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Abstract—In a power system, when the participation factors of
generators are computed to rank their participations into an
oscillatory mode, a model-based approach is conventionally used
on the linearized system model by means of the corresponding
right and left eigenvectors. This paper proposes a new approach
for estimating participation factors directly from measurement
data on generator responses under selected disturbances. The
approach computes extended participation factors that coincide
with accurate model-based participation factors when the
measured responses satisfy an ideally symmetric condition. This
paper relaxes this symmetric condition with the original
measurement space by identifying and utilizing a coordinate
transformation to a new space optimally recovering the symmetry.
Thus, the optimal estimates of participation factors solely from
measurements are achieved, and the accuracy and influencing
factors are discussed. The proposed approach is first
demonstrated in detail on a two-area system and then tested on an
NPCC 48-machine power system. The penetration of inverter-
based resources is also considered.

Index  Terms—Dynamic response, Measurement-based
approach, Participation factors, Power system oscillations.

1. BACKGROUND

N an interconnected power system, rotor angle oscillations

among generators are prevalent, as evidenced by real-time

wide-area measurements under both ambient and
contingency conditions. Such oscillations, especially low-
frequency inter-area oscillations, can affect the safety margins
for grid operations [1] and cause stability issues of generators
[2]. The Participation Factor (PF), as a useful small-signal
analysis tool, can evaluate how each state variable of a
generator or dynamic device participates in an oscillatory mode
[3]. PFs of state variables regarding a specific oscillatory mode,
ie., a pair of complex eigenvalues, are conventionally
calculated as the products of corresponding elements from both
the right and left eigenvectors of the system’s linearized model.
Comparatively, the mode shape and mode composition as
another two modal properties focus only on one-way linkages
between state variables and the mode by utilizing either the
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right or left eigenvector. Thus, a PF captures both the response
of a state variable with the mode, i.e., the mode shape, and its
contribution to the mode, i.e., the mode composition, evaluating
a bidirectional connection between the state variable and mode.

Accurate estimation of PFs can largely benefit grid
operations in the real-time environment. For instance, when an
oscillation occurs, knowing how generators participate in the
oscillation mode can pinpoint the most involved or susceptible
generators for early mitigation before instability is caused. The
generators with high PFs can be the candidate locations to
perform damping control using Power System Stabilizers (PSS)
[3]. Recently, PFs have also been applied to renewable energy
systems for the identification of crucial state variables in phase-
locked loops [4-6] and DC links [7] associated with sub-
synchronous oscillations. Furthermore, PFs are used to
associate oscillation damping with generator outputs for
strategic generation re-dispatches [8][9].

For practical applications, variant linear PFs have been
proposed to satisfy different application demands. For instance,
reference [10] introduces loop participation factors that
evaluate the influences of individual components on system
modes by leveraging the loop and nodal observability and
controllability.  Reference [11] proposes impedance
participation factors to analyze the sensitivity of black box
models, defined in terms of the residue of the whole-system
admittance matrix with the chain rule. A similar impedance
participation factor is discussed in [12], focusing on frequency
domain performance. In addition, a recent study in [13]
advances modal PFs for exploring the role of algebraic
variables in modes more comprehensively.

Alternative methodologies and definitions for PFs have
been explored extensively in literature [14]-[22], where the
classic PF concept based on the state matrix has been expanded
through perspectives of probability and nonlinearity. Reference
[17] broadens the PF definition to correlate with the initial
system state, enabling PFs to represent an average connection
between a state variable and a mode across responses from

various initial states. This “extended PF” has been validated
against traditional model-based PFs, contingent on the
distribution of initial states fulfilling an ideally symmetric
condition. The advantages of these extended PFs in power
systems are illustrated in [18] and [19]. References [20] and
[21] distinguish between mode-in-state PFs and state-in-
mode PFs, using a model-based calculation approach that
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relies on eigenanalysis on the system’s linearized model.
Another study [22] examines the uniqueness of the extended PF
and introduces the energy-based PF as an alternative.

Conventionally, PFs are calculated from a system’s
linearized model. Most existing methods presume access to all
right (or left) eigenvectors of the linearized model. However, a
linearized model for the whole power grid is not always
available in practice, especially with high inverter-based
resource penetration [23]. An alternative method involves using
wide-area measurements to monitor the responses of generators
and other dynamic devices to small disturbances, thus enabling
the estimation of their PFs directly from measurement data.
However, there is limited research on measurement-based PF
estimation for power systems. Reference [24] employs a
Koopman operator-based approach for measurement-based PFs
and allows for estimating both linear and nonlinear PFs within
the Koopman mode. This approach relies on the choice of the
observable function, which is a question still unresolved in the
field [25]. Reference [26] also determines PFs from
measurement data, where the PFs are estimated by certain
perturbation on the desired variables; however, the response-
based PF method in [26] requires carefully designing the
perturbation on the black-box model. Specifically speaking, it
involves perturbing a specific state variable, such as the rotor
angle of a particular generator, while keeping other state
variables unchanged, which means that this approach assumes
full controllability of the system and significantly limits its
practical use.

Although there are limited papers specifically addressing
participation factor estimation from measurements, oscillation
mode identification has been a popular topic in recent decades.
Various methods have been proposed and developed, including
Prony analysis [27-29], Kalman filtering [30, 31], discrete
Fourier transform (DFT) [32], wavelet transform [33], and
others. Prony analysis is widely used in power systems to obtain
mode shapes and frequencies [27]. It has been generalized or
modified for specific applications such as harmonic analysis
[28] or nonlinear analysis [29]. The DFT method converts a
finite signal sequence into a same-length sequence in the
frequency domain [30], commonly used for frequency
identification. Kalman filtering is an algorithm that estimates
unknown variables and is particularly effective in dealing with
statistical noise [32]. Wavelet transform, on the other hand,
decomposes signals into oscillations over time and frequency,
making it suitable for analyzing mode properties in the time
domain [33].

This paper is dedicated to estimating the linear PFs of
generators within oscillatory modes directly from measurement
data and proposes a practical methodology. The key
contributions of the paper include: 1) a systematic approach to
computing PFs from measurement data, which uses extended
PFs as a bridge but relaxes the symmetric condition by finding
a coordinate transformation; 2) a PF estimation methodology
applicable to black-box models by generalizing response-based
PFs in [27]; 3) demonstration and validation of the new
approach on a large-scale model considering the penetration of
inverter-based resources (IBRs).

The rest of the paper is organized as follows: Section II
details the proposed measurement-based approach, including
the determination of coordinate transformations for optimal
state space symmetry, the computation of extended PFs, and the
method of translating these calculated PFs back to the original
state space. In Section III, the proposed method is initially
applied to a two-area system and later tested on a 48-machine
Northeastern Power Coordinating Council (NPCC) model.
Conclusions are drawn in Section I'V.

II. PROPOSED MEASUREMENT-BASED PF ESTIMATION METHOD

A. Preliminary

Consider an N-dimensional linear system in (1) describing a
power system model linearized at its stable equilibrium:

X = AX. (1)

Let 4; denote the i-th eigenvalue of matrix A. Its left
eigenvector yi=[wi, .. wiv] and right eigenvector ¢i=[¢1;. .. dni]T
respectively define the composition and shape of the mode.
Note that if 4; is complex, it and its conjugate together define
one oscillatory mode of matrix A, referred to as mode i. Since
the eigenvectors are also conjugates and convey identical
information, modal properties can be investigated based on
either 4; or its conjugate. Then, the PF of the k-th state in mode
i is defined by

def

PE, = p,. =v.4; 2)

as a dimensionless value. Notice that (2) provides a general
model-based approach to calculate PF from the shape ¢ and
composition  of the mode.

When an accurate matrix A is unavailable, PFs can still be
estimated as follows. The response of the k-th state variable
subject to a small disturbance can be written as a combination
of N modes

N N
x (=Y B =D (yx)ge k=1,...N). (3)
i=1 i=1

where Xo = [xo1,..., xov]T is the initial state vector, and modal
amplitude By= WiXody is proportional to the mode shape ¢,
which evaluates how much mode i is excited in the k-th state
variable. From state responses, ¢ can be estimated by
normalizing amplitude By; with respect to the initial condition
Xo [34]. Accordingly, paper [17] proposes Extended
Participation Factors (EPFs) defined by (4), utilizing all state
responses starting from a set of initial states:
def BY
EPE, = avg —&-, “)
xes Xig

where S is the compact set of the initial values of the, and “(1)”
indicates the element index of the set S. It has been proved that
EPFs are equivalent to conventional participation factors when
initial states satisfy a symmetric condition (defined below).
Since Bi; can be derived from measured responses via data-
driven modal analysis, this extension facilitates the direct
estimation of PFs from measurement data. The information on
mode i, including contribution factors and damping ratio, is
determined using a measurement-based approach applied to the
system's response data. In this paper, the Prony method is
adopted, which fits a time window of the system response.
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Regarding the state variable index k, this paper assumes that the
state variables are measurable, and their related information can
be obtained from measurement devices.

To avoid any confusion, (4) is designated as the EPF for
clarity, following the terminology used in references [18] and
[19]. Notably, this term is referred to by a different name in
reference [17].

A symmetric condition in [17] refers to the symmetry of the
initial state set S in the view of any dimension. In other words,
for any k€{l, 2, ..., N}, any state z = (21, ..., Zk, ---, 2¥) €S
implies (zi, ..., -2, ..., 2v) €S. Suppose the initial state set S
satisfies this symmetric condition in the state space. In that case,
the state variables’ distribution exhibits independence, and then
the EPFs are equal to conventional PFs calculated from
eigenvectors. This can be proved as:
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where N is the system dimension, and L is the total number of
the initial state set. Variable x”;y denotes the j-th state for
element /. Consider a 2-dimensional system where the four
initial states form a rectangle in the state space, representing
ideal symmetry (as shown in the bottom right figure of Fig. 1).
Under this condition, the EPFs are the same as the PFs.

B. Idea of the new approach

However, when a power system experiences oscillations
subjected to a disturbance, the collected field measurements
may not necessarily satisfy this symmetric condition. This
paper introduces a new measurement-based approach for
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Fig. 1. Structure of new measurement-based approach. (PF: Participation factors, MPF: Measurement-based PF, EPF: Extended PF)
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calculating PFs even when the symmetry condition is not
satisfied, as illustrated in Fig. 1.

Above all, two assumptions need to be clarified. This paper
focuses on studying linear system oscillations, assuming that
the system is stable around equilibrium points. In other words,
all oscillation modes have a negative damping ratio. The main
assumptions are: 1) The system's nonlinearity must be relatively
small. 2) The system's perturbations should not be too large.

The idea of the new approach is to introduce a linear
transformation H, which maps the original state space on x into
a new state space on z. It is expected that in this transformed z-
space, selected measurement data can exhibit the most
symmetric distribution, enabling the EPFs computed using (4)
to best approximate the true PFs in z-space. Subsequently, the
calculated EPFs in z-space are transformed back to the original
x-space, ultimately providing estimates of PFs. In this paper,
the PFs estimated from measurements using the proposed
method are referred to as Measurement-based Participation
Factors or MPFs for brevity.

To avoid ambiguity, TABLE I presents detailed information
about the three types of PFs studied in this paper. In the rest of
Section II, the four steps of the proposed approach are detailed,
followed by a discussion on errors in PF estimation.

TABLE I THE DIFFERENCE BETWEEN DIFFERENT KINDS OF PFs

Name Formula Data Source Description
PF ?2) Model-based Based on the PF definition
Model or Equal to PF under the
EPF 4) measurement- . .
b symmetric condition
ased
Applying EPF as the bridge
MPF 3) Measurement for the optimal estimate of
-based
PF from measurements

The steps are as follows:

Step 1: Select the optimal set of initial states from
measurements.

Step 2: Find the transformation H toward a z-space to best
meet the symmetric condition.

Step 3: Compute the MPFs in z-space.

Step 4: Translate the MPFs back to x-space.

1) Step I Selecting the optimal set of initial states

In D-dimensional state space, a set of initial states satisfying
the symmetric condition has a symmetric distribution and
appears as symmetrical pairs around the equilibrium, i.e., the
origin in (1). Assume that the initial states associated with 2P
selected measurement segments can form all vertices of a D-
dimensional parallelotope in the x-space, as illustrated in Fig. 3
for D =2 by the parallelograms and rectangles. Then, after the
linear transformation, these initial states should be able to form
a hyperrectangle in the z-space. In other words, if the data set
satisfies the symmetric condition in z-space after the linear
transformation, it should consist of symmetrical pairs in x-space
before the transformation. Therefore, the problem becomes
identifying these symmetrical pairs in x-space.

However, from real-world measurements, it might not
always be feasible to find an ideal D-dimensional parallelotope.
Thus, the most symmetric set of initial states can be identified
by solving this optimization problem:

(6)

where the norm can take the Euclidian distance when state
variables are considered to be the same type, xa is the state
vector in the set of initial states, and X is its most symmetric
peer in the set. A practical consideration in this context is the
robustness against noise in measurements. The farther a
measured state is from the origin, the less it is affected by noise.
Therefore, it is advisable to select initial states that are not too
close to the origin by defining their minimum distance, 7resholds
to the origin as specified in (6).
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Fig. 2. The procedure to find a symmetric pair of initial states.

The process of identifying the most symmetric peer for a
selected state is depicted in Fig. 2. Point x4 is selected along the
trajectory, indicated by a purple circle, while its ideally
symmetric state, -Xa, is represented by a purple square; however,
this point does not lie on the trajectory. Instead, another point,
xa, which is on the trajectory and closest to -xa with the
minimum distance |[xa + X4/, is identified as the solution to the
optimization problem mentioned earlier. In this way, all such
most symmetric pairs collectively approximate a parallelotope
in the x-space. During Step 2, this parallelotope is transformed
into an approximate hyperrectangle in z-space, ensuring the
symmetric condition in z-space is met. In addition, to enhance
the time performance, the KD tree approach [35] is also applied
to search for the optimal symmetric pairs.

2) Step 2: Finding the transformation

The initial states are selected as symmetric pairs around the
origin in the x-space, forming the vertices of a parallelotope.
The next step involves identifying the transformation H that
maps this parallelotope to a hyperrectangle. A method to
determine the desired transformation is proposed in this step,
which is exemplified for a two-dimensional system in Fig. 3.
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Fig. 3. The transformation of an initial state set.
(Left: Initial states in x-space. Right: Initial states in z-space)
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The initial state set optimized in Step I forms the blue
parallelogram centered at the origin, as depicted in Fig. 3 (left).
This parallelogram can be transformed into the red
parallelogram by shifting the center to one of its vertices.
Subsequently, a transformation is applied to convert the red
parallelogram into the red rectangle shown in Fig. 3 (right),
which is then translated back to the original origin. It becomes
clear that the transformation from the red parallelogram to the
red rectangle can be determined based on the edges of the
parallelogram in x-space, as detailed below:

-1
|:Zi1:|_|:'xll_'x4l x31_x41:| |:xil:|_H|:'xil:| (7
2 Xp =Xy Xy TXp | [ X X2

where x; is the initial state set in x-space, and z; is the initial state
in z-space. The translations to a new origin in x-space (from the
blue parallelogram to the red parallelogram) and back to the
original origin in z-space (from the red rectangle to the blue
rectangle) effectively cancel each other out. Consequently, the
desired transformation from x-space to z-space (from the blue
parallelogram to the blue rectangle) remains unchanged as H.

In other words, H is invariant following a coordinate translation.

This observation is valid for an N-dimensional system, as
demonstrated by Lemma 1 in the Appendix, where detailed
proof of this property is also provided. This characteristic can
be formally stated as a theorem that a transformation from a
parallelotope in x-space to a hyperrectangle in z-space that are
both centered at the origin of the dimension N can be
determined from any N+1 pairs of vertices in x-space, denoted
by {x0, X’0}, {x1, X1}, ..., {XN, X’N}, as H=[x1-X, ..., XN-Xo] .

3) Steps 3 and 4: Computing MPFs in z- and x-spaces

After determining the parameters of the linear transformation
in the previous subsection, the trajectory in the x-space can also
be transformed into the z-space. The By values in z-space are
obtained using Prony’s analysis [26]. In z-space, the symmetric
condition is met, enabling the computation of EPFs using (4). It
is important to note that if a black-box model is employed, the
first three steps can be ignored, and the MPFs in the x-space can
be directly calculated. This method serves as an extension of
the response-based approach, with details available in [26].

Theoretically, if all modes and their shapes or compositions
are known, the calculation of MPFs becomes straightforward,
given the established inverse relationship between the matrices
made by right and left eigenvectors [36]

P=0®-¥V' =P ", 8)

where is Hadamard product.

Therefore, if the shapes and compositions of all modes can
be determined from wide-area measurements, PFs can be
directly computed. However, achieving full modal
observability of the system is often not feasible due to
insufficient phasor measurement units (PMUs) [37]. In fact,
grid operators focus the real-time monitoring on selected
dominant modes and thus do not have to pursue full modal
observability. The MPFs are calculated as follows with
subscripts x and z distinguishing x- and z-spaces.

PF. =@ ¥ =(H®,)-(H"¥)),

o’

(%a)

PF, =@ -H'[PF, /(H®,)]. (9b)
With partial modal observability, @, is only partially known, so
the MPFs in the x-space cannot be obtained directly.
Consequently, the MPFs in the x-space cannot be directly
determined. Assuming that the transformation H from x-space
to z-space has been obtained in Step 3, these relationships can
be derived for elements of matrices @, and ‘P,

[@],=[H'®], = Zm,-kq,k,-,

z hkt z,jk*

where hi; and my; are the elements of the transformation matrix
H and its inverse. Therefore, the PF for i state in j mode in x-
space is

(10a)

[¥,], =[¥.H], (10b)

N N
Prij = ¢W\VX»J‘I‘ - Zmik(l):,kj tht\lj” j 1D
k=1 k=1
From the definition of PFs, there is
p .
Py = me k,th, (12)

d)k/

which associates MPFs in the x-space with corresponding mode
shapes. In other words, if the right eigenvectors of certain
modes in z-space are known, their corresponding MPFs in x-
space can also be estimated after a linear transformation, even
if the shapes and compositions of other modes are unknown.

C. Error Estimation

If the linearized model of the system is available, an error

index on the EPFs can be calculated according to (5):
(1)

Z_Z Z ‘V;kd)kz (1)
kO

ll/lj;ék

13)

Also, the following error index is introduced to evaluate the
accuracy of the proposed MPFs compared to model-based PFs:

o, = PB/PE (14)
| MPF, /MPE
where the subscripts i and j are the generator numbers of interest,
respectively.

—IJX 100%,

III. CASE STUDIES

This section first illustrates the proposed measurement-based
approach for PF estimation on a two-area system, considering
both full and partial observabilities. Penetration of inverter-
based resources (IBRs) is also considered. Then, it is tested on
the NPCC 48-machine system with both ideal and practical
measurements.

A. Two-area system study

A modified Kundur’s two-area system [38] is used with
generator inertias adjusted to present three distinct oscillatory
modes at frequencies of 0.593Hz, 1.110Hz and 1.628Hz. The
system includes generators 1 and 2 in Area 1, and generators 3
and 4 in Area 2. The 0.593 Hz mode is the inter-area mode,
while the 1.110 Hz mode and 1.628 Hz mode are the intra-area
modes of areas 1 and 2, respectively.

The mode compositions, mode shapes and PFs with four
generators are computed from the model with respect to the
inter-area mode. Fig. 4 presents a comparison of the results,
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revealing that generator 3 displays the most important role in
the mode shape. Meanwhile, generator 1 contributes more
significantly to the composition of the mode than any other
generator. In summary, generator 1 exhibits the largest PF when
considering both the mode shape and its composition. From this
example, it can be concluded that PFs serve as reliable
indicators for ranking generators according to their
bidirectional associations with the mode.

Rotor Angular Speed of Gen. 1
Rotor Angular Speed of Gen.2
E Rotor Angular Speed of Gen.3
II]]]]]] Rotor Angular Speed of Gen.4|

1.00 4

0.75

Values

0.504

0.25

L |

0.00-

Mode shapes Participation factors

Mode compositions
Fig. 4. Mode composition, shape and PF for rotor speed on the interarea mode

1) Assuming full observability

Assuming that all four generators are monitored by PMUs, a
database of measurements is created using simulation results on
four rotor speeds under approximately 12 disturbances. Fig. 5
(left) displays measurements of the four speeds in two different
3D projections to depict the measurements in their 4D space.
Fig. 5 (middle and bottom) depicts some symmetric states
identified in the x-space, which approximately form a 3-
parallelotope, and their transformation approximately forms a
cuboid in the z-space. The points labelled A, B, C, D, E, F, G,
etc., in the middle figure of Fig. 5 represent symmetric states
identified in the x-space, a subset of the system. In the bottom
figure of Fig. 5, the transformed vertices are labelled A', B', C',
D, E, F, G, and H'.

TABLE II compares the MPFs calculated from the proposed
PF estimation approach with the model-based PFs, which are
found to be very similar. The errors in the estimation can be
attributed to two factors: 1) the most symmetric initial states in
x-space may not perfectly form a parallelotope (as evident in
Fig. 5. 2) errors in the estimation due to Prony’s analysis in z-
space. Simulation results confirm that if the initial states
selected from measurements form a perfectly symmetric
parallelotope, the MPFs will be an exact match to the PFs. It is
worth noting that when the black-box model is available and the
disturbance can be designed, the MPF proposed approach is
almost identical to the PFs.

In this section, a sub-space strategy for PF estimation is also
proposed and tested on the same two-area system. The strategy
involves identifying three 2-parallelotopes using six symmetric
pairs of generators and calculating relative MPFs for each
parallelotope. The MPFs are then normalized to obtain the
MPFs for each generator. The results are shown in TABLE III,
where the MPFs for the two local modes at 1.110 Hz and 1.628
Hz accurately match the PFs, while the MPFs for the inter-area
mode at 0.593 Hz have larger errors but still reflect a similar

ranking of the PFs. Therefore, the sub-space strategy is more
suitable for PF estimation of local modes. However, for inter-
area modes, the reduction in dimension needs to balance the
trade-off between accuracy and computational complexity.

