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Abstract—With the emergence of programmable network de-
vices that match the performance of fixed function devices,
several recent projects have explored in-network computing,
where the processing that is traditionally done outside the
network is offloaded to the network devices. In-network com-
puting has typically been applied to network functions (e.g., load
balancing, NAT, and DNS), caching, data reduction/aggregation,
and coordination/consensus functions. In some cases it has been
used to accelerate stream-processing tasks that involve small
payloads and simple operations. In this work we focus on lever-
aging in-network computing for stream processing of scientific
datasets with large payloads that require complex operations
such as floating-point computations and logarithmic functions.
We demonstrate in-network computing for a real-world scientific
application performing streaming normalization of a 2-D image
from a light source experiment. We discuss the challenges we
encountered and potential approaches to address them.

Index Terms—in-network computing, programmable switches,
scientific streaming analysis

I. INTRODUCTION

The emergence of programmable switches [1] has inspired
new ideas in in-network computing [2]. For instance, early
proposals have explored implementing network functions such
as load balancers fully on the data plane [3]. In-network
cache applications [4], [5] that leverage programmable switch
hardware to implement key-value stores are among early
demonstrations as well. Other researchers have proposed ar-
chitectures that place accelerators next to networking devices
to offload computation on streaming analysis pipelines [6].
However, the most recent trends exclude these types of archi-
tectures from in-network computing [7] definitions.

Modern programmable switches have different processing
capabilities depending on their hardware and software archi-
tectures. In general, their main benefits are high throughput
(10 billion packets/s) and low latency (sub-microseconds).
However, they support only basic arithmetic/Boolean opera-
tions, and they do not allow loops. Although these capabilities
may be sufficient to implement network functions or key-
value stores in the network, scientific applications require more
complex operations. Range normalization and log scaling are
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key ingredients of many image normalization and scientific
computing use cases.

In this work we evaluate the offloading of computational
functions into programmable switches in the context of pro-
jection normalization for tomographic imaging experiments.
In contrast to the accelerator offloading approach, we take
an algorithm transformation approach, similar to how high-
performance computing (HPC) algorithms are optimized to
the hardware where they are running. We present the several
algorithmic transformations needed to perform computations
on programmable switches that are not natively supported.
We discuss the tradeoffs of this process and elaborate on
new directions that can be explored from this approach to
in-network computing. This paper paves the way to achieving
these calculations on network switches. The main contribu-
tions of this paper are the following:

1) An implementation of an algorithm involving floating-
point calculations on a programmable pipeline (BMv2)

2) A pseudo-floating-point (PF) representation for pro-
grammable switches

3) An implementation of logarithmic computation on pro-
grammable switches using the optimal number of table
entries required

The rest of the paper is organized as follows. We provide
background and motivation in §II. We describe our proposed
solution and implementation in §III and §IV, respectively. We
discuss challenges and tradeoffs in §V, and summarize our
conclusions in §VI.

II. BACKGROUND AND MOTIVATION
A. Stream Processing in Light Source Facilities

Light sources are crucial tools for addressing grand chal-
lenge problems in the areas of life sciences, energy, climate
change, and information technology [8]. For instance, the X-
rays produced at a light source enable scientists to study
internal morphology of materials and samples with very high
spatial (atomic and molecular scale) and temporal (<100 ps)
resolutions. These experiments can generate massive amounts
of burst data. For example, tomographic imaging stations



can collect 1,500 projections (images each with 2,048 x
2,048 pixels) in 9 seconds, generating data at a rate of
>8 Gbps. These projections are then processed at remote
high-performance computing (HPC) facilities. Tomographic
imaging stations (generating the data) are connected to their
corresponding HPC compute nodes (analyzing the data) via
wide-area networks. Data processing can be performed after
all data is generated (postprocessing) or in real time (streaming
analysis). Real-time streaming and analysis of tomographic
imaging data enable scientists (or the control software) to
(1) make timely decisions that can significantly accelerate the
execution of experiments and (2) do smart experimentation,
such as changing the parameters interactively to enhance the
overall efficiency of end-to-end scientific workflow.

