
Throughput Optimization with a NUMA-Aware Runtime System
for Efficient Scientific Data Streaming

Hasibul Jamil
University at Buffalo (SUNY)

New York, USA
mdhasibu@buffalo.edu

Joaquin Chung
Argonne National Laboratory

Illinois, USA
chungmiranda@anl.gov

Tekin Bicer
Argonne National Laboratory

Illinois, USA
tbicer@anl.gov

Tevfik Kosar
University at Buffalo (SUNY)

New York, USA
tkosar@buffalo.edu

Rajkumar Kettimuthu
Argonne National Laboratory

Illinois, USA
kettimut@anl.gov

ABSTRACT

With the surge in data generation rates from advanced scientific

instruments, there is an urgent need for effective network manage-

ment and resource utilization strategies for data streaming. Present

strategies often lag behind hardware advancements, leading to

resource underutilization. Modern servers typically employ non-

uniform memory access (NUMA) multiprocessors, which, despite

their benefits, can pose performance challenges. This paper presents

a novel runtime system tailored for efficient multi-stream data

management, optimizing both its compression and decompression

phases, and enhancing network I/O based on the server’s unique

hardware design. Our system coordinates parallel tasks for data

compression, decompression, and transfer, aiming to reduce net-

work data influx. Empirical tests show that aligning streaming tasks

with the right NUMA domain results in a 1.48X throughput boost

compared to cutting-edge methods and a 2.6X improvement over

standard techniques.

CCS CONCEPTS

· Hardware → Networking hardware; · Computer systems

organization → Multicore architectures;

KEYWORDS

Heterogeneous architectures, data compression/decompression,

data streaming, runtime systems, performance optimization, non-

uniform memory access (NUMA).

ACM Reference format:

Hasibul Jamil, Joaquin Chung, Tekin Bicer, Tevfik Kosar, and Rajkumar

Kettimuthu. 2025. Throughput Optimization with a NUMA-Aware Runtime

System for Efficient Scientific Data Streaming. In Proceedings of ACM/IEEE

Conference, Denver, Colorado, USA, November 2023 (SC2023 (INDIS workshop)),

11 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Large-scale scientific instruments, such as the detectors at the

Advanced Photon Source (APS) in Argonne National Laboratory

(ANL), are now generating vast volumes of experimental data

at an unprecedented pace, often exceeding rates of 25 Gbps per

beamline[14, 23]. This trend is projected to grow exponentially with

the emergence of next-generation synchrotron radiation facilities,

Network Network

Scientific

 Instruments

Upstream Gateway Node HPC Cluster

Figure 1: Multiple detectors at the Advanced Photon Source

(APS) are streaming data to an upstream gateway, where

data is accumulated for pre-processing or load-balancing

before being forwarded to an HPC cluster. Within the HPC

cluster, the data undergoes further analysis and processing,

transforming the raw information into valuable insights.

like the upcoming upgrade to the APS [41, 42]. The enhanced x-ray

brightness, anticipated to be 500 times greater, is expected to drive

corresponding increases in data-intensive imaging experiments.

This may potentially lead to terabit-scale data generation rates and

petabyte-scale experimental datasets [2, 24, 26].

The pace at which scientific instruments generate data increases

faster than the capacity of the links and processing resources be-

tween the instruments and high-performance computing (HPC)

resources. This creates a bottleneck in handling large datasets that

can generate unwanted interruptions during data acquisition or

force a manual reduction of the acquisition rate. Figure 1 illustrates

a data streaming pipeline with an upstream gateway node. Posi-

tioned between the data streaming sources and the HPC cluster,

this gateway node offers functionalities such as data aggregation,

pre-processing, and load balancing, as well as serving as a secu-

rity barrier. One promising approach to overcome these challenges

involves optimizing the upstream system’s architecture and effec-

tively utilizing network bandwidth. By incorporating non-uniform

memory access (NUMA) and integrating high-speed or multiple

Network Interface Cards (NICs), the system can effectively increase

the number of available cores and memory and available network

bandwidth from a single host perspective. This, in turn, enhances

the system’s overall capacity to process and manage the influx of

data, positioning it better to handle the ever-growing demands of

modern scientific experimentation.

Traditional approaches for optimizing data streaming, which en-

compass tasks such as compression, decompression, and network

I/O, typically depend on the operating system to assign specific

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA Jamil, et al.

Memory Queue

 (Thread-safe)

Compression

Threads{C}

Sending

Threads{S}

Network

Receiving

Threads{R}

Queue

 (Thread-safe)
Memory

Decompression

Threads{D}

Figure 2: Schematic of the runtime system handling data

streaming and processing tasks. The runtime system is

formulated as a heterogeneous software pipeline. Uncom-

pressed scientific data is streamed into memory, where a

set of compression threads ({C}) compresses specific data

chunks. These compressed data chunks are enqueued in a

thread-safe queue, ready for a set of sending threads ({S})

to transmit them over the TCP/IP network to the upstream

node. Upon arrival at the upstream node, a set of receiving

threads ({R}) retrieves the chunks and places them into an-

other thread-safe queue. A set of decompression threads ({D})

then decompresses each data chunk and stores it back into

memory or disk.

cores for the execution of these tasks [10, 12, 13]. They often employ

non-NUMA-aware memory allocation and follow static data paths.

Originally crafted for uniform hardware setups, these methods

fall short in addressing the complexities of contemporary hetero-

geneous systems. The rise of advanced NICs and the nuances of

NUMA architectures have underscored the limitations of such rigid

strategies. They often result in task-to-resource mismatches, lead-

ing to resource underutilization, inefficient memory access, and

compromised performance [8]. In modern systems that incorpo-

rate NUMA, memory latency is inherently affected by the spatial

relationship between the cores that request data and the target

memory controllers [18, 25, 37]. In this context, maintaining local

memory access becomes critical. Such an approach is not merely

about minimizing latency; it also involves distributing data evenly

amongst memory controllers. This balance helps in avoiding poten-

tial inter-socket contention, a situation where different parts of the

system compete for the same resources [16, 39]. The implications

of this are significant: to optimize memory access, NUMA-aware

memory allocation needs to be closely aligned with resource-aware

task-to-core mapping. Only by merging these two strategies, we

can create a system that operates at peak efficiency. Through this

harmonious integration, it is possible to enhance not only the over-

all performance of a system but also the utilization of its resources,

leading to a more effective streaming operation.

With high-bandwidth single nodes capable of both transmit-

ting and receiving substantial amounts of data, the real challenge

emerges in maximizing resource efficiency. To address this, we

devise a runtime system tailored to manage data streaming applica-

tions, acting as an intermediary between the software program and

the underlying hardware. The system, working in conjunction with

the OS, oversees intermediary memory allocation schemes and

task-to-NUMA-domain mapping, optimizing hardware resource

utilization as well as network bandwidth utilization. Our runtime

system is versatile enough to integrate computational tasks as well.

For example, cores that are not needed for network I/O can be re-

purposed for computation operations such as data compression and

decompression. This enhances not only the effective data streaming

rate but also the overall utilization of resources. Consider a system

operating at 100 Gbps; if some cores are employed for compression

at a 2X compression ratio, the effective data transfer rate is effec-

tively doubled to 200 Gbps. The seamless integration of compression

tasks leads to a substantial reduction in the size of data chunks be-

ing streamed, thereby decreasing ingress traffic volume. This traffic

minimization optimizes network resource utilization, facilitating

the coexistence of multiple services on a single network, either

provisioned or ad-hoc. Figure 2 illustrates the various components

of our runtime system and provides a schematic representation of

the intended operation.

