Throughput Optimization with a NUMA-Aware Runtime System
for Efficient Scientific Data Streaming

Hasibul Jamil
University at Buffalo (SUNY)
New York, USA
mdhasibu@buffalo.edu

Tevfik Kosar
University at Buffalo (SUNY)
New York, USA
tkosar@buffalo.edu

ABSTRACT

With the surge in data generation rates from advanced scientific
instruments, there is an urgent need for effective network manage-
ment and resource utilization strategies for data streaming. Present
strategies often lag behind hardware advancements, leading to
resource underutilization. Modern servers typically employ non-
uniform memory access NUMA) multiprocessors, which, despite
their benefits, can pose performance challenges. This paper presents
a novel runtime system tailored for efficient multi-stream data
management, optimizing both its compression and decompression
phases, and enhancing network I/O based on the server’s unique
hardware design. Our system coordinates parallel tasks for data
compression, decompression, and transfer, aiming to reduce net-
work data influx. Empirical tests show that aligning streaming tasks
with the right NUMA domain results in a 1.48X throughput boost
compared to cutting-edge methods and a 2.6X improvement over
standard techniques.

CCS CONCEPTS

« Hardware — Networking hardware; « Computer systems
organization — Multicore architectures;

KEYWORDS

Heterogeneous architectures, data compression/decompression,
data streaming, runtime systems, performance optimization, non-
uniform memory access (NUMA).

ACM Reference format:

Hasibul Jamil, Joaquin Chung, Tekin Bicer, Tevfik Kosar, and Rajkumar
Kettimuthu. 2025. Throughput Optimization with a NUMA-Aware Runtime
System for Efficient Scientific Data Streaming. In Proceedings of ACM/IEEE
Conference, Denver, Colorado, USA, November 2023 (SC2023 (INDIS workshop)),
11 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Large-scale scientific instruments, such as the detectors at the
Advanced Photon Source (APS) in Argonne National Laboratory
(ANL), are now generating vast volumes of experimental data
at an unprecedented pace, often exceeding rates of 25 Gbps per
beamline[14, 23]. This trend is projected to grow exponentially with
the emergence of next-generation synchrotron radiation facilities,

Joaquin Chung
Argonne National Laboratory
Illinois, USA
chungmiranda@anl.gov

Tekin Bicer
Argonne National Laboratory
Illinois, USA
tbicer@anl.gov

Rajkumar Kettimuthu
Argonne National Laboratory
Illinois, USA
kettimut@anl.gov

N

X
e

[3
[]
I N I N
- Upstream Gateway Node HPC Cluster
Scientific ;

Instruments

Figure 1: Multiple detectors at the Advanced Photon Source
(APS) are streaming data to an upstream gateway, where
data is accumulated for pre-processing or load-balancing
before being forwarded to an HPC cluster. Within the HPC
cluster, the data undergoes further analysis and processing,
transforming the raw information into valuable insights.

like the upcoming upgrade to the APS [41, 42]. The enhanced x-ray
brightness, anticipated to be 500 times greater, is expected to drive
corresponding increases in data-intensive imaging experiments.
This may potentially lead to terabit-scale data generation rates and
petabyte-scale experimental datasets [2, 24, 26].

The pace at which scientific instruments generate data increases
faster than the capacity of the links and processing resources be-
tween the instruments and high-performance computing (HPC)
resources. This creates a bottleneck in handling large datasets that
can generate unwanted interruptions during data acquisition or
force a manual reduction of the acquisition rate. Figure 1 illustrates
a data streaming pipeline with an upstream gateway node. Posi-
tioned between the data streaming sources and the HPC cluster,
this gateway node offers functionalities such as data aggregation,
pre-processing, and load balancing, as well as serving as a secu-
rity barrier. One promising approach to overcome these challenges
involves optimizing the upstream system’s architecture and effec-
tively utilizing network bandwidth. By incorporating non-uniform
memory access (NUMA) and integrating high-speed or multiple
Network Interface Cards (NICs), the system can effectively increase
the number of available cores and memory and available network
bandwidth from a single host perspective. This, in turn, enhances
the system’s overall capacity to process and manage the influx of
data, positioning it better to handle the ever-growing demands of
modern scientific experimentation.

Traditional approaches for optimizing data streaming, which en-
compass tasks such as compression, decompression, and network
1/0O, typically depend on the operating system to assign specific

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

Memor Queue R Queue
- (Thread-safe) ~ Network / 7\ (Thread-safe) Memory
~— AN NSRSV aa g EG! N
T o Vi @ @
! \ o /- 2 — .
‘: [1 — NS = ol Ig 'U
Compression S‘\l“djl“‘:' .T.ffinlmﬁ{ \
Thieads {C} Thicads{S} Treacsity

Figure 2: Schematic of the runtime system handling data
streaming and processing tasks. The runtime system is
formulated as a heterogeneous software pipeline. Uncom-
pressed scientific data is streamed into memory, where a
set of compression threads ({C}) compresses specific data
chunks. These compressed data chunks are enqueued in a
thread-safe queue, ready for a set of sending threads ({S})
to transmit them over the TCP/IP network to the upstream
node. Upon arrival at the upstream node, a set of receiving
threads ({R}) retrieves the chunks and places them into an-
other thread-safe queue. A set of decompression threads ({D})
then decompresses each data chunk and stores it back into
memory or disk.

cores for the execution of these tasks [10, 12, 13]. They often employ
non-NUMA-aware memory allocation and follow static data paths.
Originally crafted for uniform hardware setups, these methods
fall short in addressing the complexities of contemporary hetero-
geneous systems. The rise of advanced NICs and the nuances of
NUMA architectures have underscored the limitations of such rigid
strategies. They often result in task-to-resource mismatches, lead-
ing to resource underutilization, inefficient memory access, and
compromised performance [8]. In modern systems that incorpo-
rate NUMA, memory latency is inherently affected by the spatial
relationship between the cores that request data and the target
memory controllers [18, 25, 37]. In this context, maintaining local
memory access becomes critical. Such an approach is not merely
about minimizing latency; it also involves distributing data evenly
amongst memory controllers. This balance helps in avoiding poten-
tial inter-socket contention, a situation where different parts of the
system compete for the same resources [16, 39]. The implications
of this are significant: to optimize memory access, NUMA-aware
memory allocation needs to be closely aligned with resource-aware
task-to-core mapping. Only by merging these two strategies, we
can create a system that operates at peak efficiency. Through this
harmonious integration, it is possible to enhance not only the over-
all performance of a system but also the utilization of its resources,
leading to a more effective streaming operation.

With high-bandwidth single nodes capable of both transmit-
ting and receiving substantial amounts of data, the real challenge
emerges in maximizing resource efficiency. To address this, we
devise a runtime system tailored to manage data streaming applica-
tions, acting as an intermediary between the software program and
the underlying hardware. The system, working in conjunction with
the OS, oversees intermediary memory allocation schemes and
task-to-NUMA-domain mapping, optimizing hardware resource
utilization as well as network bandwidth utilization. Our runtime
system is versatile enough to integrate computational tasks as well.
For example, cores that are not needed for network I/O can be re-
purposed for computation operations such as data compression and
decompression. This enhances not only the effective data streaming
rate but also the overall utilization of resources. Consider a system

Jamil, et al.

operating at 100 Gbps; if some cores are employed for compression
at a 2X compression ratio, the effective data transfer rate is effec-
tively doubled to 200 Gbps. The seamless integration of compression
tasks leads to a substantial reduction in the size of data chunks be-
ing streamed, thereby decreasing ingress traffic volume. This traffic
minimization optimizes network resource utilization, facilitating
the coexistence of multiple services on a single network, either
provisioned or ad-hoc. Figure 2 illustrates the various components
of our runtime system and provides a schematic representation of
the intended operation.