B. In-Network Computing and Programmable Switches

In-network computing is the process of offloading opera-
tions from end hosts into networking devices (e.g., switches,
routers, or smart NICs) [2]. It focuses on computing within
the network, using devices that are already being used to
forward traffic [7]. Recent developments in programmable
switches have increased the interest in in-network computing.
Programmable switches seek to allow network operators and
programmers to define exactly how packets are processed in a
reconfigurable switch chip [1], [9] or a virtual programmable
switch [10], [11] through high-level programming languages
such as P4 [12]. Since networking devices are limited in
memory (use of expensive TCAMs), set of actions (only
arithmetic/Boolean operations), and operations per packet (no
loops), only applications that follow a partition/aggregate
pattern (e.g., big data analytic and machine learning, graph
processing, and streaming analysis) can be offloaded to net-
working devices [2].

Figure 1 illustrates a generic in-network computing use case.
In general, a programmable switch may perform a function on
the data stream that would have otherwise been executed on
an end node. It computes a result (e.g., future parameters of an
experiment) that could be consumed by an application (e.g., a
data acquisition node collecting tomographic images).
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Fig. 1: In-network computing on programmable switches

C. Related Work

In 2015, Dang et al. [13] explored two approaches to
deploy the Paxos consensus protocol in network devices: (1)
implementation of the full logic of Paxos on SDN switches
using OpenFlow extension [14] and (2) an optimistic pro-
tocol that does not require changes to the OpenFlow API.

In 2016 Katta et al. [3] proposed HULA, a scalable load
balancer implemented in programmable switches using P4. In
2017, two independent works presented in-network caching
solutions that leverage programmable switches: NetCache [4]
and IncBricks [5]. While NetCache is fully implemented in
Barefoot’s Tofino chip [9], IncBricks is a hardware/software
co-designed system that relies on network accelerators.

Sapio et al. [2] proposed DAIET, a system for data ag-
gregation in-network. It was implemented by using P4 and
a programmable ASIC and evaluated with a MapReduce-
based application. Jepsen et al. [15] studied what abstraction
are need to support stateful processing in programmable
switches by implementing the LinearRoad benchmark for
stream-processing systems in P4.

D. Motivation

As shown in Section II-C, most of the current demon-
strations of in-network computing try to find a best match
between application and programmable switch functionalities.
However, scientific applications are heavy users of floating-
point and logarithmic operations (two operations that current
programmable switches lack). Thus, we pose the question:
Can we use algorithmic transformations and approximations
to offload scientific computation to the network? Without loss
of generality, we use the projection normalization process of
tomographic imaging as an example to demonstrate that this
strategy is possible.

III. IN-NETWORK NORMALIZATION

In this section we describe the projection normalization pro-
cess of tomographic imaging. Next we highlight the challenges
of implementing projection normalization on programmable
switches. We then introduce our proposed solution.

A. Projection Normalization in Tomographic Imaging

Normalization of incoming projections (i.e., X-ray images)
requires simple arithmetic operations. These projections are
typically 2,048 x 2,048 pixels in size, with each pixel rep-
resented as a 16 bit unsigned integer (i.e., 4M x 16 bits =
8 MB). They are transferred over the network in an uncom-
pressed form as a sequence of pixel values. For normalization,
scientists need to collect and store two types of projections
before experimental data acquisition starts: dark (d) and white
(w). Both d and w projections are collected without a sample
between the light source and the detector. While d projection
is collected when the light source is turned off, w projection
is collected when the light source is turned on. Typically,
scientists collect 10-20 images and average them to produce
d and w projections. Then the sample is placed on the
observation table to capture the sample image. Scientists use
d and w projections to normalize images collected during
experimentation (i.e., cancel the errors due to equipment setup
and illumination).

For each incoming pixel p;, the normalization procedure
produces a normalized pixel n; by performing the following
operations on the image:



1) The difference between a sample image pixel and its
corresponding dark pixel average is computed, §; = p; —
d;.

2) This difference is divided by the range computed from
the difference between the corresponding white and dark
pixels, r; = (w‘sf‘d)

3) After range-based normalization, r; is transformed to
logarithmic scale to complete the normalization process

n; = 1og Ti.

B. Opportunity

We envision that any switch in the network could execute
the required operations for projection normalization, as we
split operations along the path between source and destination.
The advantage of pipelining data transfer and computation is
that it may save time compared with doing it after moving all
the data to the HPC compute nodes. Furthermore, by executing
these computations in the network, we can free cycles from
supercomputers that could be used for more complex tasks.

When we observe the normalization procedure closely, we
see that the input pixel values are in the integer domain Z*
and the output is in the real domain R. The second step maps
data from Z* — [0, 1] € R. Further, the logarithm maps from
the real domain onto itself, R — R.

