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Abstract—This paper proposed an energy function-embedded 
quasi-steady-state model for efficient simulation of cascading 
outages on a power grid while addressing transient stability 
concerns. Compared to quasi-steady-state models, the proposed 
model incorporates short-term dynamic simulation and an energy 
function method to efficiently evaluate the transient stability of a 
power grid together with outage propagation without transient 
stability simulation. Cascading outage simulation using the 
proposed model conducts three steps for each disturbance such as 
a line outage. First, it performs time-domain simulation for a short 
term to obtain a post-disturbance trajectory. Second, along the 
trajectory, the system state with the local maximum potential 
energy is found and used as the initial point to search for a relevant 
unstable equilibrium by Newton’s method. Third, the transient 
energy margin is estimated based on this unstable equilibrium to 
predict an out-of-step condition with generators. The proposed 
energy function-embedded quasi-steady-state model is tested in 
terms of its accuracy and time performance on an NPCC 140-bus 
power system and compared to a quasi-steady-state model 
embedding transient stability simulation.       
 

Index Terms—Cascading outages, quasi-steady-state model, 
transient stability, energy function, transient energy margin. 

NOMENCLATURE 

nmax Number of cascades 
ωs Synchronous speed of the system 
δi, ωi Rotor angle and speed of generator i 
𝑒ௗ௜
ᇱ , 𝑒௤௜

ᇱ  d- and q-axis transient voltages 

𝐸௙ௗ௜  Field voltage 
Pmi, Pei Mechanical and electrical powers 
Di, Hi Damping coefficient and inertia 
idi, iqi d- and q-axis stator currents 
Xdi, Xqi d- and q-axis synchronous reactances  
𝑋ௗ௜
ᇱ , 𝑋௤௜

ᇱ  d- and q-axis transient reactances 

𝑇ௗ଴௜
ᇱ , 𝑇௤଴௜

ᇱ  d- and q-axis open-circuit time constants 

𝑇ா௜ , 𝑇 ௜  Exciter and governor time constants 
𝑃௥௘௙௜ , 𝑅௜ Reference power and speed regulation 

of the governor 
𝑉௥௘௙௜ , 𝐸௧௜ , 𝐾஺௜  Reference voltage, terminal voltage, and 

the control gain of the exciter 
Dei Equivalent damping coefficient 

modeling all frequency-dependent 
power changes including governor 
influence 

Ei Electromotive force behind Xdi 
Rai Stator resistance of generator i 
𝐸෨ ti0, 𝐼ሚti0 Initial terminal voltage and current at 

generator bus i  
λ Uniform damping for all generators 
Gij, Bij Transfer conductance and susceptance 

between buses i and j in the Kron-
reduced network 

VKE, VPE, Vcr Kinetic energy, potential energy, and 
critical energy 

ΔV Energy margin 
kmax Maximum allowable number of 

searches 
xs Post-disturbance stable equilibrium 
x* 

k  kth local maximum point of the potential 
energy on the short-term post-
disturbance trajectory 

xcr Relevant unstable equilibrium 
𝐞ሬ⃗ ௞, h Search direction and step size  
pM Mth search point 
xcrk First local maximum point of the potential 

energy along the search path 𝐞ሬ⃗ ௞ 
Δδmax Maximum angle separation between any 

two generators  
u Predefined threshold of angle separation for 

an unstable system 
𝑥̇ Vector of derivatives of all state variables 
Tmax Transient stability simulation period 

I.  INTRODUCTION 

OWER grids are among the most complex interconnected 
engineering systems. Due to vast interconnections of power 

systems, even a small failure in power grids may propagate far 
away and lead to cascading outages. Cascading outages in 
power grids pose great threats to system security and reliability. 
Serious cascading outages could lead to widespread, severe 
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impacts both economically and socially. Therefore, modeling 
cascading outages is of great interest in uncovering their 
evolutionary patterns and further identifying effective 
mitigation strategies. 

Modeling cascading outages is quite a challenging task 
because the pattern in which cascading outages propagate is 
often uncertain, involves lots of components and manifests 
multi-timescale dynamics. Generally speaking, there are two 
types of models on the cascading process: stochastic models 
and physical models. The main difference between these two is 
that the stochastic models do not model any power grid details 
including topological information, whereas the physical models 
require the modeling of the power grid topology and physical 
constraints, such as power flow equations. The stochastic 
models focus on key patterns in outage propagation, established 
offline based on large amounts of historical or simulated outage 
data without requiring detailed physical information of power 
systems. The models of this type are such as the CASCADE 
model [1], branching process model [2]-[3], interaction models 
[4]-[6] and influence graph models [7]-[8]. The physical models 
are required when detailed mechanisms or grid behaviors in the 
cascading process need to be simulated, and hence such models 
are established based on power system models. Existing 
physical models are such as the OPA (ORNL-PSerc-Alaska) 
model [9]-[13], the Manchester model [14], the hidden failure 
model [15], the COSMIC model [16], the Dynamic PRA model 
[17]-[18], and the multi-timescale model [19]. Most physical 
models on cascading processes adopt steady-state or quasi-
steady-state power flow models for efficient simulations, 
ignoring transient dynamics of generators and other dynamic 
devices and the transitioning of the system from one steady-
state condition to another after each failure or switch.  

