
Job Scheduling in High Performance Computing
Systems with Disaggregated Memory Resources

Jie Li∗, George Michelogiannakis†, Samuel Maloney‡, Brandon Cook†, Estela Suarez‡§, John Shalf†, Yong Chen∗
∗Texas Tech University, USA

†Lawrence Berkeley National Laboratory, USA
‡JÈulich Supercomputing Centre, Forschungszentrum JÈulich, Germany

§Institute of Computer Science, University of Bonn, Germany

Email: ∗{jie.li},{yong.chen}@ttu.edu, †{mihelog},{bgcook},{jshalf}@lbl.gov, ‡{s.maloney},{e.suarez}@fz-juelich.de

AbstractÐDisaggregated memory promises to meet growing
memory requirements of applications while improving system re-
source utilization in high-performance computing (HPC) systems.
Compared to traditional systemsÐwhere expensive resources
such as CPUs, GPUs, and memory, are assigned to jobs in
units of nodesÐsystems with disaggregated memory introduce
memory pools that can be shared among jobs; this introduces
new optimization metrics to the job scheduler. In this paper,
we propose a data-driven approach to evaluate job scheduling
and resource configuration in HPC systems with disaggregated
memory. To incorporate the memory requirements of jobs for
both local and disaggregated memory resources and improve
system efficiency in open-science HPC systems, we introduce a
novel job scheduling algorithm called FM (Fair Memory). Our
simulation results show that FM outperforms commonly-used job
schedulers in terms of jobs’ bounded slowdown when the shared
memory pool capacity is limited, and in terms of fairness under
all conditions.

Index TermsÐHPC, Resource Utilization, Disaggregated Mem-
ory, Scheduling Policies

I . INTRO DUCTI ON

Traditionally, high-performance computing (HPC) systems

have been designed with a tightly coupled architecture where

compute and memory resources are bundled together in nodes.

These nodes are statically configured and allocated exclusively

to jobs for a period of time to avoid interference from other

workloads. Therefore, node resources that are not used by

the job assigned to those nodes are left idle. Node sharing

among jobs only partially addresses this challenge and is

typically much constrained in its use, and thus infrequent in

practice. Also, HPC applications have intensely diverse memory

requirements. Thus, combined with today’s static resource

allocation, HPC systems that serve a variety of scientific

applications suffer in their utilization of expensive resources

and face a challenge for efficient resource management [1]±[4].

In recent years, there has been a growing interest in disag-

gregated system architectures to manage memory and compute

resources separately. This enables finer-grained allocation of

resources to more accurately match application requirements.

Disaggregated memory, referred to as remote memory for

simplicity in this paper (in contrast to local memory on the same

node as compute units), does not reduce the workload’s memory

requirements, but rather allows a compute unit to use unused

memory resources on other nodes or in a common memory

pool. However, this approach introduces new challenges, such

as increased and heterogeneous memory access latency due to

the remote location of memory resources, increased pressure

on the network, and the need to allocate local and remote

memory resources to jobs to balance application runtime, cost,

memory utilization, and job queuing time among other goals.

Therefore, job scheduling and allocating memory resources in a

disaggregated system is more complex algorithmically because

of the extra metrics and parameters, such as the physical

location of remote memory modules and interference with

other jobs in memory modules or the network.
While prior research evaluated how assigning remote memory

to a job can affect its performance and explored implementa-

tions of disaggregated memory in HPC [2], [5]±[10], limited

work has been done to either evaluate how the ratio of local and

remote memory capacity affects the system and applications, or

to co-design scheduling policies to balance the often conflicting

goals of application performance and improving system-wide

utilization of memory capacity.
In this paper, we aim to address three fundamental questions

using a data-driven approach on two production HPC systems.

First, in an HPC system equipped with disaggregated memory,

is it helpful for the job scheduler to, in addition to existing

considerations, consider the location and constraints of available

remote memory resources? Second, what method should

determine the ratio of local and remote memory pool capacities

to minimize impact on application and system performance,

and reduce total system memory? Lastly, what advantages does

disaggregated memory bring to HPC systems?
The contributions of this study are summarized below.

• We present an application performance model that quan-

tifies the impact of the additional latency incurred when

accessing remote memory. We use this model to estimate

job performance in a memory-disaggregated system.

• We simulate HPC systems with disaggregated memory

resources using traces collected from two production

systems and evaluate both system and job performance

across various memory configurations.

• We present throughput per dollar spent on memory

resources as an indicator of the cost-benefit ratio for

disaggregated memory systems, and identify the optimal

memory per rack for our two production systems.

297

2024 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTER59578.2024.00033

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

79
-8

-3
50

3-
58

71
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/C

LU
ST

ER
59

57
8.

20
24

.0
00

33

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

• We introduce a remote memory-aware job scheduler, FM

(Fair Memory), which outperforms the next-best state-of-

the-art scheduler by up to 54 % in average bounded job

slowdown. Additionally, FM achieves the highest fairness

among all schedulers compared.

The remainder of the paper is structured as follows. First,

we provide background on memory disaggregation and job

scheduling in HPC systems in Section II. Next, we present our

performance slowdown model in Section III. Then, we describe

our evaluation results in Section IV. Section V summarizes

previous work on scheduling and allocation policies. Finally,

Section VI discusses future directions and concludes this paper.

I I . BAC KGROU ND

In this section, we discuss two common system architectures

for memory disaggregation and present common scheduling

techniques in HPC systems and their evaluation metrics.

A. Memory Disaggregation Architectures

Disaggregating memory involves separating the allocation of

memory resources from compute resources, allowing for more

flexible allocation and management of the memory resources.

With disaggregated memory, different applications or workloads

can be allocated varying amounts of memory based on their

specific needs, rather than being allocated whatever memory

capacity the application’s allocated nodes contain.

Disaggregating memory in HPC systems can be achieved by

either (i) logically partitioning, either in hardware or software,

the memory capacity of a compute node into two parts, where

the first part is used exclusively by the compute node itself

while the second part can be utilized by remote nodes (either

in the same rack or not) [11]±[13], or (ii) by instantiating a

physically separate pool of network-attached memory while the

compute nodes retain their local memory resources [5], [14].

Figure 1 illustrates an example of the latter architecture. Our

study focuses on this architecture, instead of entirely separating

compute and memory resources in different racks, because this

variation allows for lower access latency to a subset of the

shared memory pool. A noteworthy variation of this scheme

is when compute nodes possess zero private memory capacity,

making them entirely dependent on shared memory. In our

study, all racks have the same configuration; each node has

its own private memory and also shares an on-rack memory

pool (what we refer to as ‘rack-scale’), as well as off-rack

disaggregated memory residing in other racks (referred to as

‘system-scale’).

B. Scheduling in HPC

Today, almost all HPC clusters use queuing systems for

resource management and job scheduling, such as SLURM,

UGE, and PBS Pro [15], [16]. These systems make available

to users several queues with different resource constraints and

priority levels. Within each queue, scheduling policies, such as

first-come, first-served (FCFS), define each job’s priority based

on its characteristics. A job i has the following characteristics:

(i) Submit Time si: the timestamp at which the job was

...

Local Memory Remote Memory Shared Memory Pool

Compute Node

Rack 0

Compute Node

Compute Node

...

Compute Node

Rack 1

Compute Node

Compute Node

...

Compute Node

Rack n

Compute Node

Compute Node

...

Memory Node

Memory Node

Memory Node

Memory Node

Memory Node

Memory Node

Rack Switch Rack Switch Rack Switch

Switch Switch...

Figure 1: One example of providing a shared memory pool by

distributing it across racks.

submitted, (ii) Estimated Duration di: user or system estimated

time to complete the job, and (iii) Nodes ni: the number of

nodes requested. In today’s systems, users usually request

a number of nodes of a particular type, which determines

the number and type of compute units (CPUs or GPUs) and

memory modules based on the configuration of the requested

nodes. Some schedulers also take into account (iv) Memory mi:

the memory requested per CPU/GPU or per node (especially

useful in case jobs are allowed to share nodes), and (v) Waiting

Time wi: the time that a job has been waiting in the queue.