Designing this runtime system in terms of different tasks such
as compression, decompression, and network I/O raises two pivotal
questions: (1) How can the organization of data streaming tasks be
optimized relative to execution core selection so as to maximize
network bandwidth utilization? (2) How can computation jobs such
as compression and decompression be effectively integrated into
the streaming task, enabling concurrent use of CPU resources and
effectively utilizing network bandwidth to reduce network traffic?

To address these concerns, we emphasize our contributions in
following areas:

e We introduce several observations in § 3.1, 3.2, 3.3, 3.4
to devise a scheme to optimize the organization of data
streaming tasks. By strategically selecting execution cores,
we aim to maximize network bandwidth utilization, thus
directly addressing the first posed question.

o We embed computational operations such as compression
and decompression within the data streaming process. This
not only promotes the efficient use of CPU resources but
also maximizes the utilization of network bandwidth, of-
fering a solution to the second question.

o Our empirical analysis reveals that strategically selecting
the number of streaming tasks and aligning them to the
most suitable NUMA domain can increase the average
throughput by 1.48X compared to state-of-the-art methods
and 2.6X over traditional baseline techniques.

The remainder of this paper is structured as follows: Section 2
provides the background. In Section 3, we delve into the system’s
architecture and our design approach. Section 4 evaluates the per-
formance of our runtime system. We explore other relevant studies
in Section 5, and Section 6 concludes the paper.

2 BACKGROUND

In this section, we first explore the background of the NUMA archi-
tecture and examine the operation of NICs within this framework.
Our goal is to highlight the implications of NUMA-specific network
I/O performance.

2.1 NUMA Architecture

Modern servers are equipped with a NUMA architecture, wherein
multiple CPU cores are organized into distinct sockets. Each socket
possesses its own designated memory, termed local memory, cou-
pled with an advanced memory controller. This controller facilitates
access to the memory across all other sockets. When one socket ac-
cesses the local memory of another socket, it is referred to as remote
memory. Accessing remote memory is inherently slower than ac-
cessing the local memory. This is due to the necessity of transferring

Throughput Optimization with a NUMA-Aware Runtime System for ES{C2028 $tDtFiwbrkishSpredvoiegnber 2023, Denver, Colorado, USA

Socket 0 ... CPU cores .

Remote

e
’ P e |
= Data path for

Application running
in remote core

Figure 3: Network and memory I/O of the NUMA architecture.
Throughout this paper, the terms ‘NUMA socket’, ‘node’, and
‘processor’ are used interchangeably to refer to the NUMA
domain.

data from the remote memory through the NUMA interconnect. A
bottleneck in cross-socket memory access arises when CPU cores in
one socket access the memory of another socket via the Quick Path
Interconnect (QPI) [1]. Each socket employs a memory controller
(MC) to establish connections to its local memory channels, as de-
picted in Figure 3. Accessing the physical memory that is linked
to a remote MC is called remote memory access. The QPI interfaces
play a pivotal role in facilitating data transfers between sockets.

2.2 NIC Operation in NUMA Architecture

Once network packets reach end hosts, processing packets via NIC
involves several stages [8]. Initially, packets are temporarily stored
in the NIC’s input buffer, typically an SRAM. Subsequently, the
NIC retrieves an Rx descriptor from its queue, which indicates the
virtual address where the packet should be transferred using Direct
Memory Access (DMA) within the host memory. To perform this
DMA, the NIC initiates PCle write transactions using the packet
descriptor’s address. These transactions fall under the purview of
the PCle root complex, which remaps the virtual memory addresses
to their physical counterparts with the assistance of an IOMMU.
Once the physical memory address is deciphered, the root complex
manages the transfer of the packet’s data to the host memory. Upon
successful transfer, a hardware interrupt activates an interrupt
handler linked to a processor core. This handler then prepares a
softIRQ context for its native core or an alternate CPU core. Every
CPU core inspects its poll queue using a designated poll method
and subsequently processes the queued softIRQ context.

It is worth noting that contemporary NICs utilize the multi-queue
technique, supporting numerous receive and transmit descriptor
queues. For each incoming packet, the NIC controller formulates
a hash value. Using these hash values as a guide, the NIC ensures
that packets from an identical data stream are directed to a spe-
cific queue while simultaneously distributing varied traffic flows
evenly across multiple queues. Two key strategies, Receive-side
Scaling (RSS) [5] and Receive Packet Steering (RPS), are employed
to optimize network transmission performance in multi-core server
systems. While RSS allows each NIC queue to be linked to a ded-
icated CPU core, RPS designates a specific core for managing a
softIRQ context. Consequently, the receiving thread of the stream-
ing application accesses this host memory to acquire the streaming
data.

As shown in Figure 3, the NIC establishes a connection with the
NUMA 1 domain. This implies that the host memory, where the root
complex relocates the data, is situated within the NUMA 1 domain.

As a result, receiving threads that are pinned to NUMA 1 cores
can swiftly access the packets from their local memory. However,
for those threads tethered to NUMA 0 cores, packet processing
latency may increase due to the cross-socket phenomena or remote
memory access dynamics.

3 SYSTEM ARCHITECTURE AND DESIGN
SPACE EXPLORATION

Our runtime system is architecturally formulated as a heteroge-
neous software pipeline, integrating different tasks, including com-
pression, transmission, reception, and decompression. As data moves
through the system, individual data chunks go through these tasks
in a pipelined fashion provided by our runtime framework. As
shown in Figure 4, this architectural framework is not restricted to
a single node. It is expansively distributed, stretching across various
nodes, which include nodes explicitly dedicated to data generation
(data streaming sender) and data reception (data streaming receiver).
An integral part of our design is the ‘runtime configuration gen-
erator, which is responsible for generating the configurations for
both the sender and receiver nodes. These configurations contain
information related to the type of tasks designated to individual
sockets, the number of tasks, and the task execution location. Fig-
ure 2 provides a breakdown of the individual components and tasks
that constitute our runtime system. This includes the operations in-
volved in compression, data sending, reception, and the final stage
of decompression. These components, inherently modular, find
their strategic placements either at the sender or the receiver of our
data streaming runtime framework. The structural design and oper-
ational dynamics resemble with the paradigms of a heterogeneous
software pipeline, as elaborated in [35].

