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Probabilistic neural networks for improved analyses with phenomenological R-matrix
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We present a method for measurement analyses based on probabilistic deep neural networks that provide
several advantages over conventional analyses with phenomenological models. These include predicting physical
quantities directly from data, the rapid generation of statistically robust uncertainties, and the ability to bypass
some parameters that may induce ambiguities and complications in data analysis. As deep learning methods
make predictions through “black boxes,” the uncertainty quantification is typically challenging. We use a
probabilistic framework that provides thorough uncertainty quantification and is straightforward to follow in
practice. With the network architecture based on the Transformer, we demonstrate the current method for
predicting nuclear resonance parameters from scattering data using the phenomenological R-matrix model.
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I. INTRODUCTION

In modern physics, phenomenological models are routinely
used to understand physical systems by fitting their predic-
tions to measured data and extracting “best fit” values for
their parameters [1–4]. To determine their numerous param-
eters, each of which has its own particular contribution to
observables, χ2 minimization or Bayesian inference is typi-
cally used [5,6]. In some cases, however, the quantification
of uncertainties is not straightforward, and their calibrations
are questionable [7,8]. Additionally, models may have some
parameters that do not correspond to observable features in
measurements but rather induce complications and ambigui-
ties during the interpretation of measurement results [9,10].

Such challenges motivate the exploration of new data
analysis approaches. Deep learning, with its ever-increasing
capabilities, is currently one of the most promising alter-
natives to mitigate the difficulties of conventional analysis
methods. Deep learning approaches utilize high-capacity
deep neural networks with the flexibility to approximate a
wide variety of models [11–14], making their adoption the
norm for data analyses in many areas of physics [15–20].
While the inherent “black box” character of standard deep
neural networks usually impedes the assessment of un-
certainties, incorporating probabilistic frameworks enables
uncertainty quantification using stochastic features [21–23],
thereby broadening their utility for physics research.

This study introduces a general purpose, straightforward
method based on a probabilistic deep learning framework
known as deep ensembles that offers numerous advan-
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tages over data analyses with phenomenological models. We
demonstrate that our trained deep learning model has the
capability to reliably and rapidly extract features directly from
data with statistically calibrated quantification of uncertain-
ties. Furthermore, some phenomenological model parameters
that may induce ambiguities in data interpretations can be
bypassed by suitable training approaches.

We first describe a method to analyze data using a deep
learning model based on a phenomenological physics model
in Sec. II. We demonstrate the method on the well-known phe-
nomenological R-matrix in Sec. III, showcasing its capability.
In Sec. IV, we present the conclusion and possible future
works. Fundamental concepts and mathematical backgrounds
of (probabilistic) deep learning are given in the Appendix.

II. METHOD

Deep learning has a high capacity to handle complex
physics tasks using a deep neural network. Here, we show how
to use deep learning to replace existing phenomenological
models. A key feature is that the deep learning model can be
designed to use only a subset of information to make predic-
tions, eliminating parameters that may cause complications.

Figure 1 shows the workflow of the method, where θ rep-
resents parameters of phenomenological models rather than
neural networks. First, to generate a training dataset various
combinations of parameters required by the phenomenolog-
ical model are sampled (Fig. 1). A parameter set includes
parameters of interest θ and, if present, any other extrane-
ous parameters θ′ required by the model that may introduce
ambiguities in the analysis. The phenomenological model
predictions calculated using the sampled parameters can be
processed with a noise function N to simulate the noise
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FIG. 1. Workflow of our method. (a) Training data generation
using the physics model with sets of parameters θ and θ′. (b) Deep
learning modeling with training data labeled only by the parameters
of interest, θ. (c) Inference from the measurement. The trained model
requires only measurement data to extract parameters at the inference
stage.

present in experimental measurements, generating the “ex-
pected data.”

Then, as shown in Fig. 1(b), a deep neural network D is
trained on this dataset using the expected data as inputs and θ

as the labels. The key to eliminating unwanted parameters θ′ is
to label the training data with only the parameters of interest θ
so that the deep learning model can extract these from the data
without any knowledge of the unwanted parameters θ′. By
training over data generated with a wide range of parameter
values, we ensure that the deep learning model works on data
with any parameter values.

After training, the model is used to predict the parameters
directly from measured data M, where θD represents the
prediction [Fig. 1(c)]. The correct choices of θ′ are no longer
required, as the model does not demand determinations of
these parameters. This inference requires negligible execution
time as the data only needs to pass forward through the model
once.

Phenomenological models are normally used to extract
parameters that have physical meaning or reproduce measure-

ments for extrapolation purposes [24]. While Fig. 1 presents
the method for the parameter extraction, the reproduction can
be easily done by training the network to output the extrapo-
lated expected data instead of the parameters.

