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Aldoximes: compounds at the crossroads of multiple
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Abstract Aldoximes are amino acid-derivatives
well recognized as precursors of defense compounds,
such as glucosinolates and cyanogenic glycosides.
However, recent studies have elucidated the multi-
faceted roles of aldoximes in plant survival beyond
defense, as they exert influence over multiple meta-
bolic pathways, including auxin biosynthesis and the
phenylpropanoid pathway. Aldoxime accumulation
affects the homeostasis of auxin, an essential plant
hormone that controls almost every aspect of plant
growth and development. While auxin biosynthesis
primarily occurs through the conserved TAA/YUC
pathway, tryptophan-derived aldoxime and phenylala-
nine-derived aldoxime also serve as precursors of two
major auxins, indole-3-acetic acid (IAA) and pheny-
lacetic acid (PAA), respectively. Notably, this con-
version process is not limited to Brassicales and is
present in monocots like maize and sorghum. Further-
more, in Brassicales, the accumulation of aldoximes
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derived from aliphatic and aromatic amino acids
represses the phenylpropanoid pathway that produces
an array of specialized metabolites crucial for plant
survival. These novel findings extend beyond the
conventional understanding of aldoximes and shed
light on their intricate involvement in enhancing plant
fitness. In this review, we discuss the role of aldoximes
as precursors for auxins and their inhibitory effect on
phenylpropanoid biosynthesis. We also explore the
mechanisms by which aldoximes influence these
metabolic pathways. Finally, we discuss the implica-
tions of these findings for our understanding of plant
biology.

Keywords Aldoxime - Glucosinolate - Cyanogenic
glycoside - Auxin - Phenylpropanoid - Metabolic
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Introduction

Aldoximes (R—-C=N-OH) are metabolites carrying an
imine group at the end of a carbon chain and are found
widely in the plant kingdom (Sgrensen et al. 2018).
They are derived from various amino acids, including
phenylalanine, tyrosine, tryptophan, valine, leucine,
isoleucine, and methionine (Fig. 1A). In most plants,
the conversion of an amino acid to an aldoxime is
catalyzed by cytochrome P450 monooxygenases

@ Springer


http://orcid.org/0000-0003-1384-4192
http://orcid.org/0000-0002-3526-2487
http://orcid.org/0000-0002-5618-3948
http://crossmark.crossref.org/dialog/?doi=10.1007/s11101-024-09950-y&amp;domain=pdf
https://doi.org/10.1007/s11101-024-09950-y

Phytochem Rev

R COOH
NH,
A Amino acids
Phenylalanine l
1
1
0 |lemocosoo- R NOH_ _ _ ____ Auxins
| \F P (iAA, PAR)
; Aldoximes
Phenylpropanoids :
(Flavonoids, Lignin, etc.) 1
I
v

Specialized metabolites
(Cyanogenic glycosides, Glucosinolates, Camalexin, Volatiles, etc.)

Fig. 1 Schematic illustration depicting the metabolic link
centering on aldoxime metabolism, A Aldoximes derived from
amino acids or chain-elongated amino acids, serve as precursors
to specialized metabolites, including glucosinolates, camalexin,
cyanogenic glycosides, and floral volatiles. The accumulation of
aldoximes or their derivatives represses the phenylpropanoid
pathway in plants (shaded in pink). and two aldoximes, IAOx
and PAOXk, serve as precursors to plant hormone auxins (shaded
in blue). B The pathway involving TAA and YUC enzymes is a
well-established major route for the biosynthesis of auxins,
converting tryptophan to IAA and phenylalanine to PAA,
respectively. Additionally, JAOx and PAOx are known as
precursors of IAA and PAA. However, the detailed steps from
aldoximes to auxins have not yet been fully elucidated. C Recent
studies on Arabidopsis have demonstrated that the accumulation