X-space

Select
zZ- Space Optlmal pomts

Fig. 5. The trajectory of response and selected initial states in state space
(top - trajectories of generators 1, 2, and 3; middle - selected initial points before
transformation; bottom - selected initial points after transformation)

TABLEII
THE PFS AND MPFs FOR FULL OBSERVABILITY STUDY
0.593 Hz 1.110 Hz 1.628 Hz
Generator
PFs MPFs PFs MPFs PFs MPFs
1 1.00 1.00 2.0x107?3 2.6x103 0.13 0.13
2 0.06 0.06 6.2x10™ 5.0x103 1.0 1.0
3 0.86 0.90 0.80 0.82 29x103  2.5x1073
4 0.62 0.66 1.00 1.00 8.3x10°  9.2x107
TABLE IIT
THE PFS AND MPFS BASED ON THE RATIO OF THE TWO-DIMENSION SYSTEM
Generator 0.593 Hz 1.110 Hz 1.628 Hz
PFs MPFs PFs MPFs PFs MPFs
1 1.00 1.00 2.0x10°  4.8x10* 0.13 0.12
2 0.06 0.17 6.2x10%  3.6x1073 1.00 1.00
3 0.86 1.06 0.80 0.62 29x10°  5.9x1073
4 0.62 0.97 1.00 1.00 8.3x10°  7.5x1073
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2) Assuming partial observability

In this study, assume that not all generators are monitored by
PMUs, and the state variables of unmeasured generators contain
random changes following a uniform distribution. This research
examines four distinct cases, with details provided in TABLE
Iv.

Case 1: Generators 1, 2 and 3 are monitored by PMUs, and
the measurements of their speeds of the best symmetry are
found. Generator 4, not monitored by a PMU, is assumed to
have an initial speed change randomly from -0.02 to 0.02 rad/s.

Case 2: The same as Case 1 except that generator 3 also has
a random initial speed as generator 4.

Case 3: The same as Case 1 except for an increased range of
random initial speeds of generators 3 and 4.

Case 4: The same as Case 2 except for an increased range of
random initial speeds of generators 3 and 4.

TABLEIV
THE DISTRIBUTION OF THE INITIAL STATE SET
Case generator 1 generator 2 generator 3 generator 4
1 Symmetric Symmetric Symmetric [-0.02 0.02]
2 Symmetric Symmetric [-0.02 0.02] [-0.02 0.02]
3 Symmetric Symmetric Symmetric [-0.1 0.1]
4 Symmetric Symmetric [-0.1 0.1] [-0.10.1]

The study utilizes the error estimation presented in (14) to
evaluate the performance of partial observability for generators
1 and 2, with the results outlined in TABLE V. A comparison
between Cases 1 and 2, as well as Cases 3 and 4, indicates an
increase in error as more generators lack PMU equipment.
Additionally, a rise in the distribution range of generator 4
results in an increase in error, as evident in Cases 2 and 4. The
error of the 1.110 Hz mode is significantly higher due to the
critical roles played by generators 3 and 4, particularly in cases
where the latter is not equipped with a PMU. Overall, the
accuracy of the estimated MPF can be significantly enhanced if
the initial speed variance of a generator without a PMU is small,
particularly when it contributes significantly to the mode(s) of
interest. Consequently, MPFs estimation demonstrates superior
accuracy when more generators are equipped with PMUs.

TABLE V
THE ERROR INDEX OF GENERATOR 1 VS. 2
Case 0.593 Hz 1.110 Hz 1.628 Hz
1 0.78% 5.66% 0.35%
2 -1.51% 7.23% 1.02%
3 -0.82% 12.67% 1.04%
4 -1.65% 48.13% 1.97%

3) Considering penetration of IBRs
Another case study was conducted on the two-area system,
replacing Generators 2, 3, and 4 by IBRs. The detailed model
of the IBR can be found in [39] and [40]. Twelve disturbances

were considered, and the results are shown in TABLE VI.
In this study, the system with three synchronous generators

Due to the penetration of IBRs, the frequencies of the modes
become much faster. The inter-area mode is around 1.05 Hz,
while the local modes are around 1.95 Hz and 2.22 Hz. The
MPFs are closely aligned with the PFs, although Gen 3 and Gen
4 exhibit relatively larger errors. This discrepancy arises
because the two IBRs are located far from the synchronous
generators, and the coherence between these two generators is
more pronounced. The differences are notable for Gen 1 and 2,
making it easier to distinguish between them.

TABLE VI
THE PFs AND MPFs FOR FULL OBSERVABILITY STUDY
1.05 Hz 1.95Hz 222 Hz
Generator

PFs  MPFs PFs MPFs PFs MPFs
1 083 082 | 051 049 | 25x10° 1910
2 0.51 0.37 1.00 1.00 3.6x10? 8'6>2<107

1.00 1.00 1.6x1072 0.11 0.57 0.72
4 0.60 048 4.3x10° 0.24 1.00 1.00

B. NPCC System

Next, the proposed approach's performance is tested on a
much larger NPCC 140-bus 48-machine system, as illustrated
in Fig. 6. Two distinct measurement datasets will be generated:
random initial states and faults. For this large system, there are
more than 200 modes based on the system model. However, the
0.6 Hz inter-area mode, with its low damping ratio, is the
dominant mode. The analysis will focus on five generators (21,
24,26, 27, and 78) that have the largest participation factors for
this 0.6 Hz inter-area mode.

NA

—— Branches
Generators with PF < 0.1
4  Generators with PF > 0.1
#  Generators with PF > 0.5]

Fig. 6. Topology of the NPCC 140-bus system

1) Test on faults.

This test simulates 50 three-phase faults on the lines near one
end in the New England region of the system, as shown in Fig.
6. Each fault lasts 50 ms before being cleared, and no generator
or line is tripped after the fault. A total of 50 fault simulations
will be executed to generate the measurement dataset, which
will then be used to estimate MPFs. The outcomes of the test

is treated as a new two-area system. Although the topology
remains the same, the swing equation and the Phase-Locked
Loop (PLL) equation are different.

will be presented in TABLE VII.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 17,2025 at 17:39:21 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T1A.2025.3530869

Manuscript ID 2024-CDPA-0542

From the results, only the MPFs of generators 78 and 26 are
close to their true values. The MPFs of the remaining three
generators are inaccurate due to the strong coherence observed
among the last four generators in the oscillation. The highest
mutual coherence of 0.98 is observed between the columns
formed by generators 24 and 21, with condition number 249.
Consequently, the sampling matrix is ill-conditioned,
significantly amplifying the input error. A detailed proof of the
relationship between error and coherence can be found in the
appendix.

TABLE IX
THE PFS BASED ON RANDOM INITIAL STATES WITH THREE IBRS INSTALLED

True MPFs based on several scenarios
Generator

PFs 10 20 30 40 50
78 1.0 0.86 1.00 1.00 1.00 1.00
26 0.41 1.00 0.50 0.42 0.53 0.44
24 0.17 0.45 0.31 0.18 0.31 0.15
21 0.13 0.11 0.35 0.13 0.21 0.13
27 0.04 0.07 0.28 0.11 0.06 0.07

TABLE VII
THE PFS BASED ON FAULT SIMULATIONS
Generator 78 26 24 21 27
(True) 1.00 0.54 0.43 0.18 0.10
PFs
MPFs 0.99 0.61 1.00 0.88 0.31

4) Test on random initial states.

Based on the findings from the two-area system study, it is
established that the performance of the proposed approach is
significantly influenced by the distribution of initial states
within the measurement dataset. To validate this observation on
the NPCC system, a measurement dataset will be generated by
conducting simulations of scenarios starting from randomly
selected initial states within the state space. The selected initial
states will be sufficiently disturbed within the state space. A
total of 50 scenarios will be generated, each simulating for 20
seconds, resulting in the measurement dataset.

The MPFs estimated using data from 10, 20, 30, 40, and all
50 simulations are presented in TABLE VIII. The results
indicate that utilizing data from 20 simulations can correctly
identify the generator with the largest PF. Increasing the

number of simulations to 40 results in the correct ranking of PFs.

When all 50 scenarios are applied, the MPFs closely match the
true PFs, thus demonstrating the effectiveness of the
measurement-based PF approach for the large NPCC system.

TABLE VIII
THE PFS BASED ON RANDOM INITIAL STATES

True MPFs based on several scenarios
Generator

PFs 10 20 30 40 50
78 1.00 0.95 1.00 1.00 1.00 1.00
26 0.54 0.99 0.50 0.61 0.60 0.55
24 043 1.00 0.42 0.75 0.36 0.40
21 0.18 0.13 0.17 0.50 0.25 0.17
27 0.10 0.12 0.25 0.72 0.15 0.16

To study how IBR penetration may influence the performance
of the proposed approach, three IBRs are respectively connected to
the buses of three highly participating generators, i.e. 26, 24 and
21. The MPFs estimated using data from 10, 20, 30, 40, and all 50
simulations are presented in Table IX. Note that the added IBRs,
have changed the system model as well as model-based
participation factors. The case study shows that all 50 scenarios are
applied, the new MPF:s still match well the true PFs calculated from
the new system model with IBRs. Therefore, the increase in IBR
penetration has not affected the estimation of participation factors
for generators.

C. Discussion of the proposed Approach

Several factors influence the performance of the proposed
approach, with system nonlinearity being the most significant. The
method assumes linear system behavior, but nonlinearity becomes
more prominent under heavy load conditions or large disturbances,
reducing the accuracy of participation factor estimation with the
Prony analysis. Specifically, nonlinearity affects the calculations in
(4) and propagates through to the final results. To address this,
extended Prony analysis can be applied, as it accounts for nonlinear
dynamics and allows for more accurate oscillation behavior
estimation, especially near resonance. Additionally, techniques
like squeezing wavelet transformation can help isolate and analyze
nonlinear components, further improving robustness.