When the transient stability and detailed dynamics of a power 
grid under cascading outages are also of interests, some steady-
state physical models can interface with dynamic simulations. 
For example, the enhanced OPA model discussed in [13] 
interfaces the steady-state power flow model of the grid with a 
transient stability simulator running on a detailed dynamic grid 
model, which enables assessing the system’s transient stability 
and dynamic security following each component failure during 
the cascading process. However, the resulting cascading outage 
simulation that incorporates detailed dynamic simulations is 
computationally expensive and inefficient, particularly for 
large-scale power grids.  

For efficient transient stability assessment (TSA) of a power 
system subjected to disturbances, the direct methods [20]-[30] 
based on the Lyapunov stability criterion are preferable 
alternatives to transient stability simulations. The direct 
methods find a Lyapunov function to determine the domain of 
attraction (DOA) about the stable equilibrium point (SEP) of 
the post-disturbance system, by which transient stability can be 
directly assessed without solving the system’s detailed 
trajectory. However, finding a rigorous Lyapunov function for 
realistic power grid models is quite challenging if not 
impossible. Some direct methods construct local Lyapunov 
functions only for a small neighborhood of the SEP by convex 
programming [23]-[26]. Thus, a stability region can be 

approximately determined but is typically much smaller than 
the actual DOA and can result in conservative stability 
assessment. Instead, other direct methods adopt an energy 
function, which is an approximate Lyapunov function, by 
which the critical energy of the system without loss of transient 
stability may take the energy function’s value at an unstable 
equilibrium point (UEP) such as the closest UEP from the SEP 
or a controlling UEP (CUEP) [27]-[28]. A widely known direct 
method is the BCU (boundary of stability region-based CUEP) 
method [21], which utilizes the computed fault-on trajectory to 
find the CUEP of an artificial reduced-dimension system model 
whose stability region is highly related to that of the original 
system, thereby simplifying the computation. Although the 
closest UEP can also be computed via the reduced system, the 
result tends to be more conservative than that of the BCU 
method. Compared to simulation-based TSA methods [31]-
[32], direct methods are highly efficient because they do not 
require explicitly solving the dynamic trajectories of the system 
if an appropriate energy function is defined for acceptable 
accuracy of TSA [20]-[21].  

For accurate and efficient cascading outage simulations 
addressing transient stability criteria, this paper proposes an 
energy function-embedded quasi-steady-state model (for short, 
an EF-QSS model). Specifically, an energy function method is 
integrated into the framework of the quasi-steady-state 
cascading model to determine whether the system may securely 
transition to a new SEP without encountering transient 
instability after each outage. In fact, the proposed energy 
function-embedded method can be implemented on any quasi-
steady-state model for cascading outage simulations. The OPA 
model and its variants have been widely used to generate 
cascading outage data, understand the propagation mechanisms 
of cascading outages, and validate mitigation strategies [4], [6], 
[9], [10]. Without loss of generality, the OPA model [10] is 
employed in this paper to show how to implement the energy 
function-embedded method on a quasi-steady-state model and 
verify the effectiveness of the proposed EF-QSS model. The 
OPA model considers quasi-steady-state behaviors of a power 
grid in two timescales: the “slow dynamics” module simulates 
long-term grid upgrades with load growth, and the “fast 
dynamics” module simulates cascading outages and remedial 
control based on an optimal power flow (OPF) model ignoring 
transient dynamics. The proposed EF-QSS model interfaces the 
“fast dynamics” module with an energy function method that 
finds a relevant UEP to assess transient stability. It inherits the 
high efficiency of the OPA model for simulating the cascading 
process while addressing transient stability criteria with each 
failure or switch. The main contribution of this paper is that it 
develops an EF-QSS model, which integrates an energy 
function method into a quasi-steady-state power system model 
of the simulation of cascading outages. This integration can be 
implemented on any quasi-steady-state model, enabling 
accurate and efficient simulations of cascading outages that 
address transient stability criteria. In a quasi-steady-state model 
simulating cascading outages, each line outage is caused by an 
overload rather than a short-circuit fault. Consequently, there is 
no fault-on trajectory as required by the BCU method for TSA, 
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making it difficult to apply the BCU method directly in 
cascading outage simulations. To address this, the paper 
proposes obtaining a post-disturbance trajectory, instead, by 
conducting a short-term time-domain simulation to find a 
relevant UEP for the line outage. Existing physical simulation 
models of cascading outages either use steady-state or quasi-
steady-state power flow models, ignoring the fast transient 
dynamics, or rely on computationally expensive time-domain 
simulations. As a result, there is a gap in the availability of a 
model that can simultaneously achieve both accuracy and 
computational efficiency in simulating cascading outages.   The 
proposed EF-QSS model bridges this gap by offering a 
balanced solution that accounts for transient stability while 
maintaining accuracy and efficiency. 

In the rest of the paper, section II presents the flowchart of 
the proposed EF-QSS model and introduces the power system 
model and the energy function method employed. Then, section 
III provides comprehensive case studies on a Northeast Power 
Coordinating Council (NPCC) 140-bus system to evaluate the 
accuracy and time performance of the EF-QSS model and 
compares it with the original OPA model and the enhanced 
OPA model that incorporates transient stability simulations. 
Finally, section IV draws conclusions of the paper.  

II.  PROPOSED EF-QSS MODEL 

A.  Flowchart of the EF-QSS Model 

The flowchart of the EF-QSS model is shown in Fig. 1, which 
integrates the “fast dynamics” module of the OPA model in the 
blue box on the right-hand side and the energy function module 
in the green box on the left-hand side. Following each line 
outage, the OPA model calculates power flows to check line 
overloading and conducts line protection or mitigation control 
such as generation redispatch and load shedding based on a DC 
OPF model. The energy function module checks the stability of 
the system following each line outage and takes remedial 
control to trip unstable generators.  

In the existing framework of the OPA model considering the 
fast dynamics shown in the box on the right-hand side of Fig. 1, 
a cascade event is triggered by an initial outage, such as random 
line outages, and the DC power flow of the post-disturbance 
network is calculated, and then the DC OPF should be 
calculated to simulate the dispatching center operations 
addressing any overloaded lines. The DC OPF problem, 
formulated according to [9], aims to minimize both load 
shedding and changes in generation. Its constraints include 
overall power balance, line flow limits, generator limits, and 
load shedding limits. If the DC OPF solution is feasible, then 
the simulation of cascade n is terminated and cascade n+1 will 
be triggered by another initial outage, as long as the number of 
cascades has not yet reached nmax; if not, then overloaded lines 
will be tripped by protection relays and the network needs to be 
updated to simulate potential line outages in the next iteration. 
The AC power flows in the i-th network can induce the i-th 
equilibrium of the system, i.e., x(i) 

s . When updating the network 
in the (i+1)-th iteration, a new equilibrium x(i+1) 

s
 will be induced. 

However, the evaluation of the transient stability of the system, 
i.e., whether an existing equilibrium of the i-th network is in the 

DOA of a new equilibrium, i.e., x(i+1) 
s  of the (i+1)-th network, 

cannot be evaluated using the original OPA model. To 
overcome this limitation, this paper proposes embedding an 
energy function into the existing framework of the OPA model 
to predict an out-of-step condition with generators, or in other 
words, transient instability.  

 

Fig. 1. The flowchart of the EF-QSS model.  

As shown in the box on the left-hand side of Fig. 1, if the AC 
power flow calculation fails to lead to a feasible solution due to 
multiple line outages, the system should exit the energy 
function module and go back to the OPA model to find any 
overloaded lines based on the DC power flow. If the AC power 
flow solution is feasible, the energy function method is then 
employed to access the system’s stability following a line 
outage. If the system is judged stable, it returns to the OPA 
model to find any overloaded lines based on the AC power flow. 
On the other hand, if the system is determined unstable, a 
control scheme is triggered to simulate the actual response to an 
out-of-step condition. In this paper, the assumed control scheme 
includes remedial action, generator redispatch, and load 
shedding. The remedial action trips the generator with the 
maximum rotor angle at the end of the short-term dynamic 
simulation. Then, generator redispatch and load shedding are 
performed by solving the DC OPF. The “Energy function 
method” box in Fig. 1 is illustrated in detail in Section II-C.  

B.  Power System Model 

For the illustration purpose, the transient stability simulation 
adopting a sixth-order  model in (1) [33] for all generators is 
considered to serve as a benchmark for the EF-QSS model. 
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,  1,2, ,i i s i n                               (1a) 

2 ( )i i mi ei i i sH P P D                            (1b) 

  
0 ( )d i qi fdi di di di qiT e E X X i e                           (1c) 

0 ( )q i di qi qi qi diT e X X i e                                   (1d) 

( )Ei fdi Ai refi ti fdiT E K V E E                             (1e) 

( ) /Gi mi refi mi i s iT P P P R                           (1f) 

The generator model (1) includes a fourth-order synchronous 
machine, a first-order exciter and a first-order governor [34].  

In the energy function with the proposed EF-QSS model, the 
generator model (1) and load models are simplified by these 
assumptions [21]: 1) each generator is represented by a constant 
electromotive force Ei behind the d-axis transient reactance 𝑋ௗ௜

ᇱ  
with saliency ignored; 2) each load is assumed to be a constant 
impedance load while each constant power or current load is 
approximated by the apparent impedance with the initial 
voltage at the bus; 3) the mechanical power of each generator is 
unchanged. By these assumptions, a simplified model of the n-
generator system with the n-th generator as the reference is 
obtained, in which each generator adopts the classical model in 
(2), where Gij+jBij=Yij is an element of the admittance matrix 
on the Kron-reduced network that only keeps generators’ 
electromotive forces. 