This simple approach is applicable without specific restric-
tions to a wide variety of phenomenological physics models
used to analyze measurement data. The physics model is only
used to calculate training data; the rest of this approach only
involves deep learning modeling. High-capacity neural net-
works with sufficient depth can learn patterns in training data
from any physics model and then be used to analyze measured
data instead of the original model. However, the deep learning
model does not reconstruct the physics formalism to predict
the targets, even though it is trained on the data from the
physics model. The parameters in the network are simply
fitted to the data, and the interpretation of these parameters
is challenging due to the black box feature.

Conventional neural networks might not be suitable for
replacing the phenomenological models, as the measurement
analysis requires thorough uncertainty quantification. The use
of probabilistic neural networks such as Bayesian neural
networks (BNNs) in this method will give particular improve-
ments and reliability in the analysis. See Appendix 5 for more
details.

III. DEMONSTRATION ON PHENOMENOLOGICAL
R-MATRIX

We demonstrated the method, as a proof of principle, on
the phenomenological R-matrix that is widely used in nuclear
physics [9,10,25–32]. The phenomenological R-matrix serves
as a good test case because it contains numerous parameters,
where some of them may induce complications during the
analysis [9,10]. It is based on separating the particle interac-
tion space into internal and external regions whose boundary
is defined by a parameter known as the channel radius. The
complex many-body nuclear interactions are present in the
internal region and are described by the R-matrix, which is
characterized by parameters of nuclear resonant states. From
the R-matrix, expected observational data such as cross sec-
tions can be calculated. The parameters of nuclear states are
determined by comparing the expected and experimental data.
The extracted parameters provide the related nuclear prop-
erties, and the cross sections can be reproduced using the
parameters for the purpose of extrapolation.

The fitting of physical parameters in the phenomenolog-
ical R-matrix often depends on rather arbitrary choices of
parameters that may not correspond to observable features in
measurements [9,10]. The R-matrix theory requires an infinite
number of nuclear states in the calculation. However, the
truncation of the number of states is necessary for the phe-
nomenological approach, as generally only a limited number
of nuclear states are known. The truncated states are compen-
sated by the so-called background poles, which are artificial
states included to reproduce the effects of the truncated states.
The strength of the background poles depends on the chan-
nel radius, which creates additional complications [10,25].
In practice, there are no strict physics rules to guide valid
choices of the channel radius and background poles. Different
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FIG. 2. The differential cross section spectra for the 12C+p elas-
tic scattering measurement of Ref. [33]. The data is taken from
EXFOR [34]. The last subplot shows the corresponding energy levels
of the compound nucleus 13N, where the spin-parities are taken from
[35].

choices often produce different fitting results because they can
create different theoretical predictions. This feature can cause
difficulties in the phenomenological analysis and uncertainties
of the results, requiring sensitivity tests of fitting results to
these parameters [9,10].

One of the major applications of the phenomenological
R-matrix is determining resonance parameters (e.g., spins J ,
parities π , energies E , widths �) in nuclear reaction data.
We built a deep learning model to find patterns of resonance
parameters in reaction cross section spectra. Specifically, our
goal was to extract the parameters of three resonance states
from the well-known 12C+p elastic scattering measurement
of Ref. [33]. We also bypassed the need to determine the
channel radius and background poles, eliminating ambiguities
that these can introduce.

A. Data preparation

The target measurement of Ref. [33] contains differential
cross section at three different angles and Ecm from 0.25 to
1.85 MeV (Fig. 2). This energy range includes three reso-
nances that correspond to the first three excited states of 13N.
While properties of these states have been well constrained,

TABLE I. The ranges of parameters used to generate training
data. We covered various possible cases in practice. Jπ were uni-
formly sampled from possible spins and parities for the given l ,
where l is the relative orbital angular momentum of the particle pair.
In total, five BGPs are included. See text for more details.

Parameters Data distribution

Jπ
1

1
2

+
(fixed)

Jπ
2 l � 2
Jπ
3 l = 2
E1 (MeV) Normal (0.425, 0.003)
E2 (MeV) Normal (1.565, 0.010)a

E3 (MeV) Normal (1.610, 0.006)a

�1 (keV) Normal (30, 3)
�2 (keV) Normal (50, 15)
�3 (keV) Normal (60, 8)

ANC (fm−1/2) Normal (1.81, 0.07)
ac (fm) 3–8
5 BGPs [Jπ ] l � 2
5 BGPs [E ] Uniform (3, 10)
5 BGPs [�] Uniform (0, �W )b

aWe set E of the second and third states to be separated more than
10 keV as the energy bin sizes of the measurement data in this region
are � 10 keV.
b�W is the proton width calculated from �W = 2Pγ 2

W =
2P(3h̄2/2μa2c ), where P is the penetrability, γ 2

W is the Wigner
limit, and μ is the reduced mass.

in this demonstration we assumed a case where some of the
properties were not determined to see if the deep learning
model can predict these well [35]. The inputs to the model
were the differential cross section spectra, and the labels were
the corresponding resonance parameters.

