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ABSTRACT: PELICAN is a novel permutation equivariant and Lorentz invariant or covariant
aggregator network designed to overcome common limitations found in architectures applied
to particle physics problems. Compared to many approaches that use non-specialized
architectures that neglect underlying physics principles and require very large numbers of
parameters, PELICAN employs a fundamentally symmetry group-based architecture that
demonstrates benefits in terms of reduced complexity, increased interpretability, and raw
performance. We present a comprehensive study of the PELICAN algorithm architecture in
the context of both tagging (classification) and reconstructing (regression) Lorentz-boosted
top quarks, including the difficult task of specifically identifying and measuring the W-
boson inside the dense environment of the Lorentz-boosted top-quark hadronic final state.
We also extend the application of PELICAN to the tasks of identifying quark-initiated
vs. gluon-initiated jets, and a multi-class identification across five separate target categories
of jets. When tested on the standard task of Lorentz-boosted top-quark tagging, PELICAN
outperforms existing competitors with much lower model complexity and high sample efficiency.
On the less common and more complex task of 4-momentum regression, PELICAN also
outperforms hand-crafted, non-machine learning algorithms. We discuss the implications of
symmetry-restricted architectures for the wider field of machine learning for physics.
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1 Introduction

Identifying, reconstructing, and measuring the properties and dynamics of high-energy,
short-distance particle phenomena are inherently inference tasks, since direct access to the
fundamental processes is often impossible due to the time and length scales at which they
occur. The suite of detection techniques, pattern recognition algorithms, and measurement
approaches used to perform such tasks inevitably imposes constraints on both the nature of
the information used as well as on the form and structure of the results. Such constraints play
a crucial role in the context of jet substructure measurements, in which detailed analysis is
performed on the long-distance features of Lorentz-boosted particle decays, parton showering,
and radiation patterns found in the collimated sprays of particles that form the jets themselves.
We present a comprehensive analysis of a new approach to multiple jet substructure-based
inference tasks using a machine learning (ML) architecture that fundamentally respects
permutation and Lorentz-group symmetries: PELICAN, the permutation equivariant and
Lorentz invariant or covariant aggregator network. Our approach imposes explicit physics-
informed symmetry constraints on the architecture and consequently yields new insights
and capabilities.

Decades of jet substructure research have yielded a wide range of approaches to per-
forming inference tasks such as: distinguishing quark-initiated from gluon-initiated jets [1-5];
discriminating jets formed from Lorentz-boosted top quarks, Higgs and W-bosons, from the
continuum background of jets formed from light-quarks and gluons [6-9]; dissecting and
measuring the parton-shower structure of light-quark and gluon jets themselves [10-15]. Many
approaches have been adopted to perform these tasks, including the direct use of discriminat-
ing high-level observables and multi-variate methods [16-18], as well as a growing number of



ML architectures using a variety of latent-space representations. For a comprehensive overview
of jet substructure measurements and approaches, see refs. [19, 20], as well as ref. [21] for a
general review of ML methods in high-energy physics (including substructure measurements).
As the model complexity has grown, so too have questions regarding the relationship of both
the methods and the constraints that they impose on the fundamental physical processes that
they are used to model. In particular, the use of observables, architectures, and latent space
representations that adhere closely to the structure and dynamics of the physics processes
under study have been found to provide not only enhanced performance, but also significant
insights and improvements in interpreting the results [18, 22, 23]. Imbuing these models with
knowledge of, or even fundamental respect for, the symmetries inherent to the system under
study has thus become increasingly impactful in the study of jet substructure, especially in
the context of ML models and various neural network (NN) architectures [24-26].

There are several common approaches to enforcing continuous symmetries in NNs. Data
augmentation can be used to train a model to have a particular sparsity structure and
become approximately symmetric. However, when model complexity and interpretability are
of concern, as is the case in many particle physics applications, a different approach is helpful.
Similar issues arise when using data preprocessing or normalization, which often come with
inherent ambiguities and discontinuities that can be detrimental for more complex tasks.

Traditionally, ML algorithms are evaluated based on basic performance metrics such as
accuracy and computational cost. However, in contexts where the trained algorithms are
treated not only as predictors or generators, but as actual models for physical processes —
which is especially true in scientific applications — other metrics of model quality are valuable.
Model complexity (e.g. the number of parameters), explainability and interpretability are
also important for using an ML algorithm as a viable physics model. Furthermore, certain
problem-specific properties such as symmetries can be critical as well. Symmetries in ML are
known to produce less complex models which respect basic geometrical rules and arguably
provide more opportunities for interpretability and explainability (e.g. convolutional neural
network (CNN) kernels are often interpreted as visual features). Even in realistic settings
where the symmetries are merely approximate, symmetry-constrained architectures often
outperform more general architectures in terms of pure accuracy (see e.g. section 4), but
even in cases when that is not true, symmetric architectures should not be discounted due
to their other benefits. For these reasons, as advocated for in ref. [27], we have adopted the
approach of building all symmetries directly into the PELICAN network architecture itself,
similar to the inherent translational symmetry of CNNs.

Summary of results. In section 2 we discuss equivariance in jet physics and introduce
the tools required to build an efficient equivariant architecture. In section 3 we describe the
architectures of PELICAN classifiers and regressors. We briefly summarize the main results

presented in this work, corresponding to sections 4-10.

Top-tagging with a PELICAN classifier. We train PELICAN top taggers using a
public benchmark dataset, to distinguish between top quark jets (signal), and light quark
and gluon jets (background). These taggers achieve state-of-the-art performance on the
benchmark with fewer learnable parameters than the previous highest-performing network.



PELICAN top taggers with as few as 11k parameters outperform all non-equivariant networks
in the benchmark. See section 4 for details.

Quark-vs-gluon-initiated jet tagging with a PELICAN classifier. We extend the
study of a PELICAN classifier to the task of distinguishing jets produced by light-quarks
(signal) from those produced by gluons (background). As in the task of top-tagging, PELICAN
demonstrates state-of-the-art performance on this benchmark task, with fewer learnable
parameters than any other similarly performant network architecture. See section 5 for details.

Multi-class jet tagging with a PELICAN classifier. The final classification benchmark
task involves identifying 5 different categories of jets (gluon jets, light quark jets, W-boson,
Z-boson, and top quark jets). PELICAN achieves state-of-the-art classification performance
across each of these five categories and once again demonstrates a more efficient utilization
of its parameters that any rival architecture. See section 6 for details.

W-boson 4-momentum reconstruction with PELICAN. We train a PELICAN
model using a custom dataset [28] of fully-hadronic top-quark decays to reconstruct the full
4-momentum of the intermediate W-bosons using only the list of 4-momenta of the top quark
jet constituents as inputs. PELICAN performs favorably in reconstructing the full W-boson
momentum when compared with the Johns Hopkins (JH) top tagger [7], which identifies
W-boson candidates for the subset of jets that pass its tagging. PELICAN achieves better
transverse momentum (pr), mass, and angular resolutions on JH top-tagged jets and achieves
comparable resolutions to the JH tagger even when evaluated on the full dataset. Additionally,
we train a PELICAN model to reconstruct the 4-momentum of only the products of the
W — qq' decay which are contained within the jet. We discuss differences in performance
and effects of this choice in reconstruction targets in section 7.

W-boson mass reconstruction with PELICAN. Particle mass reconstruction is a
common particle physics analysis task, and any reconstruction algorithm should be robust and
relatively free of bias. In section 8 we discuss the nuances of PELICAN mass reconstruction
targeting the W-bosons in the above-mentioned dataset [28] as an example. The results
show that eliminating bias in the underlying dataset is required to produce an unbiased final
algorithm. In the case of W-boson mass (my) reconstruction, this is achieved by training
PELICAN on a dataset with a range of values of myy .

Explaining PELICAN 4-momentum reconstruction. PELICAN’s respect of the
particle permutation and Lorentz symmetries inherent to particle datasets provides it with
explainability and interpretability rarely found in particle physics ML applications. In
section 9 we investigate the rich penultimate layer of PELICAN and its discriminatory
and explanatory capabilities. In particular, we discuss interpretations of PELICAN as a
form of soft-clustering and detector-unfolding algorithm. By ezplainability of a network
we mean the ability to identify physical features that highly correlate with the output.
PELICAN’s unique regression architecture, constrained by the simultaneous imposition of
Lorentz and permutation symmetries, produces intermediate outputs (“PELICAN weights”)
which we directly interpret as jet clustering coefficients and demonstrate the correctness of
this interpretation. Despite the task being a simple regression on a single 4-vector, PELICAN



reconstructs a much more complex set of physical features in the form of the labels of all
input jet constituents by parent type.

IRC-safety and PELICAN. In particle physics, so-called IRC-safety is an algorithmic
concern which restricts tools to be robust with respect to soft-particle emissions (infrared —
IR) and collinear (C) splittings which proliferate due to divergences in perturbative quantum
chromodynamics (QCD). In section 10 we introduce a simple IRC-safe modification of
PELICAN and display its state-of-the-art performance.

2 Equivariance and jet physics

This section aims to establish a clear connection between the group theory that underlies
the PELICAN architecture and the implementation of this approach for both classification
and regression, as described in section 3.

In general, given a symmetry group G and two sets X,Y on which an action of G is
defined, a mapping F': X — Y is called G-equivariant if F(g-z) = g- F(z) for any € X and
g € G. In particular, if the action of G on Y happens to be trivial (i.e. g-y =y for all g,y),
then F'is called invariant. In relativistic physics, equivariant maps are typically represented
by tensors with equivariant spacetime indices treated via Finstein notation. For instance,
the electromagnetic field tensor F*¥ can be viewed as a Lorentz-equivariant mapping from
covariant vector fields to contravariant ones. In this work we will be interested in tasks from
particle physics that can be reduced to learning a Lorentz-equivariant map. In this section
we review several aspects of Lorentz symmetry in the context of such tasks.

2.1 Lorentz symmetry and jets

The Lorentz symmetry is one of the fundamental symmetries of the Standard Model of particle
physics. The full Lorentz group O(1,3) can be defined as the set of linear transformations
of the 4-dimensional spacetime that preserve the Minkowski metric n = diag(1,—1,—1, —1).
However, in this work we will restrict ourselves to the proper orthochronous subgroup SO (1, 3)
that preserves spatial and temporal orientations. Lorentz invariance is the mathematical
encapsulation of the fact that the outcomes of physical phenomena don’t depend on the
inertial frame of the observer. In the context of particle accelerators, this boils down to
the observation that all initial and final states of a particle interaction are the same in all
inertial frames. This is formally reflected in the fact that the Standard Model of particle
physics is Lorentz-invariant, and therefore any model of any physically relevant processes
described by the Standard Model can be as well.

Several subtle points are worth addressing before applying Lorentz symmetry to experi-
mental tasks in jet physics. Neither the actual particle detectors nor the software simulating
particle decays and their detection are Lorentz-invariant. Reasons for this include: non-
invariant corrections to perturbative computations in quantum chromodynamics (QCD);
non-invariance of jet clustering algorithms; practical limitations of detectors such as finite
spatial and temporal resolutions, as well as energy and momentum thresholds. Nevertheless,
it is still valid to learn Lorentz-invariant models from data obtained this way. Firstly, QCD
is globally Lorentz-invariant and boosting the entire event does not change the outcome



of the decay process. As long as inference is performed on data obtained in conditions
similar to the conditions of the perturbative simulation, corrections from effects such as the
running of the couplings with varying momentum scales are not a concern either. The same
applies to jet clustering algorithms and finite detector resolution: as long as the data used
for inference was obtained in the same reference frame as the data used for training, the
inference is valid and the outputs are expected to be Lorentz-equivariant. Finally, the fact
that the detector itself introduces a fixed reference frame can be fully addressed without
breaking the symmetry of the model by including detector geometry among its inputs. This
is discussed further in section 3.1.

While the imprecisions in our measurements of 4-momenta in themselves do not undermine
the validity of Lorentz-invariant models, further investigation of the relative robustness to
systematic measurement biases of different architectures is warranted. One step in this
direction, via dataset augmentation, was recently taken in ref. [29].

2.2 Lorentz invariance

The classification tasks considered in this work are exactly Lorentz invariant. The physical
implications of this statement are discussed below, but may be stated mathematically in the
following way: if the inputs to the network are a collection of 4-vectors (energy-momentum
vectors in our case) pi,...,pn, the output is F(py,...,pn), and A € SOT(1,3) is a Lorentz
transformation, then

F(Apy,...,Apn) = F (p1,...,pN)- (2.1)

There are multiple approaches to constructing an ML model that satisfies such a constraint.
The simplest one is to hand-pick a set of invariant observables (such as particle masses, jet
masses, relative masses, particle identification labels and charge) and use them as input
to a generic NN architecture.

Another approach inspired by convolutional networks is to preserve group-equivariant
latent representations in the hidden layers. In this case, the neuron nonlinearity must be a
Lorentz-equivariant operation, and examples of this can be found in both the Lorentz Group
Network (LGN) [25] and LorentzNet [26] architectures. Equivariance with respect to the part
of the Lorentz group that fixes the proton beam axis was also used for regression problems in
ref. [30]. As in traditional CNN’s used in image processing, equivariant latent representations,
as opposed to invariant ones, can regularize the network via efficient weight-sharing and
improve training.

The PELICAN design adopts a slightly different approach. Given a set of 4-vector inputs
pi,...,PN, We compute a complete set of Lorentz invariants on that set. For classical groups,
including the Lorentz group, the space of invariants constructed out of a collection of vectors
in the fundamental representation consists of functions of only the pairwise invariant dot
products (using the appropriate invariant quadratic form for the given symmetry group) and
of square determinants (e.g. of 4 column-vectors for the Lorentz group) [31]. Furthermore, if
the invariant is required to be symmetric in the vector inputs, then it is only a function of
the dot products (see also the discussion in ref. [32]). In short, all totally symmetric Lorentz



invariants can be written in the following form:

I(p1,...,pon) = f({pi - pj}ij)- (2.2)

This is the first key idea used in the PELICAN architecture. The first step performed by
the input layer is the computation of the N x N array of dot products between the input 4-
momenta (also known as the Gram matrix). The N (/N —1)/2 components of the Gram matrix
{pi - pj} cannot be independent, which is apparent from dimension counting. The physical
manifold inside this high-dimensional space is defined by the set of constraints det M5 = 0 for
every 5-minor My of the Gram matrix (that is, any matrix obtained from the original one by
crossing out N — 5 rows and N — 5 columns). Moreover, a causally related set of points such
as a particle jet will always satisfy p; - p; > 0 for all 4, j. Therefore a neural network whose
input is an N X N matrix will learn the task only on this (4N — 6)-dimensional submanifold
of RN?. The outputs of the trained model on the rest of the space will be uncontrollable
and physically meaningless. As a result, PELICAN has the complexity of O(N?), similar to
any message passing architecture on a fully connected graph. An explicit set of coordinates
for this manifold would allow for complete Lorentz-invariant networks of the superior O(N)
complexity, however such coordinates, as of this time, are unknown for N > 5 [32].

2.3 Permutation equivariance

Particle data are often interpreted as a point cloud since there is no natural ordering on
the vectors. For such problems it makes sense to use a permutation-invariant or equivariant
architecture. One of the simplest approaches is called Deep Sets [33], which has been applied
to jet tagging [24] and even heavy-flavor tagging [34]. The fundamental fact used in Deep Sets
is that any permutation-invariant continuous mapping of inputs x1,...,Zy can be written in
the form ¢ (3°, ¢(z;)), where ¥ and ¢ can be approximated by neural networks.

The main limitation of permutation-invariant architectures such as Deep Sets is the
difficulty of training. Since aggregation (summation over the particle index) happens only
once, the Deep Sets architecture can struggle with modeling complex higher-order interactions
between the particles, as shown rigorously in ref. [35]. The network representing v is forced
to be a relatively wide fully connected network, which presents difficulties in training.

