, 1010 

particularly among primed PSCs from different species, present a significant xenogeneic barrier. 1011 

Employing 3D interspecies PSC co-cultures offers a valuable in vitro method to investigate this 1012 

barrier. A notable approach to overcoming this issue involves engineering synthetic cell adhesion. 1013 

This can potentially be achieved by leveraging membrane-anchored nanobody-antigen interactions 1014 

to facilitate cell adhesion compatibility between PSCs from different species. (C) Heterochrony 1015 

represents another xenogeneic barrier. Matching developmental timing of the donor PSCs with 1016 

host embryos is an important consideration for the successful generation of intra- and inter-species 1017 

chimeras. (D) Genomic evolution leading to mismatched ligand-receptor pairs poses another 1018 

xenogeneic challenge.  1019 

 1020 

 1021 

  1022 
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Table 1:  Summary of available embryo models generated using pluripotent stem cells from 1023 

different species. Pluripotent stem cells (including both embryonic and induced pluripotent stem 1024 

cells): PSCs; Extended / expanded pluripotent stem cells: EPSCs; Epiblast stem cells: EpiSCs; 1025 

Trophoblast stem cells: TSCs; Extraembryonic endoderm stem cells: XENs; Inducible XEN cells 1026 

(naïve PSCs transiently expressing Gata4/6 or SOX17): iXENs; Inducible TSCs (naïve PSCs 1027 

transiently expressing CDX2 or TFAP2C): iTSCs; Totipotent blastomere-like cells: TBLCs; 1028 

Trophectoderm: TE; Primitive endoderm: PE; Hypoblast: HYP; Extraembryonic cells: xEMs.  1029 

 1030 
Human embryo models 

Starting cells Culture 
condition 

Additional 
cells 

Developmental stages to 
model 

Model name References 

Naïve PSCs Aggregation of 
single cell type 

N/A Pre-implantation 
development 

Blastoid 65,66,69,72 

EPSCs Aggregation of 
single cell type 

N/A Pre-implantation 
development 

Blastoid 68 

EPSCs Aggregation of 
single cell type 

TE-like cells Pre-implantation 
development 

EPS-blastoid 67 

Somatic 
reprogramming 
intermediates 

Aggregation of 
reprogramming 
intermediates 

N/A Pre-implantation 
development 

iBlastoid 79 

Primed-to-
naïve 

intermediates 

Aggregation 
during primed-to-

naïve-state 
conversion 

N/A Pre-implantation 
development 

Blastoid 80 

Naïve PSCs Aggregation of 
single cell type 

N/A Pre- and post-implantation 
development up to early 

gastrulation 

Blastoid 71 

Primed PSCs Aggregation of 
single cell type 

N/A Early post-implantation 
development up to early 

gastrulation 

Post-
implantation 
amniotic sac 

embryoid 

104,105 

Primed PSCs Aggregation of 
single cell type 

N/A Early post-implantation 
development up to early 

gastrulation 

Epiblast 
model 

106 

Primed PSCs Aggregation of 
different cell 

types 

xEMs Early post-implantation 
development up to early 

gastrulation 

Post-attached 
embryo 
model 

107 

Naïve PSCs Aggregation of 
different cell 

types 

TSCs Early post-implantation 
development up to early 

gastrulation 

E-assembloid 60 

Naïve PSCs Aggregation of 
different cell 

types 

PE/ExEM-like 
cells, TE-like 

cells 

Early post-implantation 
development up to early 

gastrulation 

Post-
implantation 

stem-cell-
based embryo 

model 

108 
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PSCs with 
intermediate 
pluripotency 