The runtime system is implemented in the C programming lan-
guage, tailored specifically for Linux operating systems. This en-
sures compatibility and efficient execution within the Linux en-
vironment. It is architected to be versatile and able to support a
variety of workloads, notably those requiring compression and de-
compression, network tasks, and meticulous adjustments of each
task’s CPU affinity. For our networking operations, we utilize the
zeroMQ [7] library, which provides a robust and high-performance
messaging protocol. To optimize data transfer speeds, the 124 [19]
library is incorporated for swift data chunk compression and de-
compression. Additionally, we leverage the libnuma [4] library for
precise control over CPU-thread affinity, enhancing the system’s
performance by taking advantage of non-uniform memory access
(NUMA) architectures. numa_bind() has been used specifically to
restrict task and its children to run and allocate memory exclu-
sively from the specified NUMA sockets. Our implementation code
is available at https://github.com/H-jamil/ha4hpdt.git.

In the subsequent section, we delve into the optimal configura-
tion generation for both the sender and receiver ends of the data
streaming pipeline. We examine various design spaces, considering
differing tasks, task counts, and execution locations, along with
their respective performance metrics. Our objective is to highlight
the criticality of addressing NUMA-specific performance consid-
erations for both computational tasks (such as compression and
decompression) and data transfer tasks. Addressing these nuances

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

Runtime
Configuration
Generator

A
Receiver side config

. Data Streaming
«,...“A}'nRuntime

N
7z

—_-——

Data Streaming

Scientific Instruments Upstream Gateway Node

Figure 4: Architecture of the data streaming runtime system.
The runtime system can span multiple nodes, with each node
using a separate configuration file. These configuration files,
generated by the runtime configuration generator, specify
the task type, the number of tasks, and the location of task
execution. Based on these configurations, both data produc-
ers and consumers initialize and conduct data streaming over
TCP/IP network.

is pivotal for optimal resource utilization and meeting the perfor-
mance demands of scientific data streaming.

3.1 Network performance and NUMA

We conduct experiments between APS and the Argonne Leader-
ship Computing Facility (ALCF), two separate facilities within the
Argonne National Laboratory (ANL). These facilities are intercon-
nected by a network with 200 Gbps of bandwidth and 0.45ms RTT.
Our aim is to investigate the effects of network transfer throughput
and core affinity on the streaming process.

On the sending side, we employ four distinct machines to gen-
erate streams, simulating the data generation typical of scientific
instruments and adequately matching the bandwidth capabilities
of the receiver-side NIC. For processing source data, we employ the
hdf5 [3] library, which allows for seamless management of large
and complex datasets. Our receiving machine, which mirrors the
role of the upstream machine in a scientific data streaming work-
flow (see Figure 1), is composed of two NUMA sockets. Each of
these sockets has a Xeon Gold 6346 CPU with 16 physical cores
operating at 3.1GHz (equivalent to 32 threads). Additionally, each
socket boasts 512GB of memory (broken down as 16x32 DDR4 32GB
3.2GHz ECC RDIMM) per socket/CPU. Each NUMA socket is also
directly tethered to a Network Interface Card (NIC) via a PCle 4.0
link. The dual-port Mellanox ConnectX-6 (MT28908) NIC provides
a bandwidth performance of up to 200 Gb/s per NIC, resulting in a
combined bandwidth of 400 Gb/s for both NICs. However, the NIC
in the NUMA 0 domain connects to a LUSTRE file system through
a separate network, this connection is not used in our study. Hence,
our attention is primarily centered on the NIC connected to the
NUMA 1 domain as this particular machine works as the upstream
gateway node.

Jamil, et al.

#p=2 #p=4 #p=8 #p=16 #p=32 #p=64

200
Core Used
‘ ‘ =2 core
Uﬂl |ZI|‘| Iﬂl ‘

" 4 core
B || ||
O\Z\Z\Z \Z\Z\Z | = | Z\Z \Z\ \Z \ZIZ\Z \Z\Z\Z
©oreo oro oro o © ©orp©e orpo

= [- - - - =

#p=128

1

1%

0

1

o
o

" 8 core
" 16 core
32 core

Throughput (Gbps)

o o~

Figure 5: Depiction of the throughput achieved as the num-
ber of data streaming tasks varies across different NUMA
domains. Here, #p indicates the number of streaming pro-
cesses.’N_0’,’N_1’, and ’N_0_1’ represent scenarios where all
streaming processes are executed on NUMA 0, NUMA 1, and
equally divided between NUMA 0 and NUMA 1, respectively.
It is noteworthy that an average increase of 15% in through-
put is observed when transfer tasks are allocated to cores in
the NUMA 1 domain.

In a typical setup on the sender side, there are mechanisms (e.g.,
the NIC to CPU backpressure) in place to avert host congestion [16].
In this particular experiment, however, senders exclusively gener-
ate data chunks at a fixed rate, emulating data creation in scientific
instruments. As a result, our primary interest lies in the receiver
end of the streams, representing the upstream gateway machine
as shown in Figure 1. In the conducted experiment between Po-
laris cluster (ALCF) and lynxdtn (upstream gateway node), a net-
work throughput of over 190+Gbps is achieved on the receiver side.
Throughout this experiment, we vary the number of processes and
cores used to study their influence on achieved throughput. Each
sending process has 1 sending thread, and each receiving process
has 1 receiving thread. We increase from a base of 2 processes up
to 128 processes across a range of 2 to all 32 available cores.

The data shown in Figure 5 reveals two main observations based
on the number of processes that are running: (1) An increase in
the number of streaming processes and utilized cores results in an
increase in the receiver-side throughput. (2) Given the NIC’s connec-
tion to the NUMA 1 domain, an average 15% boost in throughput is
achieved when all streaming processes are assigned to cores within
NUMA 1.

We examine both core utilization and the average remote mem-
ory access for each core during the streaming operation. These
observations are illustrated in Figures 6 and 7. Due to space con-
straints, several configurations have been omitted. As anticipated
and discussed in previous § 2.2, assigning streaming processes to
cores in the NUMA 0 domain led to an overhead due to remote mem-
ory access, as shown in Figure 7. The NIC connects to the NUMA 1
domain, allowing quick packet access for threads on NUMA 1 cores
but potentially increasing latency for threads on NUMA 0 cores
due to cross-socket behavior. This overhead consequently resulted
in a reduced throughput.

Observation 1: Selecting the appropriate NUMA socket is crucial
when deploying a data streaming application on a server. Streaming
performance is influenced by the NUMA socket on which the receiving
threads operate and the NUMA socket to which a particular NIC is
connected.

Throughput Optimization with a NUMA-Aware Runtime System for ES{C2028 $tDtFiwbrkishSpredvoiegnber 2023, Denver, Colorado, USA

core number

configuration

Figure 6: Core usage for different configurations during
the experiments. The 32 cores are depicted in the Y-axis,
with core 0 starting from the top. In the X-axis, the label
16P_2c_N_0 denotes 16 streaming processes that are running
in 2 cores from NUMA 0 domain.

3.2 Compression performance and NUMA

The primary goal of the runtime system is to optimize the use
of available resources and minimize network I/O. To achieve this,
available CPU cores are employed to compress outgoing data and
decompress incoming data chunks efficiently. This not only speeds
up data movement but also makes better use of the compute re-
source utilization. For example, if a system can move data at a speed
of 100 Gbps and unused cores work to compress the data to half its
size, the result is that the effective data transfer speed is 200 Gbps.
By shrinking data sizes, we reduce the amount of data being sent,
making the network less congested. This helps multiple users and
services to share the same network. In our experiment, we utilized
a synthesized dataset of 16 GB, which mirrors real tomographic
datasets outlined in [6, 36]. This data can be located either in the
NUMA 0 memory domain or the NUMA 1 domain, serving as the
source for our streaming operations. The data chunk size chosen
for our streaming process is 11.0592 MB, equivalent to data from
one X-ray projection. This chunk size represents the unit of opera-
tion in our streaming workflow. Compressor threads successively
fetch sequential data chunks, which are then passed through the
LZ4 algorithm [19] for compression. LZ4 is renowned for its speed,
lossless compression, and favorable compression ratio. On average,
the data stream achieves a compression ratio of 2:1 for the data
chunks.