An alternative to permutation-invariant architectures is provided by permutation- equi-
variant ones. Given a symmetry group G (e.g. the group of permutations), a representation
(V,p) is a tuple where V is a set and p : G x V — V is a map that becomes a bijection
pg = p(g,-) : V. — V for any fixed value of the first argument, pe = id, and py-—1 = p;l. Given
two representations (V, p) and (V’,p’) of a group G, a map F': V — V' is called equivariant
if it intertwines the two representations, that is:

F(pg(v)) = pg(F(v)), veV, geG. (2.3)

Equivariance is a key property of all convolutional networks — for example, in CNN’s the
convolution operation is inherently equivariant with respect to translations (up to edge effects).

Similarly, Graph Neural Networks (GNNs) use permutation equivariance with respect
to the reordering of the rows and columns of the adjacency matrix for problems where the
inputs can be naturally represented by a graph data structure. In this context, we review



the standard definition of a message passing layer where the particles are treated as nodes
in a graph (e.g. a fully connected graph), and every layer of the network only updates the
activation at every node. If we denote by f; the data assigned to node i, then the message
passing layer will typically construct “messages” m;; = m(f;, f;) and update each node by
aggregating the messages from all neighbors of that node and combining the result with the
original state of the node: f! = ¢(f;, > mj;). Sometimes the graph also possesses “edge
data” D;; that can be incorporated into the message-forming stage.

Message passing architectures have been successfully applied to jet tagging, most promi-
nently in refs. [25, 26]. Closely related permutation-equivariant transformer architectures were
also applied to particle physics in [30, 36]. However, attempts to combine message passing
with Lorentz invariance reduced at the input stage as described above run into a major obsta-
cle: the new inputs to the network consist of nothing but edge data d;; = p; - p;. Traditional
message passing would require a reduction of this set of inputs to a point cloud (with only one
particle index), potentially restricting the set of possible higher-order interactions between
the points or adding redundancy to the network. To avoid making these unnecessary choices,
we employ the general permutation-equivariant layers suggested in refs. [37, 38].

In the general setting, permutation equivariance is a constraint on mappings F' between
arrays T, i,.., of any rank r, every index ix, € {1,..., N} referring to a particle label, whereby
permutations of the particles commute with the map:

F (7T 01—‘7:11'2'"1'7-) =7noF (z_’iliZ"'is)7 e Sy. (24)

Here, the action of permutations is effectively diagonal: 7o Tyiy..i, = Tr(iy)..n(i,)- GNNs
explicitly implement this constraint for rank 1 arrays (node information). A higher-order
generalization of the message passing layer can be defined as

Equivariant Layer: T = Acc o Msa (T(e)) . (2.5)

In this nomenclature, MSG is a node-wise nonlinear map (message forming) shared between
all nodes, and AGG is a general permutation-equivariant linear mapping (aggregation) acting
on the particle indices of T'. Note that whether MsG is node-wise and whether AGG is linear is
somewhat ambiguous based on how one separates the mappings into their components, which
is why, in particular, the traditional formulation of message passing allows messages to be
functions of pairs of nodes. In practice, our aggregation block will permit nonlinear aggregation
functions such as max-pooling and in fact contain an additional nonlinear activation function.

2.4 Elementary equivariant aggregators

The exact structure of the equivariant aggregation layers defined above must still be specified.
Since the general case is presented in refs. [38, 39], here we will only present the layers that
are required for jet physics tasks. Since the input is an array of rank 2, the main equivariant
layer for us is one that transforms arrays of rank 2 to other arrays of the same rank: Tj; — TZ'J
The space of all linear maps of this type turns out to be 15-dimensional. The basis elements
of this space can be conveniently illustrated using binary arrays of rank 4. There are 15 such
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equivariant aggregators of PELICAN.

arrays B, a =1,...,15, and the action of the equivariant layer can be written as
N
Ti¢ = Y BT (2.6)
k=1

The 15 aggregators B* may be visualized as is done in figure 1 for N = 2. The smallest
squares represent components of the input 2 x 2 array, and the larger 2 x 2 squares represent
components of the output array. Dots represent the non-zero components of the binary tensors
B% and every component of the output tensor is the result of aggregation over all inputs
marked by the dots. Output components that lack any dots are set to be a fixed constant, by
default zero (the affine versions of these mappings include two such parameters: one constant
for the diagonal and another for the remaining components). By “aggregation” we mean, in
general, any symmetric function, but in practice it is usually a sum or mean. For example,
the first aggregator is simply the identity map on matrices: the ij’th component of the output
array is the result of aggregation over only the ij’th component of the input. The second
aggregator realizes the transposition of arrays TZ’J = T};. The following three aggregators
represent various ways of embedding the diagonal of the input array in an equivariant way.
It is easy to see that simultaneously swapping the two rows and the two columns of the input
is equivalent to doing the same to the output, which confirms equivariance. These first 5
aggregators are “order zero” in N because they do not actually perform any aggregation.
Instead, they can be thought of as permutation-equivariant skip-connections.

The second group of 8 “order one” aggregators aggregate over N components of the
input by aggregating either over rows, columns, or the diagonal, and then embedding the
result into the output array in all possible equivariant ways. Finally, the last 2 aggregators
are the “order two” aggregators that aggregate over all N? components of the input.

If we allow aggregators to be nonlinear, then they can take the following form: the
binary array B® selects a subset of the components of the input array, and then a general
symmetric function S® is applied to that subset:

Ty = S8 ({Tt | koL : By # 0}) . (2.7)



In practice we define 5% as the mean of its inputs followed by an additional scaling by a factor
of N%a/ N% with learnable exponents a4, where N is a constant representing the typical
number of input vectors expected in the dataset, provided to the model as a hyperparameter.

These equivariant layers and their generalizations have been thoroughly studied since
their introduction (see e.g. refs. [40-43]) and applied to problems in graph learning and
chemistry, e.g. in refs. [38, 44]. However, many important questions about the universality
and expressivity of these networks remain open. For example, networks that can use any
Eq,_,, layers were proven to be universal in refs. [40, 42], but the exact value of the maximum
rank (which is 2 in PELICAN) required for universality in a given problem is not known.

2.5 Equivariance and jet physics

There are several reasons for enforcing the full Lorentz symmetry in our ML models. First
and foremost, it is a fundamental symmetry of the space to which the inputs belong. Lorentz
transformations represent the effect of switching between different inertial frames, and most
fundamental processes in physics are independent of the choice of the observer’s inertial
frame: if a given collection of particles consists of the products of a decay of a top quark
for one observer, then the same is true for all other observers.

Nevertheless, some processes involved in generating and observing high-energy collision
events break the Lorentz symmetry in some subtle ways. At the fundamental level, the
running of the couplings in QCD can cause Lorentz symmetry breaking in the parton shower
distribution functions. Even the amount of final decay products depends on the transversal
boost of the initial parton-level particles. However, there is no question that both the original
protons and the final (asymptotic) decay products are accurately represented by a collection
of 4-vectors subject to the spacetime Lorentz symmetry: the asymptotic outcome of a collision
event is independent of the observer’s reference frame.

Another reason for symmetry-restricted modeling is that, from the geometric perspective,
only some mathematical operations are permissible when working with objects that transform
in a certain way under a symmetry group. A non-equivariant neural network effectively
neglects the vector nature of the inputs by treating individual components of the input
vectors as scalars. While improving network expressivity, non-equivariance fails to deliver
physically interpretable models. Ultimately, a statement about equivariance is a statement
about what the basic features of the data are — e.g. vectors are features, but the individual
components of those vectors are not.

More relevant to the applications is the fact that both the simulation and the observation
of collisions inevitably involves some degree of clustering. A particle detector is made of
cells (e.g. calorimeters) of finite size and as such is unable to distinguish between some
particles that are collinear or very close to collinear. Similarly, the standard algorithms
for collision simulation typically perform jet clustering to closely reproduce the detector
behavior. Clustering of course is not a Lorentz-invariant procedure: particle tracks that
diverge by a small angle in one frame will diverge by a large angle in another highly boosted
frame. However, this limitation of Lorentz-invariant architectures is fairly minor. Since
clustering is always done in a fixed laboratory frame, it is still reasonable to impose the full
Lorentz symmetry on the resulting 4-vector data. So unless the pre-clustering data itself

,10,



is coming from multiple significantly different inertial frames, clustering is not interfering
with the fundamental symmetry. Simply put, however a given set of 4-vectors is obtained
and represented in a specific inertial frame, those vectors will respect the Lorentz symmetry.
Finally, one important way to address the issue of network sensitivity to the clustering of
collinear particles is through enforcing so called IRC-safety, which will be discussed separately
in section 10.

3 PELICAN architecture

The PELICAN architecture is simpler than many previous architectures due to its use of a
complete set of Lorentz-invariants at the input stage, namely the set of pairwise dot products
between the input 4-momenta (see section 2), and this has significant implications for both
the overall architecture as well as the ease of training and interpretability of the network. This
section discusses each of the primary components of the network, including the inputs and
their embedding, the permutation-equivariant blocks, and the output layers that determine
the nature of the task, namely classification or 4-vector regression.

3.1 Inputs and embeddings

Dot products and beams. On the input side of the architecture, the first step is to
compute all pairwise dot products of the input 4-momenta. Appended to the list of these
4-momenta are two auxiliary beam particles with 4-momenta (1,0,0,41). This is helpful
since the datasets we are using are all simulated in a fixed laboratory frame where the
original proton-proton collision happens along the z-axis, and the auxiliary inputs restore
this orientational knowledge. In particular, the dot products between constituents and beams
give PELICAN access to the energies and transverse momenta of all constituents.

It is worth emphasizing that introducing beams in this manner allows us to fix a particular
spatial orientation of the events without restricting or violating the global Lorentz symmetry
inherent in the architecture. Indeed, if one were to treat the auxiliary beams as constant
vectors of hyperparameters, then this action would reduce the full Lorentz symmetry to
merely rotations in the xy-plane and z-boosts. However, due to the fact that the beams
are fed into the network on equal footing with all other inputs, they are properly treated as
full-fledged 4-vectors that should also transform under the global Lorentz symmetry. Thus,
counter-intuitively, we let the network access individual energies, transverse momenta and
z-momenta while still preserving the full Lorentz symmetry and all the computational benefits
that come with it (e.g. the number of learnable parameters remains unchanged, whereas an
architecture with a smaller symmetry group would have more degrees of freedom).

Embedding of dot products. Next there is an embedding layer that applies the function
falz) = (1 +2)** = 1)/a? to each dot product with several values of the trainable parameter
« (initialized to span the interval [0.05,0.5]). This is roughly inspired by the logarithmic
embedding in ref. [26] and serves to mollify the extremely heavy-tailed (approximately
Pareto) distribution of the input momenta. The addition of the learnable o parameter allows
PELICAN to resolve the inputs at multiple momentum scales, providing a slight boost to
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performance. Such an embedding may be generally useful for inputs which are naturally
Pareto distributed (i.e. positive with density of the form p(z) o< 77,7 > 0).

Embedding of scalar constituent data In addition to dot products, we introduce a
binary scalar label to distinguish jet constituents from the custom beam vectors. More
generally, jet datasets can involve scalar particle data s; such as particle IDs (PID), charge,
color, spin, etc. Let’s say each s; is a column of dimension Cgcalar- To be able to process
such inputs alongside the dot products, they need to be promoted to arrays with two particle
indices. Omne way to do this is to double the number of channels and define the array
s; @ s; of shape [B, Nmax, Nmax, 2Cscalar]. This array can then be concatenated with the
embedded dot products.

However, there is a more natural way of doing this within the PELICAN framework. In
the next section we will introduce permutation-equivariant Eqq_,5 blocks that act on arrays
with two constituent indices. To embed scalar particle data (“node features”) into the space
of such arrays (“edge features”), it is convenient to utilize an analogous equivariant Eq;_,9
block and apply it directly to s, the array of constituent scalars. This way we can produce a

flexible number C of scalar channels. By choosing the dimensionality of the dot product

calar

embedding to be C° — ! alar and then concatenating it with the array of promoted scalars,

we get a tensor of shape [B,Nmax,Nmax,C’o], where the feature vector for each particle

pair is C°-dimensional and has the form (fal (dij)s - fago_e (dij)> ® Eqq_(s)ij. This
scalar

approach allows for any number of Lorentz invariants per constituent, but in all of the tasks
considered in this paper we have Cycalar = 1.

3.2 Permutation equivariant blocks

The main element of the equivariant architecture is the permutation-equivariant block
transforming arrays of rank 2, represented schematically in figure 2. Namely, we assume
that the input tensor to the block has shape [B, Nmax, Nmax, C'], where B is the batch size,
Nmax is the maximum number of jet constituents per event (with zero padding for events
with fewer constituents), and C’ is the number of input channels. We also use a binary
mask of shape [B, Nmax, Nmax| to appropriately exclude the zero padding from operations
like BatchNorm and aggregation. The output of the block will be a similar tensor of shape
[B, Nmax, Nmax, C"1] with the same mask.

As outlined above, the equivariant layer consists of a message block and an aggregation
block. The message block is chosen to be a dense multilayer perceptron (MLP) acting on
the channel dimension with a LeakyReLU activation and BatchNorm2D (normalization over
the first three dimensions of the tensor, for each channel separately, followed by an affine
transform with two learnable parameters per channel). Here we use a masked implementation
of batch normalization so that the variable particle number is respected. The message
block is then followed by Dropout that zeroes out each of the B x N2, x Céq components
independently with a certain probability.

The aggregation block applies 15 linear aggregation functions (LinEq,_,) which, for each
component of the output tensor, compute the mean over some subset of the components of the
input tensor, as explained in section 2.4. Note that this is a non-parametric transformation
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Figure 2. The PELICAN equivariant block updating square arrays.

performed on each channel separately. Each of the Céq x 15 resulting aggregation values is
then independently multiplied by N®/N® with a trainable exponent « (initialized as a random
float in [0,1]), where N is the number of particles in the corresponding event. This allows for
some flexibility in the aggregation process, for example a = 1 returns the sum aggregation
function, and combining multiple aggregators is known to boost accuracy, see e.g. ref. [39].

Aggregation is followed by a dense layer that mixes the Céq x 15 aggregators down to
C'"1 features. Due to the size of this layer, we employ a simple factorization to reduce
the number of parameters. Namely the weight tensor Wy, where a is the input channel
index, b is the basis index (1 to 15), and c is the output channel index, can be replaced
by the following combination:

W < WL+ WA 1)

Here, the first term first mixes the 15 aggregators among each other for each output channel,
and then mixes the channels. Similarly, the second term first mixes the 15 aggregators for
each input channel, and then mixes the channels. It is technically possible to increase the
rank of this factorization by adding together multiple tensors of this form, but in practice
we find one to be sufficient — in our tasks the factorized network performs as well as the
unfactorized one (except at very low network widths, in which case the unfactorized network
performs better and may even have fewer parameters). The final result is a tensor of shape
[B, Nmax, Nmax, C’”l], so these equivariant layers can be stacked multiple times.

As already indicated above, a few other equivariant blocks will be useful to us, namely
Eq;_.9, Eqy_,1, and Eqy_,o. The only difference in their definition is that they involve just
5, 5, and 2 aggregators, respectively.

3.3 Classification and 4-vector regression outputs

One of the strengths of the PELICAN architecture is the ability to easily switch between
serving as a classification tool for jet tagging, to being able to provide 4-vector outputs in
tasks such as momentum reconstruction. Here we summarize both architectures.
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PELICAN classifier. To build a classifier, aside from the Eq,y_,, equivariant layer one
needs a Eqy_,; layer that reduces the rank 2 array to permutation-invariant scalars, as
represented by eq. (3.2). This layer involves just 2 aggregation functions instead of 15 — the
trace and the total sum of the input square array, but is otherwise identical to the equivariant
layer described in the last section. The input block concatenates the embeddings of the dot
products d;; and the scalar data s; as described above.