By performing these operations in the network, we could
leverage the programmable pipeline and in-network computing
capabilities of the network switches. A programmable pipeline
is composed of multiple stages, each with a lookup table and
ALU resources. These resources can be programmed to realize
an in-network function. For instance, lookup tables support a
wide variety of key matching capabilities (e.g., exact, longest-
prefix, and ternary match), and ALU resources support various
arithmetic/logical operations on integers and arbitrary-length
bits [12].

C. Challenges

Projection normalization is simple when performed on a
CPU- or a GPU-based system that supports floating-point
operations. However, three key challenges arise in perform-
ing this operation on network switches. Specifically, existing
programmable network switches do not support division (only
integer divisions are supported), floating-point arithmetic, and
logarithmic function.

D. Proposed Solution

Despite these deficiencies, network switches store and for-
ward the pixel values in the packet payload. We note that
the entire packet is buffered and then retrieved before it
gets forwarded. This process provides a good opportunity
for any data transformations on the packet payload. When
performing stream and image processing, complete payload
transformations are of specific interest, as shown in Fig. 5.

At a high level, we propose to circumvent the lack of
division operation by modifying our algorithm to perform
logarithmic subtraction instead of division. We propose to use
pseudo-floating-point representation to overcome the absence
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Fig. 2: Pseudo-floating-point representation

of floating-point support. Furthermore, to add logarithmic
operation support, we will use lookup tables to compute linear
piecewise approximations.

IV. IMPLEMENTATION DETAILS
A. Modified Algorithm

We adapted the sequence of operations for in-network
normalization algorithm as follows:

1) Compute §; = p; — d;: A lookup table provides the
d; value based on a flow tuple. Then, ALU resources
compute the difference in Z (integer) domain.

2) Perform logarithmic transformation on log d;: A lookup
table is used to compute the logarithmic equivalent
based on a linear piecewise approximation equation
logz = logz’ + %Aaz. Here, 2’ is the nearest quan-
tization interval, and the deviation from this interval
Az = x — 2. For this computation, we store log z’
and the slope Z—Z as the lookup output. The computation
output accuracy depends on the log transformation. This
is presented in the next section.

3) Replace division with subtraction in the logarithmic do-
main: Subtract log ; from the precomputed log(w; —d;).
A lookup table provides the precomputed log(w; — d;)
value for the corresponding pixel. Then, ALU resources
compute the difference.

4) Transform the output into floating-point representation
2

For this computation, besides the payload stream, two other

streams carrying average d; values and log(w; — d;) provide
the context for the operation. We assume that these values
have been precomputed and stored on the switches as table
entries.

B. Pseudo-Floating Point

Programmable switches do not support floating operations
natively because of the complexity. For instance, the exponents
of the floating-point values must be matched before the
subtraction operation in step 3. To eliminate this complexity at
every step, we propose a pseudo-floating-point representation.

In a PF representation, all values share a common implicit
exponent (see Fig. 2). This implicit exponent, eliminates the
need for having to match the exponents at every step of
intermediate computations. Thus, we can perform steps 2 and
3 on a network switch without floating-point support. At the
end in step 4, this intermediate representation is converted into
a well-known floating-point representation.
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Fig. 3: Error for different numbers of entries

C. Logarithm Approximation

The accuracy of the computation depends on the accuracy
of the logarithmic interpolation. The logarithmic function
monotonically increases with its input. There is also a one-to-
one mapping between its input and the output (i.e., given any
real value, it has only one logarithmic value). These properties
help increase the accuracy of interpolation.

We use a linear piecewise approximation for computing

d
logz = logz’ + %Y Az. This makes use of the function value

at the quantized igrclterval 2’ and the slope of the function
observed for interpolation. The entire range of x is divided
into ranges, and the starting value is used as z’. For instance,
in the range (2,4), logz’ = log, 2 = 1 and j—g =1=05
With this approach, the maximum error € = 0.0849 when
x = 3. Figure 3 shows that the error decreases as x increases.
Here we present a numerical example considering a single
pixel (p;):
1) 6; = pi —d; = 2557 — 99 = 2458
2) logd; = loga’ + Az = 11794307 + 617 * (2458 —
2432) = 11810349 in PF representation with 4 as its
implicit exponent.
3) log(w; —d;) —log d; = 11815309 — 11810349 = 4960.
This corresponds to 0.00473 in PF 16-bit representation.
. The error with approximation for this pixel is 0.0089 (< 1%).
Next we find the optimal number of entries required to
realize the log function by computing the error. We choose
both the range of p; and the number of table entries to be
a power of 2. The range is divided on a linear scale. Thus,
the last few bits of all table keys is zero and are easy to
represent with an ‘“exact” match. From the error graph we
can see that 32 entries result in high errors compared with
128 entries. However, adding more entries than 128 does not
improve errors by a significant margin. The error in the first
interval between 1 and 32 is high. To reduce the error, we use
customized entries.