Designing this runtime system in terms of different tasks such

as compression, decompression, and network I/O raises two pivotal

questions: (1) How can the organization of data streaming tasks be

optimized relative to execution core selection so as to maximize

network bandwidth utilization? (2) How can computation jobs such

as compression and decompression be effectively integrated into

the streaming task, enabling concurrent use of CPU resources and

effectively utilizing network bandwidth to reduce network traffic?

To address these concerns, we emphasize our contributions in

following areas:

• We introduce several observations in § 3.1, 3.2, 3.3, 3.4

to devise a scheme to optimize the organization of data

streaming tasks. By strategically selecting execution cores,

we aim to maximize network bandwidth utilization, thus

directly addressing the first posed question.

• We embed computational operations such as compression

and decompression within the data streaming process. This

not only promotes the efficient use of CPU resources but

also maximizes the utilization of network bandwidth, of-

fering a solution to the second question.

• Our empirical analysis reveals that strategically selecting

the number of streaming tasks and aligning them to the

most suitable NUMA domain can increase the average

throughput by 1.48X compared to state-of-the-art methods

and 2.6X over traditional baseline techniques.

The remainder of this paper is structured as follows: Section 2

provides the background. In Section 3, we delve into the system’s

architecture and our design approach. Section 4 evaluates the per-

formance of our runtime system. We explore other relevant studies

in Section 5, and Section 6 concludes the paper.

2 BACKGROUND

In this section, we first explore the background of the NUMA archi-

tecture and examine the operation of NICs within this framework.

Our goal is to highlight the implications of NUMA-specific network

I/O performance.

2.1 NUMA Architecture

Modern servers are equipped with a NUMA architecture, wherein

multiple CPU cores are organized into distinct sockets. Each socket

possesses its own designated memory, termed local memory, cou-

pled with an advanced memory controller. This controller facilitates

access to the memory across all other sockets. When one socket ac-

cesses the local memory of another socket, it is referred to as remote

memory. Accessing remote memory is inherently slower than ac-

cessing the local memory. This is due to the necessity of transferring

Throughput Optimization with a NUMA-Aware Runtime System for Efficient Scientific Data StreamingSC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

QPI

Interconnect
QPI

Interconnect

L1/L2 L1/L2 L1/L2

Interconnect

PCIeNIC

LL cache
MC

MemoryNetwork

L1/L2 L1/L2 L1/L2

Interconnect

LL cache MC

Memory

Socket 1

 Local

Socket 0

Remote

QPI

CPU cores CPU cores

= Data path for

 Application running

 in remote core

Figure 3: Network andmemory I/O of the NUMAarchitecture.

Throughout this paper, the terms ‘NUMA socket’, ‘node’, and

‘processor’ are used interchangeably to refer to the NUMA

domain.

data from the remote memory through the NUMA interconnect. A

bottleneck in cross-socket memory access arises when CPU cores in

one socket access the memory of another socket via the Quick Path

Interconnect (QPI) [1]. Each socket employs a memory controller

(MC) to establish connections to its local memory channels, as de-

picted in Figure 3. Accessing the physical memory that is linked

to a remote MC is called remote memory access. The QPI interfaces

play a pivotal role in facilitating data transfers between sockets.

2.2 NIC Operation in NUMA Architecture

Once network packets reach end hosts, processing packets via NIC

involves several stages [8]. Initially, packets are temporarily stored

in the NIC’s input buffer, typically an SRAM. Subsequently, the

NIC retrieves an Rx descriptor from its queue, which indicates the

virtual address where the packet should be transferred using Direct

Memory Access (DMA) within the host memory. To perform this

DMA, the NIC initiates PCIe write transactions using the packet

descriptor’s address. These transactions fall under the purview of

the PCIe root complex, which remaps the virtual memory addresses

to their physical counterparts with the assistance of an IOMMU.

Once the physical memory address is deciphered, the root complex

manages the transfer of the packet’s data to the host memory. Upon

successful transfer, a hardware interrupt activates an interrupt

handler linked to a processor core. This handler then prepares a

softIRQ context for its native core or an alternate CPU core. Every

CPU core inspects its poll queue using a designated poll method

and subsequently processes the queued softIRQ context.

It is worth noting that contemporaryNICs utilize themulti-queue

technique, supporting numerous receive and transmit descriptor

queues. For each incoming packet, the NIC controller formulates

a hash value. Using these hash values as a guide, the NIC ensures

that packets from an identical data stream are directed to a spe-

cific queue while simultaneously distributing varied traffic flows

evenly across multiple queues. Two key strategies, Receive-side

Scaling (RSS) [5] and Receive Packet Steering (RPS), are employed

to optimize network transmission performance in multi-core server

systems. While RSS allows each NIC queue to be linked to a ded-

icated CPU core, RPS designates a specific core for managing a

softIRQ context. Consequently, the receiving thread of the stream-

ing application accesses this host memory to acquire the streaming

data.

As shown in Figure 3, the NIC establishes a connection with the

NUMA 1 domain. This implies that the host memory, where the root

complex relocates the data, is situated within the NUMA 1 domain.

As a result, receiving threads that are pinned to NUMA 1 cores

can swiftly access the packets from their local memory. However,

for those threads tethered to NUMA 0 cores, packet processing

latency may increase due to the cross-socket phenomena or remote

memory access dynamics.

3 SYSTEM ARCHITECTURE AND DESIGN
SPACE EXPLORATION

Our runtime system is architecturally formulated as a heteroge-

neous software pipeline, integrating different tasks, including com-

pression, transmission, reception, and decompression. As datamoves

through the system, individual data chunks go through these tasks

in a pipelined fashion provided by our runtime framework. As

shown in Figure 4, this architectural framework is not restricted to

a single node. It is expansively distributed, stretching across various

nodes, which include nodes explicitly dedicated to data generation

(data streaming sender) and data reception (data streaming receiver).

An integral part of our design is the ‘runtime configuration gen-

erator,’ which is responsible for generating the configurations for

both the sender and receiver nodes. These configurations contain

information related to the type of tasks designated to individual

sockets, the number of tasks, and the task execution location. Fig-

ure 2 provides a breakdown of the individual components and tasks

that constitute our runtime system. This includes the operations in-

volved in compression, data sending, reception, and the final stage

of decompression. These components, inherently modular, find

their strategic placements either at the sender or the receiver of our

data streaming runtime framework. The structural design and oper-

ational dynamics resemble with the paradigms of a heterogeneous

software pipeline, as elaborated in [35].

The runtime system is implemented in the C programming lan-

guage, tailored specifically for Linux operating systems. This en-

sures compatibility and efficient execution within the Linux en-

vironment. It is architected to be versatile and able to support a

variety of workloads, notably those requiring compression and de-

compression, network tasks, and meticulous adjustments of each

task’s CPU affinity. For our networking operations, we utilize the

zeroMQ [7] library, which provides a robust and high-performance

messaging protocol. To optimize data transfer speeds, the lz4 [19]

library is incorporated for swift data chunk compression and de-

compression. Additionally, we leverage the libnuma [4] library for

precise control over CPU-thread affinity, enhancing the system’s

performance by taking advantage of non-uniform memory access

(NUMA) architectures. numa_bind() has been used specifically to

restrict task and its children to run and allocate memory exclu-

sively from the specified NUMA sockets. Our implementation code

is available at https://github.com/H-jamil/ha4hpdt.git.

In the subsequent section, we delve into the optimal configura-

tion generation for both the sender and receiver ends of the data

streaming pipeline. We examine various design spaces, considering

differing tasks, task counts, and execution locations, along with

their respective performance metrics. Our objective is to highlight

the criticality of addressing NUMA-specific performance consid-

erations for both computational tasks (such as compression and

decompression) and data transfer tasks. Addressing these nuances

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA Jamil, et al.

