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ABSTRACT

The Mediator complex is a multisubunit transcription coregulator that transfers regulatory signals from different transcription
factors to RNA polymerase II (Pol II) to control Pol II-dependent transcription in eukaryotes. Studies on Arabidopsis Mediator
subunits have revealed their unique or overlapping functions in various aspects of plant growth, stress adaptation and
metabolite homeostasis. Therefore, the utilization of the plant Mediator complex for crop improvement has been of great
interest. Advances in genome editing and sequencing techniques have expedited the characterization of Mediator subunits in
economically important crops such as tomato, rice, wheat, soybean, sugarcane, pea, chickpea, rapeseed and hop. In this review,
we summarize recent progress in understanding the molecular mechanisms of how the Mediator complex regulates crop
growth, development and adaptation to environmental stress. We also discuss the conserved and diverse functions of the
Mediator complex in different plant species. In addition, we propose several future research directions to deepen our under-
standing of the important roles of Mediator subunits and their interacting proteins, which would provide promising targets for
genetic modification to develop new cultivars with desirable agronomic traits.

1 | Introduction the Mediator complex is vital for decoding genetic information

stored in DNA to govern biological processes. Although it

Transcription is a highly orchestrated process that requires es-
sential factors, including RNA polymerase II (Pol II), general
transcription factors (GTFs) and gene-specific transcription
factors (TFs) (Allen and Taatjes 2015; Freytes, Gobbini, and
Cerdan 2024) (Figure 1). Mediator is a multisubunit transcrip-
tion coregulator that transfers regulatory signals from tran-
scription factors to Pol II to regulate nearly all Pol II-dependent
transcription in eukaryotes (Allen and Taatjes 2015; Yang, Li,
and Qu 2016) (Figure 1). As a bridge between the general
transcription machinery and gene-specific transcription factors,
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functions as a complex, some subunits have unique functions
and their alteration impacts specific organs or biological pro-
cesses. The Mediator subunits can be prominent targets for al-
tering the expression of genes that control specific traits in any
organism.

The Mediator complex was identified in yeast and humans in
the 1990s, revealing its necessity for activating Pol II-dependent
transcription (Fondell, Ge, and Roeder 1996; Kelleher,
Flanagan, and Kornberg 1990). The plant Mediator subunits
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FIGURE 1 | A schematic diagram of the Mediator complex-dependent transcriptional regulation in plants. The Mediator complex transfers

regulatory signals from gene-specific transcription factors (TFs) to RNA polymerase II (Pol II) to regulate Pol II-dependent transcription. GTFs,

general transcription factors. The plant Mediator complex is structurally divided into four modules: head (blue), middle (purple), tail (brick red) and

a dissociable cyclin-dependent kinase (CDK) module (grey). The Mediator subunits of each module are listed at the bottom. The figure was created

with BioRender.com. [Color figure can be viewed at wileyonlinelibrary.com]

were first identified in the model species Arabidopsis Thaliana
(Béckstrom et al. 2007), wherein 19 Mediator subunits shared
with yeast and metazoans (AtMED4, AtMED6-AtMED22,
AtMED?31), three subunits conserved in metazoans (AtMED23,
AtMED27, AtMED28) and six plant-specific subunits (MED32-
MED37) were isolated. Later, AtMED32 and AtMED33 were
found to be orthologs of yeast MED2 and yeast MEDS, respec-
tively (Bourbon 2008). AtMED1 and AtMED26 were not
copurified with other plant Mediator subunits in the initial
study (Béackstrom et al. 2007). A recent Arabidopsis study
copurified 28 Mediator subunits with AtMEDS, AtMEDI1,
AtMED18, AtMED4, AtMED31 and AtMED?25, yet AtMED26
and other plant-specific subunits (AtMED34-AtMED37) were
not isolated in this study (Guo, Wei, et al. 2021). Thus, it is still
debatable whether these subunits are indeed part of the Medi-
ator complex in plants.

The Mediator complex is structurally divided into three core
modules: head, middle and tail, and a dissociable cyclin-
dependent kinase (CDK) module among all eukaryotes (Verger,
Monté, and Villeret 2019) (Figure 1). In Arabidopsis thaliana,
the head module includes AtMED6, AtMEDS8, AtMEDII,
AtMEDI17, AtMEDIS, AtMEDI19, AtMED20, AtMED22,
AtMED28 and AtMED30. AtMED4, AtMED7, AtMEDY,
AtMED10, AtMED21 and AtMED31 belong to the middle
module. The tail module contains AtMED2, AtMED3, AtMEDS,
AtMED14, AtMEDI5, AtMEDI6, AtMED23 and AtMED25.

AtMEDI12, AtMED13, AtCDK8 and AtCYCC comprise the CDK
module (Dolan and Chapple 2017; Freytes, Gobbini, and Cer-
dan 2024) (Figure 1). Studies suggest that each module and each
subunit of the Mediator complex may have distinct functions.
In general, the primary function of the head module is inter-
acting with Pol II; the middle module can transfer transcription
signals from the tail to the head; the tail module interacts with
TFs; and the CDK module either activates or inhibits the ini-
tiation of Pol II transcription, as well as to control the elonga-
tion of Pol II (Richter et al. 2022; Yang, Li, and Qu 2016).