D. P4 Implementation

We implement the algorithm for in-network projection
normalization in P4 BMv2 [10] using four tables. Each
pixel is parsed as a 16-bit value p;. The first table maps
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Fig. 4: Comparison of pixel normalization with the proposed
in-network algorithm

the flow to dark pixel values d;, which is used to com-
pute 9; = p; — d;. The second table then is used to
compute logarithmic transformation. The key is computed
by right shifting one, two, and five bits for different
ranges {2},{4,8,12,...,28},{32,64,96,...,4096}, respec-
tively. Then, the key is exactly mapped to its value and slope
corresponding to linear piecewise approximation. Next, the
third table maps the flow to log(w; — d;) value. This is used
to compute the logarithmic difference between log(w; — d;)
and log §;. The fourth table then converts the pixel value in
pseudo-floating-point representation to float-32 representation.
Our code can be accessed at [16].

E. Final Normalized Image

The images in Fig. 4 present the pixel normalization with
the original procedure and with our proposed in-network
algorithm. We can see that the central portion of the image
is similar. This shows that the values computed by using the
proposed algorithm are a good approximation to the pixel
normalization procedure. Considerable amount of noise is
observed on the sides of the image when a pixel value p; is
out of range (d;, w;). When normalizing on a CPU, any value
more than the maximum gets converted into a negative value.
The modified algorithm approximation converts this value into
a large positive value, resulting in a white dot. We could add
a zero slope table entry for out-of-range values to reduce this
noise.

V. DISCUSSION

This section outlines the open questions and possible ap-
proaches to address these challenges.
GPU vs CPU vs Processor-in-Memory Architecture vs
Programmable Switch: Figure 5 shows the abstract form of
projection normalization. The CPU performs a wide variety
of operations on short data types. On the other hand, the
GPU performs a small set of operations on wide data widths.
The CPU is capable of executing steps both row-wise (Step
1 before Step 2) and column-wise (p; before py). GPUs are
better at executing the steps row-wise. Currently, ToR switches
support up to 6 Tbps switching capacity. At 1 GHz clock rate,
at least 6,000 bits of payload must be retrieved and processed
every clock cycle to meet this switching capacity. Fast memory
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Fig. 5: Pixel-wise projection normalization

modules coupled with wide-width payload processing capa-
bility will be required to support this data rate. GPUs with
wide width are suitable for this operation. Another option is
to explore processor-in-memory architectures that can process
the payload when it is stored in the packet buffer. This gives
a few more cycles for payload processing.

Table Reuse: The current switch pipeline does not allow for
multiple fields to use the same table and its entries. For the
image-processing example, all pixels use the same logarithm
transformation. In a jumbo packet with around a 9000 byte
payload of 16-bit pixel values, the current pipeline requires
thousands of logarithm tables. This requirement is both a
language issue and a run-time issue that is worth looking at.
Distribution: Since the normalization operation is now laid
out as a sequence of pipeline stages, this computation can
be realized within a single network switch or across multiple
switches. This presents many interesting options for processing
different portions of the payload on different network switches.
A more interesting distribution approach is to look at both the
algorithmic steps and different portions of the payload. As
shown in Fig. 5, steps and pixels can be mapped in various
ways onto network switches.

Routing for Computation: Traditionally, routing algorithms
find the shortest path between the source and destination for
transferring packets. From an in-network computing perspec-
tive, a longer network path capable of meeting the latency
and compute requirements is more suitable than choosing the
shortest path.

Super Jumbo Frames: When higher-precision output is
desired, the payload size is likely to increase. For instance,
when float-32 representation is the desired output for a 16-bit
input, the payload bloats by a ratio of 2 (i.e., %). When using
jumbo payloads, super jumbo frames must be supported on
the network to accommodate the computation results.

VI. CONCLUSION

In this paper we demonstrated how to leverage in-network
computing for performing scientific operations (that are not
supported in network devices) using approximations in a
streaming fashion. We used a real-world light source science
application for our study. We presented an algorithmic ap-
proach to perform unsupported operations such as floating-
point and log operations on network switches. We showed how

to minimize the error introduced by the approximation. We
discussed the challenges, open issues, and possible directions
to address them.
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