We examine the compression speed in relation to the number
of threads CC, the memory location of the dataset, and the exe-
cution domain of the compression threads. The potential memory
locations for the source data, as well as the chosen schemes for
designating the compression threads to specific NUMA domains,
are outlined in Table 1. This compression operation simulates the
compression component of the sending machine within a runtime
system tailored for a scientific instrument data-flow scenario. We
conduct experiments for each configuration ten times and present
the average results.

In the results shown in Figure 8, we look at how the compression
throughput of data compression changes based on the number of
threads {C} we use. We find that the more threads we use, the faster
the data is compressed, but only up to a point. Specifically, once
we use more threads than the number of available cores on the

o
9] 0.8
glo
5 0.6
;:15. —
o 20 0.4
H —-—
[}
o 25 —] 0.2
- o =
30 -— 0
L S A A
e e S I S B B B B B I Bl 1
\’3 F \’3 F \’3 F "3 \’U "3 \’U "3 \’U "3 \’U "3 \’U "3 \’U "3 \’U "3 \’U "3
il la e e o lolo o e oo o e e e e o oo o o o
R R R - G G S S
S A A L M A S S O A IR A
Z2 2 2 2 2 2 2 2 2| |_|,6, 2 2 2 2 2 2 2 2 =2 1
L e U A T R A R A A U R D1
ollelolhiolohlo @ Zlolhiololhiololnic

T
1
1

Figure 7: Average normalized remote memory access (i.e.,
NUMA access) bandwidth for every CPU core during different
configurations of the experiments.

Table 1: Experimental configurations corresponding to Fig-
ures 8a, 8b, 9a, 9b. The ’Memory Domain’ indicates the NUMA
domain in which the data resides, while the ’Execution Do-
main’ specifies the domain where the threads execute their
operations. In configurations E and F, ’Execution Domain 0
& 71’ indicates that threads are evenly distributed between
NUMA domains 0 and 1. For configurations G and H, the
operating system (OS) determines the thread execution do-
mains.

Configuration Memory | Execution
Domain | Domain
A 0 0
B 0 1
C 1 0
D 1 1
E 0 0&1
F 1 0&1
G 0 (ON]
H 1 (ON]

CPU, we do not see any more speed improvement. In the results
depicted in Figure 8b, we observe the utilization patterns of all
32 cores under various configurations for 16 and 32 compression
threads. Since both the NUMA 0 and NUMA 1 sockets possess 16
cores each, when the number of threads surpasses 16, all threads
execute within the same domain, causing multiple threads to run on
the same core. This leads to context switching, which explains the
nearly halved performance for configurations A, B, C, and D when
using 32 and 64 threads, compared to configurations E, F, G, and H,
where threads can run concurrently across all 32 cores. Moreover,
the location of data storage and the specific location of compression
do not influence the compression speed. The uniform compression
speed, irrespective of the data storage or specific compression loca-
tion, can be attributed to data cache prefetching technology [27].
This technology optimizes performance by preemptively loading
anticipated data into the cache, minimizing the latency typically
associated with accessing data from varying storage points.

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

Compression Throughput

1 2 4 8 16 32 64
Number of Threads

(a) Compression throughput achieved as the number of concurrent
compression threads vary across different configuration as shown in
Table 1.

Jamil, et al.

0
?ﬂ %cpu
Q 100
3
=

50

o 20
3 —
© 30 0

5 & & &5 & &5 & & 8 B 8 8B B B B8 B

configuration

(b) Core usage for different configuration during the experiments
with thread number 16 and 32 for compression as shown in Figure 8a.

Figure 8: Relationship between compression threads {C}, as illustrated in Figure 2, and the achieved compression throughput.
The compression throughput is directly proportional to the number of threads, provided the number of threads does not
exceed the available CPU cores. The data residing domain and the domain of compression execution appear not to impact the

compression throughput’s performance.

Observation 2: Data compression speeds up with increased threads
only until the number of threads matches the CPU’s core count; be-
yond that, performance declines due to context switching overhead.
Additionally, source data storage location and compression execu-
tion location in the NUMA domain do not impact the compression
performance.

3.3 Decompression performance and NUMA

In our study, we also explore the decompression process of com-
pressed data chunks. Our goal is to analyze how the decompression
speed varied based on factors such as the number of decompression
threads {D}, the storage location of the data chunks, and the pro-
cessing location of the decompression threads. Details on possible
memory locations for the compressed data and the strategies used
to allocate decompression threads to specific NUMA domains are
detailed in Table 1. This decompression process is representative
of the actions performed by the receiving machine in a runtime
system designed for data streaming in scientific instruments. For
consistency, each configuration is tested ten times, and the aver-
age results are depicted in Figure 9. This Figure shows how the
decompression speed of data chunks is influenced by the number of
threads {D} employed. Our findings suggest that using more threads
accelerates the decompression process, achieving a speed approxi-
mately 3X faster than the compression operation when using the
same number of worker threads.

Further, Figure 9b highlights the utilization patterns of all 32
cores across diverse configurations, using 8 and 16 decompression
threads. With 8 threads, performance remains consistent across the
configurations detailed in Table 1. However, with 16 threads, config-
urations E and F outpace the others in throughput. The key differ-
entiator in configurations E and F is the even distribution of decom-
pression threads across both NUMA 0 and NUMA 1 sockets. This dis-
tribution minimizes intra-socket resource contention—specifically
at the last level cache (LLC) and memory controller (which links
domain memory to LLC)—compared to configurations like A, B,
C, and D (where all decompression threads operate) or G and H
(where the majority function within a single NUMA domain) [18].
This distinction is evident in Figure 9b. We capped our evaluation at

16 decompression threads, considering the decompression through-
put achieved with 16 decompression threads is sufficient for the
receiver end of our runtime system for handling individual streams.

Observation 3: Decompression performance is unaffected by the
NUMA domain location of the compressed (source) data chunk or
where the decompression execution occurs. Increasing the number of
decompression threads enhances throughput, especially when threads
are evenly distributed across NUMA domains, minimizing resource
contention.

3.4 Sending and receiving threads and NUMA

We conduct additional experiments to understand how the number
and execution location of sending and receiving threads influence
network throughput in a streaming application using our runtime
system. For this study, we focus solely on the sending and receiving
operations, omitting the compression and decompression processes.
This simulates the sender-side sending and receiver-side receiving
operations in our runtime system, as depicted in Figure 10. The
sending machine, updraft1, has a NIC supporting 100 Gbps, limit-
ing our experiments to this maximum network bandwidth. The size
of data chunks sent and received in this study equates to the aver-
age compressed chunk size. Furthermore, these chunks are stored
in memory where the respective send and receive threads execute,
based on Linux OS’s first-touch policy. This policy dictates that
a data page is allocated in the local memory of the core that first
accesses it [30]. The potential execution locations for both sending
and receiving threads across NUMA domains are outlined in Ta-
ble 2. The number of sending and receiving threads is symmetrical;
that is, for every x sending threads, there are x receiving threads,
resulting in x TCP streams. Considering the shared nature of the
network with other users and services, we repeat each configura-
tion 30 times for consistency. The average results are showcased in
Figure 11.

