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Abstract—This paper proposed an energy function-embedded
quasi-steady-state model for efficient simulation of cascading
outages on a power grid while addressing transient stability
concerns. Compared to quasi-steady-state models, the proposed
model incorporates short-term dynamic simulation and an energy
function method to efficiently evaluate the transient stability of a
power grid together with outage propagation without transient
stability simulation. Cascading outage simulation using the
proposed model conducts three steps for each disturbance such as
a line outage. First, it performs time-domain simulation for a short
term to obtain a post-disturbance trajectory. Second, along the
trajectory, the system state with the local maximum potential
energy is found and used as the initial point to search for a relevant
unstable equilibrium by Newton’s method. Third, the transient
energy margin is estimated based on this unstable equilibrium to
predict an out-of-step condition with generators. The proposed
energy function-embedded quasi-steady-state model is tested in
terms of its accuracy and time performance on an NPCC 140-bus
power system and compared to a quasi-steady-state model
embedding transient stability simulation.

Index Terms—Cascading outages, quasi-steady-state model,
transient stability, energy function, transient energy margin.
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Pimax Number of cascades
Ws Synchronous speed of the system

0i, W; Rotor angle and speed of generator i
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P, Pei Mechanical and electrical powers

D;, H; Damping coefficient and inertia

Ldiy Igi d- and g-axis stator currents

Xai, Xgi d- and g-axis synchronous reactances
Xai» Xqi d- and g-axis transient reactances

Taoi» Tqoi d- and g-axis open-circuit time constants
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Tgy, Tgy
Prefia Ri

Exciter and governor time constants

Reference power and speed regulation

of the governor

Reference voltage, terminal voltage, and

the control gain of the exciter

D, Equivalent damping coefficient
modeling all frequency-dependent
power changes including governor
influence

E; Electromotive force behind Xy

ai Stator resistance of generator i

Initial terminal voltage and current at

generator bus i

A Uniform damping for all generators

Veerir Etir Kai

Gy, By Transfer conductance and susceptance
between buses i and j in the Kron-
reduced network

Vke, Vre, Vor - Kinetic energy, potential energy, and
critical energy

AV Energy margin

Kimax Maximum allowable number of
searches

Xs Post-disturbance stable equilibrium

X, k™ local maximum point of the potential
energy on the short-term post-
disturbance trajectory

Xer Relevant unstable equilibrium

€, h Search direction and step size

Y M search point

Xcrk First local maximum point of the potential
energy along the search path €,

Abdmax Maximum angle separation between any

two generators
Su Predefined threshold of angle separation for
an unstable system
Vector of derivatives of all state variables
Transient stability simulation period

<.

Tmax

1. INTRODUCTION

OWER grids are among the most complex interconnected
engineering systems. Due to vast interconnections of power
systems, even a small failure in power grids may propagate far
away and lead to cascading outages. Cascading outages in
power grids pose great threats to system security and reliability.
Serious cascading outages could lead to widespread, severe
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impacts both economically and socially. Therefore, modeling
cascading outages is of great interest in uncovering their
evolutionary patterns and further identifying effective
mitigation strategies.

Modeling cascading outages is quite a challenging task
because the pattern in which cascading outages propagate is
often uncertain, involves lots of components and manifests
multi-timescale dynamics. Generally speaking, there are two
types of models on the cascading process: stochastic models
and physical models. The main difference between these two is
that the stochastic models do not model any power grid details
including topological information, whereas the physical models
require the modeling of the power grid topology and physical
constraints, such as power flow equations. The stochastic
models focus on key patterns in outage propagation, established
offline based on large amounts of historical or simulated outage
data without requiring detailed physical information of power
systems. The models of this type are such as the CASCADE
model [1], branching process model [2]-[3], interaction models
[4]-[6] and influence graph models [7]-[8]. The physical models
are required when detailed mechanisms or grid behaviors in the
cascading process need to be simulated, and hence such models
are established based on power system models. Existing
physical models are such as the OPA (ORNL-PSerc-Alaska)
model [9]-[13], the Manchester model [14], the hidden failure
model [15], the COSMIC model [16], the Dynamic PRA model
[17]-[18], and the multi-timescale model [19]. Most physical
models on cascading processes adopt steady-state or quasi-
steady-state power flow models for efficient simulations,
ignoring transient dynamics of generators and other dynamic
devices and the transitioning of the system from one steady-
state condition to another after each failure or switch.