Other characteristics, such as user ID and group ID, may also

be considered in the job’s priority. However, to emphasize job-

specific attributes and simplify analysis, we do not consider

that specific users or groups have a higher priority than others

in this study.

The scheduler’s primary function is to allocate available

resources to jobs in the queue. When there are insufficient

resources to accommodate waiting jobs, jobs remain in queue.

To improve resource utilization during these waiting peri-

ods, backfilling mechanisms are commonly employed. These

mechanisms allow the scheduling of smaller jobs with lower

priority to fill available system slots. The choice of which

job to backfill can be made either by ensuring that no other

waiting job experiences further delays (known as conservative

backfilling) [17] or by not delaying only the job at the queue

head (referred to as EASY backfilling) [18].

Scheduling policies are designed to optimize objective

functions that align with the preferences of an HPC system.

While there is no gold standard for evaluating scheduling

policies, our study employs the following metrics that represent

the goals of most HPC sites: system throughput, compute node

utilization, average bounded slowdown, and fairness.

C. Evaluation Metrics

System Throughput: System throughput in HPC systems

refers to the rate at which a system can process jobs. For a

given time period of T , we count the total number of jobs N

finished during this time and calculate the throughput as:

Throughput =
N

T

298

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

Compute Node Utilization: Compute node utilization

measures the percentage of time that compute nodes are actively

processing jobs relative to the total time they are available

for computation. This metric reflects the extent to which the

computational resources within the HPC system are being

effectively utilized. Over a given time period T , we sum the

busy time bi for each node i when it is allocated to jobs, and

calculate the utilization for all nodes C as follows:

Utilization =

∑

i∈C
bi

T ∗ C

Average Bounded Slowdown: Slowdown is the ratio of the

time from job submission to completion (wi+di) over the actual

runtime duration (di), i.e., wi+di

di

. To avoid the disproportionate

effect caused by exceptionally short jobs, bounded slowdown

(bsld) is introduced as follows:

bsldi = max

(

wi + di

max(di, τ)
, 1

)

where τ is a predefined lower bound that is typically set to 10

seconds [19]±[21]. Thus, the average bounded slowdown of

N jobs is useful for comparing job performance in terms of

job completion time (w + d) and is defined as:

avg bsld(N) =
1

N

∑

i∈N

max

(

wi + di

max(di, τ)
, 1

)

Fairness: We evaluate the fairness of schedulers by exam-

ining favoritism and discrimination among jobs. Following

the methodology presented in [22], we analyze a stream

of jobs J1, J2, ..., JN using waiting time as the comparison

metric. We calculate the waiting time differences bi for job

i between the scheduler we use as a baseline (FCFS without

backfilling) and the scheduler we evaluate. We categorize the

bi values of all jobs into three distinct sets: (i) positive values

(indicating shorter waiting times under the evaluated scheduler)

are grouped into the benefit group Sb, (ii) jobs experiencing

performance deterioration are grouped into the discrimination

group Sd, and (iii) jobs with no performance change are placed

in the neutral group Sn. We can then calculate the total benefit

B and total discrimination D as:

B =
∑

Ji∈Sb

bi, D =
∑

Ji∈Sd

|bi|

The associated fairness metrics are calculated as follows:

1) Marginal Discrimination (MD): the total discrimination in

excess of the total benefits, calculated as MD = D −B.

2) Extreme Discrimination (Dx): the total discrimination

values for the most discriminated proportion x of the jobs;

for example, D10 and D20 represent the total discrimina-

tion for the top 10 % and 20 % most discriminated jobs,

respectively.

3) Extreme Marginal Discrimination (MDx): similar to

marginal discrimination, calculated for the most bene-

fited/discriminated proportion x of the jobs: MDx =
∑

Ji∈Sx

d

|bi| −
∑

Ji∈Sx

b

bi.

The lower these metrics, the less discrimination is exhibited

by the scheduler, indicating better fairness. It is important

to recognize that while prioritizing shorter and/or small-scale

jobs can mitigate system fragmentation and thereby enhance

system throughput and compute node utilization, it often results

in discrimination that is generally undesirable for jobs and

users. Consequently, we incorporate fairness as a supplementary

metric to balance our previous evaluation metrics.

I I I . METHOD OLOGY

Memory disaggregation in HPC is an emerging research area,

with no existing HPC systems fully capable of supporting this

feature. Consequently, our study primarily employs simulation-

based methodologies. This section introduces a performance

degradation model to estimate job performance when utilizing

remote memory. We then explain the collection of job traces

from operational HPC systems. Using these traces alongside our

performance degradation model, we simulate job performance

under various remote memory configurations. In addition, we

describe the simulated system configurations and present both

baseline schedulers and our proposed scheduler.

A. Performance Prediction due to Disaggregated Memory

The performance of a job in an HPC system is influenced by

a multitude of factors such as communication patterns, network

congestion, and physical distance between compute tasks.

With disaggregated memory, performance can additionally be

influenced by the increased latency and reduced bandwidth

between compute and memory resources. Previous studies

have demonstrated that hardware that implements memory

disaggregation can satisfy the maximum escape bandwidth

of each memory and compute resource in today’s HPC

systems [23]. That said, as we reduce memory modules to

reduce capacity, we also inevitably reduce available memory

bandwidth. Therefore, a job may need to reserve more memory

modules than strictly necessary for its capacity requirements,

simply to satisfy its memory bandwidth requirements. However,

previous studies showed that high memory bandwidth is

seldom used by HPC jobs within the open-science NERSC

workload [3]. Consequently, the effect of memory latency is

dominant and cannot be avoided due to the longer physical

distance of disaggregated memory [10], [23], [24]. Given

that future memory technologies are expected to offer more

bandwidth per module, thereby mitigating memory bandwidth

concerns, our study focuses primarily on the impact of latency.

In our study, we use job traces from production HPC

systems that include the start and end times of each job. These

traces already encompass factors that affect execution time

for the particular system and conditions at the time each

job initiated. Therefore, for each experiment we configure

our simulated system similarly to the system each trace is

from and build a model for the additional performance penalty

from disaggregation that focuses exclusively on capturing the

performance degradation due to the added latency between

compute and memory resources, a traditionally latency-sensitive

path.

299

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

HBM HBM

HBM HBM

DDR

DDR

Node 4 Node 5

Node 12 Node 13

DDR

DDR

Cores

Cores

Cores

Cores

Node 6

Node 14

Node 7

Node 15

HBM HBM

HBM HBM

DDR Cores

DDR

Node 0 Node 1

Node 8 Node 9

Cores

DDRCores

DDRCores

Node 2

Node 10

Node 3

Node 11

Figure 2: NUMA node/domain configuration of the two-Socket

Intel Xeon Max 9462 Sapphire Rapids CPU in flat mode with

SNC4 clustering, as used for latency sensitivity testing. This

figure is adapted from Figure 14 in [25].

0 25 50 75 100 125 150 175 200
Additional Latency (ns)

0 %

25 %

50 %

75 %

100 %

125 %

150 %

175 %

200 %

Sl
ow

do
wn

blackscholes
bodytrack
canneal
dedup
ferret
fluidanimate
freqmine
raytrace
streamcluster
swaptions
vips

Figure 3: Performance slowdown of PARSEC workloads for

different additional latencies between the LLC and the main

memory. The dashed lines are the polynomial functions of

degree 2 generated from the data points of each workload.

1) Sensitivity to Latency: We study the latency sensitivity

of a variety of application kernels by executing the PAR-

SEC3.0 benchmark suite [26] on Sapphire Rapids HBM nodes,

equipped with dual Intel Xeon Max 9462 CPUs configured in

flat mode and employing SNC4 clustering [25], as illustrated

in Figure 2. PARSEC workloads contain a range of compute

kernels and are representative of HPC applications and follow

the trends of a previous study that evaluated two more

application suites [23]. We execute each benchmark in single-

threaded mode to focus on the effect of latency and avoid

memory bandwidth from becoming a bottleneck; our goal is to

measure on hardware, not simulation, the impact of memory

latency on application performance.