The relationship between the location of receiving threads and
network I/O throughput reveals some interesting patterns. On the
machine updraft1, the Network Interface Card (NIC) supports a
maximum bandwidth of 100 Gbps. Consequently, as we increment
the number of sending and receiving threads from 1 to 2, there is a
sharp rise in transfer throughput across all configurations. However,

Throughput Optimization with a NUMA-Aware Runtime System for ES{C2028 $tDtFiwbrkishSpredvoiegnber 2023, Denver, Colorado, USA

Decompression Throughput
in Gbps

1 2 4 8 16
Number of Threads

(a) Decompression throughput achieved as the number of concurrent
compression threads vary across different configuration as shown in

Table 1.

core number

870U H

configuration

(b) Core usage for different configuration during the experiments for
decompression with thread number 8 and 16 as shown in Figure 9a.

Figure 9: Relationship between decompression threads {D}, as depicted in Figure 2, and the achieved decompression throughput.
The decompression throughput is directly proportional to the number of threads and on average ~3X greater than the
throughput achieved with the same number of compression threads. Similar to the compression and NUMA scenario, the
domain where the data resides and the domain where decompression execution takes place do not seem to influence the

performance of the decompression throughput.

as the thread count increases from 2 to 3, not all configurations ex-
hibit the same growth rate. Specifically, configurations B and D see
a more subdued throughput increase compared to configurations
A, C,and E.

A closer examination reveals that configurations B and D achieve
a higher throughput when receiving threads are on NUMA domain
1, especially noticeable for thread counts of 1, 2, and 3. This behav-
ior aligns with our earlier observation: having the NIC connected to
NUMA domain 1 and executing the receiving threads in the same do-
main can boost throughput by up to 15%. Interestingly, the location
where the sending threads execute does not influence the transfer
throughput. This is attributed to specific mechanisms on the sender
side, such as NIC to CPU backpressure, which effectively prevents
host congestion [16]. In an alternate scenario where the NIC could
have supported bandwidth exceeding 100 Gbps, we speculate that
configurations B and D might have sustained their throughput
growth rate even when employing three threads. However, as it
stands, all configurations exhibit similar throughput patterns once
the thread count hits 4.

Observation 4: Network throughput is significantly influenced
by the receiving thread’s location, with configurations B and D seeing
up to a 15% boost when threads operate within NUMA domain 1.
Conversely, the sending threads’ location has no discernible impact
on throughput, likely due to sender-side mechanisms that mitigate
host congestion.

4 PERFORMANCE EVALUATION

From the insights obtained in the previous section, we generate
configurations for different components of our runtime system us-
ing the runtime configuration generator. Our runtime system is a
heterogeneous software pipeline, integrating tasks such as compres-
sion, sending, receiving, and decompression. Data chunks traverse
multiple software components within our framework, extending
across nodes, including data generation and reception, linked by a
network. In this section, we first present the performance of our
runtime system using a baseline configuration for a single-stream
application. Then, we demonstrate its capability in handling multi-
stream operations and compare its performance enhancements with
state-of-the-art OS-based solutions.

Table 2: Experimental configurations corresponding to Fig-
ure 10. The ’Sender Socket’ column indicates the NUMA do-
main in which the the sender threads are residing, while the
’Receiver Socket’ column specifies the domain where the re-
ceiver threads execute their operations. In configurations E
OS determines the thread execution domains both in sender
and receiver side.

Configuration Sender | Receiver
Socket | Socket
A 0 0
B 0 1
C 1 0
D 1 1
E 0s 0s

4.1 End-to-End Performance for a Single Stream

We assess the efficiency of our runtime system using a single data
stream under varying configurations (e.g., differing numbers of
compression and decompression threads, transmission-reception
threads, and the domain of execution for the receiver thread) as
outlined in Table 3. Our runtime system is integrated within two
machines: updraft1, responsible for generating data, and lynxdtn,
designed as the data consumer. updraft1 has same configuration
and organization as lynxdtn depicted in §3.1. These machines are
interconnected via a network that can accommodate 100 Gbps, as
depicted in Figure 10. Each experiment was iterated five times, and
the average result is presented in Figure 12.

In Figure 12, the X-axis represents the number of sending-receiving
threads, and the color of each bar signifies the execution NUMA
domain of the receiver threads. Notably, the observed trends reveal
that, for configurations A and B, the achieved throughput remains
relatively constant. This finding underscores the fact that maintain-
ing a constant number of compression threads while increasing
the count of decompression threads does not result in a notable
increase in the end-to-end throughput. Moreover, it is evident that
increasing the count of sending-receiving threads does not signifi-
cantly impact the overall performance, implying that the bottleneck

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

APS
Network

updraftl lynxdtn01
Queue Queue
(Thread-safe) ~ Network / \\\ (Thread-safe)
, ‘ \ _r/__’ I \
([| ®

\eo“# —
Receiving

T
(Y

Sendin

& Thicads {R}

Thicads{S}

Figure 10: Experimental setup illustrating the rela-
tionship between the number of sender(updraftl) and
receiver(lynxdtn) threads.

Table 3: Experimental configurations corresponding to Fig-
ure 12.

#of #of
Configuration | compression | decompression
Threads Threads

A 8 4
B 8 8
C 16 8
D 16 16
E 32

F 32 8
G 32 16

primarily arises from the number of compression threads for these
configurations. As the number of compression threads is increased,
the bottlenecks within the end-to-end pipeline shift across different
segments. This phenomenon becomes particularly evident when
analyzing configurations C and D. In this case, the throughput ex-
hibits higher values when the receiver threads are executed within
the NUMA 1 domain.

Furthermore, when the number of compression threads is con-
strained to match the available CPU cores on the sending machine,
as is the case with configurations E, F, and G (e.g., 32 compres-
sion threads), the bottleneck dynamics change once again. The
limitations are now imposed by the quantities of sending-receiving
threads, decompression threads, and the execution domain of the re-
ceiving threads. Notably, in configurations F and G, with 8 sending-
receiving threads and executing receiver threads within the NUMA
1 domain, we manage to achieve an end-to-end performance of
97 Gbps. This notable enhancement is 2.6X greater than the base-
line performance achieved with configurations A and B, which
yielded 37 Gbps.

4.2 Performance Comparison

To assess the effectiveness of our runtime system, we conduct
a comparative analysis with a scenario where we refrain from
explicitly designating the execution locations for runtime system

Jamil, et al.
‘5 A B Cc D E
s 100- T
gm # XX
oQ X X
£8 s50- X
= B
- e X X
5.E
z
g0 1 2 3 a

Number of Threads

Figure 11: Network Throughput between two machines in
APS network.