Measurement noise also affects the accuracy of PF estimation.
As shown in (13), noise on key generators (e.g., generators 78 and
26 in the NPCC system) significantly impacts results, while noise
on less critical generators (e.g., generator 45) has a smaller effect.
To mitigate noise, methods such as the matrix pencil method,
Kalman filtering, and other noise-reduction techniques can be
employed, improving the accuracy of PF estimations by reducing
the noise in the measurements.

IV. CONCLUSION

This paper has developed a measurement-based approach for
PF estimation. The computed MPFs are the best approximations
of the model-based theoretical PFs by means of a linear
coordinate transformation that relaxes the symmetric condition
for calculating PFs from responses of the system. The efficacy
of the proposed approach is demonstrated through its
applications to both small- and large-scale power system
models with discussions on its error.

APPENDIX

A. The invariant of transformation

Lemma 1 The transformation from a parallelotope to a
hyperrectangle of the same dimension is invariant under a
translation of coordinates.

Proof: Assume the x-space is a vector space with basis
{u, ..., un}. Since z-space is a vector space transformed from
the x-space by transformation H. Thus, {vi, ..., vn} is a set of
basis in z-space with vj=Hu; (=1, ..., N). For a random
translation sx,0 with coordinate [s1, ..., sy]T in X-space, it can be
noticed that

N N N
Hs, , = HZsjuj = Zstuj = Zsjvj =s.,. (14
j=1 j=1 Jj=1

Hence, for a random initial state in x-space,
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H(x;-s.,)=Hx,—Hs, , =z —s_,. (15)

Therefore, for any xi with translation sxe in X-space will be
transformed by H to the initial state zi = Hxi with the translation
sz0 = Hsxo in z-space. In other words, H is invariant under a
translation of coordinates.

First, translate the origin to one of the N+1 vertices, say Xo.
Vectors X1-Xo, ..., XN-Xo together define a convex polyhedral
cone as well as a set of basis vectors [41]. Thus, for any of these
vectors Xi-Xo, there is

N
X, —X, = Zaj(xj -x,) a; ={0,1}. (16)
j=1

It is easy to notice that if let z;-zo= [ai, ..., an]”', there is

N
H'(z,-2,) =) a,(x; -X,) =X, —X,. (17)
Jj=1
Because g, takes only O or 1 for any j, z;-zo is actually the
vertex on the hyperrectangle. Thus, H maps vertices of the V-
parallelotope in x-space after the translation to vertices of a
hyperrectangle in z-space. Also, since His linear and invertible
with a zero kernel, it is injective. Thus, all 2" vertices on the N-
parallelotope can be transformed by H to the 2" unique vertices
on the hyperrectangle.
Besides, from Lemma 1, the translation to xo does not change
H, so H is the desired transformation.
|

B. The relationship between coherence and error

The proposed approach can be represented as solving a linear
equation in the following form:

S¥Y =B, (18)
where S is the sampling matrix of measurements, with each row
representing the rotor speed data of all generators (at different
columns) at a particular time instant of the measuring window.
Y is the mode composition that needs to be computed, while B
represents the excitation energy calculated from the
measurement. Given a sufficiently high sampling frequency of
measurements, S generally has significantly more rows than
columns, making (19) an overdetermined system.

However, if the rotor speeds of two generators (say
generators i and j) are almost proportional to each other, the
columns i and j of S become coherent, meaning that these two
vectors are nearly linearly dependent. This results in a large
condition number of S and a considerable error in the solution
of (19). The coherency index y of S is defined as

T T
5ol /(. llsol) = I,/ (ls |

where s, and sz are arbitrary two-column vectors of the matrix
S, and s; and s; are two-column vectors that have the smallest
angle in between. The condition number of a matrix is typically
defined by using its nearest lower-rank matrix [42].

y = max
1<a<N1<B<N

). 19

S
J

cond(S) = maXHSH2 / HS -§ K cond(S) = max HSHz / HS - SHZ 7(20)

The 2-norm of a matrix is the square root of the sum of all its
elements squared. Consider some matrix S that is the same as
S except that column j equals its column i. Namely,

S=I[s, ..., s, s, 8 s\ ]- 21

j-10 P P

It has a lower rank reduced by 1. From (21),

22
S R - R
-5l Teomal o -2l sl
Thus when y— 1, there is
s, 4 S ’ —2H57H s.|r >0 cond(S) > , (23)

which means that the condition number will become extremely
large. Since the sampling matrix is ill-conditioned, errors will
become inevitable.
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