,  1,2, , 1in in i n                              (2a) 

   1 1

2 2in mi ei mn en in
i n

P P P P
H H

                 (2b) 

2
ei

i

D

H
                                          (2c) 

,   1, 2, , 1in i n i n                             (2d) 

   ,   1, 2, , 1in i n i n                                (2e) 

*

1

Re ( j ) ,   1, 2, ,
n

ei i ij ij j
j

P E G B E i n


  
       

   
               (2f) 

0 0( ) ,  i ti ai di ti i i iE E R jX I E E                      (2g) 

Consider an artificial system (3) having only a half number 
of state variables of the reduced system modeled by (2). From 
[21], the types of equilibrium points of the artificial system are 
the same as those of the reduced system with small transfer 
conductances. Therefore, an equilibrium point of the reduced 
system can be obtained by finding the corresponding 
equilibrium point of the artificial system.   

 
def

   ( ),   1,2, , 1         i
in mi ei mn en i

n

H
P P P P f i n

H
 

        (3)                       

C.  Energy Function Method under Line Outages 

Consider the reduced system (2) subjected to a number of 
line outages. Following the i-th line outage, an energy function 
of the system is given by (4) according to [27], which consists 
of the kinetic energy VKE and potential energy VPE of the system.  

                      KE PEV V V                           (4a) 

  
1

2

1 1

n

KE jk
j k Tj

n
j kH

V
H

H




  

                 (4b) 

 
1

( 1) ( 1)

1 1

1

1 1

1

1

( 1)

( 1

1

)

1
( )

        (cos cos )

( )
        (sin sin )

 

 

   
 

 


 

  



  




  



   

 

 













n n
i i s

PE j k k j jk jk
j k j T

n n
s

jk jk jk
j k j

s sn n
jn kn jn kn s

jk jks

i

i
jk

j k j jk jk

V P H P H
H

C

D

  (4c) 

Here, superscript “(i+1)” indicates the (i+1)-th network 
topology after the i-th line outage; superscript “s” denotes the 
stable equilibrium point of the (i+1)-th network; 𝐻் = ∑ 𝐻௝

௡
௝ୀଵ ; 

Pj = Pmj -E
2 
j Gjj; Cjk

(i+1) and Djk
(i+1) are defined as: 

 ( 1) ( 1) ( 1) ( 1)    i i i i
jk kj k j jkC C E E B                (5a)  

( 1) ( 1) ( 1) ( 1)    i i i i
jk kj k j jkD D E E G                 (5b) 

The energy function determines the (i+1)-th network’s DOA 
about its SEP, where the energy is zero with VKE=VPE=0, and an 
appropriately selected UEP on the boundary of the DOA 
determines the critical energy to be compared with the initial 
energy of the system after the line outage. If the initial energy 
is less, the system state can safely reach the SEP. In quasi-
steady-state cascading outage simulations, the outage of each 
line is caused by its overload, not a short-circuit fault. The 
proposed EF-QSS model conducts a short-term time-domain 
simulation in order to find a relevant UEP for the line outage, 
which is similar to simulating the fault-on trajectory with the 
BCU method in [21] to find a CUEP. 

The detailed flowchart of the “Energy function method” box 
in Fig. 1 is depicted in Fig. 2. When a line outage occurs, the 
initial state of the post-disturbance network is at the first local 
maximum point of the potential energy along the post-
disturbance trajectory, i.e., x* 

1 . This state has zero kinetic energy 
and thus has the maximum potential energy. x* 

1  is used as the 
initial guess to search for the relevant UEP by Newton’s 
method. If it converges to the relevant UEP, the energy margin 
ΔV can be calculated, and the system’s stability can be further 
evaluated based on ΔV.  Otherwise, it converges to an SEP. If 
the SEP is different from the post-disturbance SEP, then the 
transient stability simulation is conducted for TSA; if the SEP 
is the same as the post-disturbance SEP, a time-domain 
simulation for a short time (e.g. 0.1 second) is conducted to 
obtain the post-disturbance trajectory. This is followed by the 
evaluation of the potential energy of the system along the 
trajectory. These two steps are repeated until the next local 
maximum point x * 

k  of the potential energy along the post-
disturbance trajectory is detected. Then, similarly, the new 
detected x* 

k  will be utilized to search for the relevant UEP. Since 
kmax represents the maximum allowable number of searches, it 
indicates the maximum possible number of detected local 
maximum points. A larger kmax allows a more accurate 
estimation of the critical energy, but it also increases the 
simulation time. The search of the relevant UEP will terminate 
under three scenarios: 1) The relevant UEP is obtained; 2) The 
search converges to an SEP different from the post-disturbance 
SEP; 3) The number of searches reaches kmax.   

The latest local maximum point signifies the state of a system 
with the highest potential energy and the lowest kinetic energy 
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during the early stage of transient dynamics. It is found to be 
closest to the boundary of the DOA of the (i+1)-th network in 
the transient process following the i-th line outage. Therefore, 
this point is utilized as the initial guess to search for the relevant 
UEP by solving fi(δ)=0 using Newton’s method.  

 
Fig. 2. The flowchart of the energy function method. 

          

(a)          (b)                                    (c) 

      
                     (d)    
Fig.3. Four examples of search results: (a) converging to the relevant UEP for 

a stable case; (b) converging to xs for a stable case; (c) converging to the 

relevant UEP for an unstable case; (d) converging to an SEP different from xs. 

This approach is illustrated for four different, representative 
examples: (a), (b), (c) and (d) in Fig. 3. If the search converges 
to a UEP as shown in Fig. 3 (a) or (c), the critical energy Vcr 

can be calculated by substituting the UEP value into (4c). Since 
the initial point of the (i+1)-th network, x* 

1 , is within the DOA 
of the (i+1)-th network in Fig. 3 (a), it represents a stable case. 
In contrast, x* 

1  is outside the DOA of the (i+1)-th network in 
Fig. 3 (c), representing an unstable case.  If the search converges 
to the SEP of the (i+1)-th network, as depicted in Fig. 3 (b), the 
critical energy Vcr is estimated by identifying the minimum 
value among the potential energies at the first local maximum 
point xcrk along all paths defined by the unit vector 𝐞ሬ⃗ ௞  for 
different k at a step of h in (6), starting from the SEP of the 
(i+1)-th network, i.e., p0=xs. For example, as illustrated in Fig. 
3 (b), Vcr = min {VPE (xcr1), VPE (xcr2), VPE (xcr3)}. 

*

*





 s k

k

s k

x x
e

x x
                                  (6a) 

1M M kh  p p e
                                  (6b) 

where ‖∙‖ represents the norm operator of a vector; h is set to 
0.2 in this paper. If the search converges to an SEP different 
from the SEP of the (i+1)-th network, denoted as x's, as depicted 
in Fig. 3 (d), conduct transient stability simulation for TSA. The 
energy margin of the post-disturbance system is  

*
1( )  cr PEV V V x                                (7) 

where x * 
1  represents the first local maximum point of the 

potential energy along the post-disturbance trajectory, and it is 
also the SEP of the i-th network. If ΔV is greater than zero, the 
system is considered stable; otherwise, it is unstable.       

III.  NUMERICAL EXPERIMENTS ON THE EF-QSS MODEL 

To validate the proposed EF-QSS model in predicting 
transient instability during a cascading process, this section 
presents its numerical experiments conducted on the NPCC 
140-bus system shown in Fig. 4, which is a test bed developed 
by [35] for cascading outage simulations.  

 

 
Fig. 4. NPCC 140-bus system.  

To assess the accuracy and efficiency of cascading outage 
simulations using the proposed EF-QSS model, another model 
referred to as “TS-OPA” is used, which follows the same 
flowchart as Fig. 1 except for replacing the energy function 
method with a time-domain transient stability simulation 
adopting the detailed model given in (1) for TSA. All 
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subsequent accuracy assessments of the EF-QSS model are 
compared with those of the TS-OPA model. The transient 
stability simulation is terminated (typically in 10-20 seconds 
following a switch) once satisfying either condition in (8):  

max   u                                   (8a) 

  

x                                      (8b) 

where (8a) judges the case to be unstable when Δδmax exceeds 
u; (8b) judges the case to be stable if the derivatives of all state 
variables are within a tolerance 𝜖. The case is judged stable if 
the simulation reaches Tmax. In this paper, 𝛿௨, 𝜖, and Tmax are set 
to 2π, 10-3, and 20 s, respectively. 

The energy function is derived for the reduced system 
modeled by (2), while benchmarked with the detailed model in 
(1). To examine the influence of the model differences on TSA, 
10,000 “N-2” cascade events on the NPCC system under the 
base load condition are simulated. Here, “N-2” refers to initial 
outages that trip two lines. Their TSAs shown in Table I are 
obtained using transient stability simulations adopting the 
detailed model and the reduced model, respectively.  As 
observed from Table I, the influence of model difference on 
TSA is insignificant, and thus the energy function from the 
reduced system can be employed here for the TSA requirements 
with the proposed EF-QSS model.  

In the rest of this section, Section III-A illustrates how to 
conduct cascade simulation using the proposed EF-QSS model. 
Section III-B analyzes the influence of the model’s parameter 
on its accuracy and time performance. Section III-C examines 
the model’s performance under different loading conditions. 
Furthermore, Section III-D evaluates the performance of the 
model under different numbers of initial line outages. Finally, 
Section III-E compares the severities of the cascading outages 
generated by the proposed EF-QSS model, the original OPA 
model, and the TS-OPA model based on two metrics: the 
average number of line outages and the average amount of load 
shedding. 

TABLE I 
   TSA FROM SIMULATIONS USING DIFFERENT MODELS 

TSA 

Reduced model
 

Stable 
(68.55%)

 

Unstable 
(31.45%) 

Detailed 
model 

Stable  
(68.78%) 

68.41% 0.37% 

Unstable 
(31.22%)

 0.14% 31.08% 

 

A.  Illustration of the EF-QSS Model  

To illustrate how TSA is performed by the proposed EF-QSS 
model using the energy function method that finds up to kmax=3 
local maximum points, three examples are shown in Fig. 5, Fig. 
6, and Fig. 7, respectively. The TSA result of each stage is 
compared with the ground truth from a time-domain simulation.  

 
Fig. 5. Analysis of a cascade event with four stages. 

The first example records a cascading process with four 
stages: 1) the initial outages of lines 65 and 74, 2) the outage of 
line 78, 3) the concurrent outages of lines 79 and 80, 4) the 
outage of line 81. Thereafter, the cascade stops because of no 
further overloading. Throughout this process, the network 
topology is changed four times, resulting in four different 
potential energy curves as shown by (a1)-(a4) in Fig. 5, which 
are obtained by calculating potential energy along the short-
term post-disturbance trajectory. The search results of (a1), (a3) 
and (a4) in Fig. 5 all correspond to the scenario shown in Fig. 3 
(b), resulting in a positive energy margin, whereas the search 
result of Fig. 5 (a2) corresponds to the scenario shown in Fig. 3 
(c), resulting in a negative energy margin. Therefore, the energy 
function module in the EF-QSS model predicts the system to be 
stable, unstable, stable, and stable respectively for the four 
stages. The ground truth of TSA for each stage is obtained by 
time-domain simulation, shown in Fig. 5 (b1)-(b4), respectively, 
indicating the system is stable, unstable, stable, and stable 
respectively for the four stages, which verifies that the EF-QSS 
model makes accurate TSAs for this cascade event.  

 

 

Fig. 6. Analysis of a cascade event with one stage. 

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3527811

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 17,2025 at 17:39:06 UTC from IEEE Xplore.  Restrictions apply. 



 7 

Similarly, Fig. 6 shows a second cascade event with initial 
outages of lines 18 and 44, lasting for only one stage due to no 
further overloading. Fig. 6 (a) shows potential energy along the 
short-term post-disturbance trajectory, corresponding to the 
scenario shown in Fig. 3 (a). The search converges to the 
relevant UEP, resulting in a positive energy margin. Thus, the 
EF-QSS model predicts the system to be stable, which matches 
the TSA determined by time-domain simulation shown in Fig. 
6 (b).  

 

Fig. 7. Analysis of a cascade event with two stages. 

Fig. 7 shows a third cascade event with two stages: 1) the 
initial outages of lines 33 and 92, 2) the concurrent outages of 
lines 27, 28, 30,78, and 100. The cascade then stops due to no 
further overloading following the remedial action. The search 
result of Fig. 7 (a1) corresponds to the scenario shown in Fig. 3 
(b), resulting in a positive energy margin, while the search 
result of Fig. 7 (a2) corresponds to the scenario shown in Fig. 3 
(d), necessitating transient stability simulation for TSA. 
Therefore, the EF-QSS model predicts the system to be stable 
and unstable for the two stages, respectively, matching the TSA 
results from simulations shown in Fig. 7 (b1)-(b2). The 
accuracy of the EF-QSS model will be further evaluated across 
a large number of cascades in the following sections. 

B.  Parameter Influence 

    1)  Influence on Accuracy 

TABLE II 
   PERFORMANCE WITH DIFFERENT kmax  

kmax 
Accuracy 

Stable cases 
classified as stable 

Unstable cases 
classified as unstable 

2 99.72% 95.78% 
3 99.52% 99.66% 

 
To evaluate how parameter kmax influences the TSA accuracy 

of the proposed energy function method in the EF-QSS model, 
10,000 “N-2” cascade events on the NPCC system under the 
base load condition are simulated for each kmax value. The 
benchmark results are obtained from the TS-OPA model. Table 
II shows the performance of the energy function method with 

different kmax values. kmax=3 results in higher TSA accuracy 
than kmax =2 especially for unstable cases. This is because 
kmax=3 takes both the first and second swings into 
considerations, resulting in more accurate critical energy while 
kmax = 2 only considers the first swing.  
    2)  Influence on Time Performance 

To evaluate the time performance of the EF-QSS model, two 
comparisons were conducted with the TS-OPA model. The first 
comparison focused on the duration of time-domain 
simulations, specifically the length of the time window required 
for TSA during cascading outage simulations. The second 
comparison evaluates the time cost, which refers to the 
computing time. 

10,000 “N-2” cascade events are simulated using the TS-
OPA and EF-QSS models with kmax=2 and 3, respectively. The 
average duration of time-domain simulations using the TS-OPA 
is 14.11 seconds. Using the EF-QSS model, only 5.31% of the 
cases with kmax=2 and 6.85% of the cases with kmax=3 need to 
conduct transient stability simulations. Excluding these cases, 
Fig. 8 shows the distribution of the durations of time-domain 
simulations that are required by the energy function method 
using the EF-QSS model. From Fig. 8 (a), for kmax=2, around 
80% of the cases can employ the energy function method for 
TSA with a time-domain simulation of only 0.6 s or less. From 
Fig. 8 (b), for kmax=3, around 70% of the cases can employ the 
energy function method for TSA using a time-domain 
simulation of 0.7 s or less. The average simulation duration is 
0.51 s for kmax=2 and 0.81 s for kmax=3. Both are significantly 
less compared with the average duration of simulations with the 
TS-OPA model, demonstrating the high efficiency of the EF-
QSS model for TSA with cascading outages compared to the 
TS-OPA model. This merit with the EF-QSS model can 
potentially save significant time in the real-time operating 
environment when online simulations of cascading outages are 
required for preventive and mitigative control strategies. 

 

(a) kmax = 2 

 

(b) kmax = 3 
Fig. 8. Distribution of simulation durations for the EF-QSS model with energy 
function method. 
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In MATLAB on a desktop computer with Intel core i7 CPU 
and 16GB RAM, the total time costs for generating the 10,000 
“N-2” cascade events using the TS-OPA model and the EF-QSS 
model are estimated and compared in Table III. The EF-QSS 
model achieves a significant reduction of the time cost by 
78.4% and 69.7% for kmax=2 and 3, respectively. This further 
validates the high efficiency of the EF-QSS model in generating 
large datasets of cascading outages.   

TABLE III 
   COMPARISON OF TIME COSTS BETWEEN DIFFERENT MODELS 

Model TS-OPA 
EF-QSS 

kmax = 2
 

kmax = 3
 

Time cost 12.68 hours 2.74 hours 3.84 hours 

 
 To further demonstrate the significant speedup by using the 

EF-QSS model for simulations of cascading outages, full time-
domain simulations are also conducted as benchmarks. In each 
full time-domain simulation, a dynamic model of the power 
system using the detailed generator model in (1) is continuously 
solved, and the same remedial action, DC OPF-
based mitigation control, and relay protection scheme as shown 
in Fig. 1 are conducted upon any overloading or detected 
transient instability. Unlike the TS-OPA model, which 
terminates its time-domain simulation once transient stability is 
determined, each new full time-domain simulation of cascading 
outages aims to replicate the real evolution of a cascade by 
continuing the simulation from its initial fault or switch until 
the cascade concludes. According to analyses of the 2003 
Northeast blackout [19], [36]-[38], cascade events caused by 
line overloading typically take around 30 minutes to evolve 
from the beginning of one stage to the next in a lightly stressed 
system but can progress within just a few minutes in a highly 
stressed system. To represent these varying evolution speeds, 
two new cases of cascades are studied by full time-domain 
simulations. Case 1, representing a slow evolution, operates 
under the base loading condition, whose cascade is initiated by 
outages of lines 31 and 124, progressing through four stages. 
The evolution time between stage 1 and stage 2 is set at 30 
minutes, decreasing progressively to 25, 20, and 15 minutes in 
subsequent stages as the system becomes increasingly stressed. 
Case 2, representing a fast evolution, operates under a heavier 
loading condition, with a 50% increase over the base load of 
each bus. The cascade is initiated by outages of lines 8 and 36, 
progressing through three stages. The evolution time between 
stage 1 and stage 2 is set at 7 minutes, dropping sharply to 2 
minutes and 1 minute in the following stages.  

TABLE IV 
   COMPARISON OF TIME COSTS FOR TWO CASES 

Model 
Time cost (s)

 
Case 1 Case 2 

Dynamic model 257.1 31.1 
TS-OPA 8.9 8.3 

EF-QSS 
kmax = 2 2.8 2.6 
kmax = 3 3.2 3.8 

 

Table IV presents the time costs for these two new cases 
simulated using three different models. The EF-QSS model 
achieves the smallest time costs in both cases. In contrast, the 
dynamic model is highly time-consuming, requiring over 80 
times the computation time of the EF-QSS model for Case 1 
and 8 times for Case 2. Although the TS-OPA model reduces 
time costs significantly compared to the dynamic model, it 
remains inefficient for simulating a large number of cascades, 
as demonstrated in Table III. Compared to the case with kmax=2, 
the EF-QSS model with kmax=3 has better accuracy with only a 
slight increase in time cost. Therefore, in the rest of the paper, 
kmax is set to 3 to achieve higher accuracy. 