belonging to the 79 family (CYP79) (Fig. 1B, Table 1).
The CYP79 enzyme catalyzes the conversion of amino
acids into aldoximes through N,N-dihydroxylation of
the amino acid, followed by decarboxylation via a
cyclic transition state (Vazquez-Albacete et al. 2017).
In Arabidopsis, CYP79B2 and CYP79B3 convert
tryptophan to indole-3-acetaldoxime (IAOx) while
CYP79A2 can produce phenylacetaldoxime (PAOX)
from phenylalanine (Wittstock and Halkier 2000;
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of aldoximes represses the phenylpropanoid pathway through
accelerating the degradation of PAL via transcriptional activa-
tion of kelch repeat-containing F-box (KFB). Mediator subunit 5
(MED)Y) is in part involved in this process, and there may be
additional, yet unidentified mechanism(s) that further repress
the phenylpropanoid pathway. Acronyms in the diagram
include: CYP79 for cytochrome P450 family 79, FMO for
flavin-containing monooxygenase, TAA for tryptophan amino-
transferase, YUC for YUCCA enzyme, PAL for phenylalanine
ammonia-lyase, IAOx for indole-3-acetaldoxime, PAOx for
phenylacetaldoxime, IAA for indole-3-acetic acid, PAA for
phenylacetic acid, KFB for kelch domain-containing F-box
protein, MEDS for mediator subunit 5, Ub for ubiquitin. (Color
figure online)

Mikkelsen et al. 2000; Zhao et al. 2002). CYP79F1
and CYP79F2 generate aliphatic aldoximes (AAOX)
from chain-elongated methionine (Hansen et al. 2001;
Chen et al. 2003). In some fern species, flavin-
dependent monooxygenases produce aldoximes
(Thodberg et al. 2020).

Aldoxime production is triggered by stress or
stress-responsive hormones in plants. This phe-
nomenon is observed in several species, including
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Table 1 List of characterized CYP79 enzymes and their substrates