To achieve a precise measurement of memory latency, we

utilize the numactl utility to affinitize the execution context

to NUMA domain 0, thereby standardizing the execution core

across all tests. Subsequently, we vary the memory allocation

across the 16 available NUMA domains to assess the latency

impact from the perspective of domain 0. We use the Intel

memory latency checker tool to measure the loaded latency

between domain 0 and the other domains, under conditions

where a single thread is responsible for generating memory

traffic. The x-location of the data points in Figure 3 is the

Switch SwitchCore
CXL
Port

Re-
timer

CXL
Port

Additional Latency for Inter-Rack Remote Memory Access: 280 ns

Switch
CXL
Port

Remote

Memory

CXL

Port

Re-

timer

Additional Latency for Intra-Rack Remote Memory Access: 180 ns

SwitchCore
CXL

Port

Re-

timer

CXL

Port

Remote

Memory

CXL

Port

Re-

timer

CXL

Port

Latency Assumption: CXL Port: 25 ns; Retimer: 20 ns; Switch (NoC+Arbitration): 20 ns;
Flight time between CXL and Retimer: 5 ns; Flight time between switches: 30 ns

Figure 4: The additional latency for inter-rack and intra-rack

remote memory access.

average latency measured across the range of memory traffic a

single thread can generate, with the x-error bars showing the

min/max measurements.

The PARSEC3.0 benchmark suite, with the exception of the

X264 and Facesim workloads that do not execute correctly,

serves as the basis for our experiments. On each NUMA

domain all of the workloads were run three times, with the

median run used for the data point in Figure 3 and the

other runs providing the y-error bar extents. As evident in

the figure, the majority of the workloads within the suite

show minimal sensitivity to variations in latency. However,

a few workloads exhibit significant performance degradation in

response to increased latency. Specifically, the Canneal and the

Streamcluster workloads experience a slowdown of 190 % and

119 %, respectively, when subjected to an additional 190 ns of

latency. The trends and orders of magnitudes of these results

match other previous simulation-based studies, thus increasing

the confidence of our conclusions [23].

The groupings of data points seen in Figure 3 are explained

by the NUMA configuration. As shown in Figure 2, the CPU

cores in each of the two sockets are divided into four groups,

each associated with two NUMA domains, one for DDR

memory and the other for HBM. There are only relatively

small latency differences between NUMA nodes of the same

memory type on the same socket, leading to four groupings

of four points. The latencies on the local socket for the DDR

memory (which has the lowest latency) and the HBM overlap

to give the group of eight data points at the left of the figure;

the HBM on the non-local socket has substantially more latency

at single-thread bandwidths than the DDR memory, giving a

noticeable separation between the two groups of four data

points on the right of the figure.

2) Intra-rack and Inter-rack Latency: In our simulated

HPC system, we assume a Dragonfly network where the

nodes, including the computing and memory nodes within

the same rack, belong to the same Dragonfly group; groups

are interconnected in a fully connected graph. Each compute

node connects through a single switch (i.e., a rack switch)

to reach memory nodes in the same rack and traverses three

switches (i.e., two rack switches and one inter-rack switch) to

access memory nodes in other racks. Additionally, our system

models the Compute Express Link (CXL) interconnect standard

for memory disaggregation [10], [27]. We use the following

latency assumptions for each component in this architecture,

300

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

0% 50% 100% 150% 200% 250% 300%
Slowdown

0.25

0.50

0.75

1.00

CD
F

of
 S

lo
wd

ow
n

180 ns
280 ns

bla
cks

cho
les

bo
dy

tra
ck

can
ne

al
de

du
p

fer
ret

flu
ida

nim
ate

fre
qm

ine

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s

PARSEC Workloads

0 %

100 %

200 %

300 %

Sl
ow

do
wn

180 ns
280 ns

Figure 5: Bottom: The performance slowdown of PARSEC

workloads for 180 ns and 280 ns of additional LLC memory

latency. Top: The same PARSEC performance slowdowns

presented as CDFs.

adopted from [10]: each CXL port has a latency of 25 ns, each

retimer has 20 ns, the total NoC and arbitration latency on

each switch is 20 ns, the flight time between a CXL port and

a retimer is 5 ns, and the flight time between switches is 30 ns.

Therefore, the additional latencies for intra-rack and inter-rack

remote memory access in our model are 180 ns and 280 ns,

respectively, as depicted in Figure 4.

Drawing upon our latency sensitivity results, we then

construct polynomial functions of degree 2, depicted by dashed

lines in Figure 3. These functions are used to quantify the

performance degradation at additional latencies of 180 ns and

280 ns for HPC workloads. The performance slowdowns are

detailed in the lower section of Figure 5, where the baseline

performance is when using memory on the same NUMA

domain as the executing CPU core. For intra-rack remote

memory access, an added latency of 180 ns leads to an average

performance slowdown of 31 %, with the slowdown ranging

from a minimum of 0.1 % to a maximum of 167 %. In the case

of inter-rack access with an additional 280 ns of latency, the

average performance slowdown is observed to be 53 %, with

variations ranging from 0.75 % to 319 %.

3) System Performance Prediction Model: Because our

system job traces inevitably lack application-specific infor-

mation due to the scale and duration of those traces as well as

privacy concerns, and because PARSEC contains a range of

HPC compute kernels whose trends were confirmed by more

benchmark suites [23] as we mentioned previously, we use

the distribution of our aforementioned PARSEC performance

slowdown results to model the slowdown of jobs in the system

as a function of the additional latency to reach disaggregated

memory. Figure 5 at the bottom shows the performance

slowdown of PARSEC benchmarks for 180 ns and 280 ns and

at the top the corresponding cumulative distribution function

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Job Duration

0.25

0.50

0.75

1.00

CD
F

of
 D

ur
at

io
n

Perlmutter
JUWELS

0 64 128 192 256 320 384 448 512
Jobs' Max Memory Used (GB/Node)

0%

10%

20%

Pe
rc

en
ta

ge

Perlmutter
JUWELS

Figure 6: Bottom: The distribution of the maximum memory

usage (GB/node) per job. Top: Normalized job duration

distribution presented as CDFs.

(CDF) for 180 ns and 280 ns. To capture the variability of job

sensitivity to memory access latency as well as the effectiveness

of latency hiding techniques such as remote memory page

prefetching [13], [28], [29] for different applications, for each

job in our trace, we assign a random value between 0 and 1

to model its performance sensitivity to memory latency. This

value is then transformed into a slowdown factor (denoted as

sld factor) using the aforementioned CDF of the intra-rack

(180 ns) or the inter-rack (280 ns) slowdown, depending on the

disaggregation scope of each experiment.

The performance degradation model discussed above is

based on the impact of additional latency in accessing memory

resources. Fundamentally, the longer physical distance to reach

remote memory makes higher access latency compared to local

memory inevitable. In our simulations, we instantiate compute

nodes that have local memory resources but can also utilize

the shared memory pool. Because our production system traces

cannot possibly capture each job’s memory access patterns, we

model a job’s performance degradation as directly proportional

to the ªremote memory ratioº (denoted as rm ratio), calculated

by dividing the amount of remote memory allocated to a job

by its total memory allocation. As expected, a job not utilizing

remote memory (rm ratio = 0) incurs no performance penalty

from memory disaggregation. Conversely, the more a job relies

on remote memory, the greater the performance penalty it

faces. The maximum penalty, occurring when rm ratio = 1,

corresponds to the slowdown predicted by the aforementioned

degradation model of Figure 5. An intermediate value of

rm ratio means the slowdown is only a fraction of Figure 5

because only a fraction of the memory accesses incur the

additional latency to reach remote memory.

Therefore, a job’s runtime on HPC systems with disaggre-

gated memory can be modeled as follows:

original duration ∗ (1 + sld factor ∗ rm ratio)

301

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Simulated system configurations. Perlmutter refers

to CPU nodes whereas JUWELS refers to GPU nodes.

Parameter Perlmutter trace JUWELS trace

Total number of nodes 1536 960

Number of racks 6 20

Number of nodes per rack 256 48

Memory pool per rack (TB) 4, 8, 12, ... 48 2, 4, 6, ... 24

Node memory (GB) 64

Number of warm-up jobs 3000

Baseline scheduling algorithms SJF, FCFS, WFP3, F1, FAIR

Warming up scheduling FCFS without EASY backfilling

Note: The simulated system configurations are simplified and do not
represent the actual configurations of Perlmutter and JUWELS. In
particular, one of the racks in JUWELS has only 24 nodes, but here
we assume them all uniform for ease of simulation.

