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Minimal framework for optimizing vaccination protocols targeting highly mutable pathogens
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A persistent public health challenge is identifying immunization schemes that are effective against highly
mutable pathogens such as HIV and influenza viruses. To address this, we analyze a simplified model of affinity
maturation, the Darwinian evolutionary process B cells undergo during immunization. The vaccination protocol
determines the selection forces that steer affinity maturation to generate antibodies. We focus on identifying the
optimal selection forces exerted by a generic time-dependent vaccination protocol to maximize the production
of broadly neutralizing antibodies (bnAbs) that can protect against a broad spectrum of pathogen strains. The
model utilizes a path integral representation and operator approximations within a mean-field limit and provides
guiding principles for optimizing time-dependent vaccine-induced selection forces to enhance bnAb generation.
We compare our analytical mean-field results with the outcomes of stochastic simulations, and we discuss their
similarities and differences.
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I. INTRODUCTION

The adaptive immune system has a remarkable ability to
detect and combat a virtually unlimited number of previously
unseen pathogens [1,2]. Immune responses are mediated by
T lymphocytes (T cells) and B lymphocytes (B cells), each
equipped with surface receptors known as T cell receptors
(TCRs) and B cell receptors (BCRs), respectively. In a healthy
human adult, there are approximately 1011 T cells and B
cells distributed throughout the body [3]. With the staggering
number of TCR and BCR sequences (>1014) generated via
the V(D)J recombination process [4], most T cells and B
cells express a unique surface receptor distinct from others.
This extensive receptor diversity enables the immune system
to mount specific responses against each new pathogen en-
countered, including those that emerge after an individual’s
birth.

Upon exposure to a new pathogen or vaccine component
(collectively referred to as antigens), B cells and antibod-
ies with high binding affinity for the surface proteins of the
pathogen are generated by a process called affinity maturation
[1,5]. Affinity maturation entails an accelerated Darwinian
evolution of naive B cells, and it occurs within specialized
structures called germinal centers (GCs), which are transiently
formed in secondary lymphoid organs such as lymph nodes
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[6]. First, naive B cells undergo activation and become a
candidate for entry into GCs if their BCRs can bind suffi-
ciently strongly to specific residues known as epitopes on the
surface proteins of the antigen [5]. Upon entering the GC,
the activated B cells undergo rapid replication while concur-
rently accumulating somatic mutations into their BCRs at an
accelerated rate. The GC B cells then interact with the infect-
ing antigen, which is displayed on follicular dendritic cells
(FDCs) located within the GC environment. B cells whose
receptors exhibit stronger binding to the displayed antigen
have a greater probability of internalizing the antigen and
are consequently more likely to undergo positive selection.
Positive selection involves multiple stages of productive in-
teractions of the B cells with certain T cell types within the
GC. Conversely, B cells with low-affinity BCRs are typically
eliminated via apoptosis as they are less likely to successfully
compete with high-affinity B cells for the limited selection
signals [7].

The majority of positively selected GC B cells undergo
multiple rounds of replication, somatic mutation, and selec-
tion processes. As a result of the competition among GC B
cells during the affinity maturation process, an initially naive
B cell population with low-affinity BCRs gradually evolves
to exhibit strong binding to the antigen. During each round, a
small number of the positively selected B cells exit the GCs
and differentiate into either plasma cells or memory B cells
[5,7]. Plasma cells secrete antibodies, which are soluble forms
of the BCR that can bind the antigen’s surface proteins with
high affinity and neutralize the pathogen’s ability to infect
host cells. Thus, the affinity maturation process generates
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an effective immune response by producing antibodies that
specifically neutralize a particular pathogen [5].

Memory B cells, on the other hand, play a crucial role in
the immune system by retaining a memory of the antigen that
activated their parent B cell during the initial exposure. This
immunological memory enables a rapid immune response
upon reencountering the same antigen in the future [7]. Upon
reexposure to a pathogen, existing memory B cells are se-
lected in an affinity-dependent manner and rapidly expanded
outside GCs, a process akin to the mechanisms occurring
within GCs but with little to no mutation [1]. A significant
fraction of these expanded memory B cells differentiate into
plasma cells, secreting a surge of antibodies that offer im-
mediate protection. Meanwhile, new GCs are also formed,
producing even higher affinity memory B cells and antibodies
over more extended timescales, hence bolstering the immune
response against the recurring pathogen.

Vaccines leverage immunological memory to confer pro-
tection against severe or life-threatening illnesses caused by
specific pathogens they target [8,9]. By eliciting memory cells
and antibodies, vaccines prime the immune system to mount
a rapid and specific response to the targeted pathogen upon
subsequent exposures [8]. While vaccines have significantly
improved in terms of safety and efficacy over time, developing
effective vaccines against highly mutable pathogens remains
a continuing challenge. Pathogens such as HIV, influenza, and
SARS-CoV-2 mutate rapidly, allowing them to evade the im-
mune responses targeted at specific strains. Surface proteins
of highly mutable viruses can exhibit significant variation
across different strains, rendering vaccine-induced antibodies
that neutralize a specific strain ineffective against other strains
of the virus. This variability complicates vaccine development
efforts, as vaccines must contend with the ever-evolving na-
ture of these pathogens.

It is well-established that certain residues within the sur-
face proteins of highly mutable viruses remain relatively
conserved across mutant strains to preserve a virus’s ability to
infect host cells [10,11]. Antibodies targeting these conserved
regions, or epitopes, hold the potential to neutralize a broad
spectrum of virus strains [12–14]. These broadly neutraliz-
ing antibodies (bnAbs) can naturally evolve in HIV-infected
patients, demonstrating the immune system’s ability to elicit
such cross-reactive antibodies [14,15]. However, bnAbs are
generated only in rare individuals in response to natural
infection or conventional vaccination, and their emergence
typically occurs over extended periods and in limited quan-
tities, thus offering limited protection [15–17]. Vaccination
strategies aimed at eliciting bnAbs have emerged as a promis-
ing approach for diseases like HIV and influenza [14,16,18].
These vaccines have the potential to confer protection against
variant strains by inducing a robust immune response targeted
at conserved epitopes. Despite the advancements, designing
universal variant-proof vaccines for mutating pathogens re-
mains a formidable challenge, as the typical immune response
to such pathogens is predominantly driven by strain-specific B
cells and antibodies.

For modeling purposes, we can conceptualize the affinity
maturation process as the evolutionary population dynamics
of B cells "species" within GCs, characterized by inherent
stochasticity stemming from randomness in various steps

including B cell activation, GC entry, replication, antigen
internalization, T cell selection, and more. In this framework,
vaccine antigens serve as external interventions guiding this
stochastic dynamics process towards desired goals. Design-
ing vaccination protocols that confer broad protection against
mutant viruses entails selecting appropriate external factors
that steer GC processes to increase the likelihood of rare
evolutionary trajectories leading to the development of bnAbs.
For instance, external manipulations can involve immuniza-
tion with variant antigens sharing conserved regions of a
virus’s spike while differing in variable parts. Experimental
and computational investigations have focused on enhanc-
ing bnAb production through carefully designed vaccination
protocols [14,19–23], but achieving success remains elusive.
Albeit constrained, there are various routes to guiding affinity
maturation, including use of variant antigens, number of vac-
cine doses, timing between shots, antigen composition in each
shot, and dosage. The large space of variables for choosing
vaccination protocols makes an unguided search unlikely to
succeed.

Computational approaches have proven invaluable in sys-
tematically exploring the large space of vaccination protocols,
providing insights into the outcomes of affinity maturation
in response to diverse vaccine designs [24]. Several compu-
tational studies have investigated the efficacy of sequential
and cocktail immunization procedures for eliciting bnAbs,
highlighting an optimal difference between the variable parts
of antigen variants included in vaccine shots that maximize
the likelihood of bnAb production [22,23,25,26]. Signatures
of such optimal antigen differences have been observed in
HIV patients who naturally develop bnAbs [27,28] and in
mice vaccinated by sequentially administered influenza anti-
gens [19,29,30]. Mechanistic explanations for why an optimal
difference between variant antigens promotes bnAb evo-
lution have also been proposed [22,23,25,26]. It is worth
noting that existing computational studies typically focus
on immunization with a fixed cocktail of antigens [25,26]
or sequential procedures where the variable parts of the
antigens are sufficiently different to maximize the selection
pressure in favor of the bnAb sequences [22,23]. However,
Refs. [19,31] reported that sequential immunization protocols
effectively progressed toward generating bnAb-like antibod-
ies in engineered mice only when the structure and sequence
of the stimulating epitopes changed gradually with subsequent
boosts.