Species Enzyme Substrate Reference
Arabidopsis thaliana CYP79A2 Phenylalanine (Wittstock and Halkier
2000)
CYP79B2 Tryptophan (Mikkelsen et al. 2000;
Zhao et al. 2002)
CYP79B3 Tryptophan (Zhao et al. 2002)
CYP79F1 Chain-elongated Methionine (2-6 (Hansen et al. 2001; Chen
carbon) et al. 2003)
CYP79F2 Long-chain (5-6 carbon) Methionine (Hansen et al. 2001; Chen
et al. 2003)
White mustard (Sinapis alba) CYP79B1 Tryptophan (Naur et al. 2003)
Erythroxylum coca CYP79D62 Tryptophan, Phenylalanine, Tyrosine,  (Luck et al. 2016)
Leucine, Isoleucine
CYP79D63 Tryptophan (Luck et al. 2016)
Erythroxylum fischeri CYP79D60 Tryptophan, Phenylalanine, Tyrosine, (Luck et al. 2016)
Leucine, Isoleucine
CYP79D61 Tryptophan, Phenylalanine, Tyrosine,  (Luck et al. 2016)
Leucine, Isoleucine
Lima bean (Phaseolus lunatus) CYP79D71 Isoleucine, Valine (Lai et al. 2020)
Eucalyptus cladocalyx CYP79A125 Phenylalanine (Hansen et al. 2018)
Almond (Prunus dulcis) CYP79D16 Phenylalanine (Thodberg et al. 2018)
White clover (Trifolium repens) CYP79D15 Isoleucine, Valine (Olsen et al. 2008, 2021)
Cassava (Manihot esculenta) CYP79D1 Isoleucine, Valine (Andersen et al. 2000)
CYP79D2 Isoleucine, Valine (Andersen et al. 2000)
Plumeria (Plumeria rubra) CYP79D73 Phenylalanine (Dhandapani et al. 2019)
Lotus japonicus CYP79D3 Isoleucine, Valine (Forslund et al. 2004)
CYP79D4 Isoleucine, Valine (Forslund et al. 2004)
Loquat (Eriobotrya japonica) CYP79D80 Phenylalanine (Yamaguchi et al. 2021)
Japanese apricot (Prunus mume) CYP79D16 Phenylalanine (Yamaguchi et al. 2014)
Balsam poplar (Populus trichocarpa) CYP79D6 Phenylalanine, Leucine, Isoleucine, (Irmisch et al. 2013a)
Tryptophan, Tyrosine
CYP79D7 Phenylalanine, Leucine, Isoleucine, (Irmisch et al. 2013a)
Tryptophan
Black poplar (Populus nigra) CYP79D6v4 Phenylalanine, Tryptophan, Leucine, (Irmisch et al. 2013b)
Isoleucine, Tyrosine
Tea (Camellia sinensis) CYP79D73 Phenylalanine (Liao et al. 2020)
Barley (Hordeum vulgare) CYP79A8 Leucine (Knoch et al. 2016)
CYP79A12 Leucine (Knoch et al. 2016)
Seaside arrow grass (Triglochin CYP79E1 Tyrosine (Nielsen and Moller 1999)
maritima) CYP79E2 Tyrosine (Nielsen and Moller 1999)
Maize (Zea mays) CYP79A61 Tryptophan, Phenylalanine (Irmisch et al. 2015)
Sorghum (Sorghum bicolor) CYP79A1 Tyrosine (Sibbesen et al. 1995)
CYP79A61 Phenylalanine (Perez et al. 2023a)
European yew (Taxus baccata) CYP79A118 Tryptophan, Phenylalanine, Tyrosine (Luck et al. 2017)
Neotropical myrmecophyte tococa CYP79A206 Phenylalanine (Miiller et al. 2024)
(Miconia microphysca) CYP79A207
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poplar (Populus trichocarpa), maize, tea (Camellia
sinensis), and Erythroxylum species (Irmisch et al.
2013a, b, 2015; Luck et al. 2016; Liao et al. 2020). The
expression of CYP79 genes often increases upon
herbivory or pathogen attacks or exposure to jasmonic
acid (JA), a hormone produced in response to stress
(Mikkelsen et al. 2003). In Arabidopsis, the transcrip-
tional activation of CYP79B2 and CYP79B3 is
observed in response to temperature elevation (Frank-
lin et al. 2011). These observations suggest that
aldoximes play critical roles in plant adaptation to
environmental stimuli/changes. Indeed, aldoximes are
precursors of defense compounds such as glucosino-
lates, camalexin, and cyanogenic glycosides.

Glucosinolates are sulfur-containing defense com-
pounds found in Brassicales. Over 130 distinct struc-
tures of glucosinolates have been discovered in the
plant kingdom, with Arabidopsis capable of producing
over 30 of them (Blazevi¢ et al. 2020). The compo-
sition and content of glucosinolates within a species
can vary organ-to-organ, among developmental stages
as well as depending on environmental factors (Brown
et al. 2003). The biosynthesis of the core structure of
glucosinolates starts from the formation of an
aldoxime. IAOx, PAOx, and AAOx are precursors of
indole glucosinolates, benzylglucosinolate, and ali-
phatic glucosinolates respectively.

Under normal conditions, glucosinolates and
myrosinases, the enzymes that degrade glucosinolates,
are spatially segregated within cellular and subcellular
compartments. Upon herbivore or pathogen attack,
however, these compartments are compromised,
resulting in glucosinolate hydrolysis by myrosinases
and the rapid release of toxic metabolites such as
isothiocyanates, nitriles and epithionitriles, which
deter herbivory and inhibit the growth of pathogenic
microorganisms (Blazevi¢ et al. 2020).

Cyanogenic glycosides are another class of defense
compounds. A total of 25 cyanogenic glycosides have
been identified. Well-recognized cyanogenic glyco-
sides include dhurrin from sorghum (S. bicolor),
amygdalin from almond (Prunus dulcis), and lina-
marin from lima bean (Phaseolus lunatus), which are
derived from tyrosine, phenylalanine, and valine
respectively (Cressey and Reeve 2019). Like glucosi-
nolates, cyanogenic glycosides are harmless in their
intact state. However, when degraded by B-O-glucosi-
dases, they release toxic substances such as hydrogen
cyanide, which are lethal to pathogens and pests and
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serve to deter generalist herbivores (Cressey and
Reeve 2019). A recent study with tococa (Miconia
mycrophysca) showed accumulation of PAOx and its
glucoside upon herbivore infestation, suggesting their
roles in defense (Miiller et al. 2024). Since aldoximes
are precursors of aldoxime-driven defense com-
pounds, altered aldoxime production may directly
affect plant defense. Indeed, studies have shown that
the overexpression of CYP79 genes results in the
increased production of related aldoxime-derived
defense compounds in Arabidopsis, leading to
enhanced defense responses (Mikkelsen et al. 2000;
Perez et al. 2023a).

While plants produce compounds such as glucosi-
nolates and cyanogenic glycosides accumulate under
normal conditions to prepare for defense, there are
other defense compounds produced under attack, but
typically not accumulated in normal growth condi-
tions, known as phytoalexins. Camalexin is a phy-
toalexin found in Brassicales and it is synthesized
from TAOx (Zhao et al. 2021). Although camalexin is
an IAOx-derived defense compound similar to indole
glucosinolates, its biosynthesis is activated only in
response to specific stressors, and precisely at the site
of infection or stress (Zhao et al. 2021).

Besides acting as precursors of these classical
defense metabolites, aldoximes serve as intermediates
of other specialized metabolites. PAOX is a precursor
of floral volatiles, which act as floral scent components
and participate in plant—insect interactions. Examples
of floral-related PAOx derivatives include (2-ni-
troethyl)benzene and 2-phenylethanol (Irmisch et al.
2014; Dhandapani et al. 2019). In poplar, giant
knotweed (Fallopia sachalinensis) and tea (C. sinen-
sis), aldoximes produced from leucine, isoleucine,
valine, and phenylalanine, as well as nitriles generated
from the metabolism of these aldoximes, can be
detected in the volatile mixture released from herbi-
vore-damaged leaves (Sgrensen et al. 2018; Liao et al.
2020). Similarly, isoleucine- and leucine-derived
aldoximes are also volatiles and Erythroxylum species
and common bean (Phaseolus vulgaris) produce them
upon treatment with JA (Luck et al. 2016). These
volatile aldoximes may not directly function as
defense compounds, but the emission of volatile
aldoximes may indirectly protect plants from biotic
stresses through deterring herbivores or attracting the
predators of herbivores (Sgrensen et al. 2018; Liao
et al. 2020). Indeed, the release of volatile aldoximes
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has been shown to effectively mitigate the level of
damage caused by herbivory (Sgrensen et al. 2018).

The roles of aldoximes in plant defense are
relatively well known. However, recent studies have
uncovered unexpected interactions of aldoximes with
multiple metabolic pathways. This review explores the
multifaceted roles of aldoximes, focusing on their
significance as precursors to the plant hormone auxins
and the impact of altered aldoxime metabolism on
phenylpropanoid production. These insights, extend-
ing beyond the conventional understanding of aldox-
imes, illuminate their pivotal role in enhancing plant
fitness under stress conditions (Fig. 1).

Aldoximes are precursors of auxins

Auxins regulate numerous aspects of plant growth and
development, including cell division, elongation, and
differentiation, in response to both external and
internal stimuli (Teale et al. 2006; Simon and Petrasek
2011). Indole-3-acetic acid (IAA) and phenylacetic
acid (PAA) are two major auxins in plants. [AA is the
most potent auxin and controls various biological
processes through the dynamic alteration of its cellular
concentration via polar auxin transport (Teale et al.
2006). Conversely, PAA is less potent than TAA in
most plant systems, despite its endogenous concen-
trations sometimes being 10- to over 100-fold greater
than TAA across various plant species (Perez et al.
2023b). Multiple studies suggest that PAA may not
engage in polar auxin transport, unlike IAA (Simon
and Petrasek 2011). Overall, IAA and PAA have both
common and distinctive physiological roles as auxins
in plants.