Conf=A Conf=B Conf=C Conf=D Conf=E Conf=F Conf=G

)

-
o
S

Domain
80 Domain 0

Domain 1
60

20

Throughput (Gbps

2 48 2 48 2 48 2 48

Namber of etwork threads
Figure 12: End-to-end throughput based on various config-
urations of the compression and decompression threads, as
outlined in Table 3. The throughput is notably higher when
the receiving threads are located in the NUMA 1 domain, as
indicated by the red bar.

component threads (such as compression, sending, receiving, and
decompression). Instead, we allow the operating system (OS) to
determine the execution locations autonomously. In this context,
our runtime system operates within the framework of five distinct
machines: updraftl, updraft2, polarisi, polaris2, all engaged in
generating four distinct data streams, while lynxdtn serves as the
data consumer, assuming the role of the upstream gateway node.

Both updraftl and updraft2 are characterized by similar config-
urations and organizational structures, mirroring those of lynxditn
as detailed in § 3.1. Conversely, the polaris1 and polaris2 nodes
share a similar architecture and organization, each equipped with
a 2.8 GHz AMD EPYC Milan 7543P CPU boasting 32 cores with 512
GB of DDR4 RAM. All four sender nodes have NICs with 100 Gbps.
However, it is noteworthy that only the lynxdtn machine as a re-
ceiver has a NIC of 200 Gbps. updraft1, updraft2, and lynxdin
operate on Red Hat Enterprise Linux 8, employing kernel version
4.18. Conversely, the polaris1 and polaris2 machines opt for SUSE
Linux Enterprise Server 15 SP3, with kernel version 5.3.

The interconnection among these machines is realized through
a real network path capable of accommodating a bandwidth of
200 Gbps, as illustrated in Figure 13. This comprehensive setup
allows us to holistically evaluate the performance of our runtime
system and draw meaningful comparisons in terms of network
utilization and end-to-end performance, as shown in Figure 14.

In Figure 14, we present a bar graph depicting the combined
and individual network throughput, along with the end-to-end
throughput for each of the four streams: stream-1, 2, 3, and 4. With
an average compression ratio of 2:1, it’s noteworthy that after
decompression, the end-to-end throughput becomes twice that of
the network throughput.

Throughput Optimization with a NUMA-Aware Runtime System for ES{C2028 $tDtFiwbrkishSpredvoiegnber 2023, Denver, Colorado, USA

Polaris 2

Figure 13: Experimental setup illustrating the generation of
four concurrent data streams using four distinct machines.
One machine, denoted as [ynxdtn, acts as the upstream gate-
way, receiving all the overlapping streams.

Given that the NUMA 1 domain of the lynxdtn machine is
equipped with 16 cores, and considering the presence of four dis-
tinct data streams, we have allocated these cores evenly among
the streams. This approach justifies our choice of utilizing four
sending-receiving threads. This decision is grounded in the notion
that running multiple sending-receiving threads on a single core
introduces context-switching overhead, ultimately detrimentally af-
fecting network I/O performance, as elaborated in §3.1. Each stream,
correspondingly, employs four decompression threads assigned to
four cores residing in the NUMA 0 domain, so all 16 cores in NUMA
0 domain are evenly distributed between four data streams.

In the case of the OS, we specify the number of threads, and
the OS determines the execution locations for individual threads.
Specifically, we found that the operating system, while capable
of determining thread execution locations, does not always pos-
sess the intricate architectural and organizational knowledge of
the involved machines to maximize efficiency. Our runtime sys-
tem, on the other hand, is designed to tap into such knowledge,
enabling it to manage not only the optimal number of threads
(compression, sending, receiving, decompression) but also their
precise placement within the most suitable NUMA domains. This
approach yields significant performance improvement, as shown in
Figure 14. Specifically, we achieve 105.41 Gbps cumulative network
performance, corresponding to 212.95Gbps cumulative end-to-end
performance. In contrast, relying solely on the OS, the network
throughput reaches 70.98Gbps, accompanied by an end-to-end per-
formance of 143.3Gbps. Evidently, our runtime system outperforms
the OS-based approach by a 1.48X factor. This performance im-
provement is due to runtime system’s capacity to harness knowl-
edge regarding the architectural and organizational knowledge of
sender and receiver machines. This enables the runtime system to
expertly manage the execution of the optimal number of compres-
sion, sending, receiving, and decompression threads, in addition to
strategically placing them within the most suitable NUMA domains.

EEE stream 1

200-

BN stream 2 EEm stream 3 stream 4

Network End-to-End

Throughput -Throughput
——

[y
o
o

Throughput
in Gbps

Runtime oS

Runtime oS

Figure 14: Data streaming performance with the setup spec-
ified in Figure 13. Evaluation of network performance and
end-to-end performance based on receiving threads and de-
compressing threads execution location chosen by OS versus
specified by our runtime system. In all cases, the sender uses
32 compression threads and 4 sending threads.

5 RELATED WORK

As high-speed data sources proliferate, a range of data-intensive
applications are being implemented in real-world scenarios. These
applications, with their stringent latency and throughput demands,
cannot be adequately supported by traditional batch processing
models. Notable efforts to enhance Data Stream Processing Systems
(DSPSs) have been made by both the research community [29, 43]
and industry giants like SAP[45], Google [17], and Microsoft [9].
However, the ever-increasing performance needs, complex analyses,
and heavy state access requirements of emerging stream applica-
tions [11, 20, 32, 38] present new challenges. Although strides in
computer architecture have sparked a wave of interest in hardware-
conscious DSPSs [43, 44], aiming to exploit modern hardware ca-
pabilities for stream processing acceleration, the heterogeneity in-
troduced by the presence of NUMA and NUMA-to-NIC connection
domain is often overlooked.

Previous research has explored the concept of NUMA-aware sys-
tem optimizations within the field of relational databases [21, 31, 34].
RING [33], a NUMA-aware Message-batching runtime system, is
designed to improve efficiency, primarily for irregular applications,
by managing memory through a partitioned global address space
model and leveraging one-sided RDMA API. [15] shows how co-
herence traffic can be constrained in a large, real cache-coherent
NUMA (ccNUMA) platform comprising 288 cores by utilizing a com-
bined hardware/software approach. [8] provides evidence of host
congestion in production clusters, attributing it to the adoption of
high-bandwidth access links, which leads to bottlenecks within the
host interconnect (NIC-to-CPU data path). In contrast, our proposed
runtime system introduces a specialized approach. It holistically
integrates computational and I/O operations, emphasizing efficient
multi-stream data transfers between scientific instruments and HPC
clusters, and strategically orchestrates parallel tasks, significantly
reducing the data volume on the network.

[28] describes a NUMA-aware thread and resource scheduling
methodology to optimize data transfers over terabit networks. [40]
presents that binding processes to the local processor, rather than to
specific cores, improves the efficiency of high-speed data transfers.
[22] delves deeper to understand the end-system bottlenecks for

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

high-speed TCP flows, emphasizing the significant role of affinitiza-
tion, or core binding, on protocol processing efficiency and how it
changes the performance bottleneck of the network receive process.