It is noteworthy that disruption of several yeast and mammal
Mediator subunits leads to lethality (Soutourina 2018; Yin and
Wang 2014). Similarly, some plant Mediator subunits are
indispensable as several Arabidopsis Mediator subunit mutants,
including med4, med8, medl3 and med21, are embryonic lethal
(Dhawan et al. 2009; He et al. 2021; Ito et al. 2011; Li
et al. 2015), and medi4 and medl5 mutants are sterile (Autran
et al. 2002; Wang, Du, and Mou 2016). On the other hand,
altering some Arabidopsis Mediator subunits does not affect
fertility but influences plant stress adaptation and growth. With
recent advances in genome editing and sequencing technolo-
gies, several plant Mediator subunits have been characterized
not only in Arabidopsis but also in various crops. In this review,
we summarize recent progress on plant Mediator subunits
characterized in crops, emphasizing the physiological functions
of these subunits in plant growth and development and stress
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adaptation. We also note that several comprehensive reviews
focusing on the plant Mediator complex in Arabidopsis are
available (Dolan and Chapple 2017; Freytes, Gobbini, and
Cerdéan 2024; Yang, Li, and Qu 2016).

2 | Mediator Complex Plays a Key Role in Plant
Growth and Development

Alteration of some Arabidopsis Mediator subunits affects vari-
ous aspects of plant growth and development (Table 1). atmed$
mutant exhibited smaller flowers (Xu and Li 2012); atmedi4
mutant showed a dwarf stature with aberrant architecture
(Autran et al. 2002); atmedl8 mutant displayed altered floral
organ number and decreased silique size (Pérez-Martin
et al. 2018); atmed25 mutant displayed hypocotyl-length inhi-
bition under red and far-red light conditions (Cerdan and
Chory 2003); atcdk8 mutants exhibited disordered flower organ
morphology as well as reduced pollen viability, shorter siliques
and decreased seed numbers (Xu, Chong, and Zhu 2024). Given
that the Mediator complex functions as a transcription cor-
egulator, bridging the general transcription machinery and
transcription factors, these complex and pleiotropic phenotypes
of Mediator subunit mutants are not unexpected. However,
some Mediator subunit mutants do not display obvious mor-
phological changes under normal growth conditions. For ex-
ample, atmed5a/5b double mutants, which have defects in both
AtMEDS5A and AtMEDSB, significantly increase phenylpropa-
noids but look wild type (Bonawitz et al. 2012). Similarly,
AtMED16 functions in cold acclimation, but its mutant is fertile
and does not display radical morphological changes under well-
controlled conditions (Hemsley et al. 2014).

Similar to Arabidopsis Mediator subunits, the alteration of
several Mediator subunits in crops, including MED4, MEDS,
MEDS, MED14, MEDI15, MED16, MED18, MED25 and CDKS&,
also affects their growth and development at various stages
(Figure 2). In tobacco (Nicotiana tabacum), knockdown of
NtMEDS resulted in disordered development of both vegetative
and floral organs, such as the increased number of leaves with
thicker blades, reduced lateral root formation, enlarged flowers,
less germinable pollens and early flowering when grown under
long-day conditions but late flowering under short-day condi-
tions (Wang et al. 2011). SIMED18 functions in pollen devel-
opment and hormone-signalling responses in tomato (Solanum
lycopersicum) (Pérez-Martin et al. 2018; Wang et al. 2018).
Tomato SIMEDI18-RNAi lines produced smaller flowers with
less viable pollen and parthenocarpic fruits with reduced fresh
weight compared to control plants. The expression of some
essential genes involved in anther and pollen development
significantly downregulated in the SIMEDIS silenced lines,
indicating that SIMED18 is required to express the genes related
to pollen formation and fruit development (Pérez-Martin
et al. 2018). Another study revealed that SIMEDI18 positively
regulates the biosynthesis and signal transduction of gibberellin
(GA) in tomato (Wang et al. 2018). SIMED18-RNAi lines displayed
short internodes, a reduced level of GA3 and downregulated ex-
pression of some GA biosynthesis and signal transduction genes
(Wang et al. 2018). However, it remains unknown whether the
defects in pollen development in SIMED18-RNAi lines are related
to GA biosynthesis or signalling.

Another tomato Mediator subunit, SICDKS, also contributes to
pollen development (Xu, Chong, and Zhu 2024). slcdk8 mutants
have reduced atypical, collapsed and shrunken pollen grains,
and the pollen viability of slcdk8 mutants was significantly
diminished compared to their control counterparts, suggesting
that SICDK8 plays an essential role in pollen development.
Biochemical assays revealed that transcription factor TEO-
SINTE BRANCHEDI-CYCLOIDEA-PCF15 (SITCP15) can
interact with SICDKS8, which phosphorylates serine 187 of
SITCP15 to enhance SITCP15 stability and phosphorylated
TCP15 directly binds to the promoters of DYSFUNCTIONAL
TAPETUM 1 (SIDYT!1) and MYB DOMAIN PROTEIN 103
(SIMYB103) to regulate pollen development (Xu, Chong, and
Zhu 2024) (Figure 3).

SIMED25 functions in tomato fruit ripening. SIMED25-antisense
(MED25-4S) tomato transgenic lines exhibited delayed fruit
ripening and decreased ethylene content in fruits (Deng
et al. 2023). The expression of ethylene biosynthetic genes and
several essential transcription factors required for ripening was
reduced in MEDZ25-AS fruits, and SIMED25 interacted with the
master transcription factor of the ethylene signalling pathway,
SIEIL (ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE) pro-
tein. The formation of a transcriptional complex of SIMED25
with SIEIL1-4 is likely involved in regulating ripening-related
genes and ethylene homeostasis during fruit ripening (Deng
et al. 2023) (Figure 3).

In rice (Oryza sativa), OsMED25 also functions in hormone
signalling and plant growth and development. OsMED25-RNAi
plants showed erect leaves, a typical morphologic phenotype of
brassinosteroid (BR)-deficient and BR-signalling impaired mu-
tants. Similarly, the osmed25 mutants resemble OsMED25-RNAi
plants in morphological phenotypes and decreased BR sensi-
tivity. OsBZR1 (Brassinazole-resistant 1) is a critical transcrip-
tion factor in BR signalling, and its mutant exhibits increased
BR sensitivity. It was shown that OsMED25 physically interacts
with OsBZR1 in vivo, and OsMED25 mainly functions as a
corepressor of OsBZR1 in regulating BR signalling (Ren
et al. 2020) (Figure 3). Besides BR signalling response,
OsMED?25 is involved in jasmonic acid (JA)-mediated root
growth and leaf senescence (Suzuki et al. 2021). OsMED25-
RNAi and osmed25 mutants displayed enlarged panicles with
increased branching and spikelet numbers, suggesting that
MED25 can be an ideal target for acquiring high-yield cultivars
in monocots. Subsequent biochemical analyses revealed that
OsMED25 interacts with the zinc finger transcription factor
DROUGHT AND SALT TOLERANCE (DST) at the promoter
region of cytokinin oxidase/dehydrogenase 2 (OsCKX2) and
subsequently recruits Pol II to activate OsCKX2 transcription to
control spikelet number (Lin et al. 2022).

OsMED4, OsMED14 and OsMED15 are also required for proper
growth and development in rice. OsMEDI4 1-RNAi lines
showed lower plant height, reduced lateral root formation,
narrower leaves and culms with decreased vasculature, fewer
panicle branches, impaired microspore development and
smaller seed size than control plants. The authors also found
that OsMED14 1 physically interacts with several organ-
specific transcription factors, including OsYABBYS5, OsTDR and
OsMADS29 (Malik et al. 2020). The non-synonymous SNPs in
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;; TABLE 1 | Plant Mediator subunits function in growth and development, stress adaption and other processes.
& Module Subunit Function Species References
Head MED6 Unknown
Head MEDS8 Organ development; floral transition; pathogen defence; Arabidopsis, tobacco, Feng et al. (2021), He et al. (2021), Wang et al.
oxidative stress; JA signalling tomato (2011), Xuand Li(2012), Zhang, Song, et al. (2021)
and Zhang and Guo (2020)
Head MEDI11 Unknown
Head MED17 Floral transition; root development; JA and auxin Arabidopsis Agrawal et al. (2022, 2023), Giustozzi et al. (2022)
signalling; thermomorphogenesis; noncoding RNA and Kim et al. (2011)
production; DNA repair
Head MEDI18 Organ development; GA, ABA, SA, JA and auxin Arabidopsis, tomato Kim et al. (2011), Lai et al. (2014), Li et al. (2024),
signalling; floral transition; pathogen defence; heavy Pérez-Martin et al. (2018), Raya-Gonzalez et al.
metal stress; noncoding RNA production; m°A RNA (2018), Ruiz-Aguilar et al. (2020), Wang et al.
modification (2018), Zhai and Li (2019) and Zhang, Shi,
et al. (2021)
Head MEDI19 Pathogen defence; ABA signalling; nitrogen deficiency- Arabidopsis Cheng et al. (2022), Li, Yang, Gong, et al. (2018)
induced senescence and Seo et al. (2017)
Head MED20 Pathogen defence; floral transition; noncoding RNA Arabidopsis Kim et al. (2011), Zhai and Li (2019) and Zhang
production and Guo (2020)
Head MED22 Unknown
Head MED28 Root development; senescence Arabidopsis Shaikhali et al. (2016)
Head MED30 Embryo development; floral transition Arabidopsis Jaskolowski et al. (2019)
Middle MED4 Organ development; pathogen defence Rice, tobacco Li et al. (2015), Malik et al. (2016) and Wu
et al. (2023)
Middle MED7 Organ development; Pathogen defence; JA signalling; SA Arabidopsis, sugarcane, Kumar, Blomberg, and Bjorklund (2018), Wu et al.
response; heavy metal stress; cold stress; salt stress; tobacco (2023) and Zhang et al. (2017)
drought stress
Middle MED9 Heat stress; pathogen defence Arabidopsis, tobacco Crawford et al. (2020) and Wu et al. (2023)
Middle MED10 Pathogen defence; JA signalling Tobacco, tomato Wu et al. (2023)
Middle MED21 Pathogen defence Arabidopsis, tobacco Dhawan et al. (2009) and Wu et al. (2023)
.
g Middle MED31 Organ development; pathogen defence Arabidopsis, tobacco Wu et al. (2023) and Zhang et al. (2018)
Q Tail MED2 Root development; floral transition; senescence; ABA Arabidopsis Dolan et al. (2017), Dolan and Chapple (2018),
o response; phenylpropanoid metabolism; cold stress Hemsley et al. (2014) and Shaikhali et al. (2016)
g Tail MED3 Unknown
§ (Continues)
B
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TABLE 1 | (Continued)
Module Subunit Function Species References
Tail MEDS5 Phenylpropanoid metabolism; organ development; floral Arabidopsis, hop, Awasthi et al. (2023), Bonawitz et al. (2012), Dolan
transition; pathogen defence chickpea and Chapple (2018), Malik et al. (2023) and Wang,
Du, and Mou (2016)
Tail MEDI14 Organ development; cold stress; ABA, auxin, SA and JA/ Arabidopsis, rice Autran et al. (2002), Bajracharya et al. (2022),
ET signalling; thermomorphogenesis Hemsley et al. (2014) and Wang, Du, and
Mou (2016)
Tail MED15 Organ development; lipid metabolism; floral transition; Arabidopsis, rice, rose, Hiebert et al. (2020), Kim, Jang, and Chua (2016),
ABA, SA and JA/ET signalling; drought stress; pathogen wheat Shang et al. (2024) and Wang, Du, and Mou (2016)
defence
Tail MED16 Organ development; nodulation regulation; cold stress; Arabidopsis, barrel medic, Boyce et al. (2003), Chaulagain et al. (2023), Dolan
osmotic stress; ABA, SA, auxin and JA/ET signalling; iron rapeseed, rice, wheat, et al. (2017), Guo, Chong, et al. (2021), Hemsley
homeostasis; phenylpropanoid metabolism; floral tobacco, soybean etal. (2014), Huetal. (2021), Huerta-Venegas et al.
transition; pathogen defence; phosphate deficiency (2022), Raya-Gonzalez et al. (2021), Wang, Du, and
response Mou (2016), Wathugala et al. (2012), Xue et al.
(2019), Yang et al. (2014), Zhang and Guo (2020)
and Zhang et al. (2023)
Tail MED23 Phenylpropanoid metabolism; floral transition; organ Arabidopsis, chickpea Dolan et al. (2017), Dolan and Chapple (2018) and
development Malik et al. (2023)
Tail MED25 Organ development; auxin, ABA, JA and BR signalling; Arabidopsis, wheat, Cerdan and Chory (2003), Deng et al. (2023), Guo,
iron homeostasis; floral transition; pathogen defence; tomato, rice, rapeseed Chong, et al. (2021), Guo et al. (2023), Hu et al.
shade stress; cold stress; drought stress; salt stress; (2021); Lin et al. (2022), Liu et al. (2016), Luo et al.
phytochrome signalling; thermomorphogenesis; JA- (2023), Muiloz-Parraet al. (2017), Ren et al. (2020),
mediated leaf senescence; root development upon density Shapulatov et al. (2023), Sun et al. (2020), Suzuki
et al. (2021), Xia et al. (2024), Yang et al. (2014),
Zhai and Li (2019) and Zhang and Guo (2020)
CDK MED12 Organ development; floral transition; auxin and ABA Arabidopsis Gillmor et al. (2014), Ito et al. (2016), Raya-
signalling; pathogen defence; sucrose response Gonzalez et al. (2023) and Zhu et al. (2014)
CDK MED13 Organ development; floral transition; auxin and ABA Arabidopsis Gillmor et al. (2014), Ito et al. (2016), Raya-
signalling; pathogen defence; sucrose response Gonzalez et al. (2023) and Zhu et al. (2014)
CDK CDKS8 Organ development; floral transition; pathogen defence; Arabidopsis, tomato, pea Crawford et al. (2020, 2024), Hasan et al. (2020), Ito
SA accumulation; ABA and auxin signalling; drought et al. (2016), Xu, Chong, and Zhu (2024) and Zhu
stress; heat stress et al. (2014, 2020)
CDK CcYcCC Organ development; floral transition; pathogen defence Arabidopsis, pea Hasan et al. (2020) and Zhu et al. (2014)
Abbreviations: ABA, abscisic acid; BR, brassinosteroid; CDK, cyclin-dependent kinase module; ET, ethylene; GA, gibberellin; JA, jasmonic acid; SA, salicylic acid.
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FIGURE 2 | Several Mediator subunits are identified to be involved in growth and development and stress adaptation in crops. Internal and

external signals affect gene expression, leading to changes in plant growth and development and stress adaptation. Characterized Mediator subunits

and crop species are listed. The figure was created with BioRender.com. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 | Mediator-interacting proteins have been identified in crops. The interaction of the Mediator complex with vital proteins affects the

expression of downstream genes in crops. Some examples are shown. Tomato CDK8 and MED25 interact with TCP15 and EIL to regulate pollen

development and fruit ripening, respectively. Rice MED2S5 interacts with BZR1 to respond to brassinosteroid signalling. Wheat MED25 interacts with
TaMYC2, TalCE41, and TaJAZ7 in cold tolerance. Rapeseed MED16 interacts with WRKY33 to regulate the resistance to Sclerotinia sclerotiorum. The
figure was created with BioRender.com. [Color figure can be viewed at wileyonlinelibrary.com]

OsMED4 and OsMED15 were associated with grain size, width
and weight in rice (Malik et al. 2016). It was previously shown
that OsMED4 physically interacts with OsSAD1 to regulate
tiller number, affecting the grain yield (Li et al. 2015).

MEDS has been identified in hop (Humulus Ilupulus) and
chickpea (Cicer arietinum). In Arabidopsis, two MEDS paralogs,
AtMEDSA and AtMEDSB, require the repression of an array of
phenylpropanoid biosynthesis genes. The atmed5a/5bh mutants

show increased expression of phenylpropanoid biosynthesis
genes and phenylpropanoid content without affecting their
growth phenotypes (Bonawitz et al. 2012; Dolan et al. 2017).
The hop med5a/5b double mutant showed distortion in lupulin
gland morphology (Awasthi et al. 2023). Interestingly, the ex-
pression of phenylpropanoid biosynthesis genes was decreased
in hlmed5a/5b lines compared to control plants, which is con-
tradictory to the results observed in Arabidopsis med5a/5b
mutants. However, lignin contents in the stems and leaves of
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the hlmed5a/5b mutants were increased substantially compared
to controls (Awasthi et al. 2023). It remains unclear how lignin
content increases while its biosynthesis genes are down-
regulated in the mutants. These contradictory phenotypes of
Arabidopsis and hop med5 mutants raise the question of
whether MEDS function is conserved across species. A chickpea
study utilizing a combination of genomic approaches, including
QTL/fine mapping and map-based cloning, identified CaMEDS
and CaMED23 and their natural alleles associated with plant
height trait in chickpea (Malik et al. 2023). They concluded that
the chickpea height trait is associated with altered expression of
phenylpropanoid biosynthesis genes, but whether CaMEDS5 or
CaMED23, or both, regulate the phenylpropanoid biosynthesis
genes remains unknown (Malik et al. 2023).

MEDI16 in barrel medic (Medicago truncatula), and CDKS8 and
CYCC in pea (Pisum sativa) have been shown to function in
specialized nodulation, and flowering. mtmedl6a mutant in-
hibited nodulation and increased arbuscular density (Chaulagain
etal. 2023). LATE BLOOMER3 (LATE3) and LATE4 are ortho-
logs of CDK8 and CYCCI, respectively. The pea mutants, pslate3
and pslate4, displayed a late-flowering phenotype with defects in
the formation of flower and inflorescence, flower fertility, pod
development and seed content. LATE3 and LATE4 physically
interacted with each other, which contributes to the transcrip-
tional regulation of some critical flowering genes, such as FTal
and LF (Hasan et al. 2020).

Some important agronomic traits, including grain yield, devel-
opmental transition, fruit ripening and metabolism homeosta-
sis, are likely governed by the Mediator complex or specific
Mediator subunits, as shown in various crops. Interestingly,
most Mediator subunit mutants displaying morphological
changes show altered transcription in the corresponding genes,
which further confirms the Mediator complex as an essential
hub in the transcription process.

3 | Mediator Complex Exerts a Crucial Role in
Plant Adaptation to Environmental Stress

In Arabidopsis, several Mediator subunits function in biotic
and abiotic stress responses (Table 1). AtMEDS8 regulates
oxidative stress responses and plant immunity to Botrytis ci-
nerea (B. cinerea) (He et al. 2021; Li, Yang, and Chen 2018);
AtMED15 and AtMED16 act as key players in plant defence
signalling crosstalk (Wang, Du, and Mou 2016); AtMED25 is a
crucial integrative hub in the transcriptional regulation of
jasmonate signalling (Zhai and Li 2019). Their homologs have
been identified and characterized in several crops, including
tomato, rice, wheat, rapeseed, soybean and rose (Table 1 and
Figure 2).

Both SIMEDS8 and SIMED?2S5 are positive regulators in B. cinerea
resistance in tomato. Tomato transgenic lines overexpressing
SIMEDS or SIMEDZ25 showed increased resistance to B. cinerea,
whereas disruption of SIMEDS or SIMED25 made tomato
plants more susceptible to B. cinerea (Luo et al. 2023; Zhang
et al. 2021). Additionally, overexpression of SIMEDS rescued the
hypersensitivity of Arabidopsis atmed8 mutant to B. cinerea
infection (Zhang et al. 2021).

SIMED?2S5 is a coactivator of PHYTOCHROME INTERACTING
FACTOR 4 (PIF4) to control shade-induced hypocotyl elongation.
SIPIF4 acts as a positive regulator of shade-induced hypocotyl
elongation by promoting the expression of auxin biosynthesis
(SIYUCS and SIYUCY) and auxin-responsiveness (S/[4A19) genes
under shade conditions by directly binding to their promoters.
SIMED25 directly interacted with SIPIF4 in tomato (Sun
et al. 2020). SIMED?25-antisense seedlings showed a similar mor-
phological phenotype to the slpif4-c mutant under shade, and the
expression levels of SIYUCS, SIYUC9 and SIIAA19 also decreased
in SIMED25-antisense lines (Sun et al. 2020).

In wheat (Triticum aestivum), MED25 is involved in cold stress
response and pathogen defence. Overexpression of TaMEDZ25 in
Arabidopsis increased low-temperature tolerance and the ex-
pression of some cold-responsive genes (Xia et al. 2024). Further
biochemical analysis suggested that TaMED25 may control cold
resistance, potentially through the JA pathway by interacting
with TaJAZ7, TaMYC2 and TalCE41 (Xia et al. 2024) (Figure 3).
Additionally, the wheat TaMED25 knockdown lines were
more resistant to powdery mildew. It turned out that TaMED25
interacting with ethylene signalling transcription factor
TaEIL1 synergistically activated the transcription of TaERFI
(ETHYLENE RESPONSE FACTORI1), a negative regulator of
resistance to powdery mildew, to modulate the basal defence of
bread wheat against powdery mildew (Liu et al. 2016).

TaMED15b.D functions in the resistance to stem rust a major
disease of wheat. Nonsense mutations in MEDI15b.D signifi-
cantly disrupted the transcriptional response to the fungi
responsible for causing stem rust. Notably, wheat medl5b.D
mutants do not exhibit any obvious morphological changes,
whereas Arabidopsis medl5 mutants show chlorosis, growth
retardation and sterility (Hiebert et al. 2020). MED15 was also
characterized as responding to drought stress in ornamental
crop rose (Rosa hybrida). RRMED154 is drought-inducive, and
its promoter has four cis-acting motifs that interact with ABA
and MeJA. Indeed, ABA increased the expression of
RhMEDI5A4 in both leaves and roots, while MeJA treatment
suppressed RAMEDI15A4 expression in leaves. Silencing of
RhMED154 impaired drought tolerance (Shang et al. 2024).

Interestingly, MEDI16 plays an opposite role in pathogen
response in dicots and monocots. OsMED16 is a negative reg-
ulator of rice immunity. A rice lesion mimic mutant (LMMs),
spotted leaf 38 (osspl38), has a point mutation in the 14th exon
of OsMEDI16. OsMEDI16-Crsipr/Cas9 lines exhibited the lesion
mimic phenotype. osspl38 plants exhibited a significantly en-
hanced resistance to both bacterial and fungal rice pathogens.
OsMED]6-overexpression plants showed an enhanced suscepti-
bility when challenged with different virulent isolates. Simi-
larly, the 7TaMEDI6 knockdown lines displayed increased
resistance to fungal infection in wheat (Zhang et al. 2023).
However, MED16 in several dicot plants is a positive regulator
in pathogen tolerance. AtMED16 promotes defence against
pathogens in Arabidopsis (Wathugala et al. 2012). Knockdown
of NbMED164 and NbMEDI6B in tobacco resulted in reduced
resistance to fungi, as indicated by increased fungal biomass
(Zhang et al. 2023). BnMED16 and GmMEDI16 positively reg-
ulate the resistance to Sclerotinia sclerotiorum (S. sclerotiorum)
in a vital oil crop Brassica napus (B. napus) and to Phytophthora
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sojae (P. sojae) in soybean (Glycine max), respectively
(Hu et al. 2021; Xue et al. 2019). Overexpressing BnMED16 in a
susceptible B. napus line reduced lesion size compared to the
control. It turned out that BAMED16 physically interacted with
BnMED25 and BnWRKY33, and BnAMED25 interacted with
BnMYC2, BnCOI1, and BnEIN3 in the JA/ethylene signalling
pathway. BnMED16 enhances resistance to S. sclerotiorum in
B. napus by facilitating BnMED25-mediated JA/ET defence
pathways and activating BnWRKY33-mediated defence signal-
ling (Hu et al. 2021) (Figure 3). GmMEDI6-1 is induced in
response to P. sojae infection in soybean, and the expression
levels of some stress response genes, such as GmNPRI,
GmPR1a, and GmPRS5, were significantly downregulated in the
GmMEDI16-1 silencing lines (Xue et al. 2019).

Although little is known about the function of AtMED7 and
AtMEDI10 in plant defence, their homologs in sugarcane,
tobacco and tomato were reported to function in stress adaption
(Table 1). In sugarcane, ScMED?7 is transcriptionally induced by
multiple stresses such as heavy metal, low temperature and
salicylic acid and methyl jasmonate treatments but suppressed
by osmotic stresses of NaCl and polyethylene glycol. Over-
expressing ScMED7 increased H>O» production and cell death
in tobacco leaves and the expression of several defence-related
marker genes was induced after infiltrating ScMED?7 in tobacco.
ScMED7 acts as a negative regulator during pathogen infection,
such as Fusarium solani var. coeruleum (Zhang et al. 2017).
MEDI10 and MED7 in tobacco negatively affect the immune
response to Tomato spotted wilt orthotospovirus (TSWV)
mediated by Sw-5b (Wu et al. 2023). Knockout or knock-down
of MEDI0B in tomato and tobacco led to immune activation. As
silencing  NbMED4, NbMED7, NbMEDY9, NbMED2] and
NbMED31 in tobacco also led to reduced accumulation of
TSWYV replicon, these subunits in the middle module of the
Mediator complex may function in plant defence against TSWV
infection. NbMED10B directly interacts with NbMED7 but not
with the other middle subunits in tobacco, and NbMED?7
directly interacts with JAZ proteins (Wu et al. 2023).

Although limited crop Mediator subunits in stress response
have been characterized, some of them, such as SIMED25 and
TaMED?2S5, play a critical role in responding to both biotic and
abiotic stress. However, detailed mechanisms underlying the
altered response of Mediator mutants upon stresses remain
mostly understudied. Developing crops with enhanced stress
resilience is essential to secure crop yields in the face of recent
climate changes. Thus, investigating the underlying mecha-
nisms would reveal additional targets for gene editing to
develop stress-resilient crops.

4 | Future Perspectives

Given that the Mediator complex, as a transcriptional cor-
egulator, interacts with general transcription machinery, such
as Pol II, it is not surprising that disruption of one or more
subunits results in pleiotropic phenotypes or lethality. However,
some Mediator subunits are dispensable for survival as their
loss-of-function mutants are fertile, and some exhibit specific
phenotypes such as metabolite changes, altered biotic stress
susceptibility and flowering time, which are attractive traits for

crop engineering. Although significant progress has been made
in plant Mediator research, there are still knowledge gaps in the
identity of some subunits and functions of the plant Mediator
complex and its subunits. Here are some future perspectives on
plant Mediator research.

1. Do plant Mediator subunits have conserved functions
across species?

Some Mediator subunits have conserved functions in dif-
ferent species, while some function differently or even
oppositely across the species. MED18 has conserved
functions in organ development and flowering time in
tomato and Arabidopsis. On the other hand, OsMED16
and TaMED16 are negative regulators in rice and wheat
immunity, while MED16 in dicots such as Arabidopsis,
tobacco and soybean, positively regulates immune
response. Similarly, SIMED2S5 acts as a positive regulator
of B. cinerea, whereas TaMED25 negatively controls
powdery mildew. Despite low sequence similarities of
Mediator subunit orthologs across species, in silico
analyses have predicted Mediator subunits in several
crops, such as rice, tomato, soybean and asparagus bean
(Liang et al. 2024; Mathur et al. 2011; Wang et al. 2019;
Xue et al. 2019). However, whether the putative subunits
are indeed parts of the Mediator complex remains to be
explored. Since Mediator subunits contain no predicted
functional motif and their functions are not always con-
served across species, the function of each subunit should
be examined within the context of each species.

2. Utilizing Mediator subunits to improve crop traits.

Upon recent global climate change, it is crucial to identify
breeding targets that balance a plant's response to various
stresses while maintaining growth to acquire more
climate-resilient plant cultivars (Leisner, Potnis, and Sanz-
Saez 2023). Several studies have demonstrated that alter-
ing one or more Mediator subunits affects agronomically
important traits in crops, such as grain size and number,
fruit ripening and resistance to stresses, placing Mediator
subunits as reasonable targets to obtain desirable traits in
crops. However, other aspects should also be considered
when utilizing them for crop engineering. As most phys-
iological studies have been conducted under controlled
conditions, whether the engineered crops display the ex-
pected phenotypes in the field should be further explored.
While some Mediator subunit mutants display specific
phenotypes in plant growth and development and others
show altered responses in plant stresses, there are no clear
boundaries among them, and these traits can be linked
directly or indirectly, as exemplified with the trade-off
between growth and defence. Thus, the impact of altered
Mediator complex on various aspects of crop traits should
be examined comprehensively when engineering Media-
tor subunits for crop improvement.

3. Investigating the involvement of phase separation in plant
Mediator complex.

The transcription requires multiple biomolecule interac-
tions, often forming biomolecular condensates via phase
separation, which play a vital role in gene expression

8 of 13

Plant, Cell & Environment, 2024

AsULdIT suowwoy) dAnear) ajqeordde ayy £q pauraaod are saponIe YO fasn Jo so[ni 10j KIeIqr duljuQ) K3[IA UO (SUOIIIPUOI-PUE-S UL}/ WO Ka[Im KIeIqI[aul{uo//:sdy) SuonIpuo)) pue swId], 3yl 23S *[$707/60/01] uo Kreiqr aurjuQ L[ip ‘epuo[] JO Ansioaiun £q zH[§129d/[[[1°01/10p/wod Kajim: Kieqiaurjuo,/:sdiyy woly papeojumod ‘0 ‘0#0£S9¢1



(Wang, He, and Fang 2023). Although the number of
studies on phase separation in plants keeps increasing
(Yang, Huang, and Xia 2024), research on Mediator-
mediated phase separation in plants is still in its infancy.
In Arabidopsis, AtMED8 and AtHACI1 form liquid-like
droplets, which is required for AtMEDS to interact with
Pol 1T (Guo, Wei, et al. 2021). Another Arabidopsis study
found that the crucial regulator of shoot meristem SHOOT
MERISTEMLESS (STM) contains a phase separation-
inducing prion-like domain in its N-terminal region,
which stimulated STM to form nuclear condensate and
this condensation of STM facilitated its interaction with
MEDS8 to enhance its transcriptional activity (Cao
et al. 2023). Arabidopsis MED19A undergoes liquid-liquid
phase separation (LLPS) under nitrogen scarcity. The C-
terminal mixed-charged intrinsically disordered region of
MEDI19A is required for LLPS and ORESARAI1 inter-
action to govern senescence triggered by nitrogen defi-
ciency (Cheng et al. 2022). Further study on the
involvement of the Mediator complex in dynamic control
of transcriptional condensates will enhance our knowl-
edge of how the Mediator complex effectively and effi-
ciently regulates transcription.

Exploring the functions of crop Mediator subunits beyond
transcription regulation.

This review focuses on the functions of crop Mediator
subunits in plant stress responses and growth mainly
through interacting with transcription factors, but the
plant Mediator complex indeed plays versatile roles.
Several plant Mediator studies revealed the roles of
Mediator subunits in microRNA (miRNA) and noncoding
RNA production, RNA modification, and DNA repair
(Giustozzi et al. 2022; Kim et al. 2011; Li et al. 2024).
AtMED17 is engaged in miRNA production by recruiting
Pol II to promoters of miRNA genes (Kim et al. 2011). It
also functions in DNA repair. The expression levels of
some genes associated with UV-B response and DNA
repair were significantly altered in atmedl7 mutants,
and AtMEDI17 is required for the proper expression
by interacting with several DNA-repaired proteins
(Giustozzi et al. 2022). Moreover, a recent study identified
OsMEDI18 as a novel posttranscriptional regulator of N°-
methyladenosine (m®A) RNA modification in rice (Li et
al. 2024). CRISPR-Cas9 edited osmedl8 mutants had a
significantly increased m®A level, which is conserved in
the atmed18 mutants (Li et al. 2024). The investigation of
crop Mediator function beyond transcription regulation is
necessary and will help a comprehensive understanding of
the plant Mediator complex, which will provide more
opportunities to utilize Mediator for crop improvement.

Adapting advanced technologies for Mediator complex
study.

Despite advances in plant Mediator studies, there is still
debate about the exact number of Mediator subunits pres-
ent in plants, and the structure of the plant Mediator
complex remains unresolved. Adapting improved technol-
ogies such as cryo-electron microscopy single-particle
analysis, a powerful tool to resolve the high-resolution
structure of macromolecules (Yip et al. 2020), may enable

elucidation of the structure of the plant Mediator complex.
Most Mediator research focuses on the characterization of
Mediator subunits. Several biochemical and genetic studies
identified proteins interacting with specific Mediator sub-
units, and physiological outcomes verified their functions.
The interaction between the Mediator subunits and their
interacting proteins might be stress-specific and dynami-
cally controlled depending on internal and external signals.
The single-molecule technique is a revolutionary and
trending approach in plant research (Cui et al. 2024; Su
et al. 2021). Employing a range of single-molecule tech-
niques, such as single-particle tracking and single-molecule
imaging along with labelling technology, enables the pre-
cise visualization of the Mediator subunits' spatiotemporal
dynamic trajectories and the identification of dynamic in-
teracting proteins under diverse environmental conditions
in living cells. Also, proximity labelling assay using the
complex would reveal dynamically interacting partners'
identities. In addition to the classical labelling approach,
advanced label-free imaging techniques such as Stimulated
Raman scattering microscopy, a noninvasive method for
generating images, can more efficiently capture highly
dynamic processes (Zhao et al. 2019). This capability may
significantly accelerate the exploration of how the Mediator
complex naturally responds to various signals. Multi-omic
approaches such as transcriptomics, proteomics and me-
tabolomics will also uncover how the Mediator complex
integrates multiple signals to orchestrate diverse biological
processes beyond gene expression networks.

5 | Conclusion

The past decades of extensive studies with Arabidopsis have illu-
minated the function of the plant Mediator complex and its sub-
units in diverse biological processes, suggesting them as suitable
targets to acquire desirable traits in other plant species. Recently,
several Mediator subunits have been identified and characterized
in some economically important crops. The outcomes, however,
are not as straightforward as expected. While some subunits
appear to have conserved functions across species, others function
differently from species to species. Nevertheless, utilizing the
Mediator complex for engineering crops remains promising. Fur-
ther functional characterization of Mediator subunits from diverse
species and a holistic understanding of plant Mediator complex
upon various environmental conditions would provide better
opportunities to exploit them for crop improvement.
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