The primary pathway for the biosynthesis of TAA
from tryptophan in plants is the YUCCA pathway
(Fig. 1B) (Teale et al. 2006). The initial step involves
the conversion of tryptophan into Indole-3-pyruvate
(IPA) by enzymes from the Tryptophan Aminotrans-
ferase of Arabidopsis (TAA) family (Zhao 2010).
Subsequently, flavin-containing monooxygenases
from the YUCCA (YUC) family transform IPA into
TIAA (Zhao 2010). This pathway is also considered to
play a role in PAA biosynthesis. The TAA and YUC
enzymes can respectively convert phenylalanine into
phenylpyruvate (PPA) and PPA into PAA in vitro (Tao
et al. 2008). Furthermore, YUCCA overexpression
enhances both endogenous PAA and its conjugate

content (Sugawara et al. 2015). However, it’s note-
worthy that plants with defects in TAA and YUC still
have normal levels of PAA despite significant changes
in IAA content (Cook and Ross 2016). This implies the
potential involvement of different genes or pathways
in the biosynthesis of PAA.

Several genetic studies have revealed that IAOx-
derived IAA production occurs in Arabidopsis. Mul-
tiple independent forward screens have identified
alleles of CYP83B1, the major IAOx catalyzing
enzyme, as well as SUR1 functioning in downstream
of TAOx because of their characteristic high auxin
morphological phenotypes (Mikkelsen et al. 2004).
Indeed, these mutants, sur2, redl, rntl, ref5, which are
allelic variants of the REF5, along with surl, display
an accumulation of TAA, attributed to the redirection
of TAOx towards the synthesis of IAA (Mikkelsen
etal. 2004; Kim et al. 2015). Moreover, significant B¢
labeling of indole-3-acetonitrile (IAN), indole-3-ac-
etamide (IAM) and TAA when fed with *C4-IAOX to
cyp79b2 cyp79b3 mutants, demonstrating the meta-
bolic conversion of IAOx to these compounds
(Sugawara et al. 2009). However, considering that
IAN is a byproduct of indole glucosinolate hydrolysis,
further study is necessary to determine the route of
IAN from IAOx. A recent study demonstrated that
TIAOKx is a precursor of nitric oxide (NO) production,
catalyzed by peroxidase (POD), and that indole-3-
acetaldehyde (IAAId) is produced from this reaction
(Lopez-Gomez et al. 2024). IAAld has been suggested
as an TAA precursor in bacteria and plants through an
indole-3-acetaldehyde dehydrogenase-dependent
manner (Quittenden et al. 2009; McClerklin et al.
2018).

In Arabidopsis, the enzyme CYP79A2 is responsi-
ble for converting phenylalanine to phenylacetal-
doxime (PAOx) and the overexpression of CYP79A2
results in elevated levels of PAA and its conjugates
and morphological alterations, including epinasty
leaves and elongated hypocotyls—characteristics
reminiscent of those observed in plants with elevated
IAA levels (Perez et al. 2021a). It is notable that the
production of auxins from aldoximes, initially iden-
tified in the Brassicales order, has been recognized in
recent years as not exclusive to this group. Monocots
like maize and sorghum can convert aldoximes to
auxins, evidenced by deuterium labeled (Ds)-al-
doximes being converted into Ds-labeled auxins in
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these species (Irmisch et al. 2015; Perez et al.
2021a, b).