Upstream Gateway NodeScientific Instruments

Data Streaming

Runtime

Configuration

Generator

Sender side config Receiver side config

Data Streaming

Runtime

Figure 4: Architecture of the data streaming runtime system.

The runtime system can spanmultiple nodes, with each node

using a separate configuration file. These configuration files,

generated by the runtime configuration generator, specify

the task type, the number of tasks, and the location of task

execution. Based on these configurations, both data produc-

ers and consumers initialize and conduct data streaming over

TCP/IP network.

is pivotal for optimal resource utilization and meeting the perfor-

mance demands of scientific data streaming.

3.1 Network performance and NUMA

We conduct experiments between APS and the Argonne Leader-

ship Computing Facility (ALCF), two separate facilities within the

Argonne National Laboratory (ANL). These facilities are intercon-

nected by a network with 200 Gbps of bandwidth and 0.45ms RTT.

Our aim is to investigate the effects of network transfer throughput

and core affinity on the streaming process.

On the sending side, we employ four distinct machines to gen-

erate streams, simulating the data generation typical of scientific

instruments and adequately matching the bandwidth capabilities

of the receiver-side NIC. For processing source data, we employ the

hdf5 [3] library, which allows for seamless management of large

and complex datasets. Our receiving machine, which mirrors the

role of the upstream machine in a scientific data streaming work-

flow (see Figure 1), is composed of two NUMA sockets. Each of

these sockets has a Xeon Gold 6346 CPU with 16 physical cores

operating at 3.1GHz (equivalent to 32 threads). Additionally, each

socket boasts 512GB of memory (broken down as 16x32 DDR4 32GB

3.2GHz ECC RDIMM) per socket/CPU. Each NUMA socket is also

directly tethered to a Network Interface Card (NIC) via a PCIe 4.0

link. The dual-port Mellanox ConnectX-6 (MT28908) NIC provides

a bandwidth performance of up to 200 Gb/s per NIC, resulting in a

combined bandwidth of 400 Gb/s for both NICs. However, the NIC

in the NUMA 0 domain connects to a LUSTRE file system through

a separate network, this connection is not used in our study. Hence,

our attention is primarily centered on the NIC connected to the

NUMA 1 domain as this particular machine works as the upstream

gateway node.

N_0
N_1
N_0_1

0

50

100

150

200

N_0
N_1
N_0_1
N_0
N_1
N_0_1
N_0
N_1
N_0_1
N_0
N_1
N_0_1
N_0
N_1
N_0_1
N_0
N_1
N_0_1

Core_Used
2 core
4 core
8 core
16 core
32 core

Conf Conf Conf Conf Conf Conf Conf

Th
ro
ug
hp
ut
(G
bp
s) #p=2 #p=4 #p=8 #p=16 #p=32 #p=64 #p=128

Figure 5: Depiction of the throughput achieved as the num-

ber of data streaming tasks varies across different NUMA

domains. Here, #𝑝 indicates the number of streaming pro-

cesses. ’𝑁_0’, ’𝑁_1’, and ’𝑁_0_1’ represent scenarios where all

streaming processes are executed on NUMA 0, NUMA 1, and

equally divided between NUMA 0 and NUMA 1, respectively.

It is noteworthy that an average increase of 15% in through-

put is observed when transfer tasks are allocated to cores in

the NUMA 1 domain.

In a typical setup on the sender side, there are mechanisms (e.g.,

the NIC to CPU backpressure) in place to avert host congestion [16].

In this particular experiment, however, senders exclusively gener-

ate data chunks at a fixed rate, emulating data creation in scientific

instruments. As a result, our primary interest lies in the receiver

end of the streams, representing the upstream gateway machine

as shown in Figure 1. In the conducted experiment between Po-

laris cluster (ALCF) and 𝑙𝑦𝑛𝑥𝑑𝑡𝑛 (upstream gateway node), a net-

work throughput of over 190+Gbps is achieved on the receiver side.

Throughout this experiment, we vary the number of processes and

cores used to study their influence on achieved throughput. Each

sending process has 1 sending thread, and each receiving process

has 1 receiving thread. We increase from a base of 2 processes up

to 128 processes across a range of 2 to all 32 available cores.

The data shown in Figure 5 reveals two main observations based

on the number of processes that are running: (1) An increase in

the number of streaming processes and utilized cores results in an

increase in the receiver-side throughput. (2) Given the NIC’s connec-

tion to the NUMA 1 domain, an average 15% boost in throughput is

achieved when all streaming processes are assigned to cores within

NUMA 1.

We examine both core utilization and the average remote mem-

ory access for each core during the streaming operation. These

observations are illustrated in Figures 6 and 7. Due to space con-

straints, several configurations have been omitted. As anticipated

and discussed in previous § 2.2, assigning streaming processes to

cores in the NUMA 0 domain led to an overhead due to remote mem-

ory access, as shown in Figure 7. The NIC connects to the NUMA 1

domain, allowing quick packet access for threads on NUMA 1 cores

but potentially increasing latency for threads on NUMA 0 cores

due to cross-socket behavior. This overhead consequently resulted

in a reduced throughput.

Observation 1: Selecting the appropriate NUMA socket is crucial

when deploying a data streaming application on a server. Streaming

performance is influenced by the NUMA socket on which the receiving

threads operate and the NUMA socket to which a particular NIC is

connected.

Throughput Optimization with a NUMA-Aware Runtime System for Efficient Scientific Data StreamingSC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

16p_2c_N_0
16p_2c_N_1
16p_2c_N_0_1
16p_4c_N_0
16p_4c_N_1
16p_4c_N_0_1
16p_8c_N_0
16p_8c_N_1
16p_8c_N_0_1
16p_16c_N_0
16p_16c_N_1
16p_16c_N_0_1
32p_2c_N_0
32p_2c_N_1
32p_2c_N_0_1
32p_4c_N_0
32p_4c_N_1
32p_4c_N_0_1
32p_8c_N_0
32p_8c_N_1
32p_8c_N_0_1
32p_16c_N_0_1

30
25
20
15
10
5
0

0
20
40
60
80
100

%cpu

configuration

co
re
 n
um
be
r

Figure 6: Core usage for different configurations during

the experiments. The 32 cores are depicted in the Y-axis,

with core 0 starting from the top. In the X-axis, the label

16𝑃_2𝑐_𝑁_0 denotes 16 streaming processes that are running

in 2 cores from NUMA 0 domain.

3.2 Compression performance and NUMA

The primary goal of the runtime system is to optimize the use

of available resources and minimize network I/O. To achieve this,

available CPU cores are employed to compress outgoing data and

decompress incoming data chunks efficiently. This not only speeds

up data movement but also makes better use of the compute re-

source utilization. For example, if a system can move data at a speed

of 100 Gbps and unused cores work to compress the data to half its

size, the result is that the effective data transfer speed is 200 Gbps.

By shrinking data sizes, we reduce the amount of data being sent,

making the network less congested. This helps multiple users and

services to share the same network. In our experiment, we utilized

a synthesized dataset of 16 GB, which mirrors real tomographic

datasets outlined in [6, 36]. This data can be located either in the

NUMA 0 memory domain or the NUMA 1 domain, serving as the

source for our streaming operations. The data chunk size chosen

for our streaming process is 11.0592 MB, equivalent to data from

one X-ray projection. This chunk size represents the unit of opera-

tion in our streaming workflow. Compressor threads successively

fetch sequential data chunks, which are then passed through the

LZ4 algorithm [19] for compression. LZ4 is renowned for its speed,

lossless compression, and favorable compression ratio. On average,

the data stream achieves a compression ratio of 2:1 for the data

chunks.