C.  Considering Different Loading Conditions 

The performance of the EF-QSS model is evaluated under 
three loading conditions with load factors of 1.0, 1.2 and 1.5, as 
shown in Table V, which respectively consider the base case 
and the system loads increased evenly to 1.2 and 1.5 times. To 
account for load variations and uncertainties, each bus load 
under a certain loading condition is further varied by a factor 
following a uniform distribution between the range of [0.9, 1.1]. 
For each loading condition, the EF-QSS model is used to 
simulate 10,000 “N-2” cascade events on the NPCC system. 
The benchmark results are obtained from the TS-OPA model. 
As shown in Table V, the accuracy of TSA basically remains 
consistent across different loading conditions with only slight 
variations, which demonstrates the robustness of the EF-QSS 
model under variations in loads. 

TABLE V 
   PERFORMANCE UNDER DIFFERENT LOADING CONDITIONS 

Load factor 
Accuracy 

Stable cases 
classified as stable 

Unstable cases 
classified as unstable 

1.0 99.52% 99.66% 
1.2 99.36% 99.63% 
1.5 99.34% 99.57% 

 

D.  Considering Various Initial Failures 

In this section, the performance of the EF-QSS model is 
evaluated considering different numbers of initial line outages. 
The results are presented in Table VI, which compares the 
accuracy of the model with initial “N-2” and “N-3” line outages.  

TABLE VI 
   PERFORMANCE WITH DIFFERENT NUMBERS OF INITIAL LINE OUTAGES 

Initial failures 
Accuracy 

Stable cases 
classified as stable 

Unstable cases 
classified as unstable 

“N-2” 99.52% 99.66% 
“N-3” 99.32% 99.08% 

Table VI shows the TSA accuracies for both stable and 
unstable cases for each type of scenario. It is observed that the 
accuracy of the model exhibits slight and acceptable differences 
between the “N-2” and “N-3” scenarios, for both stable and 
unstable cases. This indicates that the EF-QSS model maintains 
good accuracy for scenarios with different numbers of initial 
line outages, highlighting the robustness of the EF-QSS model. 
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E.  Statistical Comparisons 

This section provides statistical comparisons between 
different models, focusing on comparing two key indices on the 
severity of cascading outages: the average number of line 
outages and the average amount of load shedding. The OPA, 
TS-OPA, and EF-QSS models are used to each simulate 10,000 
“N-2” cascade events under the base load condition, with the 
TS-OPA model serving as the benchmark. The statistical 
comparisons between these models are presented in Table VII. 
The result indicates that the EF-QSS model approximately 
matches with the TS-OPA model in terms of both severity 
indices, thereby further validating the accuracy of the EF-QSS 
model. However, the OPA model exhibits significantly lower 
values for both indices than the EF-QSS and TS-OPA models. 
This discrepancy can be attributed to the OPA model’s 
limitation in neglecting transient dynamics and optimistically 
assuming that all line outages do not lead to transient instability 
issues. Thus, the OPA model underestimates the propagation 
and consequences of cascading outages. In contrast, the EF-
QSS model addresses this limitation by incorporating the 
energy function module into the OPA model to enable efficient 
TSA without conducting transient stability simulations. By 
addressing transient stability in cascading outage simulations, 
the EF-QSS model can generate more accurate cascading 
outage cases statistically close to those generated from the TS-
OPA model. These findings highlight the significance of 
accounting for transient dynamics in the simulation of 
cascading outages to generate more realistic and accurate 
cascading outage data.  

TABLE VII 
   STATISTICAL COMPARISONS BETWEEN DIFFERENT MODELS 

Model 
Average number of 

line outages 
Average amount of 

load shedding (MW) 

OPA 6.64 356.44 

TS-OPA 12.42 2355.69 

EF-QSS  13.87 2684.42 

IV.  CONCLUSIONS 

This paper proposed an EF-QSS model as a novel approach 
for simulation of cascading outages in power grids. By 
integrating the energy function method into the framework of a 
quasi-steady-state cascading model, the proposed new model 
offers an efficient and effective solution for addressing transient 
stability concerns in simulations of cascading outages. The 
accuracy of the proposed EF-QSS model is validated on the 
NPCC 140-bus system. The performance evaluations of the EF-
QSS model under different loading conditions and varying 
numbers of initial line outages show consistent accuracy, with 
only a slight variation, indicating the effectiveness and 
robustness of the model in capturing transient dynamics during 
cascading outages. Statistical comparisons between the OPA, 
TS-OPA, and EF-QSS models reveal that the OPA model 
underestimates the severity of cascade outages due to its neglect 
of transient dynamics. This emphasizes the significance of 
considering transient effects in simulating cascading outages to 

generate more realistic and accurate cascading outage data. 
Furthermore, the efficiency of the EF-QSS model is examined. 
The results show that the proposed EF-QSS model achieves a 
significant reduction in time costs compared to the TS-OPA and 
dynamic models, highlighting the high efficiency of the EF-
QSS model in conducting TSA for cascading outages. Thus, the 
EF-QSS model has the potential to save significant time for 
real-time applications to help prevent or mitigate the 
propagation of cascading outages.  
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