In this paper, we use analytical and computational methods
to model the complex task of designing vaccines capable
of eliciting immune responses that confer protection against
diverse mutant strains within a virus family. To unveil guiding
principles for optimizing bnAb production, we investigate
generic time-dependent vaccination schemes that involve ad-
ministering mixtures of relatively similar antigens over time.
Our model significantly expands upon previous works in
Refs. [23] and [22] by allowing variations in both the lo-
cation and spread of the fitness landscape induced by the
vaccination protocol. To describe BCR-antigen interactions,
we adopt a shape-space representation [32,33], which enables
us to capture the essence of the evolutionary dynamics of
B cell populations in response to vaccination in a minimal
framework.
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The rest of the paper is organized as follows: In Sec. II, we
describe a simplified model that captures the essential steps of
affinity maturation of the B cell population in GCs, namely
replication, apoptosis, and mutations. After developing a
mean-field approximation to the stochastic dynamics, Secs.
III A and III B provide optimization results based on a path
integral representation, and operator approximation methods.
In particular, for a Gaussian initial germline B cell population
that is away from the bnAb state, we derive an exact identity
[Eq. (10)] that directly provides the mean-field prediction for
the optimal location for the focus of the fitness landscape
imposed by the vaccine [Eq. (9)]. Using this identity, along
with operator methods for approximating the solution to the
population dynamics, we obtain a result [Eq. (16)] that enables
us to investigate the optimal spread of the vaccine fitness. We
next compare the mean-field predictions with stochastic simu-
lations in Sec. IV. Finally, we present concluding remarks and
outline future research directions in Sec. V. There are four
Appendixes that contain further information regarding the
derivation of the continuum mean-field model (Appendix A),
the details of the path integral calculation (Appendix B), the
operator approximation for the discrete-bin dynamics (Ap-
pendix C), and different aspects of the B cell dynamics under
different vaccine protocols (Appendix D).

II. THEORETICAL MODEL

A. Minimal model for BCR evolution

To construct a mechanistic model of affinity maturation, we
frame it as the population dynamics governing the evolution of
B cells—or equivalently, their BCRs—where replication rates
are determined by their binding affinity to the stimulating anti-
gen. The interaction between BCRs and antigens is typically
captured through phenomenological approaches such as the
string model [22,25,34]. Here we adopt a more coarse-grained
approach based on the concept of shape-space representa-
tion [26,32,33], where BCRs and antigens are represented
by points in a d-dimensional Euclidean space (Fig. 1). Each
dimension in this space corresponds to parameters pertinent to
calculating BCR-antigen interactions, including factors such
as amino acid sequences, spatial conformations, hydropho-
bicity, and the like. As these coordinates can assume distinct
values, we initially discretize the shape space into a number of
similarity bins indexed by their location x = (x1, x2, . . . , xd ).

BCRs and antigens positioned closely in shape space are
presumed to have complementary characteristics that allow
them to bind strongly, while those situated farther apart exhibit
weaker binding [32,35]. Following the approach outlined in
Ref. [26], we characterize the binding free energy between a
BCR and an antigen located in similarity bins RBCR and RAg
by their distance as

Ebind ∝ kBT ||RBCR − RAg||2.
Consequently, the associated binding affinity is expressed as
(Ethr − Ebind ), with Ethr denoting the threshold binding free
energy for B cell activation. B cells bind to the antigen
presented on the FDCs with an affinity determined by the
equilibrium constant of the BCR-antigen binding, defined as
Ka = exp[(Ethr − Ebind )/kBT ]. Increased affinities correspond
to stronger BCR-antigen binding with higher equilibrium con-

FIG. 1. Schematic depiction of a d-dimensional shape space. The
germline B cell population n0(x) (in blue) is centered at µ0 with
a spread of σ0, while the vaccine-induced fitness profile (in red) is
parametrized by the its center xV and spread σV . The blue and red
dots denote specific antibodies and antigens, respectively, and the
bell-like surfaces are the coarse-grained approximations of the cor-
responding density profiles. Given a constrained total vaccine dose
[Eq. (4)], the objective is to determine a time-dependent vaccination
profile that optimally shifts the B cell population in shape space,
ultimately maximizing the final bnAb count corresponding to BCRs
located at x = 0.

stants. Affinity maturation can amplify the binding affinity
of naive BCRs tenfold, and its associated Ka a thousandfold
[36]. Furthermore, we assume that BCRs located closer to
the origin (x = 0) in the shape space have greater affinity
toward the conserved residues of the antigen surface proteins.
These BCRs exhibit increased tolerance to mutations in the
surrounding variable residues of the antigen, facilitating the
elicitation of bnAbs. Our objective, therefore, is to devise a
vaccination procedure conducive to directing affinity matura-
tion to optimally guide the initially naive BCRs toward the
x = 0 bin.

Since high-affinity B cells are more likely to undergo pos-
itive selection and further replication, the binding affinity to
the vaccine antigen(s) effectively imposes a fitness function
on GC B cells. When a single antigen type is included in a
vaccine shot, the induced fitness function exhibits a sharply
peaked distribution centered around the complementary BCR
bin within the shape space. This distribution features a mini-
mal spread, denoted as σmin, to encompass nearby bins whose
BCRs may also bind the given antigen, albeit with reduced
affinity. Conversely, in the case of a cocktail shot containing
mixtures of different antigen types, the overall fitness function
results from the summation of the individual fitness func-
tions induced by each antigen type.1 This typically yields a
nonconvex fitness landscape with multiple peaks and valleys.
However, if the antigens included in a cocktail shot are suf-
ficiently similar (e.g., sharing a common epitope containing
conserved residues and surrounding variable portions that are
different), the individual fitness peaks would cluster closely
in shape space. Henceforth, we assume the administered anti-

1We are assuming a "see all" scenario wherein the antigens are
well-mixed and presented homogeneously on FDCs, such that B cells
encounter all the vaccine antigens at every round [26].
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gens at each time point are sufficiently similar to allow for
approximating the overall vaccine-induce fitness landscape
with a smooth convex function encompassing these peaks
(Fig. 1). The resultant coarse-grained fitness function is then
roughly centered in the midst of the individual antigens, with
a spread generally narrower for more similar antigens. We
represent this coarse-grained fitness function as V (x), with its
peak located at xV (referred to as the vaccine center or focus)
and its spread denoted as σV . It is worth noting that under the
assumption of similar antigens, xV may generally be distant
from the BCR bin associated with the bnAb sequences.

Now let us describe a minimal model for the affinity mat-
uration process within the representation outlined above. The
germline distribution that initially seeds the GCs is denoted
by n(x, t = 0) ≡ n0(x). As affinity maturation progresses, this
distribution evolves over time to n(x, t ). We model the evolu-
tion of BCRs during affinity maturation through the following
stochastic processes:

(1) Replication: the rate of B cell replication is determined
by the stimulating antigen(s) included in the vaccine dose. By
altering the composition of the presented antigens, we assume
it is possible to modulate the vaccine-induced fitness, V (x, t ),
across different bins in shape space, with corresponding time-
dependent vaccine center and spread, xV (t ) and σV (t ). Note
that we introduce a time dependence in V to accommodate
vaccination protocols where different antigens or cocktails of
antigens are introduced at different times.

(2) Mutation: BCR mutations occur with rate γx,y, corre-
sponding to jumps between shape-space bins x and y. While
nucleotide mutations can theoretically move a BCR between
any two similarity bins, the coarse-grained nature of shape-
space coordinates—reflecting the effect of many amino acids
on the binding affinity—suggests that large jumps are ex-
ceedingly rare. For the simplified mean-field model in the
next section, we will assume mutational jumps are local and
only occur between nearby bins. This assumption allows us
to model them by the diffusion of BCRs in the appropriate
continuum limit.

(3) Apoptosis: B cells die with rate λx, representing their
baseline apoptotic tendency within GCs when not receiving
positive selection signals [5,37].

The rules outlined above describe a generalized linear
birth-death-mutation process, and they are encapsulated in the
following Fock space master equation [38,39]:

∂t P({n}, t )

=
∑

x

Vx(t ) [(nx − 1)P({n} − Ix, t ) − nxP({n}, t ))]

+
∑

x,y

γx,y[(nx + 1) P({n} + Ix − Iy, t ) − nxP({n}, t )]

+
∑

x

λx [(nx + 1)P({n} + Ix, t ) − nxP({n}, t )]. (1)

Here, the BCR population is denoted by {n} = {n1, n2, . . .},
where ni is a non-negative integer representing the occupation
number of the ith bin, and P({n}, t ) is the probability of having
that specific population at time t . On the right-hand side of the
above equation, we use {n} ± Ix to denote a population that

differs from {n} by one more or one less B cell residing in
bin x.

Each line on the right-hand side of Eq. (1) represents the
total rate of change of population probabilities (i.e., gain
minus loss) caused by replication, mutation, and apoptosis
events, respectively. It is worth noting that by describing the
occupancy numbers of the shape-space bins, the solution to
Eq. (1) would provide a probabilistic description of the entire
BCR population in the high-dimensional shape space.