{dij} — Emb

® — [Eq22]" — Eqao — MLP — {we} (3.2)

e

{si} — Eq_,9

From the input block, the tensor is passed through L equivariant Eq,_,, layers, and
the Eqy_,o layer with dropout. This produces a tensor of shape [B, Cout]. One final MLP
mixes this down to just ncagses classification weights w. per event. A cross-entropy loss
function is then used for optimization.

PELICAN 4-vector regression. The same architecture can also be easily adapted for
4-vector regression tasks such as momentum reconstruction. Any Lorentz-equivariant map

from a collection of 4-vectors py,...,pny to one 4-vector (or several) has the form
N
F(phapN):Zf’L(plava)p’h (33>
i=1

where f;’s are Lorentz-invariant functions, see e.g. ref. [45] for a proof. Combining this with
permutation invariance, we conclude that the multi-valued map (p1,...,pn) — (f1,--., fN)
must also be equivariant with respect to permutations of the inputs.

The only change required to the architecture we’ve introduced for classification is that
Eqsy_,o must be replaced with Eqy_,; and the final output layer must have only one output
channel (assuming we are regressing on a single 4-vector). The Eqy_,; layer is again identical
to Eqq_,o except that it uses only 5 linear aggregators: taking the diagonal, row sums,
column sums, trace, and full sum. The architecture is summarized by the relationship
represented in eq. (3.4), where we treat f; as the outputs, and use eq. (3.3) to recover the
final predicted vector.

N

@ — [Eq_a]* — Eqe1 — MLP — {FY, (3.4)

{si} — Edqy_9

In summary, the simultaneous imposition of the full Lorentz and permutation symmetries
lets us express a Lorentz-equivariant and permutation-invariant vector-valued model via an
equivalent Lorentz-invariant and permutation-equivariant scalar-valued one. To recover the
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final 4-vector output one needs only aggregate the output using eq. (3.3). As we will see, in
particular tasks the coefficients f; become identifiable physical features, making the model
explainable. Crucially, this would not have been possible with only a partial Lorentz symmetry.

4 Tagging jets from Lorentz boosted top quarks

This section presents the dataset, training approach, and results of using PELICAN as a
classifier in the context of identifying “Lorentz-boosted” (high transverse momentum) top
quarks. Three different versions of PELICAN are discussed, each with a different size in
terms both the width of the network and the number of trainable parameters. Lastly, the
dependence of the performance on the size of the training dataset is also presented, providing
a quantitative relationship between the size of the network, the training dataset efficiency,
and the resulting performance.

4.1 Top tagging dataset

We perform top-tagging on the reference dataset [46], which was also used in ref. [8]. This
dataset consists of 2M entries, each entry corresponding with a single hadronic top jet or the
leading jet from a QCD dijet event. There are 1.2M training entries, 400k validation entries
and 400k testing entries. The events were generated with the PYTHIA8 event generator [47],
and the DELPHES framework [48] was used for fast detector simulation in order to incorporate
detector effects. For each jet, the 4-momentum of the 200 leading constituents are stored
in Cartesian coordinates (E,py,py,p-), in order of decreasing pr. This list is zero-padded,
and all jets in the dataset have fewer than 200 constituents. The dataset does not contain
any other information on the jet constituents, such as charge or spin.

4.2 Classification training procedure

The top-tagging model contains five Eqy_,5 blocks of identical shapes (followed by a sixth
Eqs_,; block). We train three different versions of the model with different widths. The
widest model has 132 input and 78 output channels on every messaging layer (the equivariant
layer then produces 132 x 15 quantities which get mixed down to 78 channels by a fully
connected linear layer). The output MLP is just one layer that mixes 132 channels down
to 2 classification weights. The number of jet constituents was capped at 80 (no noticeable
performance gain was seen beyond that number). The dropout rate was 0.025, and the
model was optimized using the ADAMW optimizer [49] with weight decay of 0.005. The
training on the full dataset went on for 35 epochs with the same learning rate schedule as in
ref. [26]: 4 epochs of linear warm-up up to learning rate of 0.001, followed by 28 epochs of
COSINEANNEALINGLR with Ty of 4 epochs and Tyt = 2, and then 3 epochs of exponentially
decaying learning rate with exponent v = 0.5 per epoch. We ensure that each minibatch
contains an equal number of signal and background events, and shuffle the order of the
minibatches at every epoch. The three models were trained on Nvidia H100 GPU’s with
batch size of 100, taking 0.43, 0.17, or 0.08 seconds per batch, respectively. Inference took
0.17, 0.07, or 0.04 seconds per batch. Batches were shuffled between epochs.
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Architecture Accuracy AUC 1/ep (es = 0.3) # Params

TopoDNN [50] 0916  0.972 382+ 5 59k
EFN [24] 0.927  0.979 729 + 13 82k
LGN [25] 0.929(1) 0.964(14) 424 + 82 4.5k
BIP(XGBoost) [51] 0.929  0.978 600 =+ 47 312
EFP [18] 0.932  0.980 384 1k
BIP(MLP) [51] 0931  0.981 853 + 68 4k
PFN [24] 0932  0.982 891 + 18 82Kk
DisCo-FFS [52] - 0.982 1249 + 43 1.4k
ResNeXt [8] 0.936  0.984 1122 + 47 1.46M
ParticleNet [53]  0.938  0.985 1298 + 46 498k
ParT [30] 0.940  0.9858 1602 + 81 2.1M
LorentzNet [26]  0.942 09868 2195 + 173 220k
PELICAN 0.9426(2) 0.9870(1) 2250 + 75 208k
PELICAN g 0.9406(2) 0.9844(11) 1711 + 208 208k

Table 1. Comparison of different classifiers trained on the full top-tagging dataset. Note that
BIP(XGBoost) and EFP are not neural networks. PELICAN’s metrics are averaged and the uncer-
tainties are given by the standard deviation over 5 runs with different values of the random seed.
PELICANig( is an IRC-safe modification detailed below in section 10. Note that ref. [36] also includes
a higher-performing model pre-trained on a large custom dataset. For the direct comparison, this
table refers only to the non-pre-trained ParT model.

Depth L Width Accuracy AUC 1/ep (es = 0.3) # Params

5 132/78 0.9425(1) 0.9870(1) 2250 + 75 208k
5 60/35 0.9424(1) 0.9868(1) 2148 + 125 48Kk
5 25/15  0.9410(3) 0.9858(4) 1879 + 103 11k
5 10/6  0.9386(2) 0.9850(1) 1494 + 43 3k
3 6/4  0.9358(7) 0.9835(2) 1145 + 74 1k
2 6/3  0.9336(5) 0.9823(3) 901 + 59 605
1 6/3  0.9291(5) 0.9801(4) 669441 326
1 /6 0.9258(8) 0.9780(6) 516 + 52 248

Table 2. Comparison of PELICAN classifiers of varying shapes trained on the full top-tagging dataset.
The depth L is the number of equivariant Eq,_,5 blocks, and the width consists of two numbers.
E.g. 132/78 means that each messaging block takes in 132 channels and outputs 78 channels (and the
reverse for the aggregation block). The input width of the output MLP matches the messaging blocks.
The last model has the fully connected messaging layers disabled altogether, so only the shape of the
aggregation blocks is given. See also figure 4.
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Figure 3. Performance of various ML architectures represented by the background rejection as a
function of the signal efficiency.

4.3 Top tagging results

Figure 3 shows the receiver operating characteristic, here represented by the background
rejection as a function of the signal efficiency, for the classification performance. In table 1
we compare the accuracy, area under the curve (AUC), and background rejection values at
30% signal efficiency between PELICAN and multiple existing ML top-taggers, including the
previous state-of-the-art LorentzNet [26]. We also include two non-ML taggers: the Energy
Flow Polynomials [18], designed to be IRC-safe; and the Boost Invariant Polynomials [51],
designed to be partially Lorentz-invariant and used as inputs to XGBoost [54]. These two
taggers stand out due to their low numbers of parameters and efficient utilization of physical
constraints. We trained three PELICAN top-taggers with layers of differing widths, with
208k, 48k, and 11k trainable parameters respectively. The results are averaged over 5
random initialization seeds, and the uncertainties are given by the standard deviation. The
large PELICAN model improves upon the LorentzNet result with a comparable number of
parameters, and the medium model roughly matches LorentzNet despite having 5 times fewer
parameters. Perhaps most remarkably, the small model with 11k parameters beats every
pre-LorentzNet competitor despite having at least several times fewer, and up to 190 times
fewer, parameters than other networks. The metrics for these three and a few even smaller
models are presented in table 2, and we visualize this comparison across all models in figure 4.

In addition to different model sizes, we also explore sample efficiency. Each of the three
models above was trained on 0.5%, 1% and 5% of the training data and compared to the orig-
inal. For these, the training went on for 70 epochs with 60 epochs of COSINEANNEALINGLR
instead of 28, and 6 epochs of exponential decay instead of 3. The results can be found in
table 3. Notice that at lower amounts of training data the differences in performance between
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Figure 4. Comparison of top-tagger background rejection performance for fixed signal efficiency
(es = 0.3) as a function of the number of parameters in each model considered, combining data from
table 1 and table 2.

Width % training data Accuracy AUC 1/ep (es = 0.3)

132/78 100% 0.9425(1) 0.9870(1) 2250 + 75
5% 0.9368(3) 0.9843(1) 1270 + 65
1% 0.9316(6) 0.9810(5) 789 + 49
0.5% 0.9289(11) 0.9800(5) 633 + 28
60/35 100% 0.9423(1) 0.9868(1) 2133 + 148
5% 0.9368(2) 0.9841(1) 1148 + 49
1% 0.9323(3) 0.9813(4) 799 + 52
0.5% 0.9289(9)  0.9795(5) 637 + 105
25/15 100% 0.9411(2) 0.9863(1) 1885 + 109
5% 0.9360(2) 0.9837(1) 1111 + 108
1% 0.9316(1) 0.9810(5) 798 + 116
0.5% 0.9286(11) 0.9795(6) 615 + 133

Table 3. Comparison of PELICAN top-tagging models of different widths (depth is always L = 5)
trained on different fractions of the training data.

models of different width become much less significant, and at 1% and 0.5% of training data
all three models fall within each other’s uncertainty ranges. These results suggest that the
larger PELICAN networks are likely able to learn a greater range of more subtle features
from the training data and thus benefit from seeing a larger training dataset. On the other
hand, the primary features are already learnable with just a few percent of the data. In
particular, with 5% of the training data and only 11k learnable parameters, the 25/15-channel
wide version of the network achieves similar background rejection performance as ResNeXt,
which uses 1.46M parameters learning on the full dataset.
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Architecture Accuracy AUC 1/ep (es =0.3) 1/ep (es = 0.5) # Params
Not IRC-safe, w/ PID

PFN-ID [24] - 0.9052(7) - 37.4 £ 0.7 82k
ParticleNet-1D [53] 0.840 0.9116 98.6 + 1.3 39.8 + 0.2 498k
ABCNet [58] 0.840 0.9126 118.2 £ 1.5 - 230k
LorentzNet [26] 0.844 0.9156 110.2 £ 1.3 424 £ 04 220k
ParTy [36] 0.849 0.9203  120.5+0.9  47.9+ 05 2.1M
PELICANpp 0.8551(2) 0.9252(1) 149.8 + 2.4 52.3 £ 0.3 209k
Not IRC-safe, w/o PID

PFN [24] - 0.8911(8) - 30.8 £ 0.4 82k
ParticleNet [53] 0.828 0.9014 85.4 33.7 498k
PELICAN 0.8349(4) 0.9076(1) 94.5 + 0.5  37.5 + 0.1 208k
IRC-safe

EFN [24] - 0.8824(5) - 98.6 + 0.3 82k
EFP [18] - 0.8919 - 29.7 1k
EMPN [59] - 0.8932(6) - 30.8 + 0.2 ~110k
PELICANrc 0.8321(9) 0.9056(7) 91.7 + 0.4 36.5 =+ 0.3 9k

Table 4. Comparison of different quark-gluon classifiers trained on the quark-gluon tagging
dataset [57].

5 Tagging quark and gluon jets

In this section we apply PELICAN to another binary classification task: distinguishing
jets produced by gluons from those produced by light quarks. We study three variants of
PELICAN for this task: both with and without the use of particle ID labels (PID), as well as
a third IRC-safe version. We compare the performance of each of these three variants to other
published architectures. We also compare PELICAN models of three different widths and
find that even a very small PELICAN model achieves state-of-the-art tagging performance.

5.1 Quark-gluon jet dataset

We use the public dataset introduced in ref. [24]. It consists of an equal number of jets
produced either by gluons or light quarks (u,d, s). The non-neutrino products are clustered
using FASTJET [55] with anti-k7 jet [56] radius R = 0.4, and the jets are restricted to
pr € [500,550] GeV and |y| < 2. There is no detector simulation, and the particle ID is stored.
We select the first 200k events for validation, the following 200k for final testing, and the
remaining 1.6M for training. The samples can be downloaded from [57].

5.2 Quark-gluon jet tagging results

The training procedure for the PELICAN quark-gluon tagger is identical to that of the
top-tagger described above. The hyperparameters were also chosen to be the same, except
here we take up to 100 highest-pr constituents. As before, we train models of three different
shapes and compare their performance. In addition, we train these models both with and
without PID information supplied as a set of scalar inputs. Finally, we train IRC-safe

,19,



PELICAN variant L Width Accuracy AUC 1/ep (es =0.3) 1/ep (es = 0.5) # Params
Not IRC-safe, w/ PID 5 132/78 0.8551(2) 0.9252(1) 149.8 + 2.4  52.3 + 0.3 209k
5 60/35 0.8544(5) 0.9245(2) 148.7 £2.2 515 + 0.2 49k
5 25/15 0.8506(3) 0.9216(2) 134.8 £ 0.7  48.5 + 0.4 12k
Not IRC-safe, w/o PID 5 132/78 0.8349(4) 0.9076(1) 94.5 £ 0.5  37.5 + 0.1 208k
5 60/35 0.8344(1) 0.9073(1) 93.6 + 1.1 37.4 £ 0.1 48k
5 25/15 0.8330(5) 0.9063(3) 92.8 = 0.5 36.8 £ 0.3 11k
IRC-safe 5 132/78 0.8294(3) 0.9034(1) 90.5 + 1.3 35.7 £ 0.2 204k
5 60/35 0.8291(4) 0.9030(1) 90.5 £ 1.2 35.2 £ 0.2 46k
4 25/15 0.8321(9) 0.9056(7) 91.7 = 0.4  36.5 £ 0.3 ok

Table 5. Comparison of PELICAN ¢/g classifiers of varying widths. The smallest IRC-safe model
was found to have a lower optimal depth of L = 4.

PELICAN models so that they can be directly compared to other IRC-safe architectures.
For the details of the IRC-safe implementation, see section 10.

In table 4 we compare PELICAN to other architectures trained on the quark-gluon
dataset. We group the architectures according to whether they use PID inputs, and whether
they are IRC-safe, to enable a more direct and fair comparison. Moreover, in table 5 we also
compare the performance of PELICAN models of different sizes, analogous to the comparison
in section 4. Interestingly, among the IRC-safe models the one with the lowest number of
parameters performed the best. This can potentially be explained by the accumulation of
floating point errors that we discuss below in section 10. PELICAN achieves impressive state-
of-the-art classification performance with as few as 11k parameters, surpassing architectures
of up to 190 times larger sizes. Finally, while table 4 includes only the non-pre-trained version
of ParT to facilitate a direct and fair comparison, it is worth noting that the PELICAN
quark-gluon tagger surpasses even the pre-trained ParT tagger as reported in ref. [36].

6 Multi-class jet tagging

In this section we consider a final, more advanced jet tagging task. It involves identifying
jets that are produced by the decays of five different types of particles: gluons, light quarks,
W-bosons, Z-bosons, and top quarks. We compare the performance of PELICAN models
of three different widths to previously published architectures.

6.1 HLS4ML LHC jet dataset

The HLS4ML dataset consists of jets produced by simulated /s = 13 TeV proton-proton
collisions using the parameters of a typical LHC detector as detailed in ref. [62]. The jets
are clustered using the anti-kp algorithm [56] with jet radius R = 0.8, and the jet transverse
momentum is required to be around 1 TeV. There are 5 categories of jets: g,q, W, Z, t, labeled
using a one-hot vector (e.g. Z is labeled (0,0,0,1,0)). We use the version of the dataset that
includes up to 100 constituents per jet, which can be downloaded from ref. [63]. The original
dataset includes 16 features per constituent, 4 of them being the Cartesian components of
the 4-momentum, and the rest are various representations of the 4-momentum in cylindrical
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Architecture Gluon Light quark W-boson Z-boson  Top quark # Params

AUC
JEDI-net 0.9529 0.9301 0.9739 0.9679 0.9683 34k
PCT 0.9623 0.9414 0.9789 0.9814 0.9757 193k

LorentzNet 0.9681(3) 0.9479(4)  0.9837(2) 0.9813(3) 0.9793(3) 224k
PELICAN  0.9693(1) 0.9493(1) 0.9840(1) 0.9816(1) 0.9803(1) 208k

TPR at FPR=0.10
JEDI-net  0.878(1)  0.822(1)  0.938(1)  0.910(1)  0.930(1) 34k
PCT 0.891(1)  0.833(1)  0.932(1) 0.946(1) 0.941(1) 193k
LorentzNet 0.912(1)  0.855(1)  0.952(1)  0.939(1)  0.949(1) 224k
PELICAN 0.916(1) 0.860(1) 0.953(1) 0.940(1)  0.951(1) 208k

TPR at FPR=0.01
JEDI-net  0.485(1)  0.302(1)  0.704(1)  0.769(1)  0.633(1) 34k

PCT 0.513(2)  0.298(2)  0.834(1) 0.781(1) 0.700(3) 193k
LorentzNet 0.557(4)  0.319(2)  0.800(3)  0.850(3)  0.753(3) 224k
PELICAN  0.567(1) 0.320(1) 0.804(1) 0.850(1) 0.761(1) 208k

Table 6. Three metrics of the receiver-operator curves for each jet category in the HLS4ML Jet
dataset (in the “one-vs-rest” strategy), compared across architectures: area under the curve and the
values of signal efficiencies (true positive rate, or TPR) at background efficiencies (false positive rate,
or FPR) of 10% and 1%. LorentzNet and PELICAN results are averaged over 5 random initializations
and the uncertainties are given by the standard deviation. The results for JEDI-net and PCT were
taken from refs. [60, 61].

coordinates relative either to the beam axis or the jet axis. In addition, it includes a number
of jet-level scalar features. For PELICAN, we need only the 4-momentum of each constituent.
This simplified version of the dataset appropriate for our dataloader can be found at ref. [64].
To avoid any potential bias, the original training set was split into a fully balanced set of
567k jets and an unbalanced validation set of 63k jets (matching the sizes in ref. [61]). The
final testing dataset consists of 240k jets.

6.2 Multi-class jet tagging results

We use the same PELICAN classifier architecture as above, but this time producing 5
classification scores. All other hyperparameters and the training procedure were left unchanged.
In addition, we trained LorentzNet [26] on this dataset without modifying the default
hyperparameters (other than the number of target classes) or the training procedure. In
table 6 we compare the receiver-operator curves of different architectures using three metrics:
area under the curve (AUC), and the signal efficiencies (a.k.a. TPR — true positive rate) at
background efficiencies (FPR — false positive rate) of 10% and 1%. On net, both PELICAN
and LorentzNet (the only two Lorentz-invariant architectures applied to this task) provide a
significant improvement over older architectures, yet PELICAN surpasses even LorentzNet
despite its similar model size.

Finally, we trained three PELICAN models of different widths and compared their
performance in table 7. Even the small PELICAN model with only 11k parameters achieves
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Width Gluon Light quark W-boson Z-boson Top quark # Params

AUC
132/78 0.9693(1) 0.9493(1)  0.9840(1) 0.9816(1) 0.9803(1) 208k
60/35 0.9683(1) 0.9483(1)  0.9835(2) 0.9811(2) 0.9795(2) 48k
25/15 0.9652(2) 0.9441(3)  0.9821(2) 0.9795(3) 0.9769(3) 11k

TPR at FPR=0.10
132/78 0.916(1) 0.860(1)  0.953(1) 0.940(1) 0.951(1) 208k
60/35 0.912(1) 0.856(1)  0.952(1) 0.938(1) 0.949(1) 48k
25/15 0.902(1) 0.841(1)  0.948(1) 0.934(1) 0.942(1) 11k

TPR at FPR=0.01
132/78 0.567(1) 0.320(1)  0.804(1) 0.850(1) 0.761(1) 208k
60/35 0.562(1) 0.316(2)  0.801(2) 0.849(1) 0.750(2) 48k
25/15 0.538(2) 0.307(3)  0.794(3) 0.840(2) 0.719(2) 11k

Table 7. Comparison of three PELICAN models of different widths on the multi-class jet tagging
task. The width for PELICAN is defined as in table 2.

state-of-the-art performance in 4 out of the 5 jet categories. Meanwhile the medium model
with 48k parameters is on par with the much larger LorentzNet. We see similar (small)
changes in performance as the model size is changed for this task compared to the other
tasks described above.

7 W-boson 4-momentum reconstruction

To test the equivariant regression architecture described in section 3 we chose a task where
the aim is to reconstruct (or predict) the full 4-momentum of the W-boson within the
Lorentz-boosted top-quark decay products. Specifically, we consider the same hadronic
top-quark decay process that constitutes the signal in the top-tagging dataset, which uses
the t — bW — bgq two-step decay, followed by hadronization, showering, and detection. Our
aim is to reconstruct the true 4-momentum of the W-boson given the full set of observed
final state particles of the top-quark decay, as represented by the jet constituents. The work
most closely related to this task is the transformer-based reconstruction of the top quark
momentum in ref. [30], and we employ similar evaluation criteria for our task.

7.1 Regression dataset

The dataset used for the regression task consists of 1.5M tt events simulated with PYTHIAS,
via the HEPData4dML package [65], consisting of 700k events for training, 200k events for
validation, and 500k events for testing (with an additional 100k events set aside in a second
testing set). From each event, we cluster anti-kp jets with R = 0.8 using FASTJET and we
select the jet nearest to the truth-level top quark in (7, ¢), requiring the distance between the
top quark and the jet to satisfy AR (top quark,jet) < 0.8. This jet clustering is done both
at truth-level, and using calorimeter tower objects produced by running the event through
DELPHES fast detector simulation using the ATLAS detector card. Thus, each event in the
dataset corresponds to a single jet, and includes information for truth-level particles such as
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the truth-level top quark — we may therefore use the terms jet and event interchangeably
below with the understanding that each “event” in this dataset has one and only one jet
recorded. This dataset is fully reproducible since it contains the full set of parameters used
for its own generation via the HEPData4dML package. It is publicly available via Zenodo [28],
where a full description of the various data fields is provided. Here we provide only an

overview of some key features:

1. There are two versions of the dataset, corresponding with truth- and reconstruction-level
(DELPHES) jets. The events are the same between versions, so the two can be compared
event-by-event to study the effects of detector reconstruction on network training and

performance.

2. The input data for the network are the 4-momenta of the 200 leading jet constituents.
For use as possible regression targets and for defining jet containment (explained below),
each event contains

(a
(b
(c

(d) the two quarks from subsequent W-boson decay (W — ¢¢'),

the truth-level top quark that initiated the jet,
the bottom quark from top-quark decay,
the W-boson from top-quark decay,

)
)
)
)
In addition, the event contains the stable W-boson daughter particles. These are the
truth-level, final state particles that are traced back to the W-boson by PYTHIA.

3. Each jet is tagged with the Johns Hopkins top tagger [7] (JH), as implemented in
FasTJET. This allows us to define a subpopulation of JH-tagged events, which we shall
sometimes refer to as JH events. For jets that it tags as top-quark jets, JH reconstructs
a W-boson candidate from subjets.

4. Each jet is also tagged as whether or not it is fully-contained (FC). We define FC events
as those where the b-quark, as well as the two quarks from W — ¢¢’ decay, are within
AR < 0.8 of the jet centroid (i.e. within the jet radius). In such cases almost all of the
W-daughters are contained within the jet and we can expect a good reconstruction of
the W momentum. FC events comprise 75% of the dataset.

7.2 Regression training procedure

Our model has 4 equivariant Eq,_,9 blocks. Each messaging layer takes in 132 channels and
outputs 78 channels. Conversely, each equivariant aggregation layer has 78 input channels and
outputs 132 channels. The Eq,_,; block has the same shape, and the final fully-connected layer
has the shape 1 x 132. There are 210k parameters in total. Assuming N non-zero input jet
constituents, this produces N scalar coefficients ¢; with zero-padding, which are the Lorentz
invariants as described by eq. (3.3). The reconstructed 4-momentum is then computed via

Preco = Z CiPi- (7-1>
7

— 23 —



The training regimen for this task is essentially identical to the one for top-tagging: ADAMW
optimizer with weight decay of 0.01, 35 epochs in total with 4 epochs of warm-up and
exponential learning rate decay for the last 3 epochs. All matching hyperparameters were
copied from the top-tagging model with no extra optimization. The main difference is in
the choice of the loss function L(preco, Prarget)- Spacetime geometry allows for many choices
of this function, which in turn will affect the shape of the landscape near piarger and in
turn the precision of various reconstructed features of the vector, such as the mass, energy,
spatial momentum, transverse momentum, and direction. It is even possible to construct
Lorentz-invariant loss functions to make the training process itself equivariant. Nevertheless,
for the purpose of simultaneous reconstruction of the direction and the mass myy of the
W-boson, we found

LOSS(precmptarget) = 0'01||preco - ptarget” + 0'05’mr‘3€0 - mtarget’ (72)

to be very effective. It uses all 4 components of the target vector and strikes a good balance
between the precision of the reconstructed mass and spatial momentum. The coeflicients are
chosen such that each term in the loss function is order unity for our datasets.

Aside from the loss function, another rarely discussed feature of this task is the choice of
the target vector piarget- Even though our ultimate inference target is the true W momentum
plV ., it is not necessarily the best training target given the nature of the dataset. Detection
and jet clustering include multiple energy, momentum, and spatial cuts that exclude some
decay products from the final jet. For instance, one of the three quarks in t — bgq might fall
outside of the R = 0.8 radius of the jet clustering algorithm, in which case most of the decay
products of that quark are likely to be absent from the event record. If many of the decay
products of the W-boson are missing, then we lack the information necessary to make an
accurate estimate of its true momentum, or even to identify which of the jet constituents
belong to the W-boson. This effect is often referred to as an acceptance issue due to the
finite purview of the final state reconstruction.

To alleviate this issue and provide better control over the inference stage, we propose
an alternative target 4-vector that we call the contained true W momentum pl ., equal to
the total 4-momentum of the truth-level W decay products that fall within the radius of the
final reconstructed top jet. In the truth-level dataset, this is simply pl’gnt = > 1 Di, Where
i, are the indices of the constituents whose parent is the W-boson and not the b-quark. In
the DELPHES dataset, however, there is no simple analytic relationship between p’¥ . and
the jet constituents p;. That is to say that the mapping of the truth-level information to
the detector-level reconstruction is highly nonlinear. Nonetheless, in either dataset this
vector more accurately reflects the available information about the W-boson and allows
us to make inferences not only about the W-boson itself, but also about the containment
qualities of the event. This will be discussed further in section 7.5 below. For reference, the
true mass spectra of both p/¥ . and p¥ . are shown in figure 5. For fully-contained (FC)
events, the mass spectra are similar between the true and the contained W mass as expected.
Non-FC events are mostly confined to a clear second peak at 13 GeV corresponding to gb
and ¢ jets (where one of the quarks from W — qq fell outside the jet), and a minor peak

at mW

eont = 0 corresponding to b jets.
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Figure 5. Stacked histogram with proportional bin heights showing the mass spectrum of the two
targets, the true W momentum p! . and the contained true W momentum p’ .. The left figure
shows a stacked histogram of the true W mass spectrum comprised of the FC events (purple) and
non-FC events (blue). The right figure shows a stacked histogram of mass spectrum for the contained
W mass, similarly comprised of both FC events (purple) and non-FC events (blue). In each case, the
bin contents are scaled linearly relative to the total number of events, i.e. the fraction of FC events in
a given bin is given by the apparent height of the FC curve divided by the total height of the bin
(heights are measured from the x-axis). The two mass spectra of FC events, in fact, match.

Method Opr (%) 0m (%) oar (centirad)

£ JH 0.66%  1.26% 0.216
= & PELICANJH  026%  0.57% 0.113
= B PELICANJFC  030%  0.71% 0.139
PELICAN 0.79%  1.12% 0.473
o8 JH 98 % 8.3 % 9.6
Z & PELICANUH 35 % 26 % 2.8
2 PELICAN[FC 40 % 29 % 3.1
PELICAN 51% 3.0 % A7

Table 8. Momentum reconstruction results for JH and PELICAN trained to reconstruct p/, .. We
report the relative pp and mass resolutions, and the interquantile range for the angle AR between
predicted and true momenta. “PELICAN|JH” refers to PELICAN evaluated only on JH-tagged jets,
and “PELICAN|FC” to PELICAN evaluated only on FC events. PELICAN uncertainties are within
the last significant digit.

Given the above observations, we prepared two PELICAN models, one trained to
reconstruct p{’,., and another trained to reconstruct p'’ .. Otherwise the two models are
identical and are trained in the same way and with the same loss function. We then compare
the outputs of each model to p}’., and analyze the benefits of the two choices of the target.
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Figure 6. Reconstructed W mass relative to true W mass for the PELICAN model trained on truth
(left) or DELPHES (right) data, and targeting p{Y ..

7.3 Regression results for pfrue reconstruction

The results are summarized in table 8. We quantify the precision of the reconstruction
using the resolution of transverse momentum pr!' and mass as a metric, given by half of the
central 68" interquantile range of (Zpredict — Ttrue)/Ttrue, Where x is m or pr. In addition
we report the lower 68" interquantile range for AR, the z-boost-invariant spatial angle
between predicted and true momenta.?

Since there are no pre-existing ML-based methods for this task, we use the W-boson
identification of JH for the baseline comparison. JH has a 36% efficiency on the truth-level
dataset and 31% on the DELPHES one. It can only identify W-boson candidates for jets it tags,
so we report PELICAN results both on the JH-tagged jets only (PELICAN|JH) and on the
full dataset (PELICAN). Moreover, we evaluate PELICAN on the population of FC events
(PELICAN|FC). More than 99.9% of JH-tagged events contain all three true quarks bgqq
within the jet radius, so this population represents an especially restricted and “ideal” type
of event. The results were evaluated over 5 training runs initialized with different random
seeds, and the resolutions reported in table 8 are consistent across the runs.

There are significant differences in PELICAN’s performance on the different sub-populations
of events. In the direct comparison with the JH tagger, PELICAN|JH is 2-4 times more
precise. However, even on the much larger class of FC events, PELICAN produces predictions
with almost the same precision. The highest loss of precision happens on non-FC events
where many of the W decay products are missing from the jet, leading to lower average
precision on the entire dataset. As discussed in section 8, this result can be ezplained by
interrogating the PELICAN weights and kinematic information directly.

In figure 6 we show the relative reconstructed W masses for two of the models, one
trained on truth data, and one on DELPHES data. The results also include the curve for the JH
tagger’s reconstruction, as well as PELICAN|JH and PELICAN|FC. The 68" interquantile

'pr = /P2 +pj.

’AR = \/(A¢)? + (Alntan6/2)2.
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Figure 7. Reconstructed W mass relative to true W mass for the PELICAN model trained (on truth
or DELPHES data) targeting p}V ..

Method Opr (%)  om (%) oar (centirad)

£ 0 JH 0.66%  1.26% 0.216
= & PELICANJH  027%  0.62% 0.113
£ B PELICAN|FC  0.34%  0.86% 0.142
PELICAN 2.37%  38.93% 0.681
-8 JH 98 % 83 % 9.6
Z & PELICANUH 36 % 28 % 3.1
B PELICAN[FC 42 % 36 % 3.4
PELICAN 6.2 % 396 % 5.6

Table 9. PELICAN resolutions for models trained to reconstruct pt’ .. Resolutions are still obtained
by comparing the model predictions to pl,..

ranges of these curves match the numbers in the o, column of table 8. See section 9 for
further details on the causes of performance degradation in the DELPHES case. For the
complete set of results see appendix A.

7.4 Regression results for pggnt reconstruction

Now we train new models with the target vector set to the contained true W momentum
pW ., evaluate their precision by comparing the outputs to the true W momentum p}Y, ., and
compare the results to table 8. As shown in table 9, the resolutions for these models on
JH-tagged and FC events are slightly worse than the first set of models, in the DELPHES case
by 5-15%. The largest change is in non-FC events, leading to poor average resolutions on
the whole dataset. Despite this, as we will now show, these models can in fact be better
suited for real-world applications.
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7.5 Discussion

To see the main benefit of this model, we present the behavior of the relative reconstructed
mass shown in figure 7. PELICAN-reconstructed masses within the range of true W masses
are almost as precise on the full dataset as they are on FC events (see figure 7 near the
peak at 1). The most prominent feature obvious from these results is that, despite the
slightly lower accuracies on FC events (at fixed width and depth of the network), the model
trained to reconstruct p'¥ . accurately reproduces the mass spectrum of m/¥ . in figure 5 and
therefore discriminates between FC and non-FC events, allowing us to perform post-inference
event selections.

For instance, in the DELPHES case, choosing a 55 GeV cutoff, 97% of all FC events have
Mreco > DD GeV, and vice versa, 97% of all events with myeco > 55 GeV are FC. In this
manner we can significantly improve the accuracy of the reconstruction without accessing
truth-level information that is needed to identify FC events. Notably, this so called “parton
labeling” via regression networks was recently studied in ref. [66]. This filtering of events
comes at the cost of a modest reduction in signal efficiency — from the ostensible 100%
down to 75%. Note that in the DELPHES case, the set of FC events is contaminated with a
small number of events with significant losses of W decay products due to detector effects,
but it can be refined by reducing the jet radius used in the definition of full containment.
Consequently, we propose the following simple routine for real-world applications of these

models. First, use the model trained targeting p%¥ . as an FC-tagger to refine the data. Then,

w

e tO reconstruct the W-boson.

apply the model targeting p

We conclude that pl¥ . is the better target for many common reconstruction tasks where
one is willing to sacrifice some signal efficiency — or to only fully measure the 4-momentum
on a sub-sample of the identified events — to gain improved accuracy. In the following
sections we will not present models trained on both targets, however a complete set of metrics

and figures can be found in appendix A.

8 W-boson mass measurement

As we saw above, PELICAN is able to reconstruct the mass of the W-boson, myy, found
within the dense environment of the complete decay products of a top quark jet. For truth-
level datasets, the resolution of this reconstruction is below the natural width [67] of the
mass spectrum, Iy /myy &~ 2.59%. In the DELPHES case, the resolution is too wide to produce
any substantial correlation between the true and reconstructed masses (see appendix A for
figures that demonstrate this). We would like to eliminate the possibility that the reason that
the true masses are highly concentrated around 80 GeV is due in part to the potential for
PELICAN to effectively memorize a single number: the W mass. In this section we examine
a more realistic reconstruction task, where the true mass of the target particle is unknown,
and the dataset uniformly covers a wide range of its masses.

The reconstruction task is still identical to that of section 7. Even though we could
use an invariant scalar-valued version of PELICAN to target the mass of the W-boson,
the accuracy of that reconstruction would in fact suffer in comparison with the equivariant
4-vector-valued model. This is simply due to the fact that the 4-momentum contains more
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Figure 8. Stacked histogram with proportional bin heights (see description in figure 5) showing the
mass spectrum of the two targets, p{v. . and pY’ ., in the variable W mass dataset.

Method opr (%) om (%) oar (centirad)

ER: JH 7.98%  4.75% 22.180
< & PELICAN|JH 0.27%  0.63% 0.111
= 2 PELICAN|FC 0.35%  0.89% 0.143
PELICAN 2.64%  39.00% 0.744
=B JH 16.0 % 12.0 % 25.4
§ & PELICAN|JH 42 % 65 % 3.4
£ PELICAN|FC 49 % 80 % 3.8
PELICAN 73 % 407 % 6.7

Table 10. PELICAN resolutions for models trained to reconstruct p’¥ . with variable myy. Resolutions
are still obtained by comparing the model predictions to p{¥ ..

relevant information than the mass alone, since the direction and the energy of the particle
are, in part, correlated with the mass. Thus the only new element in this experiment will
be the dataset, which will now involve W-bosons of varying masses uniformly covering the
range my € [64,96] GeV. The dataset is also identical to that used in section 7, including
the number of events, except that the W mass is set to be variable. This is achieved by
combining multiple independently-produced datasets where the generator-level value of myy
was modified from its default value. Figure 8 shows the resulting distribution of W masses,
as well as that of the sum of W-daughters contained within each jet.

8.1 Regression results for my reconstruction

The hyperparameters and the training regime used here are the same as in section 7. Here
we focus on the model trained to reconstruct the contained momentum pY’ . (see appendix A
to find the results for the model targeting p/¥ ). The outputs are then compared to the
true W-boson p{¥. .. The accuracies for the full 4-vector reconstruction are presented in
table 10. The largest loss of accuracy relative to section 7 is, unsurprisingly, in the mass
column. However, since the true mass now covers a much wider range, while the number of
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Figure 9. 2D histograms of true vs. reconstructed masses for models trained on the variable mass
dataset targeting plV. . (top: truth data; bottom: DELPHES data), broken up into two populations
based on jet containment (left: non-FC events; right: FC events). Top right has a correlation of 88%,
and bottom right 35%.

training samples remained the same, this still presents a significant improvement in the mass
reconstruction capability. To demonstrate this better, we show the 2D correlations between
target and reconstructed masses in figures 9 and 10 for the models trained targeting p/" .
and pl¥ ., respectively. We also differentiate between non-FC (left) and FC (right) events
in the two sides of each of the panels in each figure.

8.2 Model complexity

The model examined above has 210k trainable parameters, however even significantly smaller
models achieve good accuracy. As an illustration, we compare the resolutions of three
PELICAN models trained on the variable mass dataset targeting p{’,.. They are obtained
from the original model by a proportional rescaling of the widths of all layers. The first
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Figure 10. 2D histograms of target vs. reconstructed masses for models trained targeting p%¥ . (top:
truth data; bottom: DELPHES data), broken up into two populations based on jet containment (left:
non-FC events; right: FC events). Top right has a correlation of 95%, and bottom right 65%.

model is the 210k parameter one, with 132/78 channels, i.e. each messaging layer has 132
input and 78 output channels. The second model has 60/35 channels and 49k parameters.
The third model has 25/15 channels and 11k parameters. The resolutions over the DELPHES
test dataset are reported in table 11, and we observe that even the 11k-parameter model
handily beats the JH method.

8.3 Discussion

In the DELPHES dataset, we observe that for non-FC events (bottom left pane of figure 10),
the reconstructed contained mass is only weakly correlated with the true contained mass (or
with the true W mass, as shown in figure 26 in appendix A). However, in the quadrant where
both masses exceed 55 GeV, we find a 65% correlation on FC events in the DELPHES case. The
most important type of error PELICAN makes here is when a non-FC event gets assigned
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PELICAN width  o0,, (%) om (%) oar (centirad) # Params

132/78 6.1% 8.2% 2.8% 210k
60/35 6.5% 8.6% 3.2% 49k
25/15 7.4% 9.5% 3.8% 11k

Table 11. Comparison of PELICAN models of three different widths trained to reconstruct p{Y,.
with variable W mass. Width is defined as in table 2. Trained and tested on DELPHES data.

‘Truth‘data' - JHevents DELPHES dat‘a‘ | ‘JH events
120 - ] 120 -
100 | 100
— B M » ' N Bt
80 R B4 80 fy - are
—~ r Ty o t | Tl ,T:-'I-_ 1
> 1y A - L
S 60 . 60 -
g
40 . 40
1000 | 100,-
20~ 100 8 20 -
10 ] [ 10
0- 1j 1 0- 1l
0 20 40 60 80 100 120 0 20 40 60 80 100 120
thrue (GeV) mWtrue (GEV)

Figure 11. JH tagger’s reconstruction of the W mass on the variable W mass dataset (only JH-tagged
events), truth-level and DELPHES versions. The correlation values are 47% and 25%, correspondingly.

a high reconstructed mass, that is a mass near that of the true W-boson was assigned to a
jet with few of the W decay products in it. Among all events with myeco > 55 GeV, 3.6%
are non-FC, and they bring the correlation among that population down to 51% (pr, mass,
and angular resolutions on this population closely track those of PELICAN|FC above). But
since in practice we're interested in mEVrue, the correlation between that and myeco is higher,
at 59% among events with myeco > 55 GeV. This is a significant improvement over the
model trained on the original m!" = ~ 80 GeV DELPHEs dataset, and especially over non-ML
methods such as the JH tagger (see figure 11).

Therefore a workflow that guarantees both high background rejection and high recon-
struction quality would involve first using a model trained on p!’ . as a classifier to filter
out well-contained events, and then using a model trained on p{¥,, to obtain a high-precision
reconstruction on that population. However, even a model trained on DELPHES data to recon-
struct p{r,., in fact, achieves a 40% correlation with m/" . on non-FC events (see figure 9),
so FC-tagging may not always be necessary. Overall, PELICAN provides a viable method
for estimating Lorentz-invariant particle masses.
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Figure 12. Stacked histograms with proportional bin heights of all PELICAN weights computed over
the testing dataset for the 4-vector reconstruction task from section 7 using models trained targeting
plV .. Broken up into two populations — W-boson products and b-quark products. In the DELPHES
case, a constituent is considered a W-boson product if the corresponding calorimeter cell detected at
least one true W-daughter.

9 PELICAN explainability

Despite the output of the PELICAN regression model ostensibly being a 4-vector (or multiple
4-vectors), the richer and more natural object to treat as the output are the PELICAN
weights {¢;} introduced in eq. (7.1). Each ¢; is attached to its corresponding input constituent
p; due to permutation equivariance and therefore encodes a scalar feature of that particle
within the event. As we will show in this section, the behavior of these weights is key to the
unique explainability and visualization features of the PELICAN architecture.

In essence, PELICAN is able to take a set of N input 4-vectors and assign N scalar
features to them (of course there can be several features per input as well) in a Lorentz-
invariant way. This can be powerful in a variety of applications, but in the context of particle
reconstruction the problem of finding the right values of the weights is similar to a soft
clustering problem. Assuming an idealized dataset with perfect information about the decay
products, the model should identify the decay products of the W-boson, assign ¢; = 1 to
them, and zero to all other constituents. This is analogous to what taggers like the Johns
Hopkins top-tagger aim to do via jet clustering. However, since any five 4-vectors are linearly
dependent, there is a continuum family of solutions {¢;} and it is not clear that PELICAN will
prefer the clustering solution. This section is dedicated to analyzing how well this intuition
agrees with the actual behavior of the weights, and to explaining the deviations from this
naive picture caused by detector effects.

9.1 Distributions of PELICAN weights

In figure 12 we display the distributions of all PELICAN weights for models from section 7
trained targeting p{-,.. We also mark each constituent as either a - or a b-daughter. This
yields several observations.

Firstly, nearly all weights are either non-negative or very slightly negative (e.g. above —0.1)
with a very sharp peak at zero (the peak is entirely to the left of zero to very high precision?®).

3The bin [-107°,0) contains about 100 times more constituents than the bin [0,107°).
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Figure 13. Stacked histograms with proportional bin heights of all PELICAN weights computed over
the testing dataset for the 4-vector reconstruction task from section 7 using models trained targeting
plV .. Broken up into three populations by jet containment: bgq events (all three truth-level quarks
from the t — bW — bqq process fall within the jet clustering radius); qq events (only the b-quark fell
outside of the jet); and non-FC events, which include bq, b, and ¢ events.
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Figure 14. Stacked histograms with proportional bin heights of all PELICAN weights for the
4-vector reconstruction task from section 7 using models trained targeting p!¥ .. Broken up into two
populations by parent type.

This is the first feature that justifies the interpretation of PELICAN as a soft clustering
method. Since our inputs represent realistic events, all input 4-vectors in them are timelike,
as is the target vector. This implies that no linear combination of these vectors with positive
coefficients can produce a zero vector. The distributions, therefore, show that PELICAN
weights assigned to b-daughters are not “contaminated” with these degenerate combinations.

Secondly, the truth-level distribution is highly concentrated at 0 and 1 and very closely
matches the binary clustering solution. That is, almost all constituents assigned weight 0
are b-daughters, and almost all of those assigned 1 are W-daughters. Nevertheless, 30% of
b-daughters are assigned positive weights, prompting further investigation. Moreover, the
distribution of W-daughter weights in the DELPHES case is so spread out that it becomes
difficult to explain it via a mere analogy with clustering.

We can delve more deeply into the weight distribution by separating the sub-populations
of weights based on jet containment. Figure 13 shows the distributions of weights for bgq,
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Figure 15. 2D histogram of PELICAN weights vs constituent transverse momentum for the 4-vector

W .. Only FC events shown here.

reconstruction task from section 7 using models trained targeting plo ..

qq, and non-FC events. The majority of constituents at the high end of the weight scale
belong to non-FC events. Similarly, the weights produced by the models trained targeting
pW ., shown in figure 14, are more highly concentrated at 0 and 1, and have much lower
and shorter “tails” on the right, especially among b-daughters. This is the first indication
that PELICAN tends to upweight some constituents in events where it doesn’t have enough
information for an accurate reconstruction.

This approach allows us to characterize the constituents that are being upweighted.
Figure 15 shows the constituent weight as a function of the constituent’s pr. The main
observation here is that among high-energy (“hard”) constituents with py > 100 GeV the
weight distribution is bimodal, and the vast majority of constituents with weights away from
the two peaks are soft, below 20 GeV. In the DELPHES case PELICAN appears to downweight
high-energy W-daughters and upweight soft constituents. Once again, loss of information in
the form of detector effects appears to lead to PELICAN upweighting soft constituents.

9.2 Detector effects on PELICAN weights

While the truth-level PELICAN models reliably converge to a binary clustering solution, the
weights in the DELPHES case do not permit such a straightforward interpretation. To better
understand their behavior, we ran additional experiments using custom datasets that exclude
different components of the DELPHES detector simulation one by one. DELPHES performs the
following steps: simulate the effect of the magnetic field B, on charged final-state particles;
aggregate truth-level particle energies and apply configured cuts within each electromagnetic
calorimeter (ECAL) and hadronic calorimeter (HCAL) detector cell; apply energy smearing by
sampling a lognormal distribution; unify the ECAL and HCAL cells; apply spatial smearing by
picking a uniformly random point within the detector cell; scale the magnitude of the spatial
momentum so that the resulting 4-vector, which represents a detector cell, is massless. We
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Figure 16. Same as figure 14 but this time the model is trained using a single-term loss function
proportional to |Ereco — Econt|- We conclude that the shape of the DELPHES distribution in figure 14
is overwhelmingly due to spatial detector effects.
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Figure 17. Distribution of PELICAN weights for a model trained on a dataset that differs from a
true DELPHES detector simulation only in that the simulated magnetic field is disabled. The model
was trained to reconstruct p, ., so it should be compared to figure 12.

found that while each of these steps contributes to smearing out the truth-level distribution
of PELICAN weights and shifting the peak downwards, the magnetic field is responsible for
almost all of the differences between truth and DELPHES results.

The simulated magnetic field is able to deflect charged particles very significantly, enough
to account for most of the error in PELICAN’s reconstruction relative to the truth-level
reconstruction. Our hypothesis for why this leads to lower PELICAN weights for hard
constituents is the following: deflected hard particles produce large errors in the direction but
not the energy of the reconstruction, and therefore one can downweight them and compensate
for the energy deficit using softer constituents. Moreover, by upweighting softer constituents
PELICAN can in fact partially correct the error in the direction since the deflections of
positively-charged particles can be partially cancelled out by those of negatively-charged
particles.

An extra piece of evidence in support of this hypothesis can be found by modifying the
loss function. If we re-train the model on the same DELPHES dataset using a loss function
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DELPHES data (a)Parent type DELPHES data

Figure 18. Composite event display of 200 events from the DELPHES dataset from section 7. Each
event is transformed using a 3D rotation matrix such that the true W-boson ends up at (¢, ¢) = (7/2,0)
(white cross), and the true b-quark is directly below. Each dot is a DELPHES constituent and the dot
size increases logarithmically with constituent energy. (a) Color reflects parent type: constituents
that are fully derived from W-daughters are orange and those from b-daughters are purple; in the
rare cases when the fraction of W-derived energy in a given calorimeter cell is between 0 and 1, the
corresponding color is taken from the color scale in the right pane. (b) Color reflects the value of
the PELICAN weight, clipped to the interval [0, 1], as shown in the legend. Note how the hardest

W-boson constituents (largest dots) tend to have PELICAN weights between 0.5 and 1.

Truth data Energy (GeV) ~ DELPHES data

n n

Figure 19. A single event viewed in the 7, ¢ plane with color and size dependent on energy. The
central cross marks the true W-boson, and the other three crosses mark the three true quarks from
the process t — bqq.
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consisting of a single energy term |Fyieco — Etrue|, we find a distribution of weights (see
figure 16) nearly as bimodal as the original one trained on truth-level data (see figure 14).
This indicates that the source of the error in PELICAN’s reconstruction on DELPHES data
is overwhelmingly spatial. Out of all the steps that DELPHES performs, only two are purely
spatial: momentum smearing within one cell, and the simulated magnetic field. However, the
detector cells (approximately 0.02 x 0.02 in (7, ¢)) are much smaller than the magnitude of
PELICAN’s typical angular error, and thus smearing alone cannot explain the error.

For an ultimate confirmation of the hypothesis that the reduced precision of the DELPHES
model is overwhelmingly caused by the magnetic field, we generated another dataset that
differs from a true DELPHES dataset only in that the simulated magnetic field is set to zero.
Training the same architecture on this dataset to reconstruct pjy,, produces a model with
overall resolutions oy, = 3.1%, o, = 2.6%, and oar = 1.6 centirad. These are significantly
better than the DELPHES model in table 8, particularly the angular resolution. However, the
largest difference can be seen in the distribution of the PELICAN weights, shown in figure 17.
It is much closer to the truth-level model in figure 12 than the DELPHES one, which proves
that the vast majority of the smearing of the PELICAN weights is caused by the magnetic
field. The effect of the magnetic field can likely be mitigated by adding charge information to
the input in the DELPHES’ energy-flow scheme, which we intend to explore in a future study.

9.3 Event visualization

As we discussed above, despite being a single-vector regression model, PELICAN produces one
feature per input constituent (namely the weight ¢;), and these features become interpretable
by virtue of eq. (7.1). This gives us a unique opportunity to make event-level visualizations that
provide insight into how PELICAN treats jet topology and how it compares to conventional
methods such as the JH tagger’s jet clustering.

In figure 18 we show an amalgamation of 200 events from the DELPHES dataset from
section 7 projected onto the unit sphere. Each event was spatially rotated so that the position
of the true W-boson within the image is fixed and the true b-quark is located in the negative
¢ direction. Due to the rotational invariance of PELICAN weights, this normalization does
not affect the inference. In one display the constituents are colored according to their parent
being either the W-boson or the b-quark, and in the other they’re colored based on their
assigned PELICAN weight. The correlation between the two images is clear: b-daughters
tend to be correctly assigned zero weight, whereas W-daughters have positive weights with
the hardest constituents having weights between 0.4 and 0.8.

In figure 19 we show a single event in the (7, ¢) plane, with dot color and size dependent
on the constituent energy. Note the reduced number of constituents in the DELPHES display,
and how some of the constituents get strongly deflected by the simulated magnetic field. The
same event can be visualized in three more helpful ways. In addition to parent type and
PELICAN visualizations introduced in figure 18, we can also extract the list of constituents
that the JH tagger identifies as belonging to the W-boson and highlight them. Figure 20
displays the same single event in all three ways. In addition, we add a special marker for
the direction of the reconstructed W-boson. In the parent type pane, this reconstruction is
defined as Zi]\il r;p; where r; is the energy of the true W-daughters within that constituent
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Figure 20. The same event as in figure 19 in the (1, ¢) plane. (a) Constituents are colored according to
the actual parent type; size increases nonlinearly with energy; the yellow cross marks the reconstruction
obtained by summing all of the constituents that belong to the W-boson. (b) Constituents are colored
according to how they are tagged by the JH-tagger as either W-daughters or not; size increases with
energy; the yellow cross marks the JH-reconstructed W-boson. (c¢) Constituents are colored according
to their PELICAN weight clipped to the interval [0, 1]; size increases as the weight goes from 0 to 1
and decreases after that. Note how the soft DELPHES W-constituents get assigned high PELICAN
weights.

divided by the actual energy of the constituent. In the JH and PELICAN panes, the yellow
marker corresponds to the respective reconstructions obtained by those methods.

9.4 Explainability

We claim that the interpretation of the PELICAN weights as clustering coefficients constitutes
explainability of the PELICAN 4-vector regression model. We are able to fully understand
the way PELICAN produces its 4-vector output in terms of a set of physical features of
the input constituents which cannot be inferred from the training target — namely, their
identities as W-daughters or b-daughters. This is possible only due to the combination of
the full Lorentz symmetry and permutation symmetry, which guarantees the universality
of eq. (3.3). This approach can be contrasted with that of ref. [66], where unmatched top
quarks are assigned to jets by averaging attention weights in a regression network trained
to reconstruct kinematic properties of the top quarks across all layers.
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10 TRC-safety and PELICAN

10.1 Definitions

Perturbative computations in QCD suffer from a divergence caused by two types of processes:
soft emission and collinear splittings. As a consequence, meaningful observables in this
theory need to be insensitive to such processes, and this requirement is known as IRC-safety.
In this section we provide a precise definition, give a characterization of IRC-safe Lorentz-
invariant observables (see details in appendix B), and describe modifications to the PELICAN
architecture that make it IR-safe or IRC-safe.

Infrared safety (IR-safety) guarantees insensitivity to soft emissions, i.e. particles with rela-
tively low energies and momenta. A family of continuous symmetric observables f(V) (p1,---,PN)
is said to define an IR-safe observable f if

lim f(NH)(pl, . .,DN,€p) = f(N)(pl, ...yDN) (10.1)

e—0

for any N and any p1,...,pn, D, where € controls how infinitesimally small the considered
soft emission p is.

Collinear safety (C-safety) is a restriction on observables in perturbative QCD that arises
from the divergent contributions of collinear emissions of gluons. Positive gluon mass would
prevent such divergences, which is why C-safety concerns only massless particles. We can
define C-safety formally as follows: an observable f(p1,...,pn) is C-safe if, whenever two
massless 4-momenta p; and ps become collinear (which happens for massless particles iff
p1 - p2 = 0), the value of f depends only on the total momentum p; + py. Expressed even
more explicitly, C-safety says that setting p; = Ap and ps = (1 — A\)p with some 4-vector p
such that p?> = 0 must lead to the same output regardless of the value of A € (0,1), i.e.

012(p)f = 8/\f()‘pv (1 - )‘)pap?n s 7pN) = Oa A€ (07 1) (102)

In appendix B we characterize a certain class of IRC-safe Lorentz-invariant observables in
terms of polynomial bases, but the following summary will suffice for the purpose of designing
an IRC-safe version of PELICAN. First, a Lorentz-invariant observable (assumed to be
consistently defined for any finite number N of 4-vector inputs) is IR-safe if and only if it has
no explicit dependence on the multiplicity N. More precisely, adding the zero 4-vector to the
list of inputs should leave the output value invariant. Second, an IRC-safe Lorentz-invariant
observable is one that is IR-safe and moreover depends on any of its massless inputs in such a
way that when any number of them become collinear, the observable ends up depending only
on the sum of their energies. E.g. if p1, pa, p3 are fixed to be massless, then f(p1, p2, p3, p4, . - .)
must depend only on p; + p2 + p3 when p; || p2 || ps. Note that such an observable is still
completely unrestricted away from the massless manifold.

It is instructive to reflect on the interplay between IR-safety and C-safety. C-safety allows
us to exchange momentum between collinear particles without affecting the values of C-safe
observables, whereas IR-safety allows us to omit vanishing 4-momenta from the list of inputs.
C-safety in itself doesn’t change the number of input 4-vectors — it only requires f to be
invariant under a certain transformation that mixes collinear massless inputs. Meanwhile
IR-safety effectively requires f to encode an infinite family of observables f(¥) (p1,---,PN)
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for any possible number of inputs with the compatibility condition f () (p1,--.,PN-1,0) =
FYD(py, .. pNo1).

The original PELICAN architecture as introduced above is neither IR- nor C-safe. Below
we modify the architecture to make it exactly IRC-safe and evaluate the implications.

10.2 IRC-safe PELICAN

To enforce IRC-safety in PELICAN, we follow a strategy almost identical to that of ref. [59],
based on the original idea from ref. [24], with the correction that our equivariant layers
are a generalization of message passing and that we need to take extra care to preserve
Lorentz symmetry. The basic idea is that if F; are a permutation-equivariant set of IRC-safe
observables of our inputs {p;}, then so is any observable of the form

N
f (Z Zin'> y (103)
=1

where f is any scalar function and z; are appropriately picked energy-dependent weights,
commonly chosen to be either fractional energy E;/ >_; Ej or fractional transverse energy
pl/ > pJT. IR-safety is guaranteed due to the fact that any soft constituent has z — 0
and the expression above is invariant under the insertion of such terms. C-safety is slightly
more involved: if, say, p; and po are massless and collinear, then due to the C-safety and
permutation-equivariance of F;, we have Iy = F5, and all F; depend on these two particles
only through z; + 29 and their common spatial direction. Eq. (10.3) then guarantees that the
new observable also depends on the magnitudes of these two vectors only through the sum
z1 + z2. All of these arguments obviously also apply to higher numbers of collinear particles.
It is also important for us to note that this property applies to permutation-equivariant
observables as well.

To apply this idea to PELICAN, we first need a Lorentz-invariant analog of the energy
weights z; and the corresponding normalized vectors p;. Since the only permutation-invariant
inertial frame that can be defined based on the list of the constituents p; is the frame of
the jet J = >, pi, it is natural to define the jet-frame energies

N
. v di
gobid 2= (10.4)

m /SoN ’
d Zj,k:l dj

where mj is the invariant jet mass. The energy weights are then simply the fractional

jet-frame energies, and the de-dimensionalized 4-momenta are rescaled by these energies:

& . Di s dy
- YNLE =g i = PP &i&j (105)

Note that dAijA‘ are Lorentz-invariant and constitute the natural input to the IRC-safe
version of PELICAN. We are finally ready to modify the architecture to make it IRC-safe.
Combining the idea from eq. (10.3) with the definition of equivariant aggregators in eq. (2.6),
we come to the following prescription for the Eq,_,, blocks:

41f the inputs are massless, Jij =1 —cos Oy, where O;; are the pairwise spatial angles in the jet frame.
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e The 5 order zero aggregators don’t need to be modified since the application of any
nonlinear function to an IRC-safe observable preserves its IRC-safety.

o The 8 order one aggregators involve summation over one equivariant input index, ), o;,
and all of these need to be modified by including the Lorentz-invariant energy weights:

>i Zi%
 The 2 order two aggregators are similarly adjusted with two energy weights: 3~ ; ziz;®; ;.

Note that the aggregation function has to be based on summation, since max/min pooling
or any other nonlinear aggregation will immediately fail C-safety. The way the outputs of
these aggregations are embedded into the output N x N array is unchanged since it doesn’t
affect IRC-safety. Since the inputs a?ij are IRC-safe and since eq. (10.3) guarantees recursive
IRC-safety, every individual component of the output array of every IRC-safe equivariant
block is IRC-safe.

The same kind of prescription can also be used to make the Eqy_,; (for 4-vector regression),
Eq,_,5 (for scalar inputs), and Eq,_,, (for classification) layers IRC-safe. As a consequence,
the PELICAN weights ¢; become TRC-safe. The regression case deserves special attention,
since strictly speaking the PELICAN weights ¢; themselves don’t have to be IRC-safe for
the combination preco = Y _; ¢ipi to be IRC-safe. In particular, whereas the IR-safety of preco
necessarily makes it possible to find IR-safe ¢;, there is no such criterion for C-safety.

However, under the interpretation of ¢;’s as “soft clustering” coefficients (as discussed in
section 9) it does make sense to require IRC-safety from them. In that case the values of weights
corresponding to collinear inputs necessarily match due to permutation symmetry. Indeed,
IRC-safety implies that if, say, p1 and po are collinear, then both ¢; and ¢y are functions of only
their spatial direction and of E; 4+ F5. Since the direction and the total energy are permutation-
invariant but ¢; and ¢y are permutation-equivariant, i.e. c1(p1,p2,...) = ca(p2,p1,...), We
conclude that ¢; = co. This in turn also guarantees the IRC-safety of the reconstructed
4-vector. Nonetheless, whether IRC-safe PELICAN can approximate any IRC-safe vector-
valued observable, and whether there is a more general way of generating such observables,
is an open problem deserving future investigation.

Finally, since the multiplicity IV is not IR-safe, the aggregation function cannot be defined
using means. However, there exist IRC-safe analogs of N such as the Soft Drop multiplicity
defined in ref. [68].° Nevertheless, even they can’t be directly used in PELICAN due to their
non-Lorentz-invariance. For PELICAN tests, we have modified the Soft Drop algorithm
by executing it in the jet frame, making it manifestly Lorentz-invariant, and defined the
Lorentz-invariant Soft Drop multiplicity ngp that way. This is also equivalent to replacing
energies and angles in the original definitions of the Cambridge/Aachen [69, 70] and Soft
Drop algorithms with their Lorentz-invariant analogs defined in eq. (10.4) and eq. (10.5).
With this, it is safe to use aggregators of the form ngp Zi]il .

5The Soft Drop multiplicity actually measures the depth of the Cambridge-Aachen branching tree along
the hard core of the jet. Its definition also involves several new hyperparameters denoted zcut, fcut and 3, see
ref. [68].
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10.3 Testing IRC-safe PELICAN models

First we quantify the deviation in PELICAN’s outputs that occurs under soft and collinear
splittings and observe how training affects them. We define an IR-splitting as adding a zero
4-vector to the list of input constituents. Then PELICAN’s output on IR-split data is directly
compared to the original output. Defining a C-splitting is more difficult since realistic events
never contain any exactly collinear constituents, and we want to avoid changing the number
of particles so as to make this test independent of IR-safety. Therefore we prepare the data by
inserting two copies of the vector (1,0,0,1) to each event. Then the C-splitting will amount
to replacing these two vectors with (1.5,0,0,1.5) and (0.5,0,0,0.5) (recall that C-safety does
not apply when A =1 in eq. (10.2) because the zero vector is “collinear” with anything). The
outputs on the same event prepared in these two ways can be directly compared.

To compare two outputs Preco; Preco We compute the relative deviation |(pleeo — Preco)/Precol,
where the division is component-wise. To estimate the effect of an IR- or C-splitting on
PELICAN’s predictions, we take the median value of this deviation over a batch of events.
The same can also be done with PELICAN weights as the outputs. The splittings are
applied to 100-event batches of events from one of our datasets and the relative deviations
are averaged over 300 batches. We test 5 randomly-initialized models and 5 models trained
on the full variable W mass dataset from section 8.

We find that a randomly-initialized PELICAN regression model’s output 4-vector deviates
by 0.5%-14% (measured by the deviation of each of the 4 Cartesian components) under
an IR-split, and the PELICAN weights deviate by up to 9%. After training on one of our
datasets the range of these deviations doesn’t appear to change. Under the C-safety test
defined above, the 4-vector prediction of a randomly initialized model deviates by an absolute
amount of up to 15 GeV, and the median absolute deviation of the PELICAN weights can be
as high as 0.03 (depending on the random seed). With IRC-safety enabled these go down to
107% GeV and 1077, respectively. The main reason these deviations aren’t even smaller under
IRC-safety is the accumulation of numerical errors after repeated aggregation with the energy
weights z;. The values of these weights on realistic data are highly concentrated near zero,
and overall they can span up to 8 orders of magnitude. After several layers of aggregation
with weighting by z;z; the spread of the values goes way beyond the size of the standard
floating point types, which limits the precision of IRC-safety. However, for practical purposes
the current precision of PELICAN is likely to be sufficient, seeing as it is still dominated
by the uncertainties originating from the random initialization.

The resolutions o,,., 0, and oar of the IRC-safe DELPHES models (using aggregations
weighted by Soft Drop multiplicities) trained on the variable W mass dataset targeting
plV . are, respectively, 6.8%, 8.5%, and 3.1 centirad, which is only about 10%, 3%, and
8% worse (higher) than the resolutions of the original non-IRC-safe models as reported in
table 12. Here is how these deviations in the values of the outputs reflect on the overall
quality of the predictions. Under an IR-splitting (adding a zero vector to every event) the
resolutions of trained non-IRC-safe models get worse by between 0.3% and 2% depending
on the initialization. Under an “IRC-splitting” (splitting the first beam (1,0,0,1) into two
constituents (0.5,0,0,0.5)) the resolutions get worse by between 10% and 25%. Therefore non-
IRC-safe PELICAN models can be quite sensitive to IRC splittings, especially collinear ones.
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Aside from regression, we also trained IRC-safe PELICAN classifiers for top-tagging and
quark-gluon tagging. These results are included alongside the non-safe models in table 1
and table 4. In both cases PELICAN provides state-of-the-art performance among IRC-safe
models. In quark-gluon tagging, IRC-safe classifiers perform almost as well as the non-IRC-safe
analogs, which confirms the conclusions of the recent study in ref. [71]. Notably, the IRC-safe
PELICAN top-tagger used the Lorentz-invariant Soft Drop multiplicity in place of N in its
aggregators, whereas the quark-gluon tagger only used simple summation aggregators (i.e. N
was replaced with a fixed constant). This makes the comparison in table 4 fair, but at the
same time we expect even better performance from a model that uses Soft Drop multiplicity.

11 Conclusion

We have presented a full description of PELICAN: a network that respects particle permutation
and Lorentz symmetries important in particle physics. PELICAN is a general network which
is performant at 4-vector regression and provides state-of-the-art performance in the tasks of
top-tagging and quark-gluon tagging. The IRC-safe modification of the network is similarly
leading among other such architectures. PELICAN also achieves state-of-the-art performance
in the more difficult task of multi-class jet identification. Due to the equivariant architecture,
all of this is made possible despite PELICAN’s relatively compact model size.

To demonstrate PELICAN’s regression capabilities, we chose the reconstruction of the
W-boson’s 4-momentum from a full top quark jet, and to our knowledge PELICAN is the
first ML method applied to this problem. Even within these tasks there is room to improve
PELICAN’s performance by introducing additional scalar information such as particle charges,
which would allow the network to account for the simulated collider’s magnetic field.

PELICAN’s most unique features, however, have to do with its relatively low complexity
(in terms of the number of parameters) and explainability. For example, it provides highly
competitive top-tagging performance with only several hundred parameters. At the same
time, in regression tasks the “PELICAN weights” represent a new kind of output that not
only has a direct physical interpretation, but also allows one to perform unprecedented
particle-level ML-based analysis of particle jets. PELICAN’s architecture, its flexibility, and
generalizability may also allow for future applications to charged-particle track reconstruction,
pile-up identification, and full-event reconstruction. Being a general architecture, PELICAN
is not limited to top quark decays or even jets. This network inherently provides powerful
tools for investigating its own behavior due to the combination of Lorentz and permutation
equivariance and shows promise as a tool which can be thoroughly investigated if deployed
in real world scenarios.
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A Additional results and plots

Al

W -boson 4-momentum reconstruction

Below is the list of additional figures for the models trained on the W-boson 4-momentum

regression dataset from section 7:

A.2

Figure 21: histograms corresponding to table 8 (models trained targeting p{V..);
Figure 22: histograms corresponding to table 9 (models trained targeting p' .);
Figure 23: histograms for models trained targeting p%¥ ..

Figure 24 distributions of PELICAN weights for models trained targeting p¥ .:

Figure 25: target vs. reconstructed mass correlation histograms for models trained
targeting pg/ue;

Figure 26: true W-boson vs. reconstructed mass correlation histograms for models
trained targeting p?V .:

Figure 27: target vs. reconstructed mass correlation histograms for models trained
targeting p?ént.

W -boson mass measurement

Below is the list of additional tables and figures for the models trained on the variable

mass dataset from section 8:

Table 12: resolutions for models trained targeting plv.;
Figure 28 histograms corresponding to table 12 (models trained targeting p}V. .);

Figure 29: histograms corresponding to table 10 (models trained targeting p!’ . and
compared to p{..);

Figure 30: histograms for models trained targeting p% . and compared to p% .;

Figure 31: target vs. reconstructed mass correlation histograms for models trained
targeting pov ..
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Figure 21. Full set of histograms corresponding to the entries in table 8 (models trained targeting
pl., truth-level and DELPHES versions).
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Figure 22. Full set of histograms corresponding to the entries in table 9 (models trained targeting
pW ., truth-level and DELPHES versions, and compared to p/¥ ).
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Figure 24. Distributions of PELICAN weights analogous to figure 13 but for models trained targeting

w
Pcont-

Method opr (%) om (%)  oar (centirad)
R JH 7.98%  4.75% 22.180
< & PELICAN|JH 0.26%  0.58% 0.111
= 2 PELICAN|FC 031%  0.76% 0.142
PELICAN 0.88%  1.67% 0.548
.8 JH 16.0 % 120 % 25.4
§ & PELICAN|JH 41 % 63 % 3.2
£ PELICAN|FC 47T % 13 % 3.5
PELICAN 62 % 82 % 5.6

Table 12. PELICAN resolutions for models trained to reconstruct p}V . with variable W mass.
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Figure 25. 2D histograms of target vs. reconstructed masses for models (top: truth data; bottom:
DELPHES data) trained targeting p broken up into two populations based on containment (left:

non-FC events;
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A.3 Additional event displays

Below is the list of additional event displays:

e Figure 32 an event display showing how PELICAN processes a qq event that JH fails

to tag;

e Figure 33: an event display showing how PELICAN processes a bgq event that JH fails

to tag.

B IRC-safety and Lorentz symmetry

Let us now try to characterize the IRC-safe Lorentz invariants of a set of jet constituents.
When working with Lorentz-invariant observables, it is convenient to rewrite everything in
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Figure 26. 2D histograms of true W mass vs. reconstructed contained mass for models (top: truth
data; bottom: DELPHES data) trained targeting p’¥ .. broken up into two populations based on
containment (left: non-FC events; right: FC events).

terms of Lorentz invariant coordinates — the dot products d;; = p; - p; (note that these
coordinates are in general not independent since any 5 x 5 minor of the matrix {d;;} must
vanish due to the fact that any five 4-vectors are linearly dependent, but they will suffice for
our purposes). For two massless particles, collinearity is equivalent to the vanishing of the
dot product. Conversely, the dot product between two time- or light-like vectors is zero only
if both are light-like and collinear. Thus the C-safety condition amounts to the equality of
the gradients of f with respect to any two of the rows (or columns) of {d;;} when evaluated
on the corresponding coordinate hyperplane:

of
Ody

_9f
 Ody;

(B.1)

dij=0 dij=0
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Figure 27. 2D histograms of target vs. reconstructed contained masses for models (top: truth data;
bottom: DELPHES data) trained targeting p'¥ .. broken up into two populations based on containment
(left: non-FC events; right: FC events).

In general this condition is difficult to solve, however it turns out to be extremely powerful
in one special case. If we assume that f is analytic in the dot products d;; (i.e. it can be
expanded into a convergent multivariate Taylor series in some vicinity of the origin), then by
the Identity theorem from complex analysis eq. (B.1) must hold in an entire neighborhood of
the origin, even when d;; # 0. However, if this formula holds for all values of %k in an entire
domain, then f is necessarily only a function of p; + p;. Moreover, if all inputs are assumed
to be massless, then this applies to all pairs of indices 4, j, and f becomes a function of only
the jet mass m% Thus we arrive at the following rather disappointing result.

Theorem B.1. If an IRC-safe Lorentz-invariant observable with a mixture of massless
and massive inputs is real analytic in the pairwise dot products d;; near the origin, then
it can depend on the massless inputs only through their sum. If all inputs are massless,
this observable can be reduced to an analytic function of a single scalar — the jet mass

2 _ .
mJ—Zmdw.
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Figure 28. Full set of histograms corresponding to the entries in table 12 (models trained targeting
pl., truth-level and DELPHES versions).
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Figure 29. Full set of histograms corresponding to the entries in table 10 (models trained targeting
pW ., truth-level and DELPHES versions, and compared to p/¥ ).
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Figure 30. Full set of histograms for models trained on the variable mass dataset targeting pt’ . and
compared to p¥ ..

In this way, IRC-safety is a significantly more powerful restriction than one could naively
expect based on the definitions of IR and C-safety alone. As an example, consider the
quantity [[,; dij = di2d2sds; on N = 3 massless inputs. It is in fact C-safe because it
simply vanishes whenever any two inputs are massless and collinear. However it is not
IR-safe because sending ps — 0 reduces the expression to zero instead of the expected dis.
Alternatively, as we will see in the following section, the natural IR-safe extension of diodosdsy
to arbitrary N will not be C-safe.

Clearly, by restricting ourselves to analytic functions, i.e. functions that can be approxi-
mated by polynomials in the variables d;;, we have arrived at an extremely narrow set of
IRC-safe observables which will be of little practical use. This is where our construction
of IRC-safe PELICAN comes in handy, seeing as it clearly produces many more IRC-safe
observables. In terms of the jet-frame coordinates defined in eq. (10.4) and eq. (10.5), the
C-safety condition reads

_or
] _85j

dij=o0

of

5 (B.2)

dij=o0

The crucial observation here is that & and aAl@-j are not analytic functions of the original
coordinates d;j, as is evident from eq. (10.4). Therefore the set of analytic symmetric functions
in these coordinates is very different, and in fact much larger, as we already know from
our construction of IRC-safe PELICAN.
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Figure 31. 2D histograms of target vs. reconstructed masses for models (top: truth data; bottom:
DELPHES data) trained on the variable mass dataset targeting p’¥ ., broken up into two populations
based on containment (left: non-FC events; right: FC events).

B.1 Lorentz meets EFPs
B.1.1 Review of EFPs

Particle data is often analyzed via IRC-safe observables such as N-subjettiness [16]. A
general polynomial basis for all IRC-safe observables was obtained in ref. [18]. Here we first
retrace some of the steps from the original derivation, and introduce a Lorentz-invariant
analog at the end. Massless vectors can be written as p = (F, Ep) with a unit 3-vector
p. Then any (not necessarily Lorentz-invariant) smooth,% symmetric observable of a set of

5Tt is important to note that smoothness is generally an excessively powerful restriction, and many useful
IRC-safe observables cannot be expanded in Taylor series this way. For instance, staying within the realm
of Lorentz-invariant observables, the quantity Z” Ei&; (Jij)ﬁ is IRC-safe for any 3, but when written out
in terms of d;; it is clearly not differentiable at the origin. We thank Andrew Larkoski for this example,
prompting much of our discussion of IRC-safety as presented in this work.
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Figure 32. Event display combining the kind of information shown in figures 20-19. This is a qq
event, i.e. one where the b quark from the ¢t — bW decay fell outside of the jet radius. The JH tagger
failed to tag this event as a top quark decay, whereas PELICAN correctly assigned weights close to 1
to most of the constituents and obtained an accurate reconstruction of the W-boson. The legend in
pane (c) loses its direct meaning here, but it can be understood as JH effectively setting all clustering

weights to zero.
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Figure 33. Yet another event display, this time a bgq event that was still mistagged by the JH tagger.
PELICAN correctly recognized the b quark subjet and obtained a fairly accurate reconstruction of the

W-boson.
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N massless vectors can be expanded at low energies as a combination of terms (omitting
the constant term) of the form

N N (N)

Z Z Ei ... Ejy, - fil,i2,~~7i1w (1, PN) (B3)
i1yeeimg =141, jr=1
(N)

with some “angular functions” f;

i1 iz iy s shown in ref. [18], IR-safety for such a series

amounts to requiring that the angular function fz(lj\gw in fact depends only on the particles
whose indices are listed in the label of the function and is also independent of the total number
N, i.e. it can be replaced by fi, iy, . ir; (Divs---,Diy, ). Furthermore, permutation symmetry of
the entire observable descends to the total permutation symmetry of each angular function.
Finally, C-safety requires that equating any two unit vectors p; — p; should lead to a function
of only E + E>. At the level of angular functions, this implies that whenever i appears as
an index in the subscript of the angular function, it can be replaced with j, and this can
be done one index at a time. Ultimately this reduces the entire set of angular functions

to just one fyr = fio

ISy

of any IRC-safe observable becomes

M, and therefore the order M term in the low-energy expansion

N
> Ei .. Eiy - far (Biys-- - Ding) - (B.4)
i1yipg =1
From here, EFP’s are derived by expanding the angular functions into a Taylor series around
small angles cos0;; = p; - pj. The resulting polynomial expansion can be broken up into a
linear basis enumerated by the set of isomorphism classes of multigraphs G with no loops
(edges connecting a vertex to itself):

N
EFPc= Y [ E;- I i (B.5)
i1, i =1jEV(QG) (k,1)eE(G)

where V(G) = {1,2,..., M} is the set of vertices of G, and E(G) is the set of edges. The
EFP is a homogenous polynomial in the energies of degree |V(G)| = M and in the angles
of degree D = |E(G)|. Notice that the indices i; can coincide but the corresponding terms
vanish since #;; = 0, which is why multigraphs with loops are excluded from the basis.
As a trivial but important example, the total energy E = Zf\il FE; corresponds to G = e.
If G consists of multiple connected components, the resulting EFP is the product of the
EFP’s corresponding to the components, so the entire basis is algebraically generated by
just the connected multigraphs.