In the Network Functions Virtualization (NFV) domain, [18] dis-
cusses the challenges posed by the NUMA architecture in multi-core
servers for service function chain (SFC) placement. [37] highlights
the importance of considering NUMA architecture when deploy-
ing network processing software for NFV. It introduces the use
of DPDK to enhance data plane performance and addresses the
need for proper thread mapping on physical cores across NUMA
sockets. [25] points out the challenges faced when deploying NFV
on modern NUMA-based Standard High Volume Servers (SHVS),
and proposes a collaborative thread scheduling mechanism to min-
imize end-to-end performance slowdown for NFV traffic flows,
demonstrating improved CPU utilization and traffic throughput.

The above-mentioned studies provide valuable techniques and
execution models but do not directly address our specific prob-
lem - managing the heterogeneity brought about by NUMA and
NUMA-to-NIC connection domain for scientific data streaming
applications. In contrast, our proposed runtime system operates
as a layer above the operating system, specifically designed to
accommodate this heterogeneity. It maintains a knowledge base
of the underlying hardware, including NUMA configurations and
NUMA-to-NIC connection domain, and can accordingly adapt data
streaming and computational resource allocation. This enables the
support of tasks like data compression, maximizing bandwidth uti-
lization, and significantly improving the overall efficiency of data
streaming tasks.

6 CONCLUSION AND LOOKING FORWARD

In an era marked by unprecedented data generation rates, especially
from sophisticated scientific tools, the challenge of optimizing net-
work and resource management for data streaming has never been
more critical. Conventional models are lagging, often overwhelmed
by the pace of advancements in hardware technologies. This lag
can be seen in the common underutilization of resources and the
consequent suboptimal system performance. Despite their inher-
ent benefits, NUMA systems present challenges, especially when
accessing memory segments located remotely from the processing
unit. Addressing this, our research presents a runtime system capa-
ble of managing efficient multi-stream data management, ensuring
optimal compression, decompression, and streamlining based on
the specific hardware characteristics of the host server. The core
of our suggested runtime system consists of data compression, de-
compression, and transfer tasks. Importantly, these tasks aim to
limit the amount of data coming into the network. We report two
major findings that we address with our runtime system: (1) The
strategic allocation of data streaming tasks, in line with the selected
execution CPU, can significantly improve network bandwidth uti-
lization. (2) Incorporating data compression and decompression
into the streaming process optimizes both CPU resource consump-
tion and network bandwidth efficiency. Our empirical evaluations
validate these hypotheses, suggesting that the pinning streaming
tasks with the right NUMA domain can boost throughput by 1.48X
in comparison to state-of-the-art solutions and 2.6X over baseline
configurations.

Jamil, et al.

As we move into a more digital world, we need systems like
ours that are flexible and work efficiently. Looking ahead, our fu-
ture work will focus on developing the dynamic capabilities of our
runtime system. We aim to enable the runtime system to adjust
the allocation of cores to streaming software processes in response
to real-time resource utilization. By closely monitoring the usage
of CPU cores, our runtime system will be able to react to varying
processing demands, further optimizing resource management and
improving the overall performance of the data streaming processes.
This dynamic adjustment will introduce a level of adaptability to
the runtime system, allowing it to better serve in data-intensive
environments where computational needs may fluctuate.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S. National
Science Foundation (NSF), under award 201907 and the U.S. De-
partment of Energy, Office of Science, under contract DE-AC02-
06CH11357.

REFERENCES
[1] [n.d.]. An Introduction to the Intel® QuickPath Intercon-
nect. https://www.intel.ca/content/dam/doc/white-paper/

quick-path-interconnect-introduction- paper.pdf. [Accessed: July 2023].

[2] [n.d.]. APS Upgrade. https://www.aps.anl.gov/APS-Upgrade. [Accessed: May
2021].

[3] [n.d.]. hdf5. https://www.hdfgroup.org/solutions/hdf5/.[Accessed : Septeember
2023].

[4] [n.d.]. numactl. https://github.com/numactl/numactl/tree/master.[Accessed :
Septeember 2023].

[5] [n.d.]. Scaling in the Linux Networking Stack . https://www.kernel.org/doc/
Documentation/networking/scaling.txt. [Accessed: July 2023].

[6] [n.d.]. Spheres Dataset. https://tomobank.readthedocs.io/en/latest/source/data/
docs.data.spheres.html.[Accessed : July 2023].

[7] [n.d.]. ZeroMQ. https://zeromq.org/get-started/.[Accessed : Septeember 2023].

[8] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref, Khaled
Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia Ratnasamy,
David Culler, and Amin Vahdat. 2022. Understanding Host Interconnect Conges-
tion. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Austin,
Texas) (HotNets °22). Association for Computing Machinery, New York, NY, USA,
198-204. https://doi.org/10.1145/3563766.3564110

[9] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (aug 2013), 1033-1044. https://doi.org/10.14778/2536222.2536229

[10] Tekin Bicer. 2014. Supporting Data-Intensive Scientific Computing on Bandwidth
and Space Constrained Environments. Ph. D. Dissertation. The Ohio State Univer-
sity.

[11] Tekin Bicer, Doga Gursoy, Rajkumar Kettimuthu, Ian T Foster, Bin Ren, Vin-
cent De Andrede, and Francesco De Carlo. 2017. Real-time data analysis and
autonomous steering of synchrotron light source experiments. In IEEE 13th
International Conference on e-Science (e-Science). IEEE, 59-68.

[12] Tekin Bicer, Jian Yin, and Gagan Agrawal. 2014. Improving I/O throughput
of scientific applications using transparent parallel compression. In 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,
1-10.

[13] Tekin Bicer, Jian Yin, David Chiu, Gagan Agrawal, and Karen Schuchardt. 2013.
Integrating online compression to accelerate large-scale data analytics appli-
cations. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 1205-1216.

[14] Tekin Bicer, Xiaodong Yu, Daniel J Ching, Ryan Chard, Mathew J Cherukara,
Bogdan Nicolae, Rajkumar Kettimuthu, and Ian T Foster. 2021. High-performance
ptychographic reconstruction with federated facilities. In Smoky Mountains
Computational Sciences and Engineering Conference. Springer, 173-189.

[15] Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Miquel Moret6, and
Marc Casas. 2018. Reducing Cache Coherence Traffic with a NUMA-Aware
Runtime Approach. IEEE Transactions on Parallel and Distributed Systems 29, 5
(2018), 1174-1187. https://doi.org/10.1109/TPDS.2017.2787123

Throughput Optimization with a NUMA-Aware Runtime System for ES{C2028 $tDtFiwbrkishSpredvoiegnber 2023, Denver, Colorado, USA

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaechyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM °21). Association for Computing Machinery, New York, NY, USA, 65-77.
https://doi.org/10.1145/3452296.3472888

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: A
High-Performance Incremental Query Processor for Diverse Analytics. Proc.
VLDB Endow. 8, 4 (dec 2014), 401-412. https://doi.org/10.14778/2735496.2735503
Venkatarami Reddy Chintapalli, Sai Balaram Korrapati, Bheemarjuna Reddy
Tamma, and Antony Franklin A. 2022. NUMASFP: NUMA-Aware Dynamic
Service Function Chain Placement in Multi-Core Servers. In 2022 COMSNETS.
181-189. https://doi.org/10.1109/COMSNETS53615.2022.9668603

Yann Collet. 2011. LZ4 - Extremely Fast Compression algorithm. https://github.
com/1z4/1z4. [Online; accessed 6-22-2023].