We first sampled possible sets of parameters for three
resonances, along with random values of the channel radius
(ac) and random configurations of background poles (BGPs).
Table I shows the distributions of R-matrix model parameters
used to generate the training data. We assumed various cases
in practice to demonstrate that any situation can be handled as
if some of the parameters have been determined by previous
studies; e.g., Jπ of the first resonant state (Jπ

1 ) has been fully
determined as 1/2+, Jπ

2 has not been constrained, and Jπ
3

has been partly constrained. For E and �, we similarly used
Gaussian distributions with different uncertainties.

The asymptotic normalization coefficient (ANC) for the
subthreshold state (the ground state) was also included in the
R-matrix calculation but not as one of the labels to simplify
the demonstration. The range was taken from the previous
study [28,36]. We set the range of the channel radius to 3–
8 fm, which contains common values being used in typical
R-matrix calculations. A level for each possible spin-parity
was included as a background pole. The location and width
of these levels were randomly determined within the given
ranges in Table I.

Each set of parameters was used to calculate the corre-
sponding cross section using the R-matrix code AZURE2
[28]. The target measurement data has differential cross sec-
tion values on certain energy bin points at three angles [33].
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The calculated cross section values on the same bin points at
the three angles were taken as the input. As the locations of
bin points and values of angles were fixed, they were null
values in training and not included in the data. Therefore,
the input data samples were three-dimensional tensors with
the shape of (3, nbin, 1). 3 represents the number of measured
angles, nbin is the number of bin points, and 1 represents the
value of the cross section. We added random noises in the
calculated cross section values, assuming Gaussian noises to
reflect the measurement errors. The standard deviations of the
Gaussians were obtained from the measurement errors given
by Ref. [33].

We set the logarithm of the differential cross sections as
the data inputs to the model, which numerically mitigates the
order of magnitude differences between cross section values.
We also used ln(E ) and ln(�) to label energies and widths.
With Gaussian likelihoods, the model will eventually give
the log-normal distributions for E and � predictions, which
has some well-known advantages for representing positive-
definite physical quantities [37]. J and π were separately
encoded using the one-hot encoding (see Appendix 1) and
handled by classification. We did not include the information
of ac and BGPs in the inputs or labels.

B. Model

We used the transformer architecture as the base for our
model [38]. The transformer is currently one of the most
effective deep learning architectures used in a wide variety
of applications [13,39–41]. Its detailed description can be
found in Ref. [38]. Here, we briefly summarize its main fea-
tures. The transformer was originally constructed to handle
sequence data for natural language processing. For translation
purposes, the input and output are, for example, sentences
from two different languages. The architecture is based on an
encoder-decoder structure. Both encoder and decoder consist
of multiple layers of multihead attentions, fully connected
feed-forward networks, residual connections, and layer nor-
malizations [42,43]. A multihead attention splits the incoming
data and applies multiple attention functions known as scaled
dot-product attentions to let the model attend to the data
points at multiple aspects [38]. An encoder layer contains
a multihead self-attention and feed-forward network. On the
other hand, a decoder layer contains an additional multihead
attention known as an encoder-decoder attention performing
with the encoder output.

The attentions find critical relations between two sequence
data, known as a query and key, and use them to update
another sequence data, known as a value. Queries, keys, and
values in the self-attentions originate from the input. On the
other hand, in the encoder-decoder attentions, queries origi-
nate from the decoder input, and keys and values originate
from the encoder output. The obtained relations are often
called attention (score) matrices, and they present locations
of data points critical for the model predictions.

We modified the original architecture to be suitable for
our work. Figure 3 shows a sketch of the architecture. The
inputs to the encoder and decoder are originally embedded
and then passed to the positional encoding function to convert

FIG. 3. Sketch of the transformer-based architecture for this
study. The figure is adapted from Ref. [24].

the sentences to vectors and encode the positional information
of each word [38]. In this study, we removed such func-
tions as the inputs are not exactly sentences but spectra with
continuous values. We simply replaced the embedding and
positional encoding with a linear layer that projects a cross
section point to a vector. After the first linear layer, the input
shape (3, nbin, 1) was converted into (3, nbin, dmodel ), where
dmodel is a hyperparameter of the transformer [38]. A cross
section value, therefore, may correspond to a word in the
natural language processing using the original transformer.
Additionally, we used the Gaussian error linear units function
as the activation function in the feed-forward networks of
encoder and decