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Abstract—In a power system, when the participation factors of 

generators are computed to rank their participations into an 

oscillatory mode, a model-based approach is conventionally used 

on the linearized system model by means of the corresponding 

right and left eigenvectors. This paper proposes a new approach 

for estimating participation factors directly from measurement 

data on generator responses under selected disturbances. The 

approach computes extended participation factors that coincide 

with accurate model-based participation factors when the 

measured responses satisfy an ideally symmetric condition. This 

paper relaxes this symmetric condition with the original 

measurement space by identifying and utilizing a coordinate 

transformation to a new space optimally recovering the symmetry. 

Thus, the optimal estimates of participation factors solely from 

measurements are achieved, and the accuracy and influencing 

factors are discussed. The proposed approach is first 

demonstrated in detail on a two-area system and then tested on an 

NPCC 48-machine power system. The penetration of inverter-

based resources is also considered. 

 
Index Terms—Dynamic response, Measurement-based 

approach, Participation factors, Power system oscillations. 

I. BACKGROUND 

N an interconnected power system, rotor angle oscillations 
among generators are prevalent, as evidenced by real-time 
wide-area measurements under both ambient and 

contingency conditions. Such oscillations, especially low-
frequency inter-area oscillations, can affect the safety margins 
for grid operations [1] and cause stability issues of generators 
[2]. The Participation Factor (PF), as a useful small-signal 
analysis tool, can evaluate how each state variable of a 
generator or dynamic device participates in an oscillatory mode 
[3]. PFs of state variables regarding a specific oscillatory mode, 
i.e., a pair of complex eigenvalues, are conventionally 
calculated as the products of corresponding elements from both 
the right and left eigenvectors of the system’s linearized model. 
Comparatively, the mode shape and mode composition as 
another two modal properties focus only on one-way linkages 
between state variables and the mode by utilizing either the 

 
 

right or left eigenvector. Thus, a PF captures both the response 
of a state variable with the mode, i.e., the mode shape, and its 
contribution to the mode, i.e., the mode composition, evaluating 
a bidirectional connection between the state variable and mode. 

Accurate estimation of PFs can largely benefit grid 
operations in the real-time environment. For instance, when an 
oscillation occurs, knowing how generators participate in the 
oscillation mode can pinpoint the most involved or susceptible 
generators for early mitigation before instability is caused. The 
generators with high PFs can be the candidate locations to 
perform damping control using Power System Stabilizers (PSS) 
[3]. Recently, PFs have also been applied to renewable energy 
systems for the identification of crucial state variables in phase-
locked loops [4-6] and DC links [7] associated with sub-
synchronous oscillations. Furthermore, PFs are used to 
associate oscillation damping with generator outputs for 
strategic generation re-dispatches [8][9]. 

For practical applications, variant linear PFs have been 
proposed to satisfy different application demands. For instance, 
reference [10] introduces loop participation factors that 
evaluate the influences of individual components on system 
modes by leveraging the loop and nodal observability and 
controllability. Reference [11] proposes impedance 
participation factors to analyze the sensitivity of black box 
models, defined in terms of the residue of the whole-system 
admittance matrix with the chain rule. A similar impedance 
participation factor is discussed in [12], focusing on frequency 
domain performance. In addition, a recent study in [13] 
advances modal PFs for exploring the role of algebraic 
variables in modes more comprehensively. 

Alternative methodologies and definitions for PFs have 
been explored extensively in literature [14]-[22], where the 
classic PF concept based on the state matrix has been expanded 
through perspectives of probability and nonlinearity. Reference 
[17] broadens the PF definition to correlate with the initial 
system state, enabling PFs to represent an average connection 
between a state variable and a mode across responses from 

various initial states. This <extended PF= has been validated 
against traditional model-based PFs, contingent on the 
distribution of initial states fulfilling an ideally symmetric 
condition. The advantages of these extended PFs in power 
systems are illustrated in [18] and [19]. References [20] and 
[21] distinguish between mode-in-state PFs and state-in-
mode PFs, using a model-based calculation approach that 

I 

This work was supported by the NSF grant ECCS-2329924.  
T. Xia, K. Sun, and K. Huang are with the Department of EECS, University 

of Tennessee, Knoxville, TN 37996 USA (e-mail: tianweixia@gmail.com, 
kaisun@utk.edu, khuang12@vols.utk.edu).  

Z. Yu is with Ant Group, Hangzhou, China (e-mail: yzae2623@gmail.com). 
D. Shi is with the ECE Department, New Mexico State University, Las 

Cruces, NM 88003 USA (e-mail:  dshi@nmsu.edu). 

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3530869

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 17,2025 at 17:39:21 UTC from IEEE Xplore.  Restrictions apply. 



Manuscript ID 2024-CDPA-0542 

relies on eigenanalysis on the system’s linearized model. 
Another study [22] examines the uniqueness of the extended PF 
and introduces the energy-based PF as an alternative. 

Conventionally, PFs are calculated from a system’s 
linearized model. Most existing methods presume access to all 
right (or left) eigenvectors of the linearized model. However, a 
linearized model for the whole power grid is not always 
available in practice, especially with high inverter-based 
resource penetration [23]. An alternative method involves using 
wide-area measurements to monitor the responses of generators 
and other dynamic devices to small disturbances, thus enabling 
the estimation of their PFs directly from measurement data. 
However, there is limited research on measurement-based PF 
estimation for power systems. Reference [24] employs a 
Koopman operator-based approach for measurement-based PFs 
and allows for estimating both linear and nonlinear PFs within 
the Koopman mode. This approach relies on the choice of the 
observable function, which is a question still unresolved in the 
field [25]. Reference [26] also determines PFs from 
measurement data, where the PFs are estimated by certain 
perturbation on the desired variables; however, the response-
based PF method in [26] requires carefully designing the 
perturbation on the black-box model. Specifically speaking, it 
involves perturbing a specific state variable, such as the rotor 
angle of a particular generator, while keeping other state 
variables unchanged, which means that this approach assumes 
full controllability of the system and significantly limits its 
practical use. 

Although there are limited papers specifically addressing 
participation factor estimation from measurements, oscillation 
mode identification has been a popular topic in recent decades. 
Various methods have been proposed and developed, including 
Prony analysis [27-29], Kalman filtering [30, 31], discrete 
Fourier transform (DFT) [32], wavelet transform [33], and 
others. Prony analysis is widely used in power systems to obtain 
mode shapes and frequencies [27]. It has been generalized or 
modified for specific applications such as harmonic analysis 
[28] or nonlinear analysis [29]. The DFT method converts a 
finite signal sequence into a same-length sequence in the 
frequency domain [30], commonly used for frequency 
identification. Kalman filtering is an algorithm that estimates 
unknown variables and is particularly effective in dealing with 
statistical noise [32]. Wavelet transform, on the other hand, 
decomposes signals into oscillations over time and frequency, 
making it suitable for analyzing mode properties in the time 
domain [33]. 

This paper is dedicated to estimating the linear PFs of 
generators within oscillatory modes directly from measurement 
data and proposes a practical methodology. The key 
contributions of the paper include:  1) a systematic approach to 
computing PFs from measurement data, which uses extended 
PFs as a bridge but relaxes the symmetric condition by finding 
a coordinate transformation; 2) a PF estimation methodology 
applicable to black-box models by generalizing response-based 
PFs in [27]; 3) demonstration and validation of the new 
approach on a large-scale model considering the penetration of 
inverter-based resources (IBRs). 

The rest of the paper is organized as follows: Section II 
details the proposed measurement-based approach, including 
the determination of coordinate transformations for optimal 
state space symmetry, the computation of extended PFs, and the 
method of translating these calculated PFs back to the original 
state space. In Section III, the proposed method is initially 
applied to a two-area system and later tested on a 48-machine 
Northeastern Power Coordinating Council (NPCC) model. 
Conclusions are drawn in Section IV. 

II. PROPOSED MEASUREMENT-BASED PF ESTIMATION METHOD 

A. Preliminary 

Consider an N-dimensional linear system in (1) describing a 
power system model linearized at its stable equilibrium: 

 =x Ax . (1) 

Let λi denote the i-th eigenvalue of matrix A. Its left 
eigenvector ψi=[ψi1, … ψiN] and right eigenvector ϕi=[ϕ1i, … ϕNi]T 
respectively define the composition and shape of the mode. 
Note that if λi is complex, it and its conjugate together define 
one oscillatory mode of matrix A, referred to as mode i. Since 
the eigenvectors are also conjugates and convey identical 
information, modal properties can be investigated based on 
either λi or its conjugate. Then, the PF of the k-th state in mode 
i is defined by  

 
def

PF
ki ki ik ki

p  ö= =  , (2) 

as a dimensionless value. Notice that (2) provides a general 
model-based approach to calculate PF from the shape ϕki and 
composition ψik of the mode.  

When an accurate matrix A is unavailable, PFs can still be 
estimated as follows. The response of the k-th state variable 
subject to a small disturbance can be written as a combination 
of N modes 
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where x0 = [x01,…, x0N]T is the initial state vector, and modal 
amplitude Bki= ψix0ϕki is proportional to the mode shape ϕki, 
which evaluates how much mode i is excited in the k-th state 
variable. From state responses, ϕki can be estimated by 
normalizing amplitude Bki with respect to the initial condition 
x0 [34]. Accordingly, paper [17] proposes Extended 
Participation Factors (EPFs) defined by (4), utilizing all state 
responses starting from a set of initial states: 
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  (4) 

where S is the compact set of the initial values of the, and <(l)= 
indicates the element index of the set S. It has been proved that 
EPFs are equivalent to conventional participation factors when 
initial states satisfy a symmetric condition (defined below). 
Since Bki can be derived from measured responses via data-
driven modal analysis, this extension facilitates the direct 
estimation of PFs from measurement data. The information on 
mode i, including contribution factors and damping ratio, is 
determined using a measurement-based approach applied to the 
system's response data. In this paper, the Prony method is 
adopted, which fits a time window of the system response. 
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Regarding the state variable index �, this paper assumes that the 
state variables are measurable, and their related information can 
be obtained from measurement devices. 

To avoid any confusion, (4) is designated as the EPF for 
clarity, following the terminology used in references [18] and 
[19]. Notably, this term is referred to by a different name in 
reference [17].  

A symmetric condition in [17] refers to the symmetry of the 
initial state set S in the view of any dimension. In other words, 
for any k∈{1, 2, …, N}, any state z = (z1, …, zk, …, zN) ∈S 
implies (z1, …, -zk, …, zN) ∈S. Suppose the initial state set S 
satisfies this symmetric condition in the state space. In that case, 
the state variables’ distribution exhibits independence, and then 
the EPFs are equal to conventional PFs calculated from 
eigenvectors. This can be proved as: 

( )
0

( )
1 1, 0

1
EPF PF ,

= = 

=  ö +  ö =  ö =õ õ
lL N

j

ki ik ki jk ki ik ki kil
l j j k k

x

L x
 (5) 

where N is the system dimension, and L is the total number of 
the initial state set. Variable x(l)

j0 denotes the j-th state for 
element l.  Consider a 2-dimensional system where the four 
initial states form a rectangle in the state space, representing 
ideal symmetry (as shown in the bottom right figure of Fig. 1). 
Under this condition, the EPFs are the same as the PFs. 
 

B. Idea of the new approach 

However, when a power system experiences oscillations 
subjected to a disturbance, the collected field measurements 
may not necessarily satisfy this symmetric condition. This 
paper introduces a new measurement-based approach for 

                

                   

Fig. 1.  Structure of new measurement-based approach. (PF: Participation factors, MPF: Measurement-based PF, EPF: Extended PF) 
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calculating PFs even when the symmetry condition is not 
satisfied, as illustrated in Fig. 1.  

Above all, two assumptions need to be clarified. This paper 
focuses on studying linear system oscillations, assuming that 
the system is stable around equilibrium points. In other words, 
all oscillation modes have a negative damping ratio. The main 
assumptions are: 1) The system's nonlinearity must be relatively 
small. 2) The system's perturbations should not be too large. 

The idea of the new approach is to introduce a linear 
transformation H, which maps the original state space on x into 
a new state space on z. It is expected that in this transformed z-
space, selected measurement data can exhibit the most 
symmetric distribution, enabling the EPFs computed using (4) 
to best approximate the true PFs in z-space. Subsequently, the 
calculated EPFs in z-space are transformed back to the original 
x-space, ultimately providing estimates of PFs. In this paper, 
the PFs estimated from measurements using the proposed 
method are referred to as Measurement-based Participation 
Factors or MPFs for brevity. 

To avoid ambiguity, TABLE I presents detailed information 
about the three types of PFs studied in this paper. In the rest of 
Section II, the four steps of the proposed approach are detailed, 
followed by a discussion on errors in PF estimation.  

 
TABLE I THE DIFFERENCE BETWEEN DIFFERENT KINDS OF PFS 

Name Formula Data Source Description 

PF (2) Model-based Based on the PF definition 

EPF (4) 
Model or 

measurement-
based 

Equal to PF under the 
symmetric condition 

MPF (3) 
Measurement

-based 

Applying EPF as the bridge 
for the optimal estimate of 

PF from measurements 

 
The steps are as follows: 
Step 1: Select the optimal set of initial states from 

measurements. 
Step 2: Find the transformation H toward a z-space to best 

meet the symmetric condition. 
Step 3: Compute the MPFs in z-space. 
Step 4: Translate the MPFs back to x-space. 

1) Step 1 Selecting the optimal set of initial states 

In D-dimensional state space, a set of initial states satisfying 
the symmetric condition has a symmetric distribution and 
appears as symmetrical pairs around the equilibrium, i.e., the 

origin in (1). Assume that the initial states associated with 2D 
selected measurement segments can form all vertices of a D-
dimensional parallelotope in the x-space, as illustrated in Fig. 3 
for D = 2 by the parallelograms and rectangles. Then, after the 
linear transformation, these initial states should be able to form 
a hyperrectangle in the z-space. In other words, if the data set 
satisfies the symmetric condition in z-space after the linear 
transformation, it should consist of symmetrical pairs in x-space 
before the transformation. Therefore, the problem becomes 
identifying these symmetrical pairs in x-space. 

However, from real-world measurements, it might not 
always be feasible to find an ideal D-dimensional parallelotope. 
Thus, the most symmetric set of initial states can be identified 
by solving this optimization problem: 

A'
A A' A A'min . . , ,+ þ

x
x x x x

threshold
s t r   (6) 

where the norm can take the Euclidian distance when state 
variables are considered to be the same type, xA is the state 
vector in the set of initial states, and xA’ is its most symmetric 
peer in the set. A practical consideration in this context is the 
robustness against noise in measurements. The farther a 
measured state is from the origin, the less it is affected by noise. 
Therefore, it is advisable to select initial states that are not too 
close to the origin by defining their minimum distance, rthreshold, 
to the origin as specified in (6). 
 

 
Fig. 2.  The procedure to find a symmetric pair of initial states. 
  

The process of identifying the most symmetric peer for a 
selected state is depicted in Fig. 2. Point xA is selected along the 
trajectory, indicated by a purple circle, while its ideally 
symmetric state, -xA, is represented by a purple square; however, 
this point does not lie on the trajectory. Instead, another point, 
xA', which is on the trajectory and closest to -xA with the 
minimum distance ||xA + xA'||, is identified as the solution to the 
optimization problem mentioned earlier. In this way, all such 
most symmetric pairs collectively approximate a parallelotope 
in the x-space. During Step 2, this parallelotope is transformed 
into an approximate hyperrectangle in z-space, ensuring the 
symmetric condition in z-space is met. In addition, to enhance 
the time performance, the KD tree approach [35] is also applied 
to search for the optimal symmetric pairs. 

2) Step 2: Finding the transformation 

The initial states are selected as symmetric pairs around the 
origin in the x-space, forming the vertices of a parallelotope. 
The next step involves identifying the transformation H that 
maps this parallelotope to a hyperrectangle. A method to 
determine the desired transformation is proposed in this step, 
which is exemplified for a two-dimensional system in Fig. 3. 

 

 
Fig. 3.  The transformation of an initial state set. 
 (Left: Initial states in x-space. Right: Initial states in z-space) 
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The initial state set optimized in Step 1 forms the blue 
parallelogram centered at the origin, as depicted in Fig. 3 (left). 
This parallelogram can be transformed into the red 
parallelogram by shifting the center to one of its vertices. 
Subsequently, a transformation is applied to convert the red 
parallelogram into the red rectangle shown in Fig. 3 (right), 
which is then translated back to the original origin. It becomes 
clear that the transformation from the red parallelogram to the 
red rectangle can be determined based on the edges of the 
parallelogram in x-space, as detailed below: 

1

1 11 41 31 41 1 1

2 12 42 32 42 2 2

,

22 2ù ù ù ù ù ù ù ù
= =ú ú ú ú ú ú ú ú2 2û û û û û û û û

H
i i i

i i i

z x x x x x x

z x x x x x x
  (7) 

where xi is the initial state set in x-space, and zi is the initial state 
in z-space. The translations to a new origin in x-space (from the 
blue parallelogram to the red parallelogram) and back to the 
original origin in z-space (from the red rectangle to the blue 
rectangle) effectively cancel each other out. Consequently, the 
desired transformation from x-space to z-space (from the blue 
parallelogram to the blue rectangle) remains unchanged as H. 
In other words, H is invariant following a coordinate translation. 
This observation is valid for an N-dimensional system, as 
demonstrated by Lemma 1 in the Appendix, where detailed 
proof of this property is also provided. This characteristic can 
be formally stated as a theorem that a transformation from a 
parallelotope in x-space to a hyperrectangle in z-space that are 
both centered at the origin of the dimension N can be 
determined from any N+1 pairs of vertices in x-space, denoted 
by {x0, x’0}, {x1, x’1}, …, {xN, x’N}, as H=[x1-x0, …, xN-x0]-1. 

3) Steps 3 and 4: Computing MPFs in z- and x-spaces 

After determining the parameters of the linear transformation 
in the previous subsection, the trajectory in the x-space can also 
be transformed into the z-space. The Bki values in z-space are 
obtained using Prony’s analysis [26]. In z-space, the symmetric 
condition is met, enabling the computation of EPFs using (4). It 
is important to note that if a black-box model is employed, the 
first three steps can be ignored, and the MPFs in the x-space can 
be directly calculated. This method serves as an extension of 
the response-based approach, with details available in [26]. 

Theoretically, if all modes and their shapes or compositions 
are known, the calculation of MPFs becomes straightforward, 
given the established inverse relationship between the matrices 
made by right and left eigenvectors [36] 

 
T T ,2= =P       (8) 

where <= is Hadamard product.  
Therefore, if the shapes and compositions of all modes can 

be determined from wide-area measurements, PFs can be 
directly computed. However, achieving full modal 
observability of the system is often not feasible due to 
insufficient phasor measurement units (PMUs) [37]. In fact, 
grid operators focus the real-time monitoring on selected 
dominant modes and thus do not have to pursue full modal 
observability. The MPFs are calculated as follows with 
subscripts x and z distinguishing x- and z-spaces.   

T T T( ) ( ),2= =PFz z z x x       (9a) 

 T[ / ( )].=PF PFx x z x    (9b) 

With partial modal observability, Φz is only partially known, so 
the MPFs in the x-space cannot be obtained directly. 
Consequently, the MPFs in the x-space cannot be directly 
determined. Assuming that the transformation H from x-space 
to z-space has been obtained in Step 3, these relationships can 
be derived for elements of matrices x and x: 

 1
,

1

] [ ] ,2

=

= = öõH
N

x ij z ij ik z kj

k
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where hki and mik are the elements of the transformation matrix 
H and its inverse. Therefore, the PF for i state in j mode in x-
space is 
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From the definition of PFs, there is  
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1 1 ,
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= =

= ö
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N N
z kj

x ij ik z kj ki

k k z kj

p
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which associates MPFs in the x-space with corresponding mode 
shapes. In other words, if the right eigenvectors of certain 
modes in z-space are known, their corresponding MPFs in x-
space can also be estimated after a linear transformation, even 
if the shapes and compositions of other modes are unknown. 

C. Error Estimation 

If the linearized model of the system is available, an error 
index on the EPFs can be calculated according to (5): 

 
( )
0

1 ( )
1 1, 0

1
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= = 

=  öõ õ
lL N

j

jk ki l
l j j k k

x
e

L x
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Also, the following error index is introduced to evaluate the 
accuracy of the proposed MPFs compared to model-based PFs: 
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PF PF
1 100%,

MPF MPF
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j i

ij
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where the subscripts i and j are the generator numbers of interest, 
respectively.  

III. CASE STUDIES 

This section first illustrates the proposed measurement-based 
approach for PF estimation on a two-area system, considering 
both full and partial observabilities. Penetration of inverter-
based resources (IBRs) is also considered. Then, it is tested on 
the NPCC 48-machine system with both ideal and practical 
measurements. 

A. Two-area system study 

A modified Kundur’s two-area system [38] is used with 
generator inertias adjusted to present three distinct oscillatory 
modes at frequencies of 0.593Hz, 1.110Hz and 1.628Hz. The 
system includes generators 1 and 2 in Area 1, and generators 3 
and 4 in Area 2. The 0.593 Hz mode is the inter-area mode, 
while the 1.110 Hz mode and 1.628 Hz mode are the intra-area 
modes of areas 1 and 2, respectively. 

The mode compositions, mode shapes and PFs with four 
generators are computed from the model with respect to the 
inter-area mode. Fig. 4 presents a comparison of the results, 
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revealing that generator 3 displays the most important role in 
the mode shape. Meanwhile, generator 1 contributes more 
significantly to the composition of the mode than any other 
generator. In summary, generator 1 exhibits the largest PF when 
considering both the mode shape and its composition. From this 
example, it can be concluded that PFs serve as reliable 
indicators for ranking generators according to their 
bidirectional associations with the mode. 

 

 
Fig. 4.  Mode composition, shape and PF for rotor speed on the interarea mode 

 

1) Assuming full observability 

Assuming that all four generators are monitored by PMUs, a 
database of measurements is created using simulation results on 
four rotor speeds under approximately 12 disturbances. Fig. 5 
(left) displays measurements of the four speeds in two different 
3D projections to depict the measurements in their 4D space. 
Fig. 5 (middle and bottom) depicts some symmetric states 
identified in the x-space, which approximately form a 3-
parallelotope, and their transformation approximately forms a 
cuboid in the z-space. The points labelled A, B, C, D, E, F, G, 
etc., in the middle figure of Fig. 5 represent symmetric states 
identified in the x-space, a subset of the system. In the bottom 
figure of Fig. 5, the transformed vertices are labelled A', B', C', 
D', E', F', G', and H'. 

TABLE II compares the MPFs calculated from the proposed 
PF estimation approach with the model-based PFs, which are 
found to be very similar. The errors in the estimation can be 
attributed to two factors: 1) the most symmetric initial states in 
x-space may not perfectly form a parallelotope (as evident in 
Fig. 5. 2) errors in the estimation due to Prony’s analysis in z-
space. Simulation results confirm that if the initial states 
selected from measurements form a perfectly symmetric 
parallelotope, the MPFs will be an exact match to the PFs. It is 
worth noting that when the black-box model is available and the 
disturbance can be designed, the MPF proposed approach is 
almost identical to the PFs. 

In this section, a sub-space strategy for PF estimation is also 
proposed and tested on the same two-area system. The strategy 
involves identifying three 2-parallelotopes using six symmetric 
pairs of generators and calculating relative MPFs for each 
parallelotope. The MPFs are then normalized to obtain the 
MPFs for each generator. The results are shown in TABLE III, 
where the MPFs for the two local modes at 1.110 Hz and 1.628 
Hz accurately match the PFs, while the MPFs for the inter-area 
mode at 0.593 Hz have larger errors but still reflect a similar 

ranking of the PFs. Therefore, the sub-space strategy is more 
suitable for PF estimation of local modes. However, for inter-
area modes, the reduction in dimension needs to balance the 
trade-off between accuracy and computational complexity. 

 
Fig. 5.  The trajectory of response and selected initial states in state space  
(top - trajectories of generators 1, 2, and 3; middle - selected initial points before 
transformation; bottom - selected initial points after transformation) 

                                                                                                                             
TABLE II 

THE PFS AND MPFS FOR FULL OBSERVABILITY STUDY 

Generator 
0.593 Hz 1.110 Hz 1.628 Hz 

PFs MPFs PFs MPFs PFs MPFs 

1 1.00 1.00 2.0×10-3 2.6×10-3 0.13 0.13 

2 0.06 0.06 6.2×10-4 5.0×10-3 1.0 1.0 

3 0.86 0.90 0.80 0.82 2.9×10-3 2.5×10-3 

4 0.62 0.66 1.00 1.00 8.3×10-3 9.2×10-3 

 
TABLE III 

THE PFS AND MPFS BASED ON THE RATIO OF THE TWO-DIMENSION SYSTEM 

Generator 
0.593 Hz 1.110 Hz 1.628 Hz 

PFs MPFs PFs MPFs PFs MPFs 

1 1.00 1.00 2.0×10-3 4.8×10-4 0.13 0.12 

2 0.06 0.17 6.2×10-4 3.6×10-3 1.00 1.00 

3 0.86 1.06 0.80 0.62 2.9×10-3 5.9×10-3 

4 0.62 0.97 1.00 1.00 8.3×10-3 7.5×10-3 
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2) Assuming partial observability  

In this study, assume that not all generators are monitored by 
PMUs, and the state variables of unmeasured generators contain 
random changes following a uniform distribution. This research 
examines four distinct cases, with details provided in TABLE 
IV. 

Case 1: Generators 1, 2 and 3 are monitored by PMUs, and 
the measurements of their speeds of the best symmetry are 
found. Generator 4, not monitored by a PMU, is assumed to 
have an initial speed change randomly from -0.02 to 0.02 rad/s. 

Case 2: The same as Case 1 except that generator 3 also has 
a random initial speed as generator 4. 

Case 3: The same as Case 1 except for an increased range of 
random initial speeds of generators 3 and 4.  

Case 4: The same as Case 2 except for an increased range of 
random initial speeds of generators 3 and 4.  

 
TABLE IV 

THE DISTRIBUTION OF THE INITIAL STATE SET  
Case generator 1 generator 2 generator 3 generator 4 

1 Symmetric Symmetric Symmetric [-0.02 0.02] 

2 Symmetric Symmetric [-0.02 0.02] [-0.02 0.02] 

3 Symmetric Symmetric Symmetric [-0.1 0.1] 

4 Symmetric Symmetric [-0.1 0.1] [-0.1 0.1] 

 

The study utilizes the error estimation presented in (14) to 
evaluate the performance of partial observability for generators 
1 and 2, with the results outlined in TABLE V. A comparison 
between Cases 1 and 2, as well as Cases 3 and 4, indicates an 
increase in error as more generators lack PMU equipment. 
Additionally, a rise in the distribution range of generator 4 
results in an increase in error, as evident in Cases 2 and 4. The 
error of the 1.110 Hz mode is significantly higher due to the 
critical roles played by generators 3 and 4, particularly in cases 
where the latter is not equipped with a PMU. Overall, the 
accuracy of the estimated MPF can be significantly enhanced if 
the initial speed variance of a generator without a PMU is small, 
particularly when it contributes significantly to the mode(s) of 
interest. Consequently, MPFs estimation demonstrates superior 
accuracy when more generators are equipped with PMUs. 

 
TABLE V 

THE ERROR INDEX OF GENERATOR 1 VS. 2 

Case 0.593 Hz 1.110 Hz 1.628 Hz 

1 0.78% 5.66% 0.35% 

2 -1.51% 7.23% 1.02% 

3 -0.82% 12.67% 1.04% 

4 -1.65% 48.13% 1.97% 

 

3) Considering penetration of IBRs 

Another case study was conducted on the two-area system, 
replacing Generators 2, 3, and 4 by IBRs. The detailed model 
of the IBR can be found in [39] and [40]. Twelve disturbances 
were considered, and the results are shown in TABLE VI.  

 In this study, the system with three synchronous generators 
is treated as a new two-area system. Although the topology 
remains the same, the swing equation and the Phase-Locked 
Loop (PLL) equation are different. 

Due to the penetration of IBRs, the frequencies of the modes 
become much faster. The inter-area mode is around 1.05 Hz, 
while the local modes are around 1.95 Hz and 2.22 Hz. The 
MPFs are closely aligned with the PFs, although Gen 3 and Gen 
4 exhibit relatively larger errors. This discrepancy arises 
because the two IBRs are located far from the synchronous 
generators, and the coherence between these two generators is 
more pronounced. The differences are notable for Gen 1 and 2, 
making it easier to distinguish between them.  

 
TABLE VI 

THE PFS AND MPFS FOR FULL OBSERVABILITY STUDY 

Generator 
1.05 Hz 1.95Hz 2.22 Hz 

PFs MPFs PFs MPFs PFs MPFs 

1 0.83 0.82 0.51 0.49 2.5×10-3 
1.9×10-

2 

2 0.51 0.37 1.00 1.00 3.6×10-3 
8.6×10-

2 

3 1.00 1.00 1.6×10-2 0.11 0.57 0.72 

4 0.60 0.48 4.3×10-3 0.24 1.00 1.00 

 

B. NPCC System 

Next, the proposed approach's performance is tested on a 
much larger NPCC 140-bus 48-machine system, as illustrated 
in Fig. 6. Two distinct measurement datasets will be generated: 
random initial states and faults. For this large system, there are 
more than 200 modes based on the system model. However, the 
0.6 Hz inter-area mode, with its low damping ratio, is the 
dominant mode. The analysis will focus on five generators (21, 
24, 26, 27, and 78) that have the largest participation factors for 
this 0.6 Hz inter-area mode. 

 

 
Fig. 6.  Topology of the NPCC 140-bus system 

 

1) Test on faults.  

This test simulates 50 three-phase faults on the lines near one 
end in the New England region of the system, as shown in Fig. 
6. Each fault lasts 50 ms before being cleared, and no generator 
or line is tripped after the fault. A total of 50 fault simulations 
will be executed to generate the measurement dataset, which 
will then be used to estimate MPFs. The outcomes of the test 
will be presented in TABLE VII. 
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From the results, only the MPFs of generators 78 and 26 are 
close to their true values. The MPFs of the remaining three 
generators are inaccurate due to the strong coherence observed 
among the last four generators in the oscillation. The highest 
mutual coherence of 0.98 is observed between the columns 
formed by generators 24 and 21, with condition number 249. 
Consequently, the sampling matrix is ill-conditioned, 
significantly amplifying the input error. A detailed proof of the 
relationship between error and coherence can be found in the 
appendix. 

 
TABLE VII  

THE PFS BASED ON FAULT SIMULATIONS  

Generator 78 26 24 21 27 
(True) 

PFs 
1.00 0.54 0.43 0.18 0.10 

MPFs 0.99 0.61 1.00 0.88 0.31 

 

4) Test on random initial states.  

Based on the findings from the two-area system study, it is 
established that the performance of the proposed approach is 
significantly influenced by the distribution of initial states 
within the measurement dataset. To validate this observation on 
the NPCC system, a measurement dataset will be generated by 
conducting simulations of scenarios starting from randomly 
selected initial states within the state space. The selected initial 
states will be sufficiently disturbed within the state space. A 
total of 50 scenarios will be generated, each simulating for 20 
seconds, resulting in the measurement dataset. 

The MPFs estimated using data from 10, 20, 30, 40, and all 
50 simulations are presented in TABLE VIII. The results 
indicate that utilizing data from 20 simulations can correctly 
identify the generator with the largest PF. Increasing the 
number of simulations to 40 results in the correct ranking of PFs. 
When all 50 scenarios are applied, the MPFs closely match the 
true PFs, thus demonstrating the effectiveness of the 
measurement-based PF approach for the large NPCC system. 

 
TABLE VIII 

THE PFS BASED ON RANDOM INITIAL STATES  

Generator 
True 
PFs 

MPFs based on several scenarios 

10 20 30 40 50 

78 1.00 0.95 1.00 1.00 1.00 1.00 

26 0.54 0.99 0.50 0.61 0.60 0.55 

24 0.43 1.00 0.42 0.75 0.36 0.40 

21 0.18 0.13 0.17 0.50 0.25 0.17 

27 0.10 0.12 0.25 0.72 0.15 0.16 

 
To study how IBR penetration may influence the performance 

of the proposed approach, three IBRs are respectively connected to 
the buses of three highly participating generators, i.e. 26, 24 and 
21. The MPFs estimated using data from 10, 20, 30, 40, and all 50 
simulations are presented in Table IX. Note that the added IBRs, 
have changed the system model as well as model-based 
participation factors. The case study shows that all 50 scenarios are 
applied, the new MPFs still match well the true PFs calculated from 
the new system model with IBRs. Therefore, the increase in IBR 
penetration has not affected the estimation of participation factors 
for generators.  

 
TABLE IX 

THE PFS BASED ON RANDOM INITIAL STATES WITH THREE IBRS INSTALLED 

Generator 
True 
PFs 

MPFs based on several scenarios 

10 20 30 40 50 

78 1.0 0.86 1.00 1.00 1.00 1.00 

26 0.41 1.00 0.50 0.42 0.53 0.44 

24 0.17 0.45 0.31 0.18 0.31 0.15 

21 0.13 0.11 0.35 0.13 0.21 0.13 

27 0.04 0.07 0.28 0.11 0.06 0.07 

C. Discussion of the proposed Approach  

Several factors influence the performance of the proposed 
approach, with system nonlinearity being the most significant. The 
method assumes linear system behavior, but nonlinearity becomes 
more prominent under heavy load conditions or large disturbances, 
reducing the accuracy of participation factor estimation with the 
Prony analysis. Specifically, nonlinearity affects the calculations in  
(4) and propagates through to the final results. To address this, 
extended Prony analysis can be applied, as it accounts for nonlinear 
dynamics and allows for more accurate oscillation behavior 
estimation, especially near resonance. Additionally, techniques 
like squeezing wavelet transformation can help isolate and analyze 
nonlinear components, further improving robustness. 

Measurement noise also affects the accuracy of PF estimation. 
As shown in (13), noise on key generators (e.g., generators 78 and 
26 in the NPCC system) significantly impacts results, while noise 
on less critical generators (e.g., generator 45) has a smaller effect. 
To mitigate noise, methods such as the matrix pencil method, 
Kalman filtering, and other noise-reduction techniques can be 
employed, improving the accuracy of PF estimations by reducing 
the noise in the measurements. 

IV. CONCLUSION 

This paper has developed a measurement-based approach for 
PF estimation. The computed MPFs are the best approximations 
of the model-based theoretical PFs by means of a linear 
coordinate transformation that relaxes the symmetric condition 
for calculating PFs from responses of the system. The efficacy 
of the proposed approach is demonstrated through its 
applications to both small- and large-scale power system 
models with discussions on its error.  

APPENDIX 

A. The invariant of transformation 

Lemma 1 The transformation from a parallelotope to a 
hyperrectangle of the same dimension is invariant under a 
translation of coordinates. 

Proof: Assume the x-space is a vector space with basis 
{u1, …, uN}. Since z-space is a vector space transformed from 
the x-space by transformation H. Thus, {v1, …, vN} is a set of 
basis in z-space with vj=Huj (j=1, …, N). For a random 
translation sx,0 with coordinate [s1, …, sN]T in x-space, it can be 
noticed that  

,0 ,0
1 1 1

.
= = =

= = =õ õ õHs = H u Hu v s
N N N

x j j j j j j z

j j j

s s s   (14) 

Hence, for a random initial state in x-space, 
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,0 ,0 ,0( ) .2 = 2 = 2H x s Hx Hs z s

i x i x i z
  (15) 

Therefore, for any xi with translation sx,0 in x-space will be 
transformed by H to the initial state zi = Hxi with the translation 
sz,0 = Hsx,0 in z-space. In other words, H is invariant under a 
translation of coordinates.     

First, translate the origin to one of the N+1 vertices, say x0. 
Vectors x1-x0, …, xN-x0 together define a convex polyhedral 
cone as well as a set of basis vectors [41]. Thus, for any of these 
vectors xi-x0, there is 

 0 0
1

( ) {0,1}.
=

2 = 2 =õx x x x
N

i j j j

j

a a   (16) 

It is easy to notice that if let zi -z0= [a1, …, aN]-1, there is  

 1
0 0 0

1

) ( ) .2

=

2 = 2 = 2õH (z z x x x x
N

i j j i

j

a   (17) 

 Because aj takes only 0 or 1 for any j, zi -z0 is actually the 
vertex on the hyperrectangle. Thus, H maps vertices of the N-
parallelotope in x-space after the translation to vertices of a 
hyperrectangle in z-space. Also, since His linear and invertible 
with a zero kernel, it is injective. Thus, all 2N vertices on the N-
parallelotope can be transformed by H to the 2N unique vertices 
on the hyperrectangle. 

Besides, from Lemma 1, the translation to x0 does not change 
H, so H is the desired transformation.  

                                                                                          ■                                                                                    

B. The relationship between coherence and error 

The proposed approach can be represented as solving a linear 
equation in the following form: 

 =S ü   (18) 

where S is the sampling matrix of measurements, with each row 
representing the rotor speed data of all generators (at different 
columns) at a particular time instant of the measuring window. 
Ψ is the mode composition that needs to be computed, while B 
represents the excitation energy calculated from the 
measurement. Given a sufficiently high sampling frequency of 
measurements, S generally has significantly more rows than 
columns, making (19) an overdetermined system. 

However, if the rotor speeds of two generators (say 
generators i and j) are almost proportional to each other, the 
columns i and j of S become coherent, meaning that these two 
vectors are nearly linearly dependent. This results in a large 
condition number of S and a considerable error in the solution 
of  (19). The coherency index ÷ of S is defined as 

 ( ) ( )ñ ò ñ òñ ò
÷

   
= =  (19) 

where sα and sβ are arbitrary two-column vectors of the matrix 
S, and si and sj are two-column vectors that have the smallest 
angle in between. The condition number of a matrix is typically 
defined by using its nearest lower-rank matrix [42]. 

= ˆ = ˆ (20) 

The 2-norm of a matrix is the square root of the sum of all its 
elements squared. Consider some matrix ˆ  that is the same as 
S except that column j equals its column i. Namely, 

 
2 +=ˆ   (21) 

It has a lower rank reduced by 1. From (21), 

 

÷
ó =

2 2
ˆ

  (22) 

Thus when ÷→1, there is  

 ÷2 → →    (23) 

which means that the condition number will become extremely 
large. Since the sampling matrix is ill-conditioned, errors will 
become inevitable. 
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