We examine the compression speed in relation to the number

of threads CC, the memory location of the dataset, and the exe-

cution domain of the compression threads. The potential memory

locations for the source data, as well as the chosen schemes for

designating the compression threads to specific NUMA domains,

are outlined in Table 1. This compression operation simulates the

compression component of the sending machine within a runtime

system tailored for a scientific instrument data-flow scenario. We

conduct experiments for each configuration ten times and present

the average results.

In the results shown in Figure 8, we look at how the compression

throughput of data compression changes based on the number of

threads {C} we use. We find that the more threads we use, the faster

the data is compressed, but only up to a point. Specifically, once

we use more threads than the number of available cores on the

16p_2c_N_0
16p_2c_N_1
16p_2c_N_0_1
16p_4c_N_0
16p_4c_N_1
16p_4c_N_0_1
16p_8c_N_0
16p_8c_N_1
16p_8c_N_0_1
16p_16c_N_0
16p_16c_N_1
16p_16c_N_0_1
32p_2c_N_0
32p_2c_N_1
32p_2c_N_0_1
32p_4c_N_0
32p_4c_N_1
32p_4c_N_0_1
32p_8c_N_0
32p_8c_N_1
32p_8c_N_0_1
32p_16c_N_0_1
32p_32c_N_0_1

30
25
20
15
10
5
0

0
0.2
0.4
0.6
0.8
1

configuration

co
re

 n
um

be
r

Figure 7: Average normalized remote memory access (i.e.,

NUMAaccess) bandwidth for everyCPU core during different

configurations of the experiments.

Table 1: Experimental configurations corresponding to Fig-

ures 8a, 8b, 9a, 9b. The ’MemoryDomain’ indicates the NUMA

domain in which the data resides, while the ’Execution Do-

main’ specifies the domain where the threads execute their

operations. In configurations E and F, ’Execution Domain 0

& 1’ indicates that threads are evenly distributed between

NUMA domains 0 and 1. For configurations G and H, the

operating system (OS) determines the thread execution do-

mains.

Configuration
Memory

Domain

Execution

Domain

A 0 0

B 0 1

C 1 0

D 1 1

E 0 0 & 1

F 1 0 & 1

G 0 OS

H 1 OS

CPU, we do not see any more speed improvement. In the results

depicted in Figure 8b, we observe the utilization patterns of all

32 cores under various configurations for 16 and 32 compression

threads. Since both the NUMA 0 and NUMA 1 sockets possess 16

cores each, when the number of threads surpasses 16, all threads

execute within the same domain, causing multiple threads to run on

the same core. This leads to context switching, which explains the

nearly halved performance for configurations A, B, C, and D when

using 32 and 64 threads, compared to configurations E, F, G, and H,

where threads can run concurrently across all 32 cores. Moreover,

the location of data storage and the specific location of compression

do not influence the compression speed. The uniform compression

speed, irrespective of the data storage or specific compression loca-

tion, can be attributed to data cache prefetching technology [27].

This technology optimizes performance by preemptively loading

anticipated data into the cache, minimizing the latency typically

associated with accessing data from varying storage points.

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA Jamil, et al.

1 2 4 8 16 32 64
Number of Threads

0

100

200

Co
m

pr
es

si
on

 T
hr

ou
gh

pu
t

 in
 G

bp
s

A B C D E F G H

(a) Compression throughput achieved as the number of concurrent

compression threads vary across different configuration as shown in

Table 1.

(b) Core usage for different configuration during the experiments

with thread number 16 and 32 for compression as shown in Figure 8a.

Figure 8: Relationship between compression threads {C}, as illustrated in Figure 2, and the achieved compression throughput.

The compression throughput is directly proportional to the number of threads, provided the number of threads does not

exceed the available CPU cores. The data residing domain and the domain of compression execution appear not to impact the

compression throughput’s performance.

Observation 2:Data compression speeds upwith increased threads

only until the number of threads matches the CPU’s core count; be-

yond that, performance declines due to context switching overhead.

Additionally, source data storage location and compression execu-

tion location in the NUMA domain do not impact the compression

performance.

3.3 Decompression performance and NUMA

In our study, we also explore the decompression process of com-

pressed data chunks. Our goal is to analyze how the decompression

speed varied based on factors such as the number of decompression

threads {D}, the storage location of the data chunks, and the pro-

cessing location of the decompression threads. Details on possible

memory locations for the compressed data and the strategies used

to allocate decompression threads to specific NUMA domains are

detailed in Table 1. This decompression process is representative

of the actions performed by the receiving machine in a runtime

system designed for data streaming in scientific instruments. For

consistency, each configuration is tested ten times, and the aver-

age results are depicted in Figure 9. This Figure shows how the

decompression speed of data chunks is influenced by the number of

threads {D} employed. Our findings suggest that using more threads

accelerates the decompression process, achieving a speed approxi-

mately 3X faster than the compression operation when using the

same number of worker threads.

Further, Figure 9b highlights the utilization patterns of all 32

cores across diverse configurations, using 8 and 16 decompression

threads. With 8 threads, performance remains consistent across the

configurations detailed in Table 1. However, with 16 threads, config-

urations E and F outpace the others in throughput. The key differ-

entiator in configurations E and F is the even distribution of decom-

pression threads across bothNUMA0 andNUMA1 sockets. This dis-

tribution minimizes intra-socket resource contentionÐspecifically

at the last level cache (LLC) and memory controller (which links

domain memory to LLC)Ðcompared to configurations like A, B,

C, and D (where all decompression threads operate) or G and H

(where the majority function within a single NUMA domain) [18].

This distinction is evident in Figure 9b. We capped our evaluation at

16 decompression threads, considering the decompression through-

put achieved with 16 decompression threads is sufficient for the

receiver end of our runtime system for handling individual streams.

Observation 3: Decompression performance is unaffected by the

NUMA domain location of the compressed (source) data chunk or

where the decompression execution occurs. Increasing the number of

decompression threads enhances throughput, especially when threads

are evenly distributed across NUMA domains, minimizing resource

contention.

3.4 Sending and receiving threads and NUMA

We conduct additional experiments to understand how the number

and execution location of sending and receiving threads influence

network throughput in a streaming application using our runtime

system. For this study, we focus solely on the sending and receiving

operations, omitting the compression and decompression processes.

This simulates the sender-side sending and receiver-side receiving

operations in our runtime system, as depicted in Figure 10. The

sending machine, 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1, has a NIC supporting 100 Gbps, limit-

ing our experiments to this maximum network bandwidth. The size

of data chunks sent and received in this study equates to the aver-

age compressed chunk size. Furthermore, these chunks are stored

in memory where the respective send and receive threads execute,

based on Linux OS’s first-touch policy. This policy dictates that

a data page is allocated in the local memory of the core that first

accesses it [30]. The potential execution locations for both sending

and receiving threads across NUMA domains are outlined in Ta-

ble 2. The number of sending and receiving threads is symmetrical;

that is, for every 𝑥 sending threads, there are 𝑥 receiving threads,

resulting in 𝑥 TCP streams. Considering the shared nature of the

network with other users and services, we repeat each configura-

tion 30 times for consistency. The average results are showcased in

Figure 11.