B. Mean-field dynamics and the continuum limit

The abstract model described above offers a simplified
perspective on affinity maturation. However, deriving insights
from the resulting master equation [Eq. (1)] is challenging
due to the exponentially large Fock space and the intercon-
nectedness of the time evolution for all configurations {n}. To
address this, and obtain an analytically tractable formulation,
we consider the dynamics of population averages, denoted
by 〈nx(t )〉 =

∑
{n} nxP({n}, t ), and, subsequently, taking the

continuum limit of the shape space. This leads to the following
continuum mean-field equation (see Appendix A for deriva-
tion):

∂t n(x, t ) = D ∇2n(x, t ) + [V (x, t ) − λ] n(x, t ), (2)

where, for notational simplicity, we retain the symbol n to
represent the average population density in the continuum
limit of x. We also assume the death rate λ and the diffu-
sion coefficient D [obtained from the underlying mutation
rates via Eq. (A7)] are constants independent of x. Note that,
as described earlier, we consider vaccines with either single
antigen types or cocktails wherein the administered antigens
are not substantially different from each other. Consequently,
at any given time point, the most cross-reactive BCRs to
the administered vaccine antigens—namely, BCRs located at
xV (t ) in the center of the fitness—may not correspond to a
bnAb sequence. This is somewhat distinct from the setting
described in Ref. [23], where the administered antigens are
different enough that bnAb sequences are always the most fit.
The situation we consider here is akin to the experimental
scenarios described in Refs. [19,40]. In these experiments,
similar to our model, the sequentially administered antigens
bridge the gap between epitopes that efficiently activate the
appropriate germlines and those for which bnAbs are needed
to target the conserved region.

Solving the mean-field dynamics [Eq. (2)] requires spec-
ifying the initial germline distribution, which typically has
little overlap with the target bin in shape space. We thus
assume n0(x) is centered at a distant location µ0, and it has
a width σ0 that is an indication of the diversity of the germline
BCRs (see Fig. 1). In the spirit of the central limit theorem,
we model n0(x) by a normal distribution,

n0(x) = N0
e
− (x−µ0 )2

2σ2
0

(
2πσ 2

0

)d/2 ≡ N0G
(
x − µ0, σ

2
0

)
, (3)

where G denotes the Gaussian function. Here, N0 represents
the total number of activated B cells at t = 0.
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Our objective is to determine an optimal vaccination strat-
egy, characterized by {xV (t ), σV (t )}, that maximizes the final
bnAb population denoted by n(x = 0, t f ) ≡ n f (0) while ad-
hering to a constrained total vaccine dose, i.e.,

∫ t f

0
dt

∫
dd xV (x, t ) = const. (4)

Equation (2) resembles the imaginary-time Schrödinger equa-
tion with a time-dependent potential [41]. Typically, such
equations lack analytical solutions, rendering a direct ap-
proach to the maximization problem infeasible.

Before delving into the analysis of the model, we sum-
marize the assumptions made to simplify the model and
acknowledge their associated limitations:

(1) We interpret Eq. (4) as imposing a constraint on the
total amount of administered antigens in vaccine doses. This
interpretation implies a linear relation between the fitness
function V [appearing on the left-hand side of Eq. (4)] and
the amount of the administered antigen. However, V (x, t )
can generally be a complicated function of the antigen
concentration, incorporating nonlinear terms that arise from
various factors such as competition between B cells for GC
entry, positive selection within GCs, and epitope masking
(see, e.g., Refs. [5,42–44]). These effects are ignored in the
present model. Nonetheless, the linear relation between fit-
ness and vaccine dose remains a plausible approximation
if selection based on the amount of internalized antigen is
not overly stringent. This approximation is consistent with
the linear structure of the birth-death-mutation model of
Eq. (1).

(2) We assume that mutational jumps occur independently
of replication events, exert incremental effects on BCR affin-
ity, and they are equally probable in any direction (i.e., they
are isotropic). These assumptions underlie the symmetric
form of the diffusion term in the mean-field dynamics, as
included in Eq. (2), along with the vanishing drift term (see
Appendix A). In a more realistic model, mutations primar-
ily occur during B cell replication events. Point mutations
in a BCR sequence typically reduce its affinity to a given
antigen, making them more likely to be deleterious or silent
rather than beneficial [45]. Consequently, the corresponding
coarse-grained dynamics in the shape space would feature
a nonhomogeneous diffusion term and a nonvanishing drift
term. Additionally, since deleterious mutations can signifi-
cantly reduce the affinity of a BCR to the antigen [43,45,46],
potentially long-ranged steps (i.e., nonlocal in the shape
space) should generally be included in a more accurate coarse-
grained mean-field dynamics.

III. ANALYTICAL RESULTS

As mentioned earlier, solving the mean-field equation (2)
explicitly for a general vaccine fitness function, and thus direct
optimization of bnAbs, is not feasible. In this section, we
propose a method to simplify this maximization by applying
a coordinate change to the path integral representation of the
solution to the mean-field dynamics [Eqs. (7) and (10) below].

A. Path integral representation and the optimal location of the
fitness peak

We begin constructing the path integral formulation by
rearranging Eq. (2) for an infinitesimal timestep δt :

n(x, t + δt ) = {1 + δt D∇2 + δt[V (x, t ) − λ]}n(x, t )

= eδtD∇2
eδt[V (x,t )−λ]n(x, t ) + O(δt2). (5)

Equation (5) provides a formal method for evolving the
population profile in infinitesimal time steps. By repeatedly
applying Eq. (5) to evolve the population over time, the final
population n(x, t f ) ≡ n f (x) can be expressed by the formal
time-ordered product [41]

n f (x) = lim
M→∞

j=M∏

j=0

eδtD∇2
eδt[V (x, jδt )−λ] n0(x). (6)

Here, we have defined δt = t f

M with M as the number of
time increments, and Vj (x) denotes the vaccine-induced fit-
ness function at time jδt . The products in Eq. (6) act in the
operator sense:2 starting from the germline population n0,
at the jth infinitesimal timestep δt , the B cell population is
locally expanded/contracted according to the vaccine opera-
tor eδt[V (x, jδt )−λ], followed by diffusion broadening under the
operator eδtD∇2

.
The effect of the diffusion operator on a test function η(x)

is given by the convolution

eδtD∇2
η(x) =

∫
dd x′G(x − x′, 2Dδt ) η(x′).

Due to the nonlocal nature of this term, the final population
at any location in shape space results from all potential ways
that different parts of the initial population spread and expand
until they reach that location at the final time. Upon inserting
the diffusion operators in Eq. (6) and integrating over all in-
termediate points, the final population can be more explicitly
expressed as

∫ M∏

j=0

dd x j G(x j+1 − x j, 2Dδt ) eδt(V (x j , jδt )−λ) n0(x0),

with xM+1 = x. This expression is then rearranged into the
standard path integral form [41,52]

n f (x) = e−λt f

∫
dd x0 n0(x0)

∫ r(t f )=x

r(0)=x0

Dr(u) e−S[r,ṙ], (7)

where Dr ∝ dx1, . . . , dxM stands for the measure of all paths
connecting the end points, each weighted according to its
"action,"

S[r, ṙ] =
∫ t f

0
du

(
ṙ 2(u)
4D

− V (r(u), u)
)

. (8)

2This product formula is also known as the first-order Suzuki-
Trotter decomposition [47,48] and it forms the basis for the path
integral formulation of quantum mechanics [41], quantum simulators
[49,50], and the so-called operator splitting methods [51].
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FIG. 2. A visual representation of the path integral result. Top panel: the final number of bnAbs, nf (0), for a Gaussian germline n0 that
starts away from the target bin (x = 0) and evolves under a general vaccine fitness V , is directly proportional to the final bnAbs count when n0

starts at the target bin and evolves under the modified fitness Ṽ defined in Eq. (11). The proportionality relationship is governed by Eq. (10).
Bottom panel: To optimize nf (0) in the mapped problem, the modified fitness Ṽ needs to be centered at the target, which is achieved by
adjusting the optimal vaccine center according to Eq. (12).

Equation (7) indicates that evolutionary paths passing through
regions with high vaccine fitness tend to have larger weights
in the path integral. In principle, Eq. (7) provides a formal
expression for the solution to the mean-field dynamics, appli-
cable to any arbitrary BCR germline and vaccination fitness
landscape.

We intend to utilize the path integral expression (7) for
x = 0 to deduce features of the vaccine fitness V that max-
imizes the bnAb count. Intuitively, we expect the optimal
fitness to move the germline population gradually from its
initial position x = µ0 towards the target bnAb state at x = 0.
To achieve this, the optimal fitness must remain sufficiently
close to the peak of the existing B cell population at every
instant to prevent B cell extinction by apoptosis. On the other
hand, the fitness should also be positioned far enough from the
B cell population to optimally transport it toward x = 0 within
the finite time window t f . Based on these considerations, we
anticipate the optimal fitness to initially focus slightly away
from the peak of the B cell population and, over time, move
toward the target bin. However, this argument only provides
a qualitative picture of the motion of the optimal fitness and
does not contain enough information to uniquely determine
the time dependence of the fitness function. A simple scenario
for the motion of the optimal fitness center involves linear
motion with constant velocity. More complex scenarios may
involve nonlinear motion over time. Given the linear struc-
ture of the mean-field dynamics (2) and the corresponding
quadratic form of the path integral action (8), this simple
case seems a plausible candidate for being optimal and thus
warrants more systematic investigation.

To examine the optimality of the fitness function whose
center moves with a constant velocity, we use the path in-
tegral formula, Eq. (7), in a straightforward but somewhat
nonstandard manner. We begin by substituting the germline
distribution (3) into Eq. (7), and subsequently we rewrite
the resulting expression in the new coordinate frame with a
moving origin. Denote the location of the origin of this frame
by z(t ) = z0 − vt , where z0 and v indicate the initial location
at t = 0 and the constant velocity of the moving origin, re-
spectively. As we outline in Appendix B, for the special case

of a Gaussian germline distribution, it is possible to select z0
and v such that the transformed path integral expression writ-
ten in the moving frame would have the same mathematical
structure as the path integral expression in the original frame.
By doing so, we obtain the path integral expression in the
moving frame for a modified germline that is centered at the
target bin (see Fig. 2).

In particular, for the moving frame whose origin is defined
by z∗

0 and v∗ given in Eq. (B4) of Appendix B, the shape-
space coordinates are transformed by applying the linear map
x → x + x∗(t ), where

x∗(t ) ≡ µ0
2D(t f − t )
2Dt f + σ 2

0
. (9)

After some algebraic manipulations of the path integral ex-
pression as detailed in Appendix B, we arrive at the following
exact relationship for the bnAb counts:

n f (0)
∣∣
µ0=!;V

n f (0)
∣∣
µ0=0;Ṽ

= exp − !2

2(σ 2
0 + 2Dt f )

. (10)

Here, the numerator on the left-hand side denotes the final
population at x = 0 (i.e., the number of final bnAbs) given
that the normally distributed initial population (3) is centered
at µ0 = ! and evolves under the vaccine fitness V (x, t ). The
denominator, on the other hand, represents the final bnAb
count for a germline population that is centered at µ0 = 0 and
is evolved under the transformed fitness Ṽ defined as

Ṽ (x, t ) ≡ V (x + x∗(t ), t). (11)

Therefore, the exact relationship (10) simply relates the num-
ber of bnAbs generated by fitness V , with the germline
population initially centered away from the target in shape
space, to the number of bnAbs developed under the modified
fitness Ṽ , assuming the germline is already centered at the
target (see the top panel of Fig. 2).

The crucial observation here is that the right-hand side of
Eq. (10) is independent of the choice of the vaccine param-
eters. Thus, the maximum of the numerator on the left-hand
side as V is varied [by changing {xV (t ), σV (t )}], must coincide
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with the maximum of the denominator as Ṽ is varied. As
a result, Eq. (10) effectively converts the maximization of
n f (0)|µ0=!;V into the maximization of n f (0)|µ0=0;Ṽ . This map-
ping simplifies the optimization problem: since for µ0 = 0
the starting germline population is already peaked at, and
symmetric around, the target bin x = 0, it makes sense that
for Ṽ to be optimal, it should also be peaked at the target and
symmetric with respect to it at all times (see Fig. 2). Using
this argument, and recalling that the maxima of the numerator
and denominator in Eq. (10) coincide, we then conclude that

xV (t )
∣∣
optimal = x∗(t ) = µ0

2D(t f − t )
2Dt f + σ 2

0
. (12)

It is worth noting that for a narrow germline population
(σ0 +

√
Dt f ) with less BCR diversity, the optimal vaccine

center given by Eq. (9) simply starts close to the naive pop-
ulation at µ0 and reaches the target state (x = 0) at the final
time. However, for a wider initial population (σ0 !

√
Dt f )—

corresponding to a more diverse germline—the optimal center
is shifted closer to the target bin. This reflects a change in the
importance of paths contributing to the bnAb count n f (0) in
Eq. (7). As described intuitively earlier, one needs to position
the vaccine fitness over time such that it gradually moves the
germline population from x = µ0 towards the target state at
x = 0, while also remaining sufficiently close to the peak of
the existing B cell population to avoid extinction by apoptosis.
If V (x, t ) is positioned too close to the population n(x, t ), it
may not optimally move the population to reach x = 0 within
the finite time interval t f ; conversely, if V is centered too far
from the peak of n(x, t ), there is a risk of population collapse
as the vaccine-induced replication is directed to locations with
fewer B cells to begin with. The optimal center [Eq. (9)]
aligns with this intuitive understanding and also demonstrates
how the germline width σ0 influences the optimal position
of the vaccine fitness. In addition, Eq. (12) reveals that the
mean-field optimal center moves with a constant velocity from
its starting position in the shape space towards the target bin.
These features are further illustrated in the numerical and
simulation results discussed in Sec. IV and Appendix D.

B. Operator approximation and the optimal spread of the
fitness function imposed by vaccine antigens

As discussed above, Eq. (10) maps the problem of maxi-
mizing bnAbs to finding the optimal modified fitness function
Ṽ that maximizes n f (0)|µ0=0;Ṽ . Upon replacing V by Ṽ ,
Eq. (2) describes the expansion of the transformed germline
population centered at x = 0 under the modified fitness Ṽ ,
coupled with diffusive spreading that arises from BCR mu-
tations.

To investigate the optimal vaccine spread, we employ op-
erator approximations. Starting from Eq. (6), we rearrange the
operators in the time-ordered product formula using a second-
order truncation of the celebrated Baker-Campbell-Hausdorff
(BCH) formula [48], namely

eεAeεB = eεBeεAeε2[A,B](1 + O(ε3)), (13)

where A and B are generally noncommuting operators, and
C ≡ [A, B] = AB − BA. We assign ε → δt , A → D∇2, and
B → Ṽj (x), and then we utilize this formula to reorder the

alternating operator product in Eq. (6) such that all vaccine
fitness operators eδt Ṽj are grouped on the left in the product,
all the diffusion operators eδtD∇2

are collected on the right,
and the commutator terms that result from swapping these
operators appear in between. The apoptosis operator e−λt f

commutes with all the other operators.
To achieve such an ordering of the operators, we start by

moving eδtṼ0 through the M diffusion operators eδtD∇2
on its

left in Eq. (6), resulting in a net commutator term e(δt )2MC0 ,
where the commutator operator reads

C0 = [D∇2, Ṽ0(x)] = 2DṼ ′
0 (x)∇ + DṼ ′′

0 (x). (14)

Subsequently, the next fitness operator, eδtṼ1 , needs to pass
through (M − 1) diffusion operators on its left, thereby cre-
ating a commutator contribution e(δt )2(M−1)C1 . This process
continues for all fitness operators, and in the limit of small
increments δt = t f

M → 0, we obtain3

n f
∣∣
µ0=0;Ṽ ≈ N0e−λt f e

∫ t f
0 dt Ṽ (x,t )

× eD
∫ t f

0 dt (t f −t ) (2Ṽ ′(x,t )∇+Ṽ ′′(x,t ))

× et f D∇2 G
(
x0, σ

2
0

)
. (15)

Unlike the exact expression in Eq. (6), where the fitness and
mutation (diffusion) alternate in the operator product, Eq. (15)
suggests that n f can be approximated by first diffusing the
starting profile n0 under the (full) diffusion operator et f D∇2

.
Then, the commutator operators act on this diffused popu-
lation profile, and finally, the vaccine fitness operators (and
the death operator) expand the profile to its final form. The
action of et f D∇2

on the Gaussian initial population widens
its profile and yields G(x0, σ

2
0 + 2Dt f ), which is independent

of the fitness profile. The symmetry of this updated profile
with respect to x0 = 0 still implies a similar symmetry for the
optimal Ṽ (x, t ), resulting in Ṽ ′(x = 0, t ) = 0. Consequently,
Eq. (15) simplifies to

n f (0)
∣∣
µ0=0;Ṽ ≈ N0e−λt f e

∫ t f
0 dtṼ (0,t )

× eD
∫ t f

0 dt (t f −t )Ṽ ′′(0,t ) G
(
0, σ 2

0 + 2Dt f
)
. (16)

For any choice of the vaccine-induced fitness profile,
Eq. (16) offers a starting point to investigate the optimal vac-
cine spread by providing an explicit expression whose optima
can be derived by straightforward differentiation. Narrowing
our focus, we consider the Gaussian vaccine-induced fitness

VG (x, t ) ≡ AV G(x − xV (t ), σV (t )2). (17)

3Each truncation of the BCH formula introduces an error of order
(δt )3. It can be shown that the number of such error terms grows at
least as ∼M3, rendering this truncation an uncontrolled approxima-
tion. Despite this, the result obtained through this approach matches
that of a perturbative solution in powers of the nondimensionalized
diffusion coefficient. The second-order truncation remains valid for
small diffusion limits and as long as the total time t f is sufficiently
short.
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Recall that this choice is consistent with our initial assump-
tion that, in the shape-space representation, the fitness can
be parametrized by the location of its center and its spread.
Furthermore, Eq. (17) also satisfies the total-dose constraint
given by Eq. (4). However, it is important to note that Eq. (17)
does not represent the most general Gaussian fitness profile
allowed by the constraint, as it only considers a fixed vaccine
strength AV . The more general case would involve a vaccine
dose that varies over time, potentially leading to larger and
more diverse antibody responses [53–55]. We defer the inves-
tigation of such scenarios to future studies.

By selecting the optimal vaccine center according to
Eq. (12), the Gaussian fitness of Eq. (17) transforms accord-
ing to Eq. (11), resulting in the modified fitness ṼG (x, t ) =
AV G(x, σ 2

V (t )), which is still a Gaussian profile but now cen-
tered at the origin. Substituting ṼG into Eq. (16), we obtain

n f (0)
∣∣
µ0=0;ṼG

≈ N0e−λt f

√
2π

(
σ 2

0 + 2Dt f
)

×exp
∫ t f

0
dt

[
AV√

2πσV (t )

(
1 − D(t f − t )

σ 2
V (t )

)]
.

(18)

To maximize this expression, we set its functional derivative
with respect to σV to zero. Assuming σV (t ) ! σmin at all times
(see the discussion below), we finally obtain

σBCH(t ) = max{
√

3D(t f − t ), σmin}. (19)

In deriving Eq. (19), we have assumed that σV (t ) ! σmin,
which prevents VG from reaching arbitrarily large values by
imposing a maximum fitness value AV /(

√
2πσmin). As dis-

cussed in Sec. II, the fitness function exhibits a minimal yet
finite spread for vaccine shots containing a single antigen
type, whereas cocktail shots typically exhibit a wider spread.
Moreover, in Appendix C, we demonstrate that the optimal
spread retains a finite minimum value when employing the
BCH approximation for B cell dynamics on discrete similar-
ity bins (before taking the continuum limit in shape space).
Additionally, the minimum spread can also reflect practical
constraints on how precisely the vaccine-induced fitness can
be concentrated in different regions of shape space. We posit
that σmin encompasses all of these factors.

Equation (19) can be understood by noting that within a
temporal window of duration )t , diffusion affects a range of
order

√
D)t of bins on the x axis. To maximize n f (0) while

adhering to a constrained total dose, it would thus be sensible
to concentrate the fitness on BCRs in a region around the
target bin that has the potential to reach the target location
by mutation within the available time. Replication events at
larger mutational distances are unlikely to reach the target
within the finite allotted time. This suggests that at any time
0 < t < t f , the optimal Ṽ should at most cover BCRs within a
range of order

√
D(t f − t ) while remaining peaked at x = 0.

Once the vaccine spread reaches the smallest possible value
σmin, it should remain at that value until the final time. In
a qualitative sense, Eq. (19) suggests that an optimal vac-
cination protocol should initially have a broader spread and
contain shots with more diverse antigens to cover a larger
range of BCRs, which would provide the germline population

a chance to grow and diversify. As time progresses, vaccine
epitopes gradually narrow down according to Eq. (19), con-
centrating the fitness on expanding those BCRs within an
accessible mutational distance from the target bin.

It is also worth noting that the right-hand side of the
BCH approximate result (16) depends only on time integrals
of Ṽ (0, t ) and Ṽ ′′(0, t ), making it a strictly local function
of the transformed vaccine fitness Ṽ at x = 0. This locality
aligns with the second-order truncation of the BCH formula,
as higher-order terms in BCH’s nested commutator expan-
sion would introduce contributions involving more derivatives
of the fitness, leading to nonlocal expressions in x. Since
the mean-field Eq. (2) aims to describe the coarse-grained
temporal evolution of the B cells toward the bnAb state,
and considering that bnAbs are typically produced over long
timescales in natural circumstances [15,17], it may be rea-
sonable to assume the slow diffusion regime, where local
approximations such as the one above remain reliable at the
mean-field level. However, it is important to acknowledge that
even in the slow diffusion limit, this approximation might
break down if either the vaccine fitness or the B cell popula-
tion profile is sharply peaked, as higher-order derivatives may
become significant in the expansion.

Furthermore, as noted in Sec. II B, our approach differs
from Refs. [22,23] in our assumption that antigens adminis-
tered at each time point share sufficient similarity, that bnAb
sequences are not inherently the fittest. Given this distinction
and the discussion of the previous paragraph, while Eq. (19)
bears resemblance to the findings of Ref. [23]—where the
optimal fitness function appeared narrower in subsequent
vaccinations—we approach the interpretation of Eq. (19) with
caution. In the next section, we will compare the performance
of protocols employing a width σBCH with those utilizing
a narrow fitness width σmin (see Fig. 3) through numerical
results and simulations. The comparative analysis aims to
shed light on the effectiveness of different vaccine spread
strategies and will elucidate a distinct interpretation of the
optimal spread in our study.

IV. COMPUTATIONAL RESULTS

In this section, we delve into the dynamics of the B cell
population within a one-dimensional shape space (d = 1)
and investigate both the numerical solution of the continuum
mean-field model [Eq. (2)] and simulations of the discrete
stochastic dynamics [Eq. (1)]. It is important to recall that
while the master equation deals with discrete shape-space
bins, representing BCR occupancy with integer values, the
mean-field model offers a continuum description, neglecting
population fluctuations. Consequently, it is not immediately
clear whether discrete sample averages would align with the
mean-field results. To establish a comparison between the two
approaches, we employ the stochastic simulation algorithm
(SSA) in the manner of Gillespie [57,58] to generate real-
izations of stochastic dynamics and then compare the sample
averages with those obtained from the mean-field treatment
[59]. This numerical examination sheds light on how effec-
tively the optimal vaccine fitness obtained from the mean-field
model translates to the realm of discrete stochastic dynamics.
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FIG. 3. Schematic of three different vaccination protocols, where the red and blue curves represent the vaccine-induced fitness and the B
cell population, respectively. Left: the optimal protocol in which the fitness center follows x∗

V (t ) given in Eq. (9) while the fitness spread is
fixed at the minimum value σmin. Center: the BCH protocol, where the fitness center follows x∗

V (t ) as in the optimal protocol but the fitness
spread narrows over time as described in Eq. (19). Right: the protocol of Refs. [22,56], where the antigens administered at each time point are
sufficiently different such that the bnAb sequence would have the highest fitness, and the fitness spread becomes narrower over time (while
still reaching the left tail of the B cell population).

To set up our numerical experiments and simulations, we
must define parameters for (i) the germline population, specif-
ically N0, µ0, and σ0; (ii) the dynamics, including D, t f , λ;
and (iii) the vaccine’s strength, denoted by AV . To make these
parameter choices more grounded, we draw from empirical
observations and rough estimates.

First, it is crucial to consider the slow and delayed pro-
duction of bnAbs in HIV patients [15]. This implies that
the germline population should be initially distant from the
target bin (x = 0). For instance, it is known that numerous
mutations are typically required for germline B cells to evolve
into bnAbs that can target CD4 binding sites [14]. Therefore,
we choose the simulation parameters for the time required to
reach the bnAbs state by mutations only, denoted by tmut, to
be longer than the total vaccination time:

tmut ≡ µ2
0

D
! t f . (20)

Note that tmut represents the (mean-field) time required for the
BCR population to reach the bnAbs state by mutations.

Next, in the absence of vaccine-induced replication, the
apoptotic B cell population is expected to go extinct [1,37],
presumably on a timescale shorter than tmut. To turn this ob-
servation into a relationship among the parameters, we utilize
the mean-field approximation, within which the average pop-
ulation size decays exponentially as N0e−λt . We then crudely
define the extinction as a population size falling below some
minimum threshold, say 1.4 The extinction condition may
then be expressed as

ln N0 " λtmut = λµ2
0

D
. (21)

Drawing from the findings of Ref. [23], we further posit
that an effective vaccine would provide sufficient fitness to
prevent the extinction. We thus choose the vaccine strength

4The threshold is needed since, in the mean-field approximation,
the average population size never truly reaches zero.

AV so that the total vaccine-induced fitness given at each time
exceeds the total death rate across all shape-space bins, i.e.,

AV ! λNbin)xbin, (22)

where Nbin represents the number of bins and )xbin is the
length of a bin, assumed to be 1. [Note that as per Eq. (17),
AV has the dimension of (shape-space) length per time.]

Lastly, we note that a further condition to avoid extinction
under the optimal vaccine center is for x∗ to remain close
to the population’s center; otherwise, most of the provided
fitness is expended on bins with few to no B cells. Given
the difficulty of analytically solving for the population center
as a function of time, we only impose this condition on the
germline at t = 0, which corresponds to |µ0 − x∗(t = 0)| "
σ0. Substituting for x∗(t = 0) from Eq. (9) then yields the
fourth condition:

t f !
σ0(µ0 − σ0)

D
, (23)

which, for a given diffusion constant D, sets a lower bound for
the total vaccination time t f . Typically σ0 + µ0, ensuring that
this bound is significantly smaller than the diffusive timescale
µ2

0/D required for the germline to reach the target by muta-
tions alone [cf. Eq. (20)].

Guided by these conditions, we choose Nbin =
43 corresponding to the shape-space bins x ∈
{−21,−20, . . . , 0, . . . , 20, 21} for the stochastic simulations.
This range is associated with the interval (−21, 21) for
the continuum mean-field numerics. We set the death
rate to λ = 0.001 and the mutation rate to µ = 0.1 in
SSA, corresponding to a mean-field diffusion coefficient
of D = 0.05 (see Appendix A). We assume the germline
population is normally distributed according to Eq. (3), with
an initial population size of N0 = 10. In addition, the imposed
vaccine fitness follows the Gaussian shape of Eq. (17),
where we fix the vaccine strength at AV = 0.08. For the
stochastic dynamics, we utilize SSA to take averages over
1000 realizations of Eq. (1) for a total time of t f = 400. To
facilitate the simulation, we implement SSA along with an
operator splitting scheme [51] where we alternate between
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FIG. 4. Final bnAb counts for different vaccination protocols in a one-dimensional shape space as obtained from the continuum mean-field
numerics (dashed lines) and SSA averages (solid points), with the choice of parameters AV = 0.08, D = 0.05, λ = 0.001, and t f = 400. Left:
final bnAb count as a function of the germline center µ0 assuming a fixed germline width σ0 = 1. The vaccine-induced fitness is assumed to
follow the Gaussian form of Eq. (17) with the vaccine center located at χ q,p

µ0,σ0
(t ) [see Eq. (24)] and the vaccine spread set to the minimum

allowed σmin = 1. Different colors correspond to different choices for q and p, with q = p = 1 corresponding to the optimal center x∗(t ). The
x∗(t ) protocol indeed outperforms the other choices for the vaccine center. Right: similar to the left panel but for a wider germline width
(σ0 = 3). We have also included the results obtained from setting the vaccine center according to χ1,1

µ0,0(t ). Here, SSA averages deviate from
the continuum mean-field results for µ0 ∼ σ0, indicating the breakdown of the continuum approximation.

periods of stochastic replication events and stochastic
mutation or death events [cf. Eq. (13) for the corresponding
mean-field expression]. In the following, we present the SSA
results for M = 200 steps, although consistent results are
obtained for M = 400. Note that the mean-field numerics
presented below are obtained by direct numerical solution of
the continuous-time dynamics described given by Eq. (2).

Fixing the vaccine spread at σmin = 1 and the germline
width at σ0 = 1, we first examine the effect of different vac-
cine centers on the final bnAb count by selecting the vaccine
center from the family

χ
q,p
+,, (t ) ≡ +

1 + ,2

2Dt f

[
1 −

(
t
t f

)q]p

. (24)

In particular, we compare the final bnAb count for
χ1,1

µ0,σ0
—corresponding to x∗ as defined in Eq. (9)—with

that of χ1,1/2
µ0,σ0

(vaccine center accelerating towards the target),
χ1/2,1

µ0,σ0
(vaccine center decelerating towards the target), and

χ1,1
µ0,0 (uniform motion similar to x∗ but not accounting for

the germline’s width). The left panel in Fig. 4 shows the final
bnAb counts as a function of the germline distance from the
target for three different vaccine centers x∗(t ) (red), χ1,1/2

µ0,σ0
(t )

(blue), and χ1/2,1
µ0,σ0

(t ) (green). We observe that in each case, the
SSA sample averages (solid points) closely match the contin-
uum mean-field numerics (dashed lines). To understand this,
note that with σ0 = 1, the germline population is narrowly
distributed, so the entire population would roughly move
together in shape space. When this population is relatively
far from x = 0, moving between neighboring (discrete) bins
would only change the distance to the target bin incrementally,
thus making the continuum limit a reliable approximation of
the discrete dynamics. Additionally, with the chosen vaccine
strength [Eq. (22)], the population size increases and makes

the population number fluctuations less relevant, thus render-
ing the mean-field description even more accurate. This is also
reflected in the fact that the optimal center x∗(t )—obtained
from the continuum mean-field approximation—outperforms
the other protocols even in the discrete stochastic dynamics.

The right panel in Fig. 4 presents a similar comparison of
the final bnAb counts, but for a broader germline with σ0 =
3. Here, we include a fourth choice for the vaccine center,
namely χ1,1

µ0,0(t ) (in yellow), which differs from x∗(t ) in that its
starting position and velocity are not adjusted by σ0. We still
observe that x∗(t ) outperforms the other protocols, although
the final bnAb counts (vertical axis) are generally smaller
compared to the σ0 = 1 case. This is because the population
does not move toward the target as synchronously when the
initial population is spread more widely. It is also seen that
when µ0 becomes comparable with σ0, SSA averages deviate
from the continuum mean-field results, which might indicate
the breakdown of the continuum approximation for that range
of parameters. Nevertheless, the qualitative trend of the SSA
sample averages is still captured by the mean-field solution.
In Appendix D, we present temporal snapshots of the BCR
population evolved under various vaccine protocols, and we
explore additional aspects of the population dynamics, such
as population size and the location of the population peak
over time. Notably, these observations indicate that, as dis-
cussed below Eq. (12), the optimal center gradually shifts
the germline population from its initial position in shape
space toward the target while maintaining an optimal distance
from it.

Assuming the optimal choice for the vaccine center, we
proceed to compare the effectiveness of two different vac-
cine spread strategies: maintaining the fitness as narrow as
possible, or adjusting the fitness spread based on the time-
dependent BCH result from Sec. III B. Figure 5 depicts
the final bnAb counts as a function of σmin. It shows that
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FIG. 5. Final bnAb numbers for a germline centered at µ0 = 8
and with width σ0 = 1 in the one-dimensional shape space. The
population is evolved under two different vaccine fitnesses, both
optimally centered at x∗(t ) but with different spreads. The dashed
lines represent results from continuum mean-field numerics, while
the solid points depict SSA averages [with the choice of parameters
AV = 0.08, D = 0.05, λ = 0.001, and t f = 400]. This plot illustrates
that maintaining the vaccine spread at the minimum allowed (σmin)
yields a larger bnAb count compared to using the time-dependent
spread prescribed by the BCH result, (19), and it may indicate that
a sequential vaccination with a single antigen type administered at a
time would outperform a cocktail regimen.

maintaining the spread at σmin (in red) results in higher final
bnAb numbers compared to setting the vaccine spread accord-
ing to the time-dependent BCH result given in Eq. (19) (in
cyan). In other words, when aligning the fitness center with the
optimal position defined in Eq. (9), maximizing the focus by
keeping the fitness spread narrow results in the largest bnAb
numbers ultimately. This computational observation clearly
shows that Eq. (19) does not provide the optimal fitness width,
likely due to the breakdown of the BCH approximation for
narrow profiles, as noted earlier in Sec. III B. Furthermore,
drawing from the discussion on the minimum fitness spread in
Sec. III B (also see Sec. II A), a plausible interpretation of this
finding suggests that sequential immunization with a single
antigen type administered at any time—where the fitness re-
mains narrow and focused—outperforms immunization with
cocktails of antigens, where the fitness spread is larger. This
is consistent with the findings reported in Ref. [25]. Therefore,
the implication here is that even a cocktail vaccine that is
optimally designed to promote bnAbs, as found in Ref. [26],
would be outperformed by a sequential immunization regimen
containing appropriately selected single antigen types at each
time point, similar to the sequential protocol with gradually
changing antigens as reported in Ref. [19].

It is also noteworthy to contrast Fig. 5 with the conclu-
sions drawn in Refs. [22,23], where the administered vaccine
antigens were considered sufficiently distinct in their variable
residues such that the fittest BCR sequence at every time
point corresponded to bnAbs, while the germline started far
from the bnAb sequence. In such settings, Ref. [23] found
the optimal spread of the vaccine-induced fitness function
to be one that is sufficiently wide to reach the least cross-
reactive BCRs among the existing B cells; a narrower fitness
spread would thus have led to B cell extinction. As time

progresses and mutations widen the BCR distribution along
the "breadth" axis, the optimal fitness landscape becomes nar-
rower in subsequent immunizations, as smaller fitness spreads
can prevent the extinction. This narrowing of the optimal
fitness appears to coincide with the narrowing nature of the
BCH spread [Eq. (19)]. However, it is worth emphasizing that
this is merely a coincidence. As discussed in the preceding
paragraph, the results presented here relax the assumption of
distinct antigens used in Refs. [22,23]. Instead, these results
pertain to vaccine regimens containing similar antigen types
at each time point, corroborating the effectiveness of sequen-
tial immunization schemes with gradually changing antigens
considered in Refs. [19,31].

V. DISCUSSION

We have explored the optimal vaccination protocol for pro-
ducing bnAbs through a minimal birth-death-mutation model
described by the master equation [Eq. (1)] and its contin-
uum mean-field approximation [Eq. (2)]. Assuming a B cell
germline that is initially distant from the desired bnAb state
in the shape space, this optimization problem comprises two
aspects: first, determining the optimal time-dependent center
of the vaccine-induced fitness function, and second, its opti-
mal time-dependent spread. The center of the vaccine fitness
function—i.e., where the fitness peaks—is determined by the
epitopes shared among the antigen(s) presented at each time
point; the spread of the fitness function, on the other hand,
is controlled by diversity of the presented epitopes in each
shot. We assumed the administered antigens are sufficiently
similar to allow for approximating the vaccine-induced fitness
landscape with a coarse-grained smooth function whose peak
can be distal from the BCR sequence corresponding to bnAbs
(Fig. 1). An example of such a scenario is the sequential
immunization scheme considered in Refs. [19,31], where the
structure of the administered antigens change gradually with
subsequent boosts.

We addressed the first part by employing the path integral
formulation of the mean-field dynamics [Eq. (7)], and we used
a linear coordinate transformation to derive the nontrivial ex-
act relationship given in Eq. (10). This relationship is valid for
a general vaccine-induced fitness if the germline population
is normally distributed [cf. Eq. (3)]. Equation (10) maps the
maximization of the final bnAb count n f (0) for a germline
centered at µ0 1= 0 away from the target, into the simpler
problem of finding the optimal transformed fitness, defined in
Eq. (11), that maximizes the bnAb number for a germline that
is instead initially centered at the target (µ0 = 0) (top panel
of Fig. 2). Based on this mapping, we then argued that the
optimal vaccine center follows Eq. (12) (see the bottom panel
in Fig. 2), with x∗(t ) defined in Eq. (9). This result for the
optimal fitness center suggests that to obtain the largest num-
bers of final bnAbs, the epitopes administered in the initial
doses should be designed for germline B cells to bind and
replicate, while the subsequent doses should contain epitopes
that gradually become more similar to the target sequence
(i.e., the conserved residues). As noted earlier, this approach
mirrors findings in Refs. [19,31], which highlighted the ef-
fectiveness of sequential vaccination with gradually changing
administered antigens.
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The same mapping also allows us to investigate the second
part of the bnAb optimization, i.e., the optimal spread of
the vaccine-induced fitness landscape. Using a second-order
truncation of the celebrated BCH formula, we obtained an
approximate form for the mean-field solution [Eq. (16)] that,
given a specific form of fitness, can be used to examine
how the vaccine spread affects the final bnAb count. In the
special case of a Gaussian vaccine-induced fitness [Eq. (17)],
maximizing this expression with respect to the vaccine spread
led us to Eq. (19). In Eq. (19), we incorporate σmin as a
proxy to encompass all factors constraining the narrowness of
the fitness function. These factors may include the (weaker)
binding of neighboring BCRs to the presented antigen, the
effect of discrete similarity bins, and experimental limitations.

Finally, to test the performance of the optimal fitness as
obtained from the mean-field model in the discrete stochastic
dynamics, we simulated Eq. (1) using the Gillespie SSA and
compared the resulting sample averages with the numerical
solution of the associated mean-field dynamics. We observed
that the SSA averages and mean-field numerics match closely,
and the optimal vaccine center, Eq. (12), outperforms other
protocols even at the level of the discrete stochastic dynamics
(Fig. 4). In addition, we found that keeping the vaccine spread
at the minimum allowed seems to be optimal (Fig. 5), sug-
gesting that antigen cocktails reduce the effectiveness of the
immunization procedure.

Our findings suggest that optimal vaccination protocols
could potentially be designed to maximize the evolution of
rare bnAbs without risking B cell extinction, by ensuring that
sequentially administered vaccine antigens are not too differ-
ent at each time point. This is aligned with the experimental
studies of such sequential schemes studied in Refs. [19,31].
Additionally, our results provide two insights that may inform
future antigen design for sequential vaccination protocols.
First, each vaccine dose should contain single antigens rather
than antigen cocktails, to create narrower fitness landscapes.
Second, antigens in successive doses should not differ signif-
icantly; in fact, high-affinity bnAb-targeting antigens should
be avoided until later stages, as they could shift the fitness
peak far away from the prevailing GC B cell population and
potentially lead to B cell apoptosis and extinction. This impor-
tant conclusion of our work warrants further investigation by
addressing several inherent limitations of the model discussed
in Sec. II, as well as accounting for continuous entry of naive
B cells into germinal centers [1,60]. As briefly discussed in
Sec. II, during affinity maturation, B cells interact with each
other in various ways, such as competing for limited survival
signals from T cells and memory effects including the epitope
masking [24,43]. Incorporating these effects in a birth-death-
mutation model introduces nonlinear terms, and may well lead
to modified perspectives on bnAb evolution, compared to the
linear model employed in this study. In future, we intend to
explore optimal vaccination strategies using a more realistic
version of the stochastic dynamics that accounts for these cru-
cial nonlinearities and feedback loops. Additionally, we plan
to extend our analyses to encompass time-dependent vaccine
dosages. Ultimately, we hope that our study will motivate
further theoretical and experimental investigations by other
researchers.
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APPENDIX A: DERIVATION OF THE MEAN-FIELD IN
THE CONTINUUM LIMIT

In this appendix, we elaborate on the derivation of the
mean-field equation (2) from the master equation (1). The
average BCR occupation number at bin x and time t is given
by 〈nx(t )〉 =

∑
{n} nx P({n}, t ), where the summation is per-

formed over all possible population configurations {n}. Note
that due to the averaging process, 〈nx(t )〉 is not necessarily
integer-valued anymore, while x remains discrete at this stage.
The dynamics of the mean population is obtained by taking a
time derivative of 〈nx(t )〉. Using Eq. (1), it reads

∂t 〈nx(t )〉 =
∑

{n}
nx

∑

x′

Vx′ (t ) [E−
x′ − 1](nx′P({n}, t ))

+
∑

{n}
nx

∑

x′,y′

γx′y′ [E+
x′E−

y′ − 1](nx′ P({n}, t ))

+
∑

{n}
nx′

∑

x′

λx′ [E+
x′ − 1](nx′P({n}, t )), (A1)

where we have introduced the operators E±
x , defined as

E±
x (nyP({n}, t )) ≡ (ny ± δx,y) P({n} ± Ix).

Equation (A1) can be simplified in each line by an appropriate
shift of the variables in the corresponding summations over
{n}. For instance, it is straightforward to show that

∑

{n}
nx

∑

x′

Vx′ (t )E−
x′ (nx′P({n}, t )) = (A2)

∑

{n}
(nx + δx,x′ )

∑

x′

Vx′ (t ) nx′P({n}, t ), (A3)

where δx,x′ denotes the Kronecker delta. On implementing
these simplifications, Eq. (A2) turns into the following mean-
field dynamics:

∂t 〈nx(t )〉 = [Vx(t ) − λx] 〈nx(t )〉

+
∑

y

[γyx 〈ny(t )〉 − γxy 〈nx(t )〉], (A4)
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where x and y denote different affinity bins.
To take the continuum limit of x in Eq. (A4), we make the

change
∑

y

[γyx〈ny〉 − γxy〈nx〉] →

∫
dd)x [γ (x − )x,)x)n(x − )x, t ) − γ (x,)x)n(x, t )],

(A5)

where γ (x,)x) denotes the mutation rate for a jump of length
)x that starts from x. The assumption of localized jumps
corresponds to negligible jump rates for large )x (see the
discussion in Sec. II), allowing for a Taylor expansion of the
integral term in powers of )x. Truncating the Taylor expan-
sion at second order then gives

∂t n(x, t ) ≈ [V (x, t ) − λ(x)] n(x, t )

+ ∇2[D(x) n(x, t )] − ∇ · [w(x) n(x, t )], (A6)

where we have defined the diffusion coefficient as

D(x) = 1
2

∫
dd)x ()x)2 γ (x,)x) (A7)

and the drift velocity as w(x) =
∫

dd)x )x γ (x,)x). For
symmetric mutation rates, we have w(x, t ) = 0. Assuming
jump rates independent of x then simplifies Eq. (A6) into
Eq. (2) of the main text.

APPENDIX B: DETAILS OF THE PATH
INTEGRAL CALCULATION

In this appendix, we provide details on deriving Eq. (10)
from the path integral formula (7). As discussed in the main
text following Eq. (8), our goal here is to examine the opti-
mality of the constant-velocity fitness center. To achieve this,
we begin by using appropriate coordinate transformations to
express the path integral formula (7) in a new shape-space
reference frame. This new frame has an origin that moves
linearly in time, with initial position and velocity yet to be
determined. Subsequently, we leverage the Gaussian form of
the germline distribution, initially centered away from x = 0,
to appropriately select the initial position and velocity of the
new origin. This choice allows us to express the transformed
path integral formula similar to its original form, but now for
a modified germline centered at the new origin. Through these
steps, we will derive the central result in Eq. (10).

Let us begin with expressing Eq. (7) in a new frame, where
the origin moves according to z(t ) = z0 − vt (both z0 and
v will be determined in the following). This transformation
corresponds to adjusting the shape-space vectors as

x(t ) → x̃(t ) = x(t ) − z(t )

and paths as

r(t ) → r̃(t ) = r(t ) − z(t ),

and it keeps the path integral measure unchanged [Dr̃(t ) =
Dr(t )]. In addition, this transformation changes the germline
distribution as

n0(x0) = N0G
(
x0 − µ0, σ

2
0

)

→ ñ0(x̃0) = N0G
(
x̃0 − µ̃0, σ

2
0

)
,

where in the moving frame the germline is initially centered
at

µ̃0 ≡ µ0 − z(t = 0) = µ0 − z0.

It is easy to see that ˙̃r(t ) = ṙ(t ) + v. Upon plugging this in
Eq. (8), the path integral action is expressed as

S[r, ṙ] = v2t f

4D
− v · [r̃(t f ) − r̃(0)]

2D

+
∫ t f

0
du

( ˙̃r2(u)
4D

− Ṽ (r̃(u), u)
)

(B1a)

≡ v2t f

4D
− v · [r̃(t f ) − r̃(0)]

2D
+ S̃[r̃, ˙̃r], (B1b)

where we used the fact that
∫ t f

0
du ˙̃r(u) = r̃(t f ) − r̃0.

In Eqs. (B1), Ṽ (r̃(u), u) and S̃[r̃, ˙̃r] denote the transformed
vaccine fitness and path integral action in the moving frame;
these are simply obtained from V (r(u), u) and S[r, ṙ] by mak-
ing the change

r(u) → r̃(u) + z(u).

To obtain the bnAb count, we need to set r(t f ) = x = 0
in Eq. (7), which corresponds to r̃(t f ) = −z(t f ) in the trans-
formed version. Furthermore, using x̃0 = x0 − z0 and r̃(0) =
r(0) − z0, the lower bound of the path integral in Eq. (7) sim-
ply changes to r̃(0) = x̃0. By substituting these expressions
along with Eq. (B1b) into Eq. (7), we finally obtain

n f (0) = exp
v2t f

4D
− v · z(t f )

2D

× e−λt f

∫
dd x̃0 ñ0(x̃0) e

v·x̃0
2D

∫ r̃(t f )=z(t f )

r̃(0)=x̃0

Dr̃(u) e−S̃[r̃, ˙̃r].

(B2)

Barring the multiplicative constant in the first line, the trans-
formed path integral expression in Eq. (B2) retains the same
mathematical structure as the original formula in Eq. (7) for
a Gaussian germline. This is because for the germline given
by Eq. (3), we can simplify the outer integral by combining
the modified germline ñ0(x̃0) = N0G(x̃0 − µ̃0, σ

2
0 ) with the

exponential factor, e
v·x̃0
2D , through completing the square, which

yields

ñ0(x̃0) e
v·x̃0
2D = N0G

(
x̃0 − µ̃0 + vσ 2

0

2D
, σ 2

0

)
e− v·µ̃0

2D + v2σ2
0

8D2 . (B3)

We note that the upper bound in the path integral in
Eq. (B2), namely, r̃(t f ) = z(t f ), is different from that in
Eq. (7), i.e., r(t f ) = 0. We can use the (two degrees of)
freedom in choosing the initial position and velocity of the
moving frame’s origin to eliminate the difference in the up-
per bounds by imposing z0 = vt f . Furthermore, by imposing

µ̃0 − vσ 2
0

2D = 0, the transformed germline (B3) will be centered
at the origin of the new frame. It is straightforward to show
that both conditions are satisfied for

z∗
0 = v∗t f = µ0

2Dt f

2Dt f + σ 2
0
. (B4)
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FIG. 6. The ratio of nf (0)|µ0=+;V , obtained from numerically
solving Eq. (2) in d = 1 dimensions for three fitnesses V (x, t ) (see
below) starting from the germline (3) nf (0)|µ0=0;Ṽ , to that evaluated
from Eq. (2) with the modified fitness Ṽ [see Eq. (11)] and starting
from the modified initial population N0G(x0, σ

2
0 ) instead centered on

the target. The solid curve is obtained from the numerics for a set of
arbitrary fitness functions [VI = max(1 − |x|, 0), VII = min((x − 2 +
t )2, 1), and VIII = G(x − x∗,

√
3D(t f − t ))] and their respective Ṽ .

Substituting these back into Eq. (B2) and using Eq. (B3), we
finally arrive at

n f (0) = exp − µ2
0

2
(
σ 2

0 + 2Dt f
)

× N0e−λt f

∫
dd x0 G(x0, σ

2
0 )

∫ r(t f )=0

r(0)=x0

Dr(u) e−S̃[r,ṙ],

(B5)

where we have reverted the dummy integration variables x̃0
and r̃ back to x0 and r. In Eq. (B5), the second line on
the right-hand side can be recognized as the right-hand side
of the original expression in Eq. (7) upon changing V →
Ṽ and setting µ0 = 0. Rearranging Eq. (B5) thus leads to
Eq. (10) in the main text. Figure 6 shows that the left-hand
side of Eq. (10), evaluated by numerically solving the one-
dimensional mean-field equation for a set of arbitrary vaccine
fitness functions, matches the exponential factor on the right-
hand side of Eq. (10).

APPENDIX C: BCH APPROXIMATION FOR DYNAMICS
ON DISCRETE BINS

Since the SSA are performed on a system of discrete bins,
for completeness, this appendix demonstrates how the calcu-
lations in Sec. III B can be extended to the discrete-bin version
of the mean-field dynamics.

Recall that the general mean-field dynamics for the dis-
cretized bins before taking the continuum limit is given by
Eq. (A4). We set λx = λ and γxy = γ

∑d
k=1 δx,y±êk , where êk

is the kth unit vector and d denotes the dimension of shape
space. Focusing on the one-dimensional case for simplicity,
we use the BCH formula (13) with A and B matrices (instead
of continuous operators) chosen as A → Ṽ++′ (t ) = Ṽ+(t )δ+,+′

for + ∈ {0, 1, 2, . . . , Nbin − 1}, representing the discrete fit-
ness function, and B → D++′ = γ (δ+,+′+1 − 2δ+,+′ + δ+,+′+1) as
the discrete mutation matrix (note that the diagonal terms
at + = 1 and + = Nbin in the mutation matrix should be
set to −γ ). It is then straightforward to obtain the corre-
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FIG. 7. Plots of bnAb count (top) and the peak size of the B
cell population (bottom) as functions of time, utilizing the same
parameters as in Fig. 4. The dashed lines represent the numerical
solutions to the continuum mean-field equation (2), whereas the solid
points depict averages over stochastic realizations of the discrete
master equation (1) sampled using SSA.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 8. The location of the population peak in the one-
dimensional shape space as a function of time and for three different
choices of the vaccine center. Note that in the stochastic simulations,
the population peak can only move between the discrete bins, result-
ing in steplike jumps and periods of no motion in the corresponding
data (solid points).
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FIG. 9. Snapshots of the B cell population at different times, corresponding to the vaccination protocols of the left panel in Fig. 4. In each
case, the dashed curves represent the mean-field numerical solution, while the solid data points depict the SSA sample averages taken over 1000
realizations. The vertical lines in different colors (red, blue, green) indicate the location of the (moving) vaccine center for the corresponding
protocol.

sponding commutator matrix as C++′ = γ (Ṽ+′ − Ṽ+)(δ+,+′+1 +
δ+,+′−1). Following through the same steps leading to Eq. (15),
one can obtain the BCH approximation for the bnAb count in
the discrete-bin model as

n+=0(t f ) ≈ N0e−λt f e
∫ t f

0 dtṼ+=0(t )

× eγ
∫ t f

0 dt (t f −t )(Ṽ+=1(t )−2Ṽ+=0(t )+Ṽ+=−1(t ))

× [et f D+′+′′ n+′′ (t = 0)]. (C1)

For the Gaussian fitness profile, optimizing this expression
leads to the following transcendental equation:

exp 1
2σ 2

V (t )
1

σ 2
V (t ) − 1

= 2γ (t f − t )
1 − 2γ (t f − t )

. (C2)

This equation has a unique solution for 2γ (t f − t ) ! 1
1+2e−3/2

and no solution otherwise, defining a temporal window pre-
ceding the final time. It can be readily verified that the optimal
width that solves Eq. (C2) decreases over time until it reaches
this final temporal window, beyond which the width remains
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fixed. Therefore, within the discrete-bin dynamics, the op-
timal fitness spread automatically reaches a finite minimum
value, preventing the fitness amplitude from becoming singu-
lar, as discussed in Sec. III B.

APPENDIX D: TIME EVOLUTION OF B CELL
POPULATION UNDER DIFFERENT

VACCINE PROTOCOLS

Here, we present further computational results on the time
evolution of the B cell population in the one-dimensional
shape space. Figure 7 shows the bnAb count (top) and popu-
lation peak’s size (bottom) as functions of time. These results
correspond to the same vaccination protocols and parameters
as the left panel of Fig. 4. The graphs suggest that although
positioning the vaccine-induced fitness peak optimally leads
to the highest final bnAb count, the resulting population peak
remains smaller compared to that achieved with the χ1,1/2

µ0,σ0
(t )

protocol. This observation is reinforced by the population

snapshots in Fig. 8, indicating that while the x∗(t ) protocol
effectively maximizes n f (0), it may not fully optimize other
aspects of the final B cell population, such as its total size or
peak.

In Fig. 9, we present the location of the population’s peak
as a function of time for the same vaccination protocols. No-
tably, only for the (χ1/2,1

µ0,σ0
, σmin) protocol does the population

peak appear to reach the target bin, whereas for the other two
protocols the peak remains away from x = 0 at the final time.
For the optimal vaccine center, and after an initial transient
period, the population peak consistently trails x∗(t ) with a
constant lag. Conversely, with other choices, the population’s
distance from the vaccine center fluctuates over time. As dis-
cussed following Eq. (12), such fluctuations in distance may
either result in a slow movement of the population towards
the target when the vaccine center remains too close to the
population peak (blue), or lead to limited population growth
when the vaccine center moves too far from the population
(green).
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