The aldoxime-derived auxin pathways, unlike the
YUCCA pathway, are not the primary avenue for
auxin biosynthesis during normal growth conditions.
For instance, the IAOx-deficient Arabidopsis mutant,
cyp79b2 cyp79b3, is indistinguishable with wild type
under these normal conditions (Kim et al. 2015).
However, under stress conditions such as high
temperatures and salt stress, the cyp79b2 cyp79b3
mutant shows the low auxin growth phenotype,
indicating a significant role of these pathways in auxin
homeostasis under stress (Zhao et al. 2002; Franklin
et al. 2011). In a similar vein, the gene expression of
CYP79A2 encoding PAOx production enzyme in
Arabidopsis is induced under pest attack, leading to
an increased level of PAA content (Perez et al. 2021b).
Considering these facts, along with the regulation of
aldoxime-producing enzymes by stresses or stress
hormones such as jasmonic acid (Luck et al. 2016;
Mikkelsen et al. 2003), it can be inferred that
aldoximes potentially play a dual role in both the
defense response and plant growth and development
by coordinating the production of auxins and defense
compounds. However, the biosynthesis pathway from
aldoximes to auxins remains largely uncharted.
Although the stable isotope labeling assay revealed
the presence of IAOx-derived compounds (Sugawara
et al. 2009), further investigations are necessary to
identify the genes and intermediates responsible for
the conversion of IAOx into IAA, which remains
mostly unknown. Given that IAOx and PAOx serve as
precursors for their corresponding glucosinolates as
well as IAA and PAA, it is also conceivable that the
production of both auxins from aldoximes takes place
via a shared pathway. Indeed, benzyl cyanide has been
identified as an intermediate of PAOx-derived PAA in
maize and sorghum (Perez et al. 2021a, 2023a),
suggesting that the aldoxime-derived auxin pathway
may include the production of nitrile intermediates.

Auxin, as a potent growth hormone, exerts sub-
stantial influence on plant growth and development.
Overproduction of auxin, therefore, has the potential
to be toxic to plants, especially when it exceeds the
optimal physiological concentration. There is likely a
metabolic control mechanism that directs TAOx
primarily towards glucosinolate production rather
than TAA. Improper regulation of this metabolic shift
could lead to detrimental effects on plants.

@ Springer

Maintaining the intricate balance between hormone
synthesis and defense compound production may
serve as a survival strategy under unfavorable condi-
tions. The elucidation of the mechanisms by which
plants regulate this metabolic flux of TAOx would
broaden our understanding of these complex meta-
bolic networks.

Metabolic link between aldoxime metabolism
and the phenylpropanoid pathway

Phenylpropanoids are specialized metabolites derived
mainly from phenylalanine and include various phe-
nolic compounds such as lignin and flavonoids
essential for plant growth and stress responses. The
unexpected discovery of an intricate metabolic inter-
play linking aldoxime metabolism and phenyl-
propanoid biosynthesis emerged from a forward
mutant screen which specifically targeted phenyl-
propanoid-deficient Arabidopsis mutants, named ’re-
duced epidermal fluorescence’ (ref) mutants (Ruegger
and Chapple 2001). Several ref mutants having
reduced phenylpropanoid contents were found to have
mutations in CYP83AI/REF2 and CYP83BI/REFS5
(Hemm et al. 2003; Kim et al. 2015). REF2 and REF5
function redundantly to convert various aldoximes
into their respective hydroxy nitriles, intermediates of
glucosinolates (Bak and Feyereisen 2001). However,
REF2 and REFS5 are not completely interchangeable
due to their different substrate specificities. REF5 has
a higher activity towards indole-3-acetaldoxime
(IAOx), a tryptophan-derived aldoxime, compared to
REF2, while REF2 shows a preference for aliphatic
(i.e., chain-elongated methionine-derived) aldoximes
(Bak and Feyereisen 2001). Consistently, ref> pro-
duces reduced indole glucosinolates and increases
TAA due to the redirection of IAOx to IAA. Addition-
ally, it reduces the levels of phenylpropanoids such as
sinapoylmalate and flavonoids (Kim et al. 2015). The
deficiency of phenylpropanoids in ref5 is completely
restored upon removal of the IAOx production
enzymes CYP79B2 and CYP79B3 (Kim et al. 2015).
Overexpression of CYP79B2 decreases phenyl-
propanoid production, whereas the aldoxime-deficient
cyp79b2 cyp79b3 double mutant accumulates more
phenylpropanoids than the wild type (Kim et al. 2015).
These findings collectively suggest that an accumula-
tion of IAOx or its derivatives negatively impacts
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phenylpropanoid biosynthesis. The IAOx-mediated
phenylpropanoid repression was also shown in
Camelina sativa (Zhang et al. 2020).