The relationship between the location of receiving threads and

network I/O throughput reveals some interesting patterns. On the

machine 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1, the Network Interface Card (NIC) supports a

maximum bandwidth of 100 Gbps. Consequently, as we increment

the number of sending and receiving threads from 1 to 2, there is a

sharp rise in transfer throughput across all configurations. However,

Throughput Optimization with a NUMA-Aware Runtime System for Efficient Scientific Data StreamingSC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

1 2 4 8 16
Number of Threads

0

100

200

300

D
ec

om
pr

es
si

on
 T

hr
ou

gh
pu

t
 in

 G
bp

s

A B C D E F G H

(a) Decompression throughput achieved as the number of concurrent

compression threads vary across different configuration as shown in

Table 1.

(b) Core usage for different configuration during the experiments for

decompression with thread number 8 and 16 as shown in Figure 9a.

Figure 9: Relationship between decompression threads {D}, as depicted in Figure 2, and the achieved decompression throughput.

The decompression throughput is directly proportional to the number of threads and on average ∼3X greater than the

throughput achieved with the same number of compression threads. Similar to the compression and NUMA scenario, the

domain where the data resides and the domain where decompression execution takes place do not seem to influence the

performance of the decompression throughput.

as the thread count increases from 2 to 3, not all configurations ex-

hibit the same growth rate. Specifically, configurations B and D see

a more subdued throughput increase compared to configurations

A, C, and E.

A closer examination reveals that configurations B and D achieve

a higher throughput when receiving threads are on NUMA domain

1, especially noticeable for thread counts of 1, 2, and 3. This behav-

ior aligns with our earlier observation: having the NIC connected to

NUMAdomain 1 and executing the receiving threads in the same do-

main can boost throughput by up to 15%. Interestingly, the location

where the sending threads execute does not influence the transfer

throughput. This is attributed to specific mechanisms on the sender

side, such as NIC to CPU backpressure, which effectively prevents

host congestion [16]. In an alternate scenario where the NIC could

have supported bandwidth exceeding 100 Gbps, we speculate that

configurations B and D might have sustained their throughput

growth rate even when employing three threads. However, as it

stands, all configurations exhibit similar throughput patterns once

the thread count hits 4.

Observation 4: Network throughput is significantly influenced

by the receiving thread’s location, with configurations B and D seeing

up to a 15% boost when threads operate within NUMA domain 1.

Conversely, the sending threads’ location has no discernible impact

on throughput, likely due to sender-side mechanisms that mitigate

host congestion.

4 PERFORMANCE EVALUATION

From the insights obtained in the previous section, we generate

configurations for different components of our runtime system us-

ing the runtime configuration generator. Our runtime system is a

heterogeneous software pipeline, integrating tasks such as compres-

sion, sending, receiving, and decompression. Data chunks traverse

multiple software components within our framework, extending

across nodes, including data generation and reception, linked by a

network. In this section, we first present the performance of our

runtime system using a baseline configuration for a single-stream

application. Then, we demonstrate its capability in handling multi-

stream operations and compare its performance enhancements with

state-of-the-art OS-based solutions.

Table 2: Experimental configurations corresponding to Fig-

ure 10. The ’Sender Socket’ column indicates the NUMA do-

main in which the the sender threads are residing, while the

’Receiver Socket’ column specifies the domain where the re-

ceiver threads execute their operations. In configurations E

OS determines the thread execution domains both in sender

and receiver side.

Configuration
Sender

Socket

Receiver

Socket

A 0 0

B 0 1

C 1 0

D 1 1

E OS OS

4.1 End-to-End Performance for a Single Stream

We assess the efficiency of our runtime system using a single data

stream under varying configurations (e.g., differing numbers of

compression and decompression threads, transmission-reception

threads, and the domain of execution for the receiver thread) as

outlined in Table 3. Our runtime system is integrated within two

machines: 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1, responsible for generating data, and 𝑙𝑦𝑛𝑥𝑑𝑡𝑛,

designed as the data consumer. 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1 has same configuration

and organization as 𝑙𝑦𝑛𝑥𝑑𝑡𝑛 depicted in §3.1. These machines are

interconnected via a network that can accommodate 100 Gbps, as

depicted in Figure 10. Each experiment was iterated five times, and

the average result is presented in Figure 12.

In Figure 12, the X-axis represents the number of sending-receiving

threads, and the color of each bar signifies the execution NUMA

domain of the receiver threads. Notably, the observed trends reveal

that, for configurations A and B, the achieved throughput remains

relatively constant. This finding underscores the fact that maintain-

ing a constant number of compression threads while increasing

the count of decompression threads does not result in a notable

increase in the end-to-end throughput. Moreover, it is evident that

increasing the count of sending-receiving threads does not signifi-

cantly impact the overall performance, implying that the bottleneck

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA Jamil, et al.

Queue

 (Thread-safe)

Sending

Threads{S}

Network

Receiving

Threads{R}

Queue

 (Thread-safe)

updraft1

APS

Network

lynxdtn01

Figure 10: Experimental setup illustrating the rela-

tionship between the number of sender(𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1) and

receiver(𝑙𝑦𝑛𝑥𝑑𝑡𝑛) threads.

Table 3: Experimental configurations corresponding to Fig-

ure 12.

Configuration

#of

compression

Threads

#of

decompression

Threads

A 8 4

B 8 8

C 16 8

D 16 16

E 32 4

F 32 8

G 32 16

primarily arises from the number of compression threads for these

configurations. As the number of compression threads is increased,

the bottlenecks within the end-to-end pipeline shift across different

segments. This phenomenon becomes particularly evident when

analyzing configurations C and D. In this case, the throughput ex-

hibits higher values when the receiver threads are executed within

the NUMA 1 domain.

Furthermore, when the number of compression threads is con-

strained to match the available CPU cores on the sending machine,

as is the case with configurations E, F, and G (e.g., 32 compres-

sion threads), the bottleneck dynamics change once again. The

limitations are now imposed by the quantities of sending-receiving

threads, decompression threads, and the execution domain of the re-

ceiving threads. Notably, in configurations F and G, with 8 sending-

receiving threads and executing receiver threads within the NUMA

1 domain, we manage to achieve an end-to-end performance of

97 Gbps. This notable enhancement is 2.6X greater than the base-

line performance achieved with configurations A and B, which

yielded 37 Gbps.

4.2 Performance Comparison

To assess the effectiveness of our runtime system, we conduct

a comparative analysis with a scenario where we refrain from

explicitly designating the execution locations for runtime system

1 2 3 4
Number of Threads

0

50

100

Tr
an

sf
er

 T
hr

ou
gh

pu
t

in
 G

bp
s

A B C D E

Figure 11: Network Throughput between two machines in

APS network.

2 4 80

20

40

60

80

100

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

Domain
Domain 0
Domain 1

#ofNetworkThreads #ofNetworkThreads #ofNetworkThreads #ofNetworkThreads #ofNetworkThreads #ofNetworkThreads #ofNetworkThreads

Th
ro

ug
hp

ut
(G

bp
s)

Conf=A Conf=B Conf=C Conf=D Conf=E Conf=F Conf=G

Number of network threads

Figure 12: End-to-end throughput based on various config-

urations of the compression and decompression threads, as

outlined in Table 3. The throughput is notably higher when

the receiving threads are located in the NUMA 1 domain, as

indicated by the red bar.

component threads (such as compression, sending, receiving, and

decompression). Instead, we allow the operating system (OS) to

determine the execution locations autonomously. In this context,

our runtime system operates within the framework of five distinct

machines: 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1, 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡2, 𝑝𝑜𝑙𝑎𝑟𝑖𝑠1, 𝑝𝑜𝑙𝑎𝑟𝑖𝑠2, all engaged in

generating four distinct data streams, while 𝑙𝑦𝑛𝑥𝑑𝑡𝑛 serves as the

data consumer, assuming the role of the upstream gateway node.

Both𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1 and𝑢𝑝𝑑𝑟𝑎𝑓 𝑡2 are characterized by similar config-

urations and organizational structures, mirroring those of 𝑙𝑦𝑛𝑥𝑑𝑡𝑛

as detailed in § 3.1. Conversely, the 𝑝𝑜𝑙𝑎𝑟𝑖𝑠1 and 𝑝𝑜𝑙𝑎𝑟𝑖𝑠2 nodes

share a similar architecture and organization, each equipped with

a 2.8 GHz AMD EPYC Milan 7543P CPU boasting 32 cores with 512

GB of DDR4 RAM. All four sender nodes have NICs with 100 Gbps.

However, it is noteworthy that only the 𝑙𝑦𝑛𝑥𝑑𝑡𝑛 machine as a re-

ceiver has a NIC of 200 Gbps. 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡1, 𝑢𝑝𝑑𝑟𝑎𝑓 𝑡2, and 𝑙𝑦𝑛𝑥𝑑𝑡𝑛

operate on Red Hat Enterprise Linux 8, employing kernel version

4.18. Conversely, the 𝑝𝑜𝑙𝑎𝑟𝑖𝑠1 and 𝑝𝑜𝑙𝑎𝑟𝑖𝑠2 machines opt for SUSE

Linux Enterprise Server 15 SP3, with kernel version 5.3.

The interconnection among these machines is realized through

a real network path capable of accommodating a bandwidth of

200 Gbps, as illustrated in Figure 13. This comprehensive setup

allows us to holistically evaluate the performance of our runtime

system and draw meaningful comparisons in terms of network

utilization and end-to-end performance, as shown in Figure 14.

In Figure 14, we present a bar graph depicting the combined

and individual network throughput, along with the end-to-end

throughput for each of the four streams: stream-1, 2, 3, and 4. With

an average compression ratio of 2:1, it’s noteworthy that after

decompression, the end-to-end throughput becomes twice that of

the network throughput.

Throughput Optimization with a NUMA-Aware Runtime System for Efficient Scientific Data StreamingSC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

updraft1
APS

Network

updraft2

Polaris 1
ALCF

Network

Polaris 2

Stream 1

Stre
am 2

Stream 3

Stre
am 4

DDR4

Socket/CPU 0

 16 cores

DDR4

Socket/CPU 1

 16 cores

QPI

Buses

PCIe

PCIe

PCIe

PCIe

PCIe

PCIe

PCIe

PCIe nvme

NICNIC

nvmenvme

nvme

nvme
nvme

PCIe 4.0

to

connect

NICs

and

nvme

devices

NUMA 0 Domain NUMA 1 Domain

LynxDTN

Network

Figure 13: Experimental setup illustrating the generation of

four concurrent data streams using four distinct machines.

One machine, denoted as 𝑙𝑦𝑛𝑥𝑑𝑡𝑛, acts as the upstream gate-

way, receiving all the overlapping streams.

Given that the NUMA 1 domain of the 𝑙𝑦𝑛𝑥𝑑𝑡𝑛 machine is

equipped with 16 cores, and considering the presence of four dis-

tinct data streams, we have allocated these cores evenly among

the streams. This approach justifies our choice of utilizing four

sending-receiving threads. This decision is grounded in the notion

that running multiple sending-receiving threads on a single core

introduces context-switching overhead, ultimately detrimentally af-

fecting network I/O performance, as elaborated in §3.1. Each stream,

correspondingly, employs four decompression threads assigned to

four cores residing in the NUMA 0 domain, so all 16 cores in NUMA

0 domain are evenly distributed between four data streams.

In the case of the OS, we specify the number of threads, and

the OS determines the execution locations for individual threads.

Specifically, we found that the operating system, while capable

of determining thread execution locations, does not always pos-

sess the intricate architectural and organizational knowledge of

the involved machines to maximize efficiency. Our runtime sys-

tem, on the other hand, is designed to tap into such knowledge,

enabling it to manage not only the optimal number of threads

(compression, sending, receiving, decompression) but also their

precise placement within the most suitable NUMA domains. This

approach yields significant performance improvement, as shown in

Figure 14. Specifically, we achieve 105.41 Gbps cumulative network

performance, corresponding to 212.95Gbps cumulative end-to-end

performance. In contrast, relying solely on the OS, the network

throughput reaches 70.98Gbps, accompanied by an end-to-end per-

formance of 143.3Gbps. Evidently, our runtime system outperforms

the OS-based approach by a 1.48X factor. This performance im-

provement is due to runtime system’s capacity to harness knowl-

edge regarding the architectural and organizational knowledge of

sender and receiver machines. This enables the runtime system to

expertly manage the execution of the optimal number of compres-

sion, sending, receiving, and decompression threads, in addition to

strategically placing them within the most suitable NUMA domains.

Runtime OS Runtime OS0

100

200

Th
ro

ug
hp

ut
 in

 G
bp

s

Network
Throughput

End-to-End
Throughput

stream 1 stream 2 stream 3 stream 4

Figure 14: Data streaming performance with the setup spec-

ified in Figure 13. Evaluation of network performance and

end-to-end performance based on receiving threads and de-

compressing threads execution location chosen by OS versus

specified by our runtime system. In all cases, the sender uses

32 compression threads and 4 sending threads.

5 RELATED WORK

As high-speed data sources proliferate, a range of data-intensive

applications are being implemented in real-world scenarios. These

applications, with their stringent latency and throughput demands,

cannot be adequately supported by traditional batch processing

models. Notable efforts to enhance Data Stream Processing Systems

(DSPSs) have been made by both the research community [29, 43]

and industry giants like SAP[45], Google [17], and Microsoft [9].

However, the ever-increasing performance needs, complex analyses,

and heavy state access requirements of emerging stream applica-

tions [11, 20, 32, 38] present new challenges. Although strides in

computer architecture have sparked a wave of interest in hardware-

conscious DSPSs [43, 44], aiming to exploit modern hardware ca-

pabilities for stream processing acceleration, the heterogeneity in-

troduced by the presence of NUMA and NUMA-to-NIC connection

domain is often overlooked.

Previous research has explored the concept of NUMA-aware sys-

tem optimizationswithin the field of relational databases [21, 31, 34].

RING [33], a NUMA-aware Message-batching runtime system, is

designed to improve efficiency, primarily for irregular applications,

by managing memory through a partitioned global address space

model and leveraging one-sided RDMA API. [15] shows how co-

herence traffic can be constrained in a large, real cache-coherent

NUMA (ccNUMA) platform comprising 288 cores by utilizing a com-

bined hardware/software approach. [8] provides evidence of host

congestion in production clusters, attributing it to the adoption of

high-bandwidth access links, which leads to bottlenecks within the

host interconnect (NIC-to-CPU data path). In contrast, our proposed

runtime system introduces a specialized approach. It holistically

integrates computational and I/O operations, emphasizing efficient

multi-stream data transfers between scientific instruments and HPC

clusters, and strategically orchestrates parallel tasks, significantly

reducing the data volume on the network.

[28] describes a NUMA-aware thread and resource scheduling

methodology to optimize data transfers over terabit networks. [40]

presents that binding processes to the local processor, rather than to

specific cores, improves the efficiency of high-speed data transfers.

[22] delves deeper to understand the end-system bottlenecks for

SC2023 (INDIS workshop), November 2023, Denver, Colorado, USA Jamil, et al.

high-speed TCP flows, emphasizing the significant role of affinitiza-

tion, or core binding, on protocol processing efficiency and how it

changes the performance bottleneck of the network receive process.