B. Characteristics of Job Traces

In our study, we collected real job traces from the CPU nodes

in NERSC’s Perlmutter (referred to as the Perlmutter trace) [30]

and the GPU nodes in the JUWELS Booster Module at JÈulich

Supercomputing Centre (referred to as the JUWELS trace) [31],

[32]. These job traces were collected from SLURM and include

actual memory usage metrics obtained from LDMS [33] on

Perlmutter and LLview [34], [35] on JUWELS. The job traces

contain the following fields:

1) Submit Time: This refers to the timestamp when a job

enters the system queue. We preserve this field to reflect

the real submission pattern observed in HPC systems.

2) Duration: This is the time it takes a job to complete

once it starts executing. We utilize the aforementioned

performance degradation model to adjust the job’s duration

based on the memory type (local or remote) it is allocated

and the capacity of each type.

3) Number of Nodes: This is the number of nodes exclusively

allocated to a job. We concentrate on node allocation

instead of processor allocation as neither Perlmutter nor

JUWELS currently allow sharing nodes between jobs.

Thus, nodes are exclusively used by one job.

4) Maximum Memory Used: This denotes the maximum

memory used per node across all nodes allocated to a

job. We record the peak memory usage through LDMS or

LLview to accurately reflect the real maximum memory

requirements of jobs.

To ensure that our simulation experiments can be conducted

within a practical time frame while still revealing scheduler

behaviors, we select jobs submitted over three consecutive

days, resulting in a total of 13 930 and 13 844 distinct jobs

for the Perlmutter and JUWELS traces, respectively. Note that,

the Perlmutter trace excludes jobs shorter than 10 minutes in

duration while shorter than 10 minutes jobs are still present in

the JUWELS trace. To speed up the simulation, we reduced

both the job submission time and duration by a factor of 10,

which accelerated the simulation without altering the results.

Figure 6 (bottom) displays the distribution of maximum

TABLE II: List of Scheduling Algorithms.

Scheduler Priority Function Symbol Definitions

SJF −r
r: duration

s: submit time

w: waiting time

n: number of nodes

FCFS −s

WFP3 (w/r)3 ∗ n

F1 log10(r) ∗ n+ 870 ∗ log10(s)

FAIR w/r

memory capacity usage across the traces. The maximum

memory usage per node for each job predominantly falls within

the range of [32, 64) GB for the Perlmutter trace and [0, 32)

GB for the JUWELS trace, which is considerably lower than

the provisioned memory resources of 512 GB per node in both

systems. The lower memory usage in the JUWELS trace is

likely in part explained by the continued presence of jobs

shorter than 10 minutes, as such jobs have less time to reach

higher memory usage. To further analyze the duration of jobs,

we calculate the normalized duration of each job by dividing

its duration by the maximum duration observed across all jobs

in each trace. The results are illustrated in Figure 6 (top).

C. Simulated System Configurations

Table I presents the configurations of the simulated systems.

We note that for JUWELS, the basic building block of the

network is actually a ‘cell’, which for JUWELS Booster are

composed of two physical cabinets; however, for simplicity

we use the term ‘rack’ for both systems. For both systems,

we reduce the node memory capacity from 512 GB to 64 GB

to reduce system cost, compelling jobs with large memory

requirements to utilize remote memory. The shared memory

pool is configured on a per-rack basis. Additionally, we warm

up each system with the first 3 000 submitted jobs, respectively,

using an FCFS scheduling approach (without backfilling). After

this initial stage, we transition to scheduling algorithms that

incorporate EASY backfilling. The warm-up jobs and the jobs

terminated after the start of the last job are removed from

the evaluation to remove the warm-up and cool-down effect,

ensuring that our analysis is based on data collected during

the effective (stable-state) operation phase of each simulated

system.

D. Baseline Scheduling Algorithms

Table II provides a list of scheduling algorithms used as

baselines in our evaluation, explained below:

• SJF (Shortest Job First): Selects and executes the job with

the shortest requested runtime from the queue.

• FCFS (First-Come, First-Served): Prioritizes jobs based on

submission order, giving preference to earlier submissions.

• WFP3: Gives preference to both older and shorter jobs to

prevent starvation of larger jobs [36].

• F1: A state-of-the-art scheduling algorithm developed

through brute-force simulation and nonlinear regression,

aimed at minimizing the average bounded slowdown [37].

• FAIR: Similar to WFP3, it prioritizes older and shorter

jobs but does not consider job scale in its selection criteria.

302

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

4 8 12 16 20 24 28 32 36 40 44 48
Memory Node Capacity (TB) per Rack

0
10
20
30
40
50
60

Av
g.

 B
ou

nd
ed

 S
lo

wd
ow

n

Lo
we

r i
s b

et
te

rSJF
FCFS
WFP3
FAIR
F1
FM36 40 440

5

10

(a) Perlmutter average bounded slowdown.

4 8 12 16 20 24 28 32 36 40 44 48
Memory Pool Capacity (TB/rack)

1.0

2.0

3.0

4.0

5.0

6.0

Th
ro

ug
hp

ut
 (J

ob
s/

10
0

Se
c)

Hi
gh

er
 is

 b
et

te
r

SJF
FCFS
WFP3
FAIR
F1
FM

36 40 44

5.0

5.5

(b) Perlmutter system throughput.

4 8 12 16 20 24 28 32 36 40 44 48
Memory Node Capacity (TB) per Rack

0%

20%

40%

60%

80%

100%

Co
m

pu
te

 N
od

e
Ut

iliz
at

io
n

Hi
gh

er
 is

 b
et

te
r

SJF
FCFS
WFP3
FAIR
F1
FM36 40 44

90%

95%

(c) Perlmutter compute node utilization.

2 4 6 8 10 12 14 16 18 20 22 24
Memory Node Capacity (TB) per Rack

0

20

40

60

Av
g.

 B
ou

nd
ed

 S
lo

wd
ow

n

Lo
we

r i
s b

et
te

r SJF
FCFS
WFP3
FAIR
F1
FM14 16 18

0

10

(d) JUWELS average bounded slowdown.

2 4 6 8 10 12 14 16 18 20 22 24
Memory Pool Capacity (TB/rack)

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (J

ob
s/

10
0

Se
c)

Hi
gh

er
 is

 b
et

te
r

SJF
FCFS
WFP3
FAIR
F1
FM14 16 18

2.3

2.4

(e) JUWELS system throughput.

2 4 6 8 10 12 14 16 18 20 22 24
Memory Node Capacity (TB) per Rack

0%

20%

40%

60%

80%

100%

Co
m

pu
te

 N
od

e
Ut

iliz
at

io
n

Hi
gh

er
 is

 b
et

te
r

SJF
FCFS
WFP3
FAIR
F1
FM14 16 18

94%

96%

98%

(f) JUWELS compute node utilization.

Figure 7: Performance comparison of various job scheduling algorithms for different memory pool capacities. Insets within the

figures zoom in the areas enclosed by dashed rectangles.

For this study, we operate simulated systems in a non-

preemptive mode, where jobs run to completion once they

start executing, and enable EASY backfilling for all policies,

leveraging its straightforward implementation and documented

advantages [18]. We assume that the runtime requested by users

accurately reflects the actual job runtime. This assumption

allows us to focus on the fundamental differences between

scheduling policies without the variability introduced by user-

estimated runtimes, which can be influenced by account

charging policies and upcoming deadlines.

E. FM: Novel Remote-Memory-Aware Job Scheduling

Scheduling algorithms in current HPC systems typically do

not take into account a job’s expected memory requirements.

However, this factor could have a significant impact on job

scheduling in memory-disaggregated systems. In light of this,

we introduce memory overload (denoted as m) as a measure

of each job’s expected remote memory requirement, which is

the memory occupancy beyond that of the local memory in

the job’s requested nodes. Memory overload is defined as 1 if

the local memory on compute nodes is sufficient for the job.