Consistent with CYP83A1/REF2 function, ref2
mutants display reduced aliphatic glucosinolates and
increased indole glucosinolates, yet all have dimin-
ished phenylpropanoid production (Hemm et al.
2003). It was assumed that reduced phenylpropanoids
in ref2 resulted from the accumulation of aliphatic
aldoximes as ref2 does not show any phenotypes
related to increased IAOx, such as the high auxin
morphological phenotypes observed in ref5. However,
a recent study by Shin et al. uncovered the elevated
level of IAOX in ref2, which is unexpected as ref2 has
functional CYP83B1/REF5 with high activity toward
IAOx (Shin et al. 2023). The disruption of TAOx
producing enzymes, CYP79B2 and CYP79B3,
restores phenylpropanoids in ref2 substantially but
not to the wild-type level, which further confirms the
repressive roles of IAOx in the phenylpropanoid
pathway and suggests the presence of additional
repressive factors in ref2, likely AAOx (Shin et al.
2023). Indeed, the co-suppression of AAOx producing
enzymes, CYP79F1 and CYP79F2, completely
restores phenylpropanoid production in ref2, suggest-
ing that AAOxX also play a role in aldoxime-mediated
repression of phenylpropanoid biosynthesis. Given
that the accumulation of PAOXx represses phenyl-
propanoid production in Arabidopsis (Perez et al.
2021b), the metabolic link between aldoxime meta-
bolism and phenylpropanoid biosynthesis may not be
limited to specific aldoxime structure.

One mechanism underlying this aldoxime-medi-
ated phenylpropanoid repression is in part via accel-
erated degradation of Phenylalanine Ammonia Lyase
(PAL) the first enzyme of the phenylpropanoid
pathway. Transcriptome analysis using a set of
glucosinolate mutants identified that both ref5 and
ref2 contain increased expression of a group of Kelch
domain-containing F-Box protein (KFB), KFBI,
KFB20, KFB39 and KFB50 (Kim et al. 2020). These
KFBs are subunits of the ubiquitin E3 ligase complex
targeting PAL for ubiquitination and consequent
degradation (Zhang et al. 2013). As PAL functions
at the entry point of the phenylpropanoid pathway, the
transcriptional activation of these KFBs leads to
increased PAL turnover and reduced flux toward
phenylpropanoid production (Kim et al. 2020). When
all four KFBs were disrupted, phenylpropanoid

contents in ref5 and ref2 were substantially restored
in Arabidopsis (Kim et al. 2020). Camelina transgenic
lines with increased IAOx contain reduced phenyl-
propanoids as well as increased expression of KFB
homologs targeting PAL in Camelina sativa, suggest-
ing its conserved mechanism at least in Brassicales
(Zhang et al. 2020). Similarly, Arabidopsis plants
overproducing PAOx showed increased expression of
PAL-targeting KFBs (Perez et al. 2021b). Moreover,
the transcription activation of at least two of them,
KFB39 and KFBS50, requires functional Mediator
subunit 5 (MEDS), a subunit of the Mediator complex
that is a transcriptional coregulator in eukaryotes (Kim
et al. 2015, 2020). These findings indicate that the
aldoxime-mediated  phenylpropanoid  repression
occurs through sophisticated transcriptional regula-
tion, which links the production of defense compounds
and phenylpropanoids.