Aggregation of 
single cell type 

N/A Early post-implantation 
development up to early 

gastrulation 

Extra-
embryoid 

109 

Naïve PSCs Aggregation of 
different cell 

types 

iTSCs, iXENs Early post-implantation 
development up to early 

gastrulation 

Inducible 
embryoid 

110 

Naïve PSCs Aggregation of 
different cell 

types 

HYP-like cells, 
TE-like cells 

Early post-implantation 
development up to early 

gastrulation 

Bilaminoid 111 

EPSCs Aggregation of 
single cell type 

N/A Early post-implantation 
development up to early 

organogenesis 

Peri-
gastruloid 

113 

Primed PSCs Co-culture of 
different cell 

types 

HYP-like cells Early post-implantation 
development up to early 

gastrulation and 
haematopoiesis 

heX-
embryoid 

112 

Primed PSCs Patterned 2D cell 
colonies 

N/A Gastrulation N/A 143-145 

Primed PSCs Aggregation of 
single cell type 

N/A Gastrulation Gastruloid 160 

Primed PSCs Aggregation of 
single cell type 

N/A Gastrulation and early 
organogenesis 

Elongating 
multi-lineage 

organized 
gastruloid 

161 

Primed PSCs Aggregation of 
single cell type 

N/A Spinal cord and somite 
development in the trunk 

Trunk-like 
structure 

163,164 

Primed PSCs Aggregation of 
single cell type 

N/A Somitogenesis Somitoid, 
segmentoid 

165 

Primed PSCs Aggregation of 
single cell type 

N/A Somitogenesis Somitoid 166 

Primed PSCs Aggregation of 
single cell type 

N/A Somitogenesis Axioloid 167 

Primed PSCs Patterned 2D cell 
colonies 

N/A Neuroectoderm patterning N/A 173 

Primed PSCs Patterned 2D cell 
colonies 

N/A Ectoderm patterning and 
neurulation 

Neuruloid 175 

Primed PSCs Patterned 2D cell 
colonies 

N/A Germ layer patterning and 
neurulation 

N/A 177 

Primed PSCs Patterned 2D cell 
colonies 

N/A Ectoderm patterning and 
neurulation 

N/A 176 

Primed PSCs Aggregation of 
single cell type 

N/A Patterned spinal cord 
development 

N/A 170 

Primed PSCs Aggregation of 
single cell type 

N/A Patterned spinal cord 
development 

N/A 171 

Primed PSCs Patterned 2D cell 
colonies 

N/A Patterned neural tube 
development 

N/A 180 

 1031 
Mouse embryo models 

Starting cells Culture 
condition 

Additional 
cells 

Developmental stages to 
model 

Model name References 
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Naïve PSCs Aggregation of 
different cell 

types 

TSCs Pre-implantation 
development 

Blastoid 73 

Primed-to-
naïve 

intermediates 

Aggregation 
during primed-to-

naïve-state 
conversion 

N/A Pre-implantation 
development 

Blastocyst-
like cyst 

76 

TBLCs Aggregation of 
single cell type 

N/A Pre-implantation 
development 

TBLC-
blastoid 

77 

EPSCs Aggregation of 
different cell 

types 

TSCs Pre- and early post-
implantation development 

EPS-blastoid 74 

EPSCs Aggregation of 
single cell type 

N/A Pre- and early post-
implantation development 

EPS-blastoid 75 

Naïve PSCs Assembly of two 
cell aggregates 

TSCs Early post-implantation 
development up to early 

gastrulation 

ETS 
embryoid 

156 

Naïve PSCs Aggregation of 
different cell 

types 

TSCs, XENs Early post-implantation 
development up to early 

gastrulation 

ETX 
embryoid 

157,158 

Naïve PSCs Aggregation of 
different cell 

types 

TSCs, iXENs Early post-implantation 
development up to early 

gastrulation 

iETX 
embryoid 

159 

Naïve PSCs Aggregation of 
different cell 

types 

TSCs, iXENs Post-implantation 
development up to early 

organogenesis 

ETiX 
embryoid 

20 

Naïve PSCs Aggregation of 
different cell 

types 

iTSCs, iXENs Post-implantation 
development up to early 

organogenesis 

sEmbryo 21 

Naïve PSCs Aggregation of 
different cell 

types 

iTSCs, iXENs Post-implantation 
development up to early 

organogenesis 

EiTiX 
embryoid 

22 

Naïve PSCs Aggregation of 
single cell type 

N/A Gastrulation Gastruloid 146-148,150-152 

Naïve PSCs Aggregation of 
single cell type 

N/A Gastrulation and early 
organogenesis 

Trunk-like 
structure 

149 

Naïve PSCs Assembly of two 
cell aggregates 

N/A Gastrulation and early 
organogenesis 

Embryoid 153 

Naïve PSCs Assembly of two 
cell aggregates 

TSCs Gastrulation and early 
organogenesis 

EpiTS 
embryoid 

154 

Naïve PSCs Aggregation of 
different cell 

types 

XENs Gastrulation and early 
organogenesis 

XEN 
enhanced 
gastruloid 

155 

Naïve PSCs Single cell clonal 
assay 

N/A Patterned spinal cord 
development 

N/A 168 

 1032 
Embryo models of other species 

Starting cells Culture 
condition 

Additional 
cells 

Developmental stages to 
model 

Model name References 
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Monkey naïve 
PSCs 

Aggregation of 
single cell type 

N/A Pre- and post-implantation 
development up to early 

gastrulation 

Blastoid 84 

Bovine EPSCs Aggregation of 
different cell 

types 

TSCs Pre-implantation 
development 

Blastoid 85 

 1033 
 1034 

 1035 
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Table 2:  A summary of human-animal interspecies chimera studies with different types of 1037 

human pluripotent stem cells. 1038 

Types of human PSCs Host species Level of chimerism 
8CLCs Mice ~1% (mice, E10.5)42 

Extended/Expanded potental 
Mice ~1% (mice, E10.5)49 

Monkeys ~7% (monkeys, E15, ex vivo)114 
Naïve  

(2iLDOX, 5iLA and PXGL) Mice, pigs, monkeys Little to no chimerism90-92 

Naïve (HENSM) Mice ~1-2% (mice, E9.5-10.5)43 

Naïve-like/Intermediate 
Mice 

~0.1-4% (mice, E17.5)45 
unknown (mice, 10.5)44,89 

Pigs ~0.001-0.01% (pigs, E28)90 
Naïve  

(HENSM, apoptosis inhibited) Mice ~1-20% (mice, E9.5-10.5)43 

Naïve  
(4CL, apoptosis inhibited) Pigs unknown (pigs, E25 and E28)183 

Primed Mice, pigs, monkeys Little to no chimerism 

Primed (apoptosis inhibited) 
Mice ~1% (mice, E10.5)94,95,189,190 

Pigs 
~0.05 (pigs, E17)182 

0.001-0.1% (pigs, E20 and E27)181 
 1039 
  1040 
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