Juan A. Colmenares, Reza Dorrigiv, and Daniel G. Waddington. 2017. Ingestion,
Indexing and Retrieval of High-Velocity Multidimensional Sensor Data on a
Single Node. arXiv:1707.00825 [cs.DB]

Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. 2014. Deployment
of Query Plans on Multicores. Proc. VLDB Endow. 8, 3 (nov 2014), 233-244.
https://doi.org/10.14778/2735508.2735513

Nathan Hanford, Vishal Ahuja, Matthew Farrens, Dipak Ghosal, Mehmet Balman,
Eric Pouyoul, and Brian Tierney. 2016. Improving network performance on
multicore systems: Impact of core affinities on high throughput flows. Future
Generation Computer Systems 56 (2016), 277-283. https://doi.org/10.1016/j.future.
2015.09.012

Mert Hidayetoglu, Tekin Biger, Simon Garcia De Gonzalo, Bin Ren, Doga Giirsoy,
Rajkumar Kettimuthu, Ian T Foster, and Wen-mei W Hwu. 2019. MemXCT:
Memory-centric x-ray CT reconstruction with massive parallelization. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1-56.

Mert Hidayetoglu, Tekin Bicer, Simon Gonzalo, Bin Ren, Vincent Andrade, Doga
Gursoy, Rajkumar Kettimuthu, Ian Foster, and Wen-mei Hwu. 2020. Petascale
XCT: 3D Image Reconstruction with Hierarchical Communications on Multi-
GPU Nodes. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 510-522.

Yang Hu and Tao Li. 2016. Towards efficient server architecture for virtualized
network function deployment: Implications and implementations. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-12.
https://doi.org/10.1109/MICRO.2016.7783711

Intelligence Advanced Research Projects Activity. [n.d.]. Rapid Analysis
of Various Emerging Nanoelectronics. https://www.iarpa.gov/index.php/
research-programs/raven. [Accessed: May 2021].

Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access Map Pattern Matching for
Data Cache Prefetch. In Proceedings of the 23rd International Conference on Super-
computing (Yorktown Heights, NY, USA) (ICS "09). Association for Computing Ma-
chinery, New York, NY, USA, 499-500. https://doi.org/10.1145/1542275.1542349
Taeuk Kim, Awais Khan, Youngjae Kim, Preethika Kasu, and Scott Atchley. 2018.
NUMA-aware thread scheduling for big data transfers over terabits network
infrastructure. Sci. Program. 2018 (2018), 1-8.

Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
555-569. https://doi.org/10.1145/2882903.2882906

Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access): An Overview:
NUMA Becomes More Common Because Memory Controllers Get Close to
Execution Units on Microprocessors. Queue 11, 7 (jul 2013), 40-51. https:
//doi.org/10.1145/2508834.2513149

Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for
Computing Machinery, New York, NY, USA, 743-754. https://doi.org/10.1145/
2588555.2610507

Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. 2019. Deep
learning accelerated light source experiments. In 2019 IEEE/ACM Third Workshop
on Deep Learning on Supercomputers (DLS). IEEE, 20-28.

Ke Meng and Guangming Tan. 2017. RING: NUMA-Aware Message-Batching
Runtime for Data-Intensive Applications. In 2017 IEEE 23rd International Confer-
ence on Parallel and Distributed Systems (ICPADS). 368-375. https://doi.org/10.
1109/ICPADS.2017.00056

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-
tasia Ailamaki. 2016. Adaptive NUMA-Aware Data Placement and Task Sched-
uling for Analytical Workloads in Main-Memory Column-Stores. Proc. VLDB
Endow. 10, 2 (oct 2016), 37-48. https://doi.org/10.14778/3015274.3015275

(35]

[36]

(39]

(40]

[44]

Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos
Kozyrakis. 2011. Dynamic Fine-Grain Scheduling of Pipeline Parallelism. In 2011
International Conference on Parallel Architectures and Compilation Techniques.
22-32. https://doi.org/10.1109/PACT.2011.9

Somya Singh, Tyler Stannard, Sudhanshu Singh, Arun Singaravelu, Xianghui
Xiao, and Nikhilesh Chawla. 2017. Varied volume fractions of borosilicate glass
spheres with diameter gaussian distributed from 38-45 micronsen cased in a
polypropylene matrix. https://doi.org/10.17038/XSD/1373576

Yongyu Wang. 2017. NUMA-aware design and mapping for pipeline network
functions. In 2017 4th International Conference on Systems and Informatics (ICSAI).
1049-1054. https://doi.org/10.1109/ICSAL2017.8248440

Zeyi Wen, Xingyang Liu, Hongjian Cao, and Bingsheng He. 2018. RTSI: An Index
Structure for Multi-Modal Real-Time Search on Live Audio Streaming Services.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). 1495-1506.
https://doi.org/10.1109/ICDE.2018.00168

Heng Yu, Zhilong Zheng, Junxian Shen, Congcong Miao, Chen Sun, Hongxin
Hu, Jun Bi, Jianping Wu, and Jilong Wang. 2021. Octans: Optimal Placement of
Service Function Chains in Many-Core Systems. IEEE Transactions on Parallel and
Distributed Systems 32, 9, 2202-2215. https://doi.org/10.1109/TPDS.2021.3063613
Se-young Yu, Jim Chen, Joe Mambretti, and Fei Yeh. 2018. Analysis of CPU
Pinning and Storage Configuration in 100 Gbps Network Data Transfer. In
2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS). 64-74.
https://doi.org/10.1109/INDIS.2018.00010

Xiaodong Yu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. 2021. Topology-
aware optimizations for multi-gpu ptychographic image reconstruction. In Pro-
ceedings of the ACM International Conference on Supercomputing. 354-366.
Xiaodong Yu, Viktor Nikitin, Daniel J Ching, Selin Aslan, Doga Gursoy, and
Tekin Bicer. 2022. Scalable and accurate multi-GPU-based image reconstruction
of large-scale ptychography data. Scientific Reports 12, 1 (2022), 5334.

Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Bref, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing Efficient Stream Processing on Modern Hardware. Proc. VLDB Endow. 12,
5 (jan 2019), 516-530. https://doi.org/10.14778/3303753.3303758

Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. 2019. BriskStream:
Scaling Data Stream Processing on Shared-Memory Multicore Architectures. In
Proceedings of the 2019 International Conference on Management of Data (Amster-
dam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New
York, NY, USA, 705-722. https://doi.org/10.1145/3299869.3300067

Shuhao Zhang, Hoang Tam Vo, Daniel Dahlmeier, and Bingsheng He. 2017.
Multi-Query Optimization for Complex Event Processing in SAP ESP. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). 1213-1224. https:
//doi.org/10.1109/ICDE.2017.166

	Abstract
	1 Introduction
	2 Background
	2.1 NUMA Architecture
	2.2 NIC Operation in NUMA Architecture

	3 System Architecture and Design Space Exploration
	3.1 Network performance and NUMA
	3.2 Compression performance and NUMA
	3.3 Decompression performance and NUMA
	3.4 Sending and receiving threads and NUMA

	4 Performance Evaluation
	4.1 End-to-End Performance for a Single Stream
	4.2 Performance Comparison

	5 Related Work
	6 Conclusion and Looking Forward
	Acknowledgments
	References