Otherwise, it is calculated as follows:

memory overload =
job max memory

compute node memory capacity

In addition, we introduce a novel heuristic scheduling

algorithm, called FM (Fair Memory), which takes into account

the memory overload factor. The priority function of FM is

defined as follows:

priority =
w

(log10(n) + 1) ∗ r ∗m

It is worth noting that FM behaves identically to FAIR for

jobs that request only one node and do not require remote

memory. For other jobs, FM assigns lower priorities to those

with longer durations, larger compute node requirements,

and excessive memory demands. FM incorporates a job’s

memory requirement (expressed by memory overload m)

into its priority function and tries to reduce memory pool

fragmentation by prioritizing jobs with lower remote memory

capacity requirements, while also considering the job’s waiting

time to avoid starvation.

To illustrate, consider a simplified scenario where all jobs

have identical compute demands and estimated durations

(i.e., consistent values of n and r). Here, a job’s priority

is solely determined by its waiting time w and memory

overload m. Under such conditions, for jobs entering the queue

simultaneously, FM strategically assigns a lower priority to

those requesting greater amounts of remote memory. While

the hypothetical scenario described simplifies the explanation,

it underscores the core logic of FM in prioritizing jobs to

enhance memory pool efficiency. In addition, w in the priority

function gives higher priorities to jobs with longer waiting

times, effectively reducing the starvation of large-scale jobs

and thereby improving fairness.

IV. EXPERI MENTA L RESULTS

A. Performance Comparison of Schedulers

We conduct experiments to compare the performance of

the baseline schedulers and our novel FM scheduler using

rack-scale memory disaggregation with various memory pool

capacity configurations. The shared memory pool in these initial

experiments is only accessible to jobs running on nodes in the

same rack, also referred to as intra-rack disaggregation [3]. The

job placement policy of all these schedulers is to consolidate

the allocated nodes in the same rack as much as possible while

maintaining the load balance among racks, which is a common

policy used in production HPC systems.

1) Average Bounded Slowdown: Figures 7a and 7d provide

a comparative analysis of the job scheduling algorithms in

terms of average bounded slowdown, whereÐas expectedÐ

the slowdown decreases as memory capacity increases, i.e.,

303

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

SJF FCFS WFP3 F1 Fair FM

0.4

0.0

0.4

0.8

1.2
Di

sc
rim

in
at

io
n

1e7
D
MD

SJF FCFS WFP3 F1 Fair FM

6

4

2

0

2

1e6
D
MD

SJF FCFS WFP3 F1 Fair FM
16 TB/rack

0.5

0.0

0.5

1.0

1.5

Di
sc

rim
in

at
io

n

1e6
D_10
MD_10

SJF FCFS WFP3 F1 Fair FM
32 TB/rack

8

4

0

4

8
1e5

D_10
MD_10

(a) Perlmutter trace.

SJF FCFS WFP3 F1 Fair FM

0.0

0.8

1.6

2.4

3.2

4.0

Di
sc

rim
in

at
io

n

1e7
D
MD

SJF FCFS WFP3 F1 Fair FM

0.0

0.8

1.6

2.4

3.2
1e7

D
MD

SJF FCFS WFP3 F1 Fair FM
6 TB/rack

0.00

0.25

0.50

0.75

1.00

1.25

Di
sc

rim
in

at
io

n

1e7
D_10
MD_10

SJF FCFS WFP3 F1 Fair FM
12 TB/rack

0.0

0.3

0.6

0.9

1.2

1e7
D_10
MD_10

(b) JUWELS trace.

Figure 8: Comparison of fairness metrics across different memory pool capacities: Discrimination (D) and Marginal Discrimination

(MD) are shown at the top, while Discrimination (D10) and Marginal Discrimination (MD10) for the 10 % most discriminated

jobs are displayed at the bottom. FM consistently displays the lowest values, indicating it maintains the highest level of fairness

among the jobs.

jobs experience shorter bounded slowdowns and have shorter

response times. Across various memory pool capacity con-

figurations in the Perlmutter trace, FM consistently boasts

the lowest average bounded slowdown that is lower than the

second-best SJF by up to 54 %. In the JUWELS trace, SJF

performs marginally better than FM when the memory pool

capacity reaches 6 TB/rack. However, in both traces, FM has a

noticeably lower average bounded slowdown compared to the

baselines when the memory pool capacity is limited. In such

scenarios, FM delays jobs with excessive memory demands and

prioritizes jobs with lower memory requirements. This approach

allows the shared memory pool to accommodate more jobs,

thereby reducing the waiting time for those preferred jobs.

2) System Throughput: Figures 7b and 7e illustrate system

throughput, measured in jobs per 100 seconds, on the y-axis

against the provisioned memory pool capacity per rack on the

x-axis for the Perlmutter and JUWELS traces, respectively.

Both figures display a similar trend: across all schedulers,

as the memory pool capacity per rack increases, system

throughput rises and eventually plateaus once the memory pool

capacity reaches a certain threshold. This by itself is a valuable

observation for HPC system procurement because it provides a

methodology to determine a cost-effective capacity of system

memory for a given workload. Also, given that the number of

compute nodes remains constant across these experiments, the

correlation between increased system throughput and enhanced

memory pool capacity suggests that memory pool capacity is a

potential bottleneck that hinders job scheduling when limited,

despite the availability of computing nodes.

In terms of system throughput across different schedulers,

when memory capacity is constrained (e.g., at 16 TB/rack

for the Perlmutter trace), the difference in system throughput

among the schedulers is not obvious for the Perlmutter trace.

With such scarce memory capacity and relatively large memory

requirements, schedulers have limited options to show a

significant difference in system throughput. However, this

difference becomes more pronounced for a higher memory

pool capacity. Under such conditions, for the Perlmutter traces,

the FAIR scheduling algorithm achieves the highest system

throughput at 5.5 jobs per 100 seconds, while FCFS records the

lowest at 4.8 jobs per 100 seconds. Similarly, the JUWELS trace

records the lowest system throughput with FCFS. In both traces,

our proposed scheduling algorithm, FM, demonstrates moderate

performance when the memory pool capacity is sufficient.

3) Compute Node Utilization: The compute node utiliza-

tion for the Perlmutter and JUWELS traces is illustrated in

Figures 7c and 7f, respectively. Consistent with the trends

observed in the system throughput analysis, compute node

utilization increases with memory pool capacity and then

plateaus once the memory pool capacity is sufficient. This

further corroborates the previous finding that a limited memory

pool capacity hinders jobs from running, and clearly shows

that low memory capacity causes compute resources to be

underutilized when memory is the scarce resource since jobs

require a certain minimum memory capacity in addition

to compute resources. The performance differences among

schedulers are more obvious in the Perlmutter trace, where more

jobs have longer durations and larger memory requirements

compared to the JUWELS trace. For the Perlmutter trace at

44 TB/rack configuration, FAIR reaches the highest utilization

rate of 95 %, whereas SJF shows the lowest at 91 %. For

the JUWELS trace, FCFS achieves the highest compute node

utilization at 98 %, and F1, although it performs the least

effectively, still manages a utilization rate of 96 %. Among all

these schedulers, FM has moderate performance, similar to the

system throughput analysis.

System performance, characterized by system throughput and

compute node utilization, often conflicts with job performance,

304

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

Bounded Slowdown - 32 TB/rack
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 B

-S
lo

wd
ow

n

ta
il

en
d

ta
il

en
d

(O
ve

rla
pp

ed
)

0 5 10 15 20 25
Bounded Slowdown - 16 TB/rack

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 B

-S
lo

wd
ow

n

ta
il

en
d

ta
il

en
d

ta
il

en
d

Rack Scale
System Scale
Baseline

(a) Perlmutter trace.

Bounded Slowdown - 12 TB/rack
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 B

-S
lo

wd
ow

n

ta
il

en
d

ta
il

en
d

(O
ve

rla
pp

ed
)

0 10 20 30 40 50 60 70
Bounded Slowdown - 6 TB/rack

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 B

-S
lo

wd
ow

n

ta
il

en
d

ta
il

en
d

ta
il

en
d

Rack Scale
System Scale
Baseline

(b) JUWELS trace.

Figure 9: CDF of bounded slowdown for rack-scale and system-scale memory disaggregation, for sufficient (top) and limited

(bottom) memory pool capacity.

as indicated by the average bounded slowdown. In traces like

Perlmutter’s, which contain more jobs with longer durations

and larger memory requirements, FAIR generally exhibits the

best system performance. In contrast, our proposed scheduler,

FM, diverges from FAIR by assigning lower priority to jobs

with larger memory demands through the memory overload

factor. This approach may delay jobs that could otherwise

alleviate resource fragmentation, thereby potentially hindering

system performance.

4) Fairness: Figure 8 presents a fairness comparison using

the metrics D, MD, D10, and MD10. Since these metrics

evaluate the level of discrimination (decision biases based

on job characteristics) jobs receive from the schedulers, a

lower discrimination value indicates greater fairness. Figure 8a

demonstrates that FCFS exhibits the highest discrimination

for Perlmutter while FM shows the lowest discrimination in

both configurations, according to D and MD metrics. When

considering the discrimination and marginal discrimination of

the 10 % most discriminated jobs, specifically D10 and MD10,

F1 appears less fair in the 32 TB/rack configuration. However,

across both configurations and all four metrics, FM consistently

displays the lowest values, indicating it maintains the highest

level of fairness among the jobs.

We repeat the fairness analysis on the JUWELS trace,

as depicted in Figure 8b. In both memory configurations,

F1 exhibits the highest discrimination levels, whereas FM

consistently shows the lowest for the metrics D, MD, D10,

and MD10.

In summary, for all our evaluations so far and although

scheduler performance varies among different job traces with

distinct characteristics, FMÐbeing the only scheduler that

considers the remote memory property in its algorithmÐ

consistently exhibits a lower average bounded slowdown when

memory pool capacity is limited. It also shows comparable

average bounded slowdown to other schedulers when memory

pool capacity is sufficient. FM also significantly enhances

the fairness of the scheduler across all configurations and job

traces.

B. Memory Disaggregation Scopes

In the subsequent experiments, we employ FM as the schedul-

ing algorithm for all simulations. We compare the performance

of different memory disaggregation configurations against a

baseline configuration where the systems retain their original

memory setup without utilizing memory disaggregation.

Figure 9 presents the trade-off between system-scale and

rack-scale memory disaggregation. From the figure, we can

observe that when memory pool capacity is limited, such as

16 TB/rack for Perlmutter and 6 TB/rack for JUWELS, rack-

scale memory disaggregation exhibits a shorter tail, indicating

that fewer jobs compared to system-scale disaggregation

experience a significant bounded slowdown. This outcome is

understandable, as rack-scale disaggregation inherently offers

lower access latency to the shared memory pool compared to

cross-rack access, thus reducing performance penalties. When

memory capacity is sufficient, the performance of rack-scale

and system-scale disaggregation is similar, as memory resources

are likely to be available within the same rack, even when

cross-rack memory accessing is an option.

Additionally, it is noteworthy that as available memory is

reduced, the Cumulative Distribution Functions (CDFs) of the

three illustrated lines of Figure 9 become more different. As

previously noted, an insufficient memory pool capacity hinders

the allocation of computing nodes to jobs, resulting in longer

waiting times (i.e. larger bounded slowdown) in the queue for

both rack-scale and system-scale configurations.

305

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

0 8 16 24 32 40 48
Memory Pool Capacity (TB/rack)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Th

ro
ug

hp
ut

 p
er

 M
em

or
y

Co
st

 (j
ob

s/
10

0s
/$

)
1e 6

Baseline Disaggregated

(a) Perlmutter trace.

0 4 8 12 16 20 24
Memory Pool Capacity (TB/rack)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 p

er
 M

em
or

y
Co

st
 (j

ob
s/

10
0s

/$
)

1e 6
Baseline Disaggregated

(b) JUWELS trace.

Figure 10: Cost-benefit measured as throughput per memory

cost.

C. Cost Benefits

In this subsection, we analyze the cost versus benefit for

the two HPC systems in our evaluation across various memory

pool capacity configurations. Based on our earlier results in this

paper, we consider rack-scale memory disaggregation for its

lower performance penalty and better tail performance. Since

the number of computing nodes remains unchanged, the cost-

benefit is assessed based on memory expenses. According to

the latest DDR5 prices [38], the average cost per gigabyte

is $4.9. We quantify our evaluation metric by calculating the

throughput (jobs per 100 seconds) per dollar spent on total

memory capacity, which includes both the compute node’s

local memory and the remote memory pool.

Figures 10a and 10b present a detailed analysis of throughput

per memory cost for the Perlmutter and JUWELS traces,

respectively. The x-axis quantifies the memory pool capacity,

while the y-axis measures the throughput per dollar spent on

memory. The baseline, representing the throughput per dollar

with each node configured with 512 GB of local memory, serves

as a reference to gauge the benefits of memory disaggregation.

For the Perlmutter trace, the data clearly shows that as

memory pool capacity increases from 4 TB/rack to 20 TB/rack,

the throughput per dollar rises significantly. The throughput per

dollar remains consistent between 20 TB/rack and 28 TB/rack,

peaking at 28 TB/rack. However, a decline in throughput per

dollar beyond 28 TB/rack indicates a turning point where

additional investment in memory yields diminishing returns.

Compared to the baseline, the maximum throughput per dollar

at 28 TB/rack represents a 2.1× improvement in cost-benefit.

A similar trend is observed in the JUWELS trace, with a

pivotal point at 6 TB/rack. Before this point, increasing invest-

ments in memory significantly boosts throughput per dollar.

However, beyond this point, the throughput per dollar declines

and may even fall below that of the baseline configuration.

The highest throughput per dollar, observed at 6 TB/rack, is

2.3× that of the baseline.

When configuring the systems for optimal cost-benefit,

we can easily calculate the total memory capacity and the

0 20 40 60 80 100
Total Memory Utilization (%)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f T
ot

al
 M

em
or

y
Ut

iliz
at

io
n

Baseline Disaggregated

(a) Perlmutter trace.

0 20 40 60 80 100
Total Memory Utilization (%)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f T
ot

al
 M

em
or

y
Ut

iliz
at

io
n

Baseline Disaggregated

(b) JUWELS trace.

Figure 11: Comparision of the total memory utilization.

associated costs. For the Perlmutter trace, the baseline total

memory capacity is 768 TB, which can be reduced to 264 TB,

resulting in a savings of 66 % (about 2.5M in US dollars).

Similarly, in the JUWELS trace, the total memory capacity

can be reduced from 480 TB to 180 TB, leading to a savings

of 63 % (about 1.5M in US dollars).

D. Memory Utilization

To further quantify the benefits of disaggregated memory,

we now analyze memory utilization. Figure 11 illustrates the

distribution of total memory utilization with disaggregated

memory compared to the baseline. The lines represent CDFs,

while the histograms depict the utilization percentages divided

into 10 % bins. We conducted simulations with 64 GB of local

node memory and remote memory capacities of 28 TB/rack and

6 TB/rack for the Perlmutter and JUWELS traces, respectively.

These configurations were chosen for their optimal cost-benefit

found previously. Both simulations employed the FM job

scheduling algorithm, with memory resources disaggregated at

the rack-scale.

The figure shows that in non-disaggregated systems, memory

utilization typically ranges from 20±30 % for both traces. In

contrast, memory utilization significantly increases in disaggre-

gated systems, indicating more efficient resource utilization:

utilization shifts to the range of 70±80 % for the Perlmutter

trace and 50±60 % for the JUWELS trace. Consequently, the

average total memory utilization increases dramaticallyÐfrom

26 % in non-disaggregated systems to 69 % for the Perlmutter

trace, and from 24 % to 54 % for the JUWELS trace.

E. Performance Degradation

Figure 12 displays the distribution of job performance

degradation associated with the use of disaggregated memory

in both the Perlmutter and JUWELS traces. The configurations

for these simulations are identical to those used in the memory

utilization analysis of Section IV-D. The histograms categorize

performance degradations into 5 % bins; the y-axis is log-

scaled to enhance visibility for the lower percentages of large

performance degradations.

306

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150
Performance Degradation (%)

0.01%

0.1%

1%

10%

100%
Pe

rc
en

ta
ge

 o
f J

ob
s

(a) Perlmutter trace.

0 50 100 150
Performance Degradation (%)

0.01%

0.1%

1%

10%

100%

Pe
rc

en
ta

ge
 o

f J
ob

s

(b) JUWELS trace.

Figure 12: Distribution of job performance degradation.

From the figure, it is evident that the majority of jobs

experience less than 5 % performance degradationÐspecifically,

88 % in the Perlmutter trace and 89 % in the JUWELS trace.

In both traces, fewer than 0.01 % of jobs experience as much

as 150 % performance degradation. Accordingly, the average

performance degradation is only 4.5 % for the Perlmutter trace

and 4.0 % for the JUWELS trace. This observation means that

in order to significantly improve average slowdown such as

in Figure 7, we only have to provide software or hardware

solutions for a few jobs, such as a set of nodes with high

local memory capacity. Also, while those few jobs may be

important, the vast majority of jobs will be minimally affected

by memory disaggregation.

V. RELATED WOR KS

Extensive research has been carried out in HPC job schedul-

ing [21], [36], [37], [39]±[45]. These efforts have primarily

aimed to devise scheduling policies that range from simple

schedulers like FCFS to more intricate and expert-customized

approaches such as WFP3 [36]. Additionally, researchers

have explored various techniques, including integer linear

programming, non-linear algorithms, and neural networks,

to derive novel scheduling policies [37], [39]±[43]. More

recently, there has been a growing interest in leveraging deep

reinforcement learning for job scheduling [21], [44], [45].

In addition to resource scheduling for compute nodes, numer-

ous studies delved into multi-resource scheduling, addressing

various aspects such as scheduling burst buffer resources to

alleviate I/O contention [46], [47] and implementing power-

aware scheduling to optimize node utilization while adhering to

power constraints [48]±[51], among others. However, there has

been a notable scarcity of research on scheduling and resource

allocation within the context of disaggregated memory in HPC

environments. An exception to this is the work by Zacarias et

al. [52], where they extended an existing Slurm simulator to

accommodate disaggregated memory. Their approach involved

the use of a multi-node slowdown model to predict job

performance degradation in scenarios where memory resources

are shared among jobs, particularly in heterogeneous setups

where compute nodes with a large memory capacity provide

shared remote memory. Notably, their research primarily

focused on extending the resource allocation plugin within

Slurm to support remote memory allocation, with limited

exploration into job scheduling algorithms and their potential

impact on overall system performance.

Unlike previous research that primarily addresses traditional

HPC architectures and relies on job attributes from the Standard

Workload Format (SWF) to formulate priority functions, our

study focuses on scheduling in HPC systems featuring memory

disaggregation. We introduce a novel attribute called ªmemory

overloadº to quantify a job’s remote memory requirements.

As demonstrated by our experimental results, our proposed

scheduler (FM) that uses a heuristic priority function and

incorporates the memory overload attribute, can outperform

the state-of-the-art scheduler F1 in terms of average bounded

slowdown and fairness in a memory disaggregated system.

VI. CON CLUSIO N

In this study, we conducted a comprehensive investigation

of job scheduling in HPC systems that feature memory

disaggregation. We developed a performance degradation

model and used real-world job traces from two production

systems to estimate job runtimes when accessing remote

memory resources. Our findings highlighted the superior

performance of our novel FM scheduling algorithm, particularly

in terms of bounded slowdown and fairness. Additionally, we

explored the performance differences between rack-scale and

system-scale memory disaggregation, revealing that rack-scale

disaggregation reduces maximum job slowdown performance

when memory pool capacity is limited. We also performed a

cost-benefit analysis to determine the most efficient memory

pool capacity configurations. Additional evaluations of memory

utilization and performance degradation highlighted the benefits

and trade-offs of a disaggregated HPC system compared to

today’s non-disaggregated configurations. Our results indicate

substantial savings in memory costsÐover 60 %Ðwith minimal

impact on job performance of approximately 4 % on average.

ACK NOWLEDGMENT

This work was supported by the Director, Office of Science,

of the U.S. Department of Energy under Contract No. DE-

AC02- 05CH11231, and partially by the National Science

Foundation under grants OAC-1835892, CNS-1817094, and

CNS-1939140. This research used resources of the National

Energy Research Scientific Computing Center (NERSC), a

Department of Energy Office of Science User Facility. This

work has received funding from the European Commission’s

H2020, and EuroHPC Programmes, under Grant Agreement

number 955606 (DEEP-SEA). The EuroHPC Joint Undertaking

(JU) receives support from the European Union’s Horizon 2020

research and innovation programme and Germany, France,

Spain, Greece, Belgium, Sweden, and Switzerland.

307

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

REFERENC ES

[1] G. Panwar, D. Zhang, Y. Pang, M. Dahshan, N. DeBardeleben, B. Ravin-
dran, and X. Jian, ªQuantifying memory underutilization in hpc systems
and using it to improve performance via architecture support,º in
Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2019, pp. 821±835.
[2] I. Peng, R. Pearce, and M. Gokhale, ªOn the memory underutilization:

Exploring disaggregated memory on hpc systems,º in 2020 IEEE

32nd International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD). IEEE, 2020, pp. 183±190.
[3] G. Michelogiannakis, B. Klenk, B. Cook, M. Y. Teh, M. Glick,

L. Dennison, K. Bergman, and J. Shalf, ªA case for intra-rack resource
disaggregation in hpc,º ACM Transactions on Architecture and Code

Optimization (TACO), vol. 19, no. 2, pp. 1±26, 2022.
[4] J. Li, G. Michelogiannakis, B. Cook, D. Cooray, and Y. Chen, ªAnalyzing

resource utilization in an hpc system: A case study of nersc’s perlmutter,º
in International Conference on High Performance Computing. Springer,
2023, pp. 297±316.

[5] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, ªDisaggregated memory for expansion and sharing in blade
servers,º ACM SIGARCH computer architecture news, vol. 37, no. 3, pp.
267±278, 2009.

[6] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, ªScale-out
numa,º ACM SIGPLAN Notices, vol. 49, no. 4, pp. 3±18, 2014.

[7] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, ªEfficient
memory disaggregation with infiniswap.º in NSDI, 2017, pp. 649±667.

[8] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis,
and H. P. Hofstee, ªThymesisflow: A software-defined, hw/sw co-
designed interconnect stack for rack-scale memory disaggregation,º in
2020 53rd Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO). IEEE, 2020, pp. 868±880.
[9] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,

A. Panda, S. Ratnasamy, and S. Shenker, ªCan far memory improve job
throughput?º in Proceedings of the Fifteenth European Conference on

Computer Systems, 2020, pp. 1±16.
[10] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,

M. Shah, S. Rajadnya, S. Lee, I. Agarwal et al., ªPond: Cxl-based
memory pooling systems for cloud platforms,º in Proceedings of the 28th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, 2023, pp. 574±587.
[11] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, ª{LegoOS}: A disseminated,

distributed {OS} for hardware resource disaggregation,º in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18), 2018, pp. 69±87.
[12] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay,

ª{AIFM}:{High-Performance},{Application-Integrated} far memory,º in
14th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 20), 2020, pp. 315±332.
[13] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and

A. Kolli, ªRethinking software runtimes for disaggregated memory,º in
Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, 2021, pp.
79±92.

[14] K. Keeton, S. Singhal, and M. Raymond, ªThe openfam api: a program-
ming model for disaggregated persistent memory,º in OpenSHMEM and

Related Technologies. OpenSHMEM in the Era of Extreme Heterogeneity:

5th Workshop, OpenSHMEM 2018, Baltimore, MD, USA, August 21±23,

2018, Revised Selected Papers 5. Springer, 2019, pp. 70±89.
[15] A. B. Yoo, M. A. Jette, and M. Grondona, ªSlurm: Simple linux utility

for resource management,º in Workshop on job scheduling strategies for

parallel processing. Springer, 2003, pp. 44±60.
[16] B. Nitzberg, J. M. Schopf, and J. P. Jones, ªPbs pro: Grid computing

and scheduling attributes,º in Grid resource management: state of the

art and future trends. Springer, 2004, pp. 183±190.
[17] A. W. Mu’alem and D. G. Feitelson, ªUtilization, predictability, work-

loads, and user runtime estimates in scheduling the ibm sp2 with
backfilling,º IEEE transactions on parallel and distributed systems,
vol. 12, no. 6, pp. 529±543, 2001.