In the Network Functions Virtualization (NFV) domain, [18] dis-

cusses the challenges posed by the NUMA architecture inmulti-core

servers for service function chain (SFC) placement. [37] highlights

the importance of considering NUMA architecture when deploy-

ing network processing software for NFV. It introduces the use

of DPDK to enhance data plane performance and addresses the

need for proper thread mapping on physical cores across NUMA

sockets. [25] points out the challenges faced when deploying NFV

on modern NUMA-based Standard High Volume Servers (SHVS),

and proposes a collaborative thread scheduling mechanism to min-

imize end-to-end performance slowdown for NFV traffic flows,

demonstrating improved CPU utilization and traffic throughput.

The above-mentioned studies provide valuable techniques and

execution models but do not directly address our specific prob-

lem - managing the heterogeneity brought about by NUMA and

NUMA-to-NIC connection domain for scientific data streaming

applications. In contrast, our proposed runtime system operates

as a layer above the operating system, specifically designed to

accommodate this heterogeneity. It maintains a knowledge base

of the underlying hardware, including NUMA configurations and

NUMA-to-NIC connection domain, and can accordingly adapt data

streaming and computational resource allocation. This enables the

support of tasks like data compression, maximizing bandwidth uti-

lization, and significantly improving the overall efficiency of data

streaming tasks.

6 CONCLUSION AND LOOKING FORWARD

In an era marked by unprecedented data generation rates, especially

from sophisticated scientific tools, the challenge of optimizing net-

work and resource management for data streaming has never been

more critical. Conventional models are lagging, often overwhelmed

by the pace of advancements in hardware technologies. This lag

can be seen in the common underutilization of resources and the

consequent suboptimal system performance. Despite their inher-

ent benefits, NUMA systems present challenges, especially when

accessing memory segments located remotely from the processing

unit. Addressing this, our research presents a runtime system capa-

ble of managing efficient multi-stream data management, ensuring

optimal compression, decompression, and streamlining based on

the specific hardware characteristics of the host server. The core

of our suggested runtime system consists of data compression, de-

compression, and transfer tasks. Importantly, these tasks aim to

limit the amount of data coming into the network. We report two

major findings that we address with our runtime system: (1) The

strategic allocation of data streaming tasks, in line with the selected

execution CPU, can significantly improve network bandwidth uti-

lization. (2) Incorporating data compression and decompression

into the streaming process optimizes both CPU resource consump-

tion and network bandwidth efficiency. Our empirical evaluations

validate these hypotheses, suggesting that the pinning streaming

tasks with the right NUMA domain can boost throughput by 1.48X

in comparison to state-of-the-art solutions and 2.6X over baseline

configurations.

As we move into a more digital world, we need systems like

ours that are flexible and work efficiently. Looking ahead, our fu-

ture work will focus on developing the dynamic capabilities of our

runtime system. We aim to enable the runtime system to adjust

the allocation of cores to streaming software processes in response

to real-time resource utilization. By closely monitoring the usage

of CPU cores, our runtime system will be able to react to varying

processing demands, further optimizing resource management and

improving the overall performance of the data streaming processes.

This dynamic adjustment will introduce a level of adaptability to

the runtime system, allowing it to better serve in data-intensive

environments where computational needs may fluctuate.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S. National

Science Foundation (NSF), under award 201907 and the U.S. De-

partment of Energy, Office of Science, under contract DE-AC02-

06CH11357.

REFERENCES
[1] [n. d.]. An Introduction to the Intel® QuickPath Intercon-

nect. https://www.intel.ca/content/dam/doc/white-paper/
quick-path-interconnect-introduction-paper.pdf. [Accessed: July 2023].

[2] [n. d.]. APS Upgrade. https://www.aps.anl.gov/APS-Upgrade. [Accessed: May
2021].

[3] [n. d.]. hdf5. https://www.hdfgroup.org/solutions/hdf5/.[Accessed : Septeember
2023].

[4] [n. d.]. numactl. https://github.com/numactl/numactl/tree/master.[Accessed :
Septeember 2023].

[5] [n. d.]. Scaling in the Linux Networking Stack . https://www.kernel.org/doc/
Documentation/networking/scaling.txt. [Accessed: July 2023].

[6] [n. d.]. Spheres Dataset. https://tomobank.readthedocs.io/en/latest/source/data/
docs.data.spheres.html.[Accessed : July 2023].

[7] [n. d.]. ZeroMQ. https://zeromq.org/get-started/.[Accessed : Septeember 2023].
[8] Saksham Agarwal, Rachit Agarwal, BehnamMontazeri, Masoud Moshref, Khaled

Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia Ratnasamy,
David Culler, and Amin Vahdat. 2022. Understanding Host Interconnect Conges-
tion. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Austin,
Texas) (HotNets ’22). Association for Computing Machinery, New York, NY, USA,
198ś204. https://doi.org/10.1145/3563766.3564110

[9] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (aug 2013), 1033ś1044. https://doi.org/10.14778/2536222.2536229

[10] Tekin Bicer. 2014. Supporting Data-Intensive Scientific Computing on Bandwidth
and Space Constrained Environments. Ph. D. Dissertation. The Ohio State Univer-
sity.

[11] Tekin Bicer, Doga Gursoy, Rajkumar Kettimuthu, Ian T Foster, Bin Ren, Vin-
cent De Andrede, and Francesco De Carlo. 2017. Real-time data analysis and
autonomous steering of synchrotron light source experiments. In IEEE 13th
International Conference on e-Science (e-Science). IEEE, 59ś68.

[12] Tekin Bicer, Jian Yin, and Gagan Agrawal. 2014. Improving I/O throughput
of scientific applications using transparent parallel compression. In 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,
1ś10.

[13] Tekin Bicer, Jian Yin, David Chiu, Gagan Agrawal, and Karen Schuchardt. 2013.
Integrating online compression to accelerate large-scale data analytics appli-
cations. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 1205ś1216.

[14] Tekin Bicer, Xiaodong Yu, Daniel J Ching, Ryan Chard, Mathew J Cherukara,
Bogdan Nicolae, Rajkumar Kettimuthu, and Ian T Foster. 2021. High-performance
ptychographic reconstruction with federated facilities. In Smoky Mountains
Computational Sciences and Engineering Conference. Springer, 173ś189.

[15] Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Miquel Moretó, and
Marc Casas. 2018. Reducing Cache Coherence Traffic with a NUMA-Aware
Runtime Approach. IEEE Transactions on Parallel and Distributed Systems 29, 5
(2018), 1174ś1187. https://doi.org/10.1109/TPDS.2017.2787123

Throughput Optimization with a NUMA-Aware Runtime System for Efficient Scientific Data StreamingSC2023 (INDIS workshop), November 2023, Denver, Colorado, USA

[16] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY, USA, 65ś77.
https://doi.org/10.1145/3452296.3472888

[17] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: A
High-Performance Incremental Query Processor for Diverse Analytics. Proc.
VLDB Endow. 8, 4 (dec 2014), 401ś412. https://doi.org/10.14778/2735496.2735503

[18] Venkatarami Reddy Chintapalli, Sai Balaram Korrapati, Bheemarjuna Reddy
Tamma, and Antony Franklin A. 2022. NUMASFP: NUMA-Aware Dynamic
Service Function Chain Placement in Multi-Core Servers. In 2022 COMSNETS.
181ś189. https://doi.org/10.1109/COMSNETS53615.2022.9668603

[19] Yann Collet. 2011. LZ4 - Extremely Fast Compression algorithm. https://github.
com/lz4/lz4. [Online; accessed 6-22-2023].