It is instructive to see how IRC-safety works in EFP’s. IR-safety is guaranteed by the
mere presence of the energy pre-factors: sending Eny — 0 will simply recover the same
EFP for the remaining N — 1 particles. Meanwhile, C-safety is observed because if two
particles, say 1 and 2, become collinear, then the angular factor is completely invariant under
their permutations. In other words, all terms where the list (i1,i2,...,i)/) contains a fixed
number, say L, of 1’s or 2’s, can be grouped together, and after summation over those indices
the energy pre-factor manifestly depends on F; and FEs only through an overall factor of
(E1 + Ep)*. This is exactly the statement of C-safety.
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B.1.2 MFPs: Lorentz-invariant analytic EFPs

Now let us task ourselves with identifying the subset of Lorentz-invariant IRC-safe observables.
Obviously none of the EFP’s are Lorentz-invariant due to the direct dependence on spatial
angles, but smooth Lorentz-invariant observables can still be expanded in the EFP basis
at small energies and angles. The only Lorentz-invariant of two massless 4-vectors p;, p; is
pi - pj = E;Ej(1 — cosb;;). At small angles the approximately boost-invariant combination is
then EZ-EjH,?j. The expansion of any permutation-symmetric function of such dot products
into a series as above will differ from general EFP’s as follows: every angle 6;; must appear
in the product an even number of times, and the pre-factor must consist of nothing but
one factor of E;E; for every factor of ng (or 1 — cos ;). The Lorentz-invariant version of
the polynomial can then be obtained by replacing each Gizj with QCZZ']'. In each EFP only
a subset of terms will generally satisfy these conditions, so a better representation of the
Lorentz-invariant basis is warranted.

Let us start again with the most general Lorentz-invariant and permutation-invariant
observable of N 4-momenta that is analytic when expressed in terms of the dot products
d;; = p;-pj. Such a function f can be expanded at small arguments into a linear combination
f~>c wgféN) of terms of the form

N

fC(JN) = Z/ H diyir» (B.6)

i1ysine=1 (k1) EE(G)
where the prime indicates that the terms where any two of the indices coincide are excluded.
Including them would also produce a valid basis, but we leave them out to reduce the
complexity of each polynomial. Such terms simply correspond to other multigraphs obtained
from G by vertex identification, and those already appear in the expansion with independent
coefficients. This is still an over-complete basis since the matrix of dot products d;; is highly
degenerate for N > 5. Unlike in EFP’s, we also allow multigraphs with loops since we are
not restricting ourselves to purely massless inputs. However, if all inputs are massless, all

graphs with loops will produce vanishing polynomials.

Now we can easily see how to enforce IRC-safety in these polynomials. IR-safety requires
that sending any of the 4-momenta to zero, say py — 0, must be equivalent to simply
restricting the same expression to only the other N — 1 particles. We observe that the only
case when this is not already satisfied in the expression above is when the multigraph G
contains isolated vertices (vertices of degree zero). Isolated vertices lead to summations
over dummy indices corresponding to those vertices, which results in an overall factor of
some power of N. The multiplicity N is not an IR-safe variable, and it is sufficient to
ban graphs with isolated vertices to enforce IR-safety. We can thus drop the notation féN)
and simply write fg with the implicit understanding that eq. (B.6) defines the full infinite
family of observables for all V.

Now we address C-safety. Much like in EFP’s; C-safety in fg’s means that whenever,
say, p1 and po are massless, each monomial that contains a certain number of indices equal
to 1 or 2 must match its coefficient with any other monomial that differs only by flipping
any number of the indices from 2 to 1 or vice versa. In the language of multigraphs, this
means that each monomial that assigns a vertex of degree n; to p; and another vertex of
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Figure 34. The addition of the dashed loops makes this multigraph loop-saturated: all non-leaf
vertices come with at least one loop. Loop-saturated multigraphs enumerate all IRC-safe polynomials
of dl]

degree no to po must in fact result as just one among all possible monomials obtained via
vertex identification from a graph G’ where those two vertices have been “blown up” into
n1 + no vertices of degree one. We also notice that this condition applies only to vertices that
do not have any loops attached to them because otherwise the corresponding terms would
vanish as p; and p2 become massless, thereby making any additional restrictions unnecessary.
To summarize, any IRC-safe polynomial contains with equal coefficients all fg’s with G’s
obtained by any combination of vertex identifications from some multigraph G’ such that
all of its loopless vertices are leaves (i.e. of degree one). We shall call such multigraphs
loop-saturated. In this process it is sufficient to allow identifications of only the leaf vertices
because all other vertex identifications will result in a polynomial independently defined
by another loop-saturated multigraph.

We thus define an TRC-safe Lorentz-invariant polynomial basis indexed by non-isomorphic
loop-saturated multigraphs G with no isolated vertices. Assuming the vertices of G are
identified with the set {1,2,..., M}, we write

N N
MFPe= Y [ dw= Y I & 11 dua (B.7)

i yeine=1 (k1) €E(G) iyeiv=1jEV(G)  (k1)EE(G)

where the sum is taken over all M-tuples and d1,...,d; are the degrees of the vertices of
G (each loop increases the degree by 2). An alternative basis is

N
MFPL = S T dia (B.8)
i1yeipr=1 (k,))EE(G)

where the coincidence of two or more indices iy = 4; is allowed only if their corresponding
vertices (k and [) are leaves of G. MFPg is simply MFP¢; plus a linear combination of certain
MFP’,;’s with fewer vertices, namely such that H is a graph obtained from G by one or more
vertex identifications each of which involves at least one non-leaf vertex of G. Indeed, such
identifications preserve the property of being loop-saturated, and all other identifications
are already included in the definition of MFPq..

Note that just like for EFP’s, disconnected multigraphs correspond to products of their
connected components (this holds for MFP¢ but not for MFP):

MFP¢ = MFPg - MFP . (B.9)
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As an example, if all inputs are known to be massless, then any connected multigraph
with loops will produce a vanishing polynomial. And the only loopless loop-saturated
connected multigraph is the graph consisting of just one edge, which evaluates to the jet
mass: MFP,_q = m? = > dig = (32 &)?. Therefore in the massless case MFP’s generate
all analytic functions of m%, which is a disappointingly small subset of all IRC-safe Lorentz-
invariant observables. As a final example, we can consider the polynomial diodssds;, which
nominally seems C-safe. It can only be interpreted as an IR-safe polynomial if it corresponds
to the triangle graph. However, such a graph is not loop-saturated, and therefore this
polynomial is not IRC-safe despite being C-safe for N = 3 (which can be confirmed by
observing that for N = 4 the triangle graph generates a non-C-safe polynomial), and the
“correct” IRC-safe completion is simply m$.

What we found is congruent with eq. (B.1) in that MFP’s represent a polynomial
expansion basis for all IRC-safe observables that are analytic in the dot products d;;, and
depend on massless inputs only through their sum. Since we already know how restrictive
this result is, we can now move on to a more useful generalization of EFPs.

B.1.3 JFPs: Lorentz-invariant jet-frame EFPs

As already discussed above, by transforming our inputs from d;; to the jet-frame coordinates
&; and ciz-j we get a much larger space of IRC-safe analytic observables. Ideologically, the
transformation to the jet-frame coordinates is extremely simple: &; is nothing but the regular
energy FE; as measured in the rest frame of the jet, and the same is true for the angular
parts which take the form Jij =1 — cos ©;; for a pair of massless particles. This coordinate
transformation itself is IRC-safe in the sense that IR and collinear splittings that don’t involve
constituent p; will not affect its jet-frame energy and angles with the other constituents.
Therefore the notion of IRC-safe continuous observables is the same in both coordinate
systems. On the other hand, as we have seen above, the restriction to analyticity makes
the two sets of IRC-safe observables very different.

All of this implies that the set of IRC-safe observables which are invariant under spatial
rotations and restricted to the manifold of events whose jet momentum J is purely time-like
is in one-to-one correspondence with Lorentz-invariant IRC-safe observables. Indeed, given
a rotationally invariant observable f(pi,...,pn), consider

fr(p1,...,pn) = f(Agp1,..., AjpN), (B.10)

where Ay is a Lorentz transformation that maps the jet momentum J =3, p; to (my,0,0,0).
Note that Ay is not unique, namely RA ; is also a solution for any spatial rotation R. However,
since we have assumed f to be rotationally invariant, the resulting observable f, is independent
of the specific choice of Ay and is fully Lorentz-invariant. And since A is invertible, the
transformation f — fr, is also invertible, which proves the one-to-one correspondence.”
We conclude that a polynomial expansion basis for analytic IRC-safe Lorentz-invariant
observables in the jet-frame coordinates can be trivially obtained by taking the original

EFPs, replacing (9% with their rotationally invariant analogs 2(1 — cos 6;;), and then replacing

"This principle, of course, applies not only to observables but to entire algorithms, such as jet clustering.
E.g. we defined our Lorentz-invariant analog of Soft Drop multiplicity using exactly this method.
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E; — & and (1 —cosb;) — ciz] We do have to abandon EFPs that include odd powers of
any angle due to their non-analyticity, but that doesn’t affect the completeness of the basis
since all the angular coordinates are non-negative (however it means that every edge in our
multigraphs corresponds to two edges in the analogous EFP). The only subtlety here is that
the original EFPs were built only for all-massless inputs, so they don’t depend on masses
whereas czij do. But all the original arguments in the derivation of the EFPs still apply even
when some of the inputs are massive (as long as those masses are also perturbatively small),
so we still get a complete basis of IRC-safe observables that are analytic in the jet-frame
coordinates. We call these polynomials the Jet Flow Polynomials (JEPs):

N
JFPe= > Il & II dii (B.11)

i1,..,i =1 jEV(G) (k,1)EE(G)

where the multigraphs G have no restrictions on them and can contain loops. Comparing
to eq. (B.7), we see that the powers of the energies are no longer tethered to the structure
of the multigraph, which is why C-safety doesn’t place any constraints on the multigraph
unlike in the case of MFPs. Namely, the symmetry that C-safety forces on the angular parts
[k, d;,;, (that one must be able to switch the value of an index 4, from one collinear particle
to another and obtain another monomial in the same polynomial) is no longer coupled to
the power counting of the energy factors, which makes any multigraph G permissible as long
as we sum over all possible values of the indices iy.

B.2 Universality of PELICAN

While the Deep Sets theorem [33] shows that permutation-invariant networks are universal for
set learning problems, it is known that message passing networks are strictly non-universal
for graph learning problems, i.e. in the presence of rank 2 data such as an adjacency matrix.
Permutation-equivariant networks that take graph data as input (PELICAN’s inputs can
be interpreted as such) and use layers like Eq,_,5 are known to have the expressivity of the
2-WL (Weisfeiler-Lehman) graph isomorphism test, matching the expressivity of message
passing networks, see ref. [72]. By adding matrix multiplication to the list of equivariant
aggregators (thus turning the linear equivariant layer into a quadratic or polynomial one), one
can raise the expressivity to the “folklore” version of the WL test, i.e. 2-FWL for PELICAN,
which is equivalent to 3-WL [43]. However, in our tests we have not been able to see any
performance improvements from the addition of an aggregator of this kind.

We can see the limited expressivity of PELICAN in terms of the graphs G in eq. (B.6)
that can be generated by PELICAN when expanded at small values of the inputs (assuming
a smooth activation function). Indeed, the messaging layer combined with single-index
aggregation 3, e;; can attach new edges (d;;), loops (dj;), and multi-edges (d};) to a given
vertex j. By applying more of these layers we can only keep joining such “starfish” graphs at
their central vertex j, whereas even something as simple as the triangle graph can never be

generated due to the fact that it requires three free indices at an intermediate step. The only
g
together will never produce a more complex graph. At best, PELICAN can only generate

graphs with two free indices generated by PELICAN are the multi-edges d}%, but joining them

multigraphs that can be broken up into subgraphs with at most two severed edges on each
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of them (since each severed edge requires a free index on the corresponding vertices for us
to be able to “glue” the vertex back together via aggregation).

Finally, it is curious to compare PELICAN-like architectures to architectures that work
with irreducible representations of the continuous symmetry group, like LGN [25]. As was
shown in ref. [73], the latter kind of network is universal, provided that the set of the
finite-dimensional irreducible representations that are stored is not limited. In particular, the
proof involves showing that a universal network based on the tensor product nonlinearity will
i1yir Dy @ @ PR
where o € Z". It is easy to see that the Lorentz-invariant part of such a tensor produces all

be able to generate all symmetric polynomial tensors of the form P, = >_

possible multigraphs G with vertices of degrees oy, ..., a,. Therefore, indeed, the ability of a
network to generate all such tensors implies its universality on the space of Lorentz-invariant
observables.

However, in practice the dimensionality of these tensor representations has to be quite
limited. For example, LGN kept only representations up to spin 2, that is, tensors of the form
pi ® pj, but not higher than that (of course, these can also be multiplied by invariant scalars
without increasing the dimension). This effectively limits the number of free particle indices
in all latent values of the network to 2 (right before aggregation reduces it back to 1 again),
just like in PELICAN. Therefore there is ample reason to believe that the expressivity of
LGN-like networks that go up to spin k is not universal, but is equivalent to the expressivity
of PELICAN-like networks that go up to the permutation-equivariant rank of & (using Eqy,_,;.
blocks). Moreover, this expressivity can be stated in terms of the class of multigraphs G that
any analytic network of this kind can generate. We leave this problem for future work.

B.3 Quantifying IRC-safety

This section is an attempt to define some Lorentz-invariant quantities that can measure
whether and how IR/C-safe any given observable is. It is mostly of theoretical interest since
it does not yet have a software implementation.

Let f®) be a Lorentz-invariant permutation-symmetric observable defined for varying
number N of inputs, for instance the output of a PELICAN instance. We define the following
difference operator that measures the obstruction to f being IR-safe:

AIRf(N) = f(N+1) (plv' .. ’pNvo) - f(N) (pla o 7pN) . (B12)

IR-safety is equivalent to the vanishing of this operator:
IR —safety : AR f=0. (B.13)

Furthermore, we can define IR-robustness as the partial derivative corresponding to the
injection of an infinitesimally soft but non-zero 4-momentum:

IR — robustness : R}I,Rf(N) - i

de f(N+1) (p17 ...y DPN, 6p) (B14)

e=0

All together, we have the following series expansion for a general observable near pyy1 = O:

f(N+1) _ f(N) + AIRf(N) 4 (RIR f(N)) pN41 + O(p?\rﬂ)- (B.15)

PN+1
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An IR-safe observable must always have A f =0, and lower values of IR-robustness in-
dicate lower sensitivity to soft particles. In practice, we can evaluate the ratio (AR f(V)/ f(N)
and average it over a testing dataset to quantify the IR-safety of a model.

For C-safety, we pick a massless 4-vector p and define the differential operator

d
DSf=—|  flpi+p,p2—App3,...). (B.16)
dA =0
C-safety then is equivalent to the requirement that Dg f = 0 for any massless p whenever
p1 and po are collinear with p:

=0, p*=0. (B.17)

C — safety : Dg f =
p1llp2llp

C-robustness can be easily defined as the second-order analog of Dg. Namely, we pick
a second vector p such that p-p = 0 (which means that p is tangent to the light cone at p,
as required by the massless constraint) and measure how quickly DE f deviates from zero
as we deform p; and po away from collinearity:

C — robustness : Rgpf = DEDSf, p-p= p2 =0, pilp2|op (B.18)

It is instructive to express these quantities in terms of the dot products d;;. We have

N
DSf =" (01f — 0o f) vj - p), (B.19)

j=1
where 0y; indicates the partial derivative with respect to dj;. Note that individual partial
derivatives aren’t really well-defined due to the fact that {d;;} is not a set of independent
coordinates on the manifold of N 4-vectors for N > 5. However, combinations such as above
are valid since they are nothing but a different way of expressing the original well-defined
operator. We also immediately notice that if N = 2 and py || p2 || p, then Dgf =0
automatically. Indeed, every Lorentz-invariant observable for two particles is C-safe due to
the fact that dis = %(pl + po)? for massless inputs.

C-robustness is similarly expressed by

N
Rﬁpf = Z (a%i,lj + 831‘,2]' - 8%1',2]' - 8%3‘,21') I (pi 'ﬁ)(ﬁj - D). (B.20)
ij=1
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