When the transient stability and detailed dynamics of a power
grid under cascading outages are also of interests, some steady-
state physical models can interface with dynamic simulations.
For example, the enhanced OPA model discussed in [13]
interfaces the steady-state power flow model of the grid with a
transient stability simulator running on a detailed dynamic grid
model, which enables assessing the system’s transient stability
and dynamic security following each component failure during
the cascading process. However, the resulting cascading outage
simulation that incorporates detailed dynamic simulations is
computationally expensive and inefficient, particularly for
large-scale power grids.

For efficient transient stability assessment (TSA) of a power
system subjected to disturbances, the direct methods [20]-[30]
based on the Lyapunov stability criterion are preferable
alternatives to transient stability simulations. The direct
methods find a Lyapunov function to determine the domain of
attraction (DOA) about the stable equilibrium point (SEP) of
the post-disturbance system, by which transient stability can be
directly assessed without solving the system’s detailed
trajectory. However, finding a rigorous Lyapunov function for
realistic power grid models is quite challenging if not
impossible. Some direct methods construct local Lyapunov
functions only for a small neighborhood of the SEP by convex
programming [23]-[26]. Thus, a stability region can be
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approximately determined but is typically much smaller than
the actual DOA and can result in conservative stability
assessment. Instead, other direct methods adopt an energy
function, which is an approximate Lyapunov function, by
which the critical energy of the system without loss of transient
stability may take the energy function’s value at an unstable
equilibrium point (UEP) such as the closest UEP from the SEP
or a controlling UEP (CUEP) [27]-[28]. A widely known direct
method is the BCU (boundary of stability region-based CUEP)
method [21], which utilizes the computed fault-on trajectory to
find the CUEP of an artificial reduced-dimension system model
whose stability region is highly related to that of the original
system, thereby simplifying the computation. Although the
closest UEP can also be computed via the reduced system, the
result tends to be more conservative than that of the BCU
method. Compared to simulation-based TSA methods [31]-
[32], direct methods are highly efficient because they do not
require explicitly solving the dynamic trajectories of the system
if an appropriate energy function is defined for acceptable
accuracy of TSA [20]-[21].

For accurate and efficient cascading outage simulations
addressing transient stability criteria, this paper proposes an
energy function-embedded quasi-steady-state model (for short,
an EF-QSS model). Specifically, an energy function method is
integrated into the framework of the quasi-steady-state
cascading model to determine whether the system may securely
transition to a new SEP without encountering transient
instability after each outage. In fact, the proposed energy
function-embedded method can be implemented on any quasi-
steady-state model for cascading outage simulations. The OPA
model and its variants have been widely used to generate
cascading outage data, understand the propagation mechanisms
of cascading outages, and validate mitigation strategies [4], [6],
[9], [10]. Without loss of generality, the OPA model [10] is
employed in this paper to show how to implement the energy
function-embedded method on a quasi-steady-state model and
verify the effectiveness of the proposed EF-QSS model. The
OPA model considers quasi-steady-state behaviors of a power
grid in two timescales: the “slow dynamics” module simulates
long-term grid upgrades with load growth, and the “fast
dynamics” module simulates cascading outages and remedial
control based on an optimal power flow (OPF) model ignoring
transient dynamics. The proposed EF-QSS model interfaces the
“fast dynamics” module with an energy function method that
finds a relevant UEP to assess transient stability. It inherits the
high efficiency of the OPA model for simulating the cascading
process while addressing transient stability criteria with each
failure or switch. The main contribution of this paper is that it
develops an EF-QSS model, which integrates an energy
function method into a quasi-steady-state power system model
of the simulation of cascading outages. This integration can be
implemented on any quasi-steady-state model, enabling
accurate and efficient simulations of cascading outages that
address transient stability criteria. In a quasi-steady-state model
simulating cascading outages, each line outage is caused by an
overload rather than a short-circuit fault. Consequently, there is
no fault-on trajectory as required by the BCU method for TSA,
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making it difficult to apply the BCU method directly in
cascading outage simulations. To address this, the paper
proposes obtaining a post-disturbance trajectory, instead, by
conducting a short-term time-domain simulation to find a
relevant UEP for the line outage. Existing physical simulation
models of cascading outages either use steady-state or quasi-
steady-state power flow models, ignoring the fast transient
dynamics, or rely on computationally expensive time-domain
simulations. As a result, there is a gap in the availability of a
model that can simultaneously achieve both accuracy and
computational efficiency in simulating cascading outages. The
proposed EF-QSS model bridges this gap by offering a
balanced solution that accounts for transient stability while
maintaining accuracy and efficiency.

In the rest of the paper, section II presents the flowchart of
the proposed EF-QSS model and introduces the power system
model and the energy function method employed. Then, section
III provides comprehensive case studies on a Northeast Power
Coordinating Council (NPCC) 140-bus system to evaluate the
accuracy and time performance of the EF-QSS model and
compares it with the original OPA model and the enhanced
OPA model that incorporates transient stability simulations.
Finally, section IV draws conclusions of the paper.

II. PROPOSED EF-QSS MODEL

A. Flowchart of the EF-QSS Model

The flowchart of the EF-QSS model is shown in Fig. 1, which
integrates the “fast dynamics” module of the OPA model in the
blue box on the right-hand side and the energy function module
in the green box on the left-hand side. Following each line
outage, the OPA model calculates power flows to check line
overloading and conducts line protection or mitigation control
such as generation redispatch and load shedding based on a DC
OPF model. The energy function module checks the stability of
the system following each line outage and takes remedial
control to trip unstable generators.

In the existing framework of the OPA model considering the
fast dynamics shown in the box on the right-hand side of Fig. 1,
a cascade event is triggered by an initial outage, such as random
line outages, and the DC power flow of the post-disturbance
network is calculated, and then the DC OPF should be
calculated to simulate the dispatching center operations
addressing any overloaded lines. The DC OPF problem,
formulated according to [9], aims to minimize both load
shedding and changes in generation. Its constraints include
overall power balance, line flow limits, generator limits, and
load shedding limits. If the DC OPF solution is feasible, then
the simulation of cascade » is terminated and cascade n+1 will
be triggered by another initial outage, as long as the number of
cascades has not yet reached nmay; if not, then overloaded lines
will be tripped by protection relays and the network needs to be
updated to simulate potential line outages in the next iteration.
The AC power flows in the i-th network can induce the i-th
equilibrium of the system, i.e., x{". When updating the network
in the (7+1)-th iteration, a new equilibrium x¢"” will be induced.
However, the evaluation of the transient stability of the system,
i.e., whether an existing equilibrium of the i-th network is in the
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DOA of a new equilibrium, i.e., x\"” of the (i+1)-th network,
cannot be evaluated using the original OPA model. To
overcome this limitation, this paper proposes embedding an
energy function into the existing framework of the OPA model
to predict an out-of-step condition with generators, or in other
words, transient instability.

AC power
flow

Output DC power
flow solution

Equilibrium 7 Overloaded
l lines?
Energy Y
function U
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method DCIORF network i

Y
@N =]
4

Relay protection
actions

Line outages?
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Fig. 1. The flowchart of the EF-QSS model.

As shown in the box on the left-hand side of Fig. 1, if the AC
power flow calculation fails to lead to a feasible solution due to
multiple line outages, the system should exit the energy
function module and go back to the OPA model to find any
overloaded lines based on the DC power flow. If the AC power
flow solution is feasible, the energy function method is then
employed to access the system’s stability following a line
outage. If the system is judged stable, it returns to the OPA
model to find any overloaded lines based on the AC power flow.
On the other hand, if the system is determined unstable, a
control scheme is triggered to simulate the actual response to an
out-of-step condition. In this paper, the assumed control scheme
includes remedial action, generator redispatch, and load
shedding. The remedial action trips the generator with the
maximum rotor angle at the end of the short-term dynamic
simulation. Then, generator redispatch and load shedding are
performed by solving the DC OPF. The “Energy function
method” box in Fig. 1 is illustrated in detail in Section II-C.

B. Power System Model

For the illustration purpose, the transient stability simulation
adopting a sixth-order model in (1) [33] for all generators is
considered to serve as a benchmark for the EF-QSS model.
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é"i:a)i—a)s, i=12,--n (1a)
2H.@, = P,,— P, — D,(0, — w,) (1b)
T)oél = E = (X — X0iy — €, (1)
Tl = (X, —X.)i, ¢, (1d)
T,E =KV, y—E)-E, (e)
TP, =P,—-P,—(0,-»)/R (1)

The generator model (1) includes a fourth-order synchronous
machine, a first-order exciter and a first-order governor [34].

In the energy function with the proposed EF-QSS model, the
generator model (1) and load models are simplified by these
assumptions [21]: 1) each generator is represented by a constant
electromotive force £; behind the d-axis transient reactance Xj;
with saliency ignored; 2) each load is assumed to be a constant
impedance load while each constant power or current load is
approximated by the apparent impedance with the initial
voltage at the bus; 3) the mechanical power of each generator is
unchanged. By these assumptions, a simplified model of the n-
generator system with the n-th generator as the reference is
obtained, in which each generator adopts the classical model in
(2), where G;+]jB;=Y is an element of the admittance matrix
on the Kron-reduced network that only keeps generators’
electromotive forces.

é‘in:a}in’izl’z"“5n_l (23)

a.)in = L(i)mi - I)ei)_ L(Pmn - F’en ) - la)in (2b)
2H, 2H,

_ D, (2¢)
2H,

5,=6,-65, i=1,2-n-1 (2d)

w,=0,-0, i=1,2,-,n-1 (2¢)

E, :RG{E;{Z(G:‘/"LJ‘BU)E/H’ i=12,--n (20)

j=1
Ei = Et,-o +(Rai +jX(;i)iti0 > El :Ez’éé‘i (Zg)

Consider an artificial system (3) having only a half number
of state variables of the reduced system modeled by (2). From
[21], the types of equilibrium points of the artificial system are
the same as those of the reduced system with small transfer
conductances. Therefore, an equilibrium point of the reduced
system can be obtained by finding the corresponding
equilibrium point of the artificial system.

. H def
8y =bu=Bi=p (BuB) = /(0. i=12n-1

in " mi i mn en
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n

C. Energy Function Method under Line Outages

Consider the reduced system (2) subjected to a number of
line outages. Following the i-th line outage, an energy function
of the system is given by (4) according to [27], which consists
of the kinetic energy Vg and potential energy Vpg of the system.

V= VKE + VPE (4a)
n—1 n H H

Vep = Z Z ]ilikwfz’f (4b)
Tl k=j+1 T

4
n-1 n 1 ; o .
Ve :_z Z Hi(Pf(H)Hk _Pk( I)Hj)(5jk _5jk)
Jj=1 k=j+1 T
n-1 n ) (40)
=2 2. G (coss, —cos,)

=l k=j+1

6,+9,—(5,+35,)

n-1 n
@i+ Cin n
+JZ=1:k;1 o S O
Here, superscript “(i+1)” indicates the (i+1)-th network
topology after the i-th line outage; superscript “s” denotes the
stable equilibrium point of the (i+1)-th network; Hy = ¥7_, H;;
P;=P,;-E; Gj; Cy*V and D"V are defined as:

o s
(sind, —sind},)

(i+) _ (i+l) _ o (i+1) o (i+])
C,""=C,"""=E"E""B, (5a)
(i+1) _ (i+1) _ (i+1) (i+1)
D" =D =E"VE""G, (5b)

The energy function determines the (i+1)-th network’s DOA
about its SEP, where the energy is zero with Vgz=Vpr=0, and an
appropriately selected UEP on the boundary of the DOA
determines the critical energy to be compared with the initial
energy of the system after the line outage. If the initial energy
is less, the system state can safely reach the SEP. In quasi-
steady-state cascading outage simulations, the outage of each
line is caused by its overload, not a short-circuit fault. The
proposed EF-QSS model conducts a short-term time-domain
simulation in order to find a relevant UEP for the line outage,
which is similar to simulating the fault-on trajectory with the
BCU method in [21] to find a CUEP.

The detailed flowchart of the “Energy function method” box
in Fig. 1 is depicted in Fig. 2. When a line outage occurs, the
initial state of the post-disturbance network is at the first local
maximum point of the potential energy along the post-
disturbance trajectory, i.e., X, . This state has zero kinetic energy
and thus has the maximum potential energy. X, is used as the
initial guess to search for the relevant UEP by Newton’s
method. If it converges to the relevant UEP, the energy margin
AV can be calculated, and the system’s stability can be further
evaluated based on AV. Otherwise, it converges to an SEP. If
the SEP is different from the post-disturbance SEP, then the
transient stability simulation is conducted for TSA; if the SEP
is the same as the post-disturbance SEP, a time-domain
simulation for a short time (e.g. 0.1 second) is conducted to
obtain the post-disturbance trajectory. This is followed by the
evaluation of the potential energy of the system along the
trajectory. These two steps are repeated until the next local
maximum point x, of the potential energy along the post-
disturbance trajectory is detected. Then, similarly, the new
detected x; will be utilized to search for the relevant UEP. Since
kmax represents the maximum allowable number of searches, it
indicates the maximum possible number of detected local
maximum points. A larger kmax allows a more accurate
estimation of the critical energy, but it also increases the
simulation time. The search of the relevant UEP will terminate
under three scenarios: 1) The relevant UEP is obtained; 2) The
search converges to an SEP different from the post-disturbance
SEP; 3) The number of searches reaches kmax.

The latest local maximum point signifies the state of a system
with the highest potential energy and the lowest kinetic energy
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during the early stage of transient dynamics. It is found to be
closest to the boundary of the DOA of the (i+1)-th network in
the transient process following the i-th line outage. Therefore,
this point is utilized as the initial guess to search for the relevant
UEP by solving fi(d)=0 using Newton’s method.

Line outages

Set up Kinax
k=1

Newton's
method

\ 4

Converge to an

Is the SEP the same as
the post-disturbance

“onduct
transient
stability

simulation

A 4

Converge to the
relevant UEP

Conduct time-domain
simulation for 0.1 s

Calculate potential energy
along the trajectory

Is the K" local
maximum point
detected?

X, : The 1" local maximum point along post-disturbance trajectory
.
®X,: The 2™ Jocal maximum point along post-disturbance trajectory

.S %
X X¢r: The relevant UEP

ard

®X;: The 3" local maximum point along post-disturbance trajectory

® X1 : The first local maximum point along én
® X : The SEP of the post-disturbance network
X's: An SEP different from X

(d)
Fig.3. Four examples of search results: (a) converging to the relevant UEP for
a stable case; (b) converging to Xs for a stable case; (c) converging to the

relevant UEP for an unstable case; (d) converging to an SEP different from X.

This approach is illustrated for four different, representative
examples: (a), (b), (¢) and (d) in Fig. 3. If the search converges
to a UEP as shown in Fig. 3 (a) or (c), the critical energy V.,
can be calculated by substituting the UEP value into (4c). Since
the initial point of the (i+1)-th network, x,, is within the DOA
of the (i+1)-th network in Fig. 3 (a), it represents a stable case.
In contrast, X, is outside the DOA of the (i+1)-th network in
Fig. 3 (c), representing an unstable case. Ifthe search converges
to the SEP of the (i+1)-th network, as depicted in Fig. 3 (b), the
critical energy V.. is estimated by identifying the minimum
value among the potential energies at the first local maximum
point xcx along all paths defined by the unit vector € for
different k at a step of % in (6), starting from the SEP of the
(i+1)-th network, i.e., po=X;. For example, as illustrated in Fig.
3 (b), Ver=min {VPE (Xcrl), Ve (Xcr2), VrE (Xcr3)}~

g = X, _ij (6a)
[x. =]
Py =Py +h€ (6b)

where ||+|| represents the norm operator of a vector; /4 is set to
0.2 in this paper. If the search converges to an SEP different
from the SEP of the (i+1)-th network, denoted as x's, as depicted
in Fig. 3 (d), conduct transient stability simulation for TSA. The
energy margin of the post-disturbance system is

AV =V, =Vp(x)) (M
where x; represents the first local maximum point of the
potential energy along the post-disturbance trajectory, and it is
also the SEP of the i-th network. If AV is greater than zero, the
system is considered stable; otherwise, it is unstable.

III. NUMERICAL EXPERIMENTS ON THE EF-QSS MODEL

To validate the proposed EF-QSS model in predicting
transient instability during a cascading process, this section
presents its numerical experiments conducted on the NPCC
140-bus system shown in Fig. 4, which is a test bed developed
by [35] for cascading outage simulations.

Hydro Quebec

Vi —
Vs
Fig. 4. NPCC 140-bus system.

To assess the accuracy and efficiency of cascading outage
simulations using the proposed EF-QSS model, another model
referred to as “TS-OPA” is used, which follows the same
flowchart as Fig. 1 except for replacing the energy function
method with a time-domain transient stability simulation
adopting the detailed model given in (1) for TSA. All
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subsequent accuracy assessments of the EF-QSS model are
compared with those of the TS-OPA model. The transient
stability simulation is terminated (typically in 10-20 seconds
following a switch) once satisfying either condition in (8):

AS, >, (8a)

4|, <e (8b)
where (8a) judges the case to be unstable when Admax exceeds
ou; (8b) judges the case to be stable if the derivatives of all state
variables are within a tolerance €. The case is judged stable if
the simulation reaches Tmax. In this paper, &, €, and Tmax are set
to 2m, 1073, and 20 s, respectively.

The energy function is derived for the reduced system
modeled by (2), while benchmarked with the detailed model in
(1). To examine the influence of the model differences on TSA,
10,000 “N-2” cascade events on the NPCC system under the
base load condition are simulated. Here, “N-2” refers to initial
outages that trip two lines. Their TSAs shown in Table I are
obtained using transient stability simulations adopting the
detailed model and the reduced model, respectively. As
observed from Table I, the influence of model difference on
TSA is insignificant, and thus the energy function from the
reduced system can be employed here for the TSA requirements
with the proposed EF-QSS model.

In the rest of this section, Section III-A illustrates how to
conduct cascade simulation using the proposed EF-QSS model.
Section III-B analyzes the influence of the model’s parameter
on its accuracy and time performance. Section III-C examines
the model’s performance under different loading conditions.
Furthermore, Section III-D evaluates the performance of the
model under different numbers of initial line outages. Finally,
Section III-E compares the severities of the cascading outages
generated by the proposed EF-QSS model, the original OPA
model, and the TS-OPA model based on two metrics: the
average number of line outages and the average amount of load
shedding.

TABLEI
TSA FROM SIMULATIONS USING DIFFERENT MODELS
i Reduced model
TSA i Stable i Unstable
' (68.55%) ' (31.45%)
l Stable l l
' ' 68.41% ! 0.37%
Detailed : (68.78%) : ’ : ’
model Unstable i i
[ [ 0, [ 0,
LGl 1 M 3108%

A. Illustration of the EF-QSS Model

To illustrate how TSA is performed by the proposed EF-QSS
model using the energy function method that finds up to kmax=3
local maximum points, three examples are shown in Fig. 5, Fig.
6, and Fig. 7, respectively. The TSA result of each stage is
compared with the ground truth from a time-domain simulation.
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Fig. 5. Analysis of a cascade event with four stages.

The first example records a cascading process with four
stages: 1) the initial outages of lines 65 and 74, 2) the outage of
line 78, 3) the concurrent outages of lines 79 and 80, 4) the
outage of line 81. Thereafter, the cascade stops because of no
further overloading. Throughout this process, the network
topology is changed four times, resulting in four different
potential energy curves as shown by (al)-(a4) in Fig. 5, which
are obtained by calculating potential energy along the short-
term post-disturbance trajectory. The search results of (al), (a3)
and (a4) in Fig. 5 all correspond to the scenario shown in Fig. 3
(b), resulting in a positive energy margin, whereas the search
result of Fig. 5 (a2) corresponds to the scenario shown in Fig. 3
(c), resulting in a negative energy margin. Therefore, the energy
function module in the EF-QSS model predicts the system to be
stable, unstable, stable, and stable respectively for the four
stages. The ground truth of TSA for each stage is obtained by
time-domain simulation, shown in Fig. 5 (b1)-(b4), respectively,
indicating the system is stable, unstable, stable, and stable
respectively for the four stages, which verifies that the EF-QSS
model makes accurate TSAs for this cascade event.
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Fig. 6. Analysis of a cascade event with one stage.
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Similarly, Fig. 6 shows a second cascade event with initial
outages of lines 18 and 44, lasting for only one stage due to no
further overloading. Fig. 6 (a) shows potential energy along the
short-term post-disturbance trajectory, corresponding to the
scenario shown in Fig. 3 (a). The search converges to the
relevant UEP, resulting in a positive energy margin. Thus, the
EF-QSS model predicts the system to be stable, which matches
the TSA determined by time-domain simulation shown in Fig.
6 (b).
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Fig. 7. Analysis of a cascade event with two stages.

Fig. 7 shows a third cascade event with two stages: 1) the
initial outages of lines 33 and 92, 2) the concurrent outages of
lines 27, 28, 30,78, and 100. The cascade then stops due to no
further overloading following the remedial action. The search
result of Fig. 7 (al) corresponds to the scenario shown in Fig. 3
(b), resulting in a positive energy margin, while the search
result of Fig. 7 (a2) corresponds to the scenario shown in Fig. 3
(d), necessitating transient stability simulation for TSA.
Therefore, the EF-QSS model predicts the system to be stable
and unstable for the two stages, respectively, matching the TSA
results from simulations shown in Fig. 7 (bl)-(b2). The
accuracy of the EF-QSS model will be further evaluated across
a large number of cascades in the following sections.

B. Parameter Influence

1) Influence on Accuracy

TABLE II
PERFORMANCE WITH DIFFERENT Kiyax
, Accuracy
Kmax E Stable cases E Unstable cases
i classified as stable | classified as unstable
2 ; 99.72% ; 95.78%
3 , 99.52% i 99.66%

To evaluate how parameter kmax influences the TSA accuracy
of the proposed energy function method in the EF-QSS model,
10,000 “N-2” cascade events on the NPCC system under the
base load condition are simulated for each kmax value. The
benchmark results are obtained from the TS-OPA model. Table
II shows the performance of the energy function method with

different kmax values. kmax=3 results in higher TSA accuracy
than kmax =2 especially for unstable cases. This is because
kmax=3 takes both the first and second swings into
considerations, resulting in more accurate critical energy while
kmax = 2 only considers the first swing.

2) Influence on Time Performance

To evaluate the time performance of the EF-QSS model, two
comparisons were conducted with the TS-OPA model. The first
comparison focused on the duration of time-domain
simulations, specifically the length of the time window required
for TSA during cascading outage simulations. The second
comparison evaluates the time cost, which refers to the
computing time.

10,000 “N-2” cascade events are simulated using the TS-
OPA and EF-QSS models with kmax=2 and 3, respectively. The
average duration of time-domain simulations using the TS-OPA
is 14.11 seconds. Using the EF-QSS model, only 5.31% of the
cases With kmax=2 and 6.85% of the cases with kmax=3 need to
conduct transient stability simulations. Excluding these cases,
Fig. 8 shows the distribution of the durations of time-domain
simulations that are required by the energy function method
using the EF-QSS model. From Fig. 8 (a), for Amax=2, around
80% of the cases can employ the energy function method for
TSA with a time-domain simulation of only 0.6 s or less. From
Fig. 8 (b), for kmax=3, around 70% of the cases can employ the
energy function method for TSA using a time-domain
simulation of 0.7 s or less. The average simulation duration is
0.51 s for kmax=2 and 0.81 s for kmnax=3. Both are significantly
less compared with the average duration of simulations with the
TS-OPA model, demonstrating the high efficiency of the EF-
QSS model for TSA with cascading outages compared to the
TS-OPA model. This merit with the EF-QSS model can
potentially save significant time in the real-time operating
environment when online simulations of cascading outages are
required for preventive and mitigative control strategies.
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Fig. 8. Distribution of simulation durations for the EF-QSS model with energy
function method.
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In MATLAB on a desktop computer with Intel core 17 CPU
and 16GB RAM, the total time costs for generating the 10,000
“N-2” cascade events using the TS-OPA model and the EF-QSS
model are estimated and compared in Table III. The EF-QSS
model achieves a significant reduction of the time cost by
78.4% and 69.7% for kmax=2 and 3, respectively. This further
validates the high efficiency of the EF-QSS model in generating
large datasets of cascading outages.

TABLE III
COMPARISON OF TIME COSTS BETWEEN DIFFERENT MODELS
5 : EF-QSS
Model ' TS-OPA : -
! . kmax =2 . kmax =3
Time cost E 12.68 hours E 2.74 hours E 3.84 hours

To further demonstrate the significant speedup by using the
EF-QSS model for simulations of cascading outages, full time-
domain simulations are also conducted as benchmarks. In each
full time-domain simulation, a dynamic model of the power
system using the detailed generator model in (1) is continuously
solved, and the same remedial action, DC OPF-
based mitigation control, and relay protection scheme as shown
in Fig. 1 are conducted upon any overloading or detected
transient instability. Unlike the TS-OPA model, which
terminates its time-domain simulation once transient stability is
determined, each new full time-domain simulation of cascading
outages aims to replicate the real evolution of a cascade by
continuing the simulation from its initial fault or switch until
the cascade concludes. According to analyses of the 2003
Northeast blackout [19], [36]-[38], cascade events caused by
line overloading typically take around 30 minutes to evolve
from the beginning of one stage to the next in a lightly stressed
system but can progress within just a few minutes in a highly
stressed system. To represent these varying evolution speeds,
two new cases of cascades are studied by full time-domain
simulations. Case 1, representing a slow evolution, operates
under the base loading condition, whose cascade is initiated by
outages of lines 31 and 124, progressing through four stages.
The evolution time between stage 1 and stage 2 is set at 30
minutes, decreasing progressively to 25, 20, and 15 minutes in
subsequent stages as the system becomes increasingly stressed.
Case 2, representing a fast evolution, operates under a heavier
loading condition, with a 50% increase over the base load of
each bus. The cascade is initiated by outages of lines 8 and 36,
progressing through three stages. The evolution time between
stage 1 and stage 2 is set at 7 minutes, dropping sharply to 2
minutes and 1 minute in the following stages.

TABLE IV
COMPARISON OF TIME COSTS FOR TWO CASES

Time cost (s)

Model

i Casel 1 Case2
Dynamic model | 257.1 : 31.1
TS-OPA E 8.9 i 8.3
: Kimax =2 } 2.8 : 2.6
BF-QSS = C 32 L 38

Table IV presents the time costs for these two new cases
simulated using three different models. The EF-QSS model
achieves the smallest time costs in both cases. In contrast, the
dynamic model is highly time-consuming, requiring over 80
times the computation time of the EF-QSS model for Case 1
and 8 times for Case 2. Although the TS-OPA model reduces
time costs significantly compared to the dynamic model, it
remains inefficient for simulating a large number of cascades,
as demonstrated in Table I1I. Compared to the case with kmax=2,
the EF-QSS model with kmax=3 has better accuracy with only a
slight increase in time cost. Therefore, in the rest of the paper,
kmax 1s set to 3 to achieve higher accuracy.