[20] Juan A. Colmenares, Reza Dorrigiv, and Daniel G. Waddington. 2017. Ingestion,
Indexing and Retrieval of High-Velocity Multidimensional Sensor Data on a
Single Node. arXiv:1707.00825 [cs.DB]

[21] Jana Giceva, GustavoAlonso, Timothy Roscoe, and TimHarris. 2014. Deployment
of Query Plans on Multicores. Proc. VLDB Endow. 8, 3 (nov 2014), 233ś244.
https://doi.org/10.14778/2735508.2735513

[22] Nathan Hanford, Vishal Ahuja, Matthew Farrens, Dipak Ghosal, Mehmet Balman,
Eric Pouyoul, and Brian Tierney. 2016. Improving network performance on
multicore systems: Impact of core affinities on high throughput flows. Future
Generation Computer Systems 56 (2016), 277ś283. https://doi.org/10.1016/j.future.
2015.09.012

[23] Mert Hidayetoğlu, Tekin Biçer, Simon Garcia De Gonzalo, Bin Ren, Doğa Gürsoy,
Rajkumar Kettimuthu, Ian T Foster, and Wen-mei W Hwu. 2019. MemXCT:
Memory-centric x-ray CT reconstruction with massive parallelization. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1ś56.

[24] Mert Hidayetoglu, Tekin Bicer, Simon Gonzalo, Bin Ren, Vincent Andrade, Doga
Gursoy, Rajkumar Kettimuthu, Ian Foster, and Wen-mei Hwu. 2020. Petascale
XCT: 3D Image Reconstruction with Hierarchical Communications on Multi-
GPU Nodes. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 510ś522.

[25] Yang Hu and Tao Li. 2016. Towards efficient server architecture for virtualized
network function deployment: Implications and implementations. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1ś12.
https://doi.org/10.1109/MICRO.2016.7783711

[26] Intelligence Advanced Research Projects Activity. [n. d.]. Rapid Analysis
of Various Emerging Nanoelectronics. https://www.iarpa.gov/index.php/
research-programs/raven. [Accessed: May 2021].

[27] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access Map Pattern Matching for
Data Cache Prefetch. In Proceedings of the 23rd International Conference on Super-
computing (YorktownHeights, NY, USA) (ICS ’09). Association for ComputingMa-
chinery, New York, NY, USA, 499ś500. https://doi.org/10.1145/1542275.1542349

[28] Taeuk Kim, Awais Khan, Youngjae Kim, Preethika Kasu, and Scott Atchley. 2018.
NUMA-aware thread scheduling for big data transfers over terabits network
infrastructure. Sci. Program. 2018 (2018), 1ś8.

[29] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
555ś569. https://doi.org/10.1145/2882903.2882906

[30] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access): An Overview:
NUMA Becomes More Common Because Memory Controllers Get Close to
Execution Units on Microprocessors. Queue 11, 7 (jul 2013), 40ś51. https:
//doi.org/10.1145/2508834.2513149

[31] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for
Computing Machinery, New York, NY, USA, 743ś754. https://doi.org/10.1145/
2588555.2610507

[32] Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. 2019. Deep
learning accelerated light source experiments. In 2019 IEEE/ACM Third Workshop
on Deep Learning on Supercomputers (DLS). IEEE, 20ś28.

[33] Ke Meng and Guangming Tan. 2017. RING: NUMA-Aware Message-Batching
Runtime for Data-Intensive Applications. In 2017 IEEE 23rd International Confer-
ence on Parallel and Distributed Systems (ICPADS). 368ś375. https://doi.org/10.
1109/ICPADS.2017.00056

[34] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-
tasia Ailamaki. 2016. Adaptive NUMA-Aware Data Placement and Task Sched-
uling for Analytical Workloads in Main-Memory Column-Stores. Proc. VLDB
Endow. 10, 2 (oct 2016), 37ś48. https://doi.org/10.14778/3015274.3015275

[35] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos
Kozyrakis. 2011. Dynamic Fine-Grain Scheduling of Pipeline Parallelism. In 2011
International Conference on Parallel Architectures and Compilation Techniques.
22ś32. https://doi.org/10.1109/PACT.2011.9

[36] Somya Singh, Tyler Stannard, Sudhanshu Singh, Arun Singaravelu, Xianghui
Xiao, and Nikhilesh Chawla. 2017. Varied volume fractions of borosilicate glass
spheres with diameter gaussian distributed from 38-45 micronsen cased in a
polypropylene matrix. https://doi.org/10.17038/XSD/1373576

[37] Yongyu Wang. 2017. NUMA-aware design and mapping for pipeline network
functions. In 2017 4th International Conference on Systems and Informatics (ICSAI).
1049ś1054. https://doi.org/10.1109/ICSAI.2017.8248440

[38] Zeyi Wen, Xingyang Liu, Hongjian Cao, and Bingsheng He. 2018. RTSI: An Index
Structure for Multi-Modal Real-Time Search on Live Audio Streaming Services.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). 1495ś1506.
https://doi.org/10.1109/ICDE.2018.00168

[39] Heng Yu, Zhilong Zheng, Junxian Shen, Congcong Miao, Chen Sun, Hongxin
Hu, Jun Bi, Jianping Wu, and Jilong Wang. 2021. Octans: Optimal Placement of
Service Function Chains inMany-Core Systems. IEEE Transactions on Parallel and
Distributed Systems 32, 9, 2202ś2215. https://doi.org/10.1109/TPDS.2021.3063613

[40] Se-young Yu, Jim Chen, Joe Mambretti, and Fei Yeh. 2018. Analysis of CPU
Pinning and Storage Configuration in 100 Gbps Network Data Transfer. In
2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS). 64ś74.
https://doi.org/10.1109/INDIS.2018.00010

[41] Xiaodong Yu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. 2021. Topology-
aware optimizations for multi-gpu ptychographic image reconstruction. In Pro-
ceedings of the ACM International Conference on Supercomputing. 354ś366.

[42] Xiaodong Yu, Viktor Nikitin, Daniel J Ching, Selin Aslan, Doğa Gürsoy, and
Tekin Biçer. 2022. Scalable and accurate multi-GPU-based image reconstruction
of large-scale ptychography data. Scientific Reports 12, 1 (2022), 5334.

[43] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing Efficient Stream Processing on Modern Hardware. Proc. VLDB Endow. 12,
5 (jan 2019), 516ś530. https://doi.org/10.14778/3303753.3303758

[44] Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. 2019. BriskStream:
Scaling Data Stream Processing on Shared-Memory Multicore Architectures. In
Proceedings of the 2019 International Conference on Management of Data (Amster-
dam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New
York, NY, USA, 705ś722. https://doi.org/10.1145/3299869.3300067

[45] Shuhao Zhang, Hoang Tam Vo, Daniel Dahlmeier, and Bingsheng He. 2017.
Multi-Query Optimization for Complex Event Processing in SAP ESP. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). 1213ś1224. https:
//doi.org/10.1109/ICDE.2017.166

	Abstract
	1 Introduction
	2 Background
	2.1 NUMA Architecture
	2.2 NIC Operation in NUMA Architecture

	3 System Architecture and Design Space Exploration
	3.1 Network performance and NUMA
	3.2 Compression performance and NUMA
	3.3 Decompression performance and NUMA
	3.4 Sending and receiving threads and NUMA

	4 Performance Evaluation
	4.1 End-to-End Performance for a Single Stream
	4.2 Performance Comparison

	5 Related Work
	6 Conclusion and Looking Forward
	Acknowledgments
	References