Interestingly, accumulation of aldoximes does not
exert an impact on the transcript level of PAL. Since,
PAL is positioned at the gate of entire phenyl-
propanoid production pathway, any perturbations in
aldoxime metabolism can potentially affect the overall
flow of phenylpropanoids to some degree. Indeed, the
Arabidopsis mutants that accumulate high levels of
IAOx show a reduced level of overall phenyl-
propanoids, including flavonol glycosides, sinapoyl-
malate, and overall lignin monomers (Kim et al.
2015). Interestingly, the ref2 mutant displays a
significantly reduced level of S-unit lignin content
but not G-unit content, and no change in flavonoid
production (Hemm et al. 2003). This variation could
be due to the organ or tissue-specific expression of
aldoxime production and/or consumption enzymes,
leading to different aldoxime accumulation patterns.
Alternatively, different aldoximes may utilize differ-
ent repression mechanisms.

Disruption of all four KFBs in the ref5 background
restores phenylpropanoids, but not to the levels of the
kfb1/20/39/50 although it restores PAL activity com-
pletely (Kim et al. 2020). This result suggests that
there are additional mechanisms underlying repressed
phenylpropanoid production in high IAOx condition
other than PAL repression (Fig. 1C).

Aldoximes have a wide variety of structures, with
methionine-derived aldoximes exhibiting even more
structural diversity due to the number of elongated
carbon chains. It remains uncertain how plants sense
different aldoximes, and how this signal is transduced
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to repress phenylpropanoid production. Therefore,
questions remain as to where their precise regulatory
points lie and any specificity of different aldoximes on
phenylpropanoid repression to clarify these intriguing
aspects of aldoxime metabolism.

Perspectives

Recent findings suggest that metabolisms centered
around aldoximes in plants represents more than just
the production of stress-resistant compounds. It forms
a critical junction linking the biosynthesis of auxins
derived from aldoximes and the suppression of
phenylpropanoid biosynthesis. Furthermore, the per-
turbation of methionine-derived aliphatic aldoxime
production induces distinctive morphological pheno-
types, including cup-shaped leaves and bush-like
growth patterns (Shin et al. 2023). Arabidopsis plants
with disrupted CYP79F1 and F2 demonstrated ele-
vated levels of methionine accumulation. Remark-
ably, similar phenotypic outcomes were reproducible
through exogenous methionine feeding to Arabidop-
sis, which suggests the morphological abnormalities
associated with CYP79F1 and F2 disruption may
primarily be caused by methionine accumulation
(Shin et al. 2023). These findings make the aldox-
ime-mediated metabolic networks even more compli-
cated by linking primary and specialized metabolism.
It is noteworthy that aliphatic aldoxime synthesis from
methionine by CYP79F1/F2, including chain elonga-
tion of methionine, is the multistep process and it
remains unclear how the feedback regulation occurs.

These metabolic links might play a key role in
enabling plants to intricately fine-tune their responses
and adapt more efficiently to environmental chal-
lenges. Despite these advancements, significant
knowledge gaps persist in our understanding of these
vital metabolic interconnections. 1. How are auxins
made from aldoximes? What are intermediates and
genes responsible for converting IAOx and PAOx into
IAA and PAA? 2. Aldoximes repress phenylpropanoid
biosynthesis. Do different aldoximes have specificity
of repression? What are other mechanisms of
aldoxime-mediated phenylpropanoid repression in
addition to PAL degradation? 3. Aldoximes affect
multiple metabolic pathways, including specialized
metabolites and primary metabolites, directly and
indirectly. What are the mechanisms mediating

@ Springer

multiple fates or impacts of aldoximes? Further
exploration of these connections is crucial to deeply
unravel how plants integrate diverse signals and
responses, thereby optimizing their growth and sur-
vival under varying environmental conditions.
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