[18] D. A. Lifka, ªThe anl/ibm sp scheduling system,º in Workshop on Job

Scheduling Strategies for Parallel Processing. Springer, 1995, pp. 295±
303.

[19] D. G. Feitelson and L. Rudolph, ªMetrics and benchmarking for parallel
job scheduling,º in Job Scheduling Strategies for Parallel Processing:

IPPS/SPDP’98 Workshop Orlando, Florida, USA, March 30, 1998

Proceedings 4. Springer, 1998, pp. 1±24.
[20] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, ªImproving backfilling

by using machine learning to predict running times,º in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2015, pp. 1±10.
[21] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, ªRlscheduler: an

automated hpc batch job scheduler using reinforcement learning,º in SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2020, pp. 1±15.
[22] J. Ngubiri and M. van Vliet, ªA metric of fairness for parallel job

schedulers,º Concurrency and Computation: Practice and Experience,
vol. 21, no. 12, pp. 1525±1546, 2009.

[23] G. Michelogiannakis, Y. Arafa, B. Cook, L. Y. Dai, A. H. Badawy,
M. Glick, Y. Wang, K. Bergman, and J. Shalf, ªEfficient intra-rack
resource disaggregation for hpc using co-packaged DWDM photonics,º
arXiv preprint arXiv:2301.03592, 2023.

[24] D. S. Berger, D. Ernst, H. Li, P. Zardoshti, M. Shah, S. Rajadnya, S. Lee,
L. Hsu, I. Agarwal, M. D. Hill et al., ªDesign tradeoffs in cxl-based
memory pools for public cloud platforms,º IEEE Micro, vol. 43, no. 2,
pp. 30±38, 2023.

[25] Intel, ªIntel Xeon CPU Max Series configura-
tion and tuning guide,º Sep. 2023. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/content-details/769060/
intel-xeon-cpu-max-series-configuration-and-tuning-guide.html

[26] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ªThe parsec benchmark suite:
Characterization and architectural implications,º in Proceedings of the

17th international conference on Parallel architectures and compilation

techniques, 2008, pp. 72±81.
[27] D. D. Sharma, ªCompute express link®: An open industry-standard

interconnect enabling heterogeneous data-centric computing,º in 2022

IEEE Symposium on High-Performance Interconnects (HOTI). IEEE,
2022, pp. 5±12.

[28] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, ªNimble page
management for tiered memory systems,º in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
331±345. [Online]. Available: https://doi.org/10.1145/3297858.3304024

[29] T. Wang, H. Liu, and H. Jin, ªEfficient remote memory paging
for disaggregated memory systems,º in Algorithms and Architectures

for Parallel Processing: 22nd International Conference, ICA3PP

2022, Copenhagen, Denmark, October 10±12, 2022, Proceedings.
Berlin, Heidelberg: Springer-Verlag, 2023, p. 1±20. [Online]. Available:
https://doi.org/10.1007/978-3-031-22677-9 1

[30] NERSC’s Perlmutter configuration. [Online]. Available: https://docs.
nersc.gov/systems/perlmutter/

[31] JÈulich Supercomputing Centre, ªJUWELS Cluster and Booster:
Exascale pathfinder with modular supercomputing architecture at
Juelich Supercomputing Centre,º Journal of large-scale research

facilities, vol. 7, p. A183, Oct. 2021. [Online]. Available: https:
//doi.org/10.17815/jlsrf-7-183

[32] JÈulich Supercomputing Centre. (2024) Hardware Config-
uration of the JUWELS Booster Module. [Online].
Available: https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html#
hardware-configuration-of-the-system-name-booster-module

[33] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., ªThe lightweight
distributed metric service: a scalable infrastructure for continuous
monitoring of large scale computing systems and applications,º in SC’14:

Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2014, pp. 154±165.
[34] JÈulich Supercomputing Centre. (2023, Oct.) LLview. [Online]. Available:

https://llview.fz-juelich.de
[35] Y. MÈuller, F. Souza Mendes Guimarães, C. Karbach, and W. Frings,

ªLLview v2.2.3-base,º Zenodo, Feb. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.10221407

[36] W. Tang, Z. Lan, N. Desai, and D. Buettner, ªFault-aware, utility-based
job scheduling on blue, gene/p systems,º in 2009 IEEE International

Conference on Cluster Computing and Workshops. IEEE, 2009, pp.
1±10.

[37] D. Carastan-Santos and R. Y. De Camargo, ªObtaining dynamic schedul-
ing policies with simulation and machine learning,º in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2017, pp. 1±13.

308

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

[38] Dramexchange. [Online]. Available: https://www.dramexchange.com/
#memory

[39] E. S. Hou, N. Ansari, and H. Ren, ªA genetic algorithm for multiprocessor
scheduling,º IEEE Transactions on Parallel and Distributed systems,
vol. 5, no. 2, pp. 113±120, 1994.

[40] C. A. Floudas and X. Lin, ªMixed integer linear programming in
process scheduling: Modeling, algorithms, and applications,º Annals

of Operations Research, vol. 139, pp. 131±162, 2005.
[41] A. Agarwal, S. Colak, V. S. Jacob, and H. Pirkul, ªHeuristics and

augmented neural networks for task scheduling with non-identical
machines,º European Journal of Operational Research, vol. 175, no. 1,
pp. 296±317, 2006.

[42] D. E. Akyol and G. M. Bayhan, ªA review on evolution of production
scheduling with neural networks,º Computers & Industrial Engineering,
vol. 53, no. 1, pp. 95±122, 2007.

[43] H. Al-Daoud, I. Al-Azzoni, and D. G. Down, ªPower-aware linear
programming based scheduling for heterogeneous computer clusters,º
Future Generation Computer Systems, vol. 28, no. 5, pp. 745±754, 2012.

[44] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka, ªDeep
reinforcement agent for scheduling in hpc,º in 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021,
pp. 807±816.

[45] Q. Wang, H. Zhang, C. Qu, Y. Shen, X. Liu, and J. Li, ªRlschert: an
hpc job scheduler using deep reinforcement learning and remaining time
prediction,º Applied Sciences, vol. 11, no. 20, p. 9448, 2021.

[46] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, ªScalable
i/o-aware job scheduling for burst buffer enabled hpc clusters,º in

Proceedings of the 25th ACM International Symposium on High-

Performance Parallel and Distributed Computing, 2016, pp. 69±80.
[47] Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin, and

D. Paul, ªScheduling beyond cpus for hpc,º in Proceedings of the 28th

International Symposium on High-Performance Parallel and Distributed

Computing, 2019, pp. 97±108.
[48] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and

M. E. Papka, ªIntegrating dynamic pricing of electricity into energy
aware scheduling for hpc systems,º in Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis, 2013, pp. 1±11.
[49] F. Kaplan, J. Meng, and A. K. Coskun, ªOptimizing communication and

cooling costs in hpc data centers via intelligent job allocation,º in 2013

International Green Computing Conference Proceedings. IEEE, 2013,
pp. 1±10.

[50] S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E.
Papka, and Z. Lan, ªA data driven scheduling approach for power
management on hpc systems,º in SC’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2016, pp. 656±666.
[51] T. Cao, W. Huang, Y. He, and M. Kondo, ªCooling-aware job scheduling

and node allocation for overprovisioned hpc systems,º in 2017 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 728±737.

[52] F. V. Zacarias, P. Carpenter, and V. Petrucci, ªImproving hpc system
throughput and response time using memory disaggregation,º in 2021

IEEE 27th International Conference on Parallel and Distributed Systems

(ICPADS). IEEE, 2021, pp. 283±290.

309

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:50:17 UTC from IEEE Xplore. Restrictions apply.