C. Considering Different Loading Conditions

The performance of the EF-QSS model is evaluated under
three loading conditions with load factors of 1.0, 1.2 and 1.5, as
shown in Table V, which respectively consider the base case
and the system loads increased evenly to 1.2 and 1.5 times. To
account for load variations and uncertainties, each bus load
under a certain loading condition is further varied by a factor
following a uniform distribution between the range of [0.9, 1.1].
For each loading condition, the EF-QSS model is used to
simulate 10,000 “N-2” cascade events on the NPCC system.
The benchmark results are obtained from the TS-OPA model.
As shown in Table V, the accuracy of TSA basically remains
consistent across different loading conditions with only slight
variations, which demonstrates the robustness of the EF-QSS
model under variations in loads.

TABLEV
PERFORMANCE UNDER DIFFERENT LOADING CONDITIONS

Accuracy
Stable cases
classified as stable

99.52% 1

Unstable cases
classified as unstable

Load factor

1.0 99.66%
1.2 99.36% 99.63%
1.5 99.34% 99.57%

D. Considering Various Initial Failures

In this section, the performance of the EF-QSS model is
evaluated considering different numbers of initial line outages.
The results are presented in Table VI, which compares the
accuracy of the model with initial “N-2" and “N-3" line outages.

TABLE VI
PERFORMANCE WITH DIFFERENT NUMBERS OF INITIAL LINE OUTAGES

Accuracy
Unstable cases
classified as unstable
99.66%
99.08%

Stable cases

Initial failures E
' classified as stable

“N-2”
“N-3”

99.52%
99.32%

Table VI shows the TSA accuracies for both stable and
unstable cases for each type of scenario. It is observed that the
accuracy of the model exhibits slight and acceptable differences
between the “N-2” and “N-3” scenarios, for both stable and
unstable cases. This indicates that the EF-QSS model maintains
good accuracy for scenarios with different numbers of initial
line outages, highlighting the robustness of the EF-QSS model.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 17,2025 at 17:39:06 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3527811

E. Statistical Comparisons

This section provides statistical comparisons between
different models, focusing on comparing two key indices on the
severity of cascading outages: the average number of line
outages and the average amount of load shedding. The OPA,
TS-OPA, and EF-QSS models are used to each simulate 10,000
“N-2” cascade events under the base load condition, with the
TS-OPA model serving as the benchmark. The statistical
comparisons between these models are presented in Table VII.
The result indicates that the EF-QSS model approximately
matches with the TS-OPA model in terms of both severity
indices, thereby further validating the accuracy of the EF-QSS
model. However, the OPA model exhibits significantly lower
values for both indices than the EF-QSS and TS-OPA models.
This discrepancy can be attributed to the OPA model’s
limitation in neglecting transient dynamics and optimistically
assuming that all line outages do not lead to transient instability
issues. Thus, the OPA model underestimates the propagation
and consequences of cascading outages. In contrast, the EF-
QSS model addresses this limitation by incorporating the
energy function module into the OPA model to enable efficient
TSA without conducting transient stability simulations. By
addressing transient stability in cascading outage simulations,
the EF-QSS model can generate more accurate cascading
outage cases statistically close to those generated from the TS-
OPA model. These findings highlight the significance of
accounting for transient dynamics in the simulation of
cascading outages to generate more realistic and accurate
cascading outage data.

TABLE VII
STATISTICAL COMPARISONS BETWEEN DIFFERENT MODELS

Average number of Average amount of

Model i line outages i load shedding (MW)

OPA ; 6.64 5 356.44
TS-OPA ! 12.42 : 2355.69
EF-QSS 5 13.87 5 2684.42

IV. CONCLUSIONS

This paper proposed an EF-QSS model as a novel approach
for simulation of cascading outages in power grids. By
integrating the energy function method into the framework of a
quasi-steady-state cascading model, the proposed new model
offers an efficient and effective solution for addressing transient
stability concerns in simulations of cascading outages. The
accuracy of the proposed EF-QSS model is validated on the
NPCC 140-bus system. The performance evaluations of the EF-
QSS model under different loading conditions and varying
numbers of initial line outages show consistent accuracy, with
only a slight variation, indicating the effectiveness and
robustness of the model in capturing transient dynamics during
cascading outages. Statistical comparisons between the OPA,
TS-OPA, and EF-QSS models reveal that the OPA model
underestimates the severity of cascade outages due to its neglect
of transient dynamics. This emphasizes the significance of
considering transient effects in simulating cascading outages to

generate more realistic and accurate cascading outage data.
Furthermore, the efficiency of the EF-QSS model is examined.
The results show that the proposed EF-QSS model achieves a
significant reduction in time costs compared to the TS-OPA and
dynamic models, highlighting the high efficiency of the EF-
QSS model in conducting TSA for cascading outages. Thus, the
EF-QSS model has the potential to save significant time for
real-time applications to help prevent or mitigate the
propagation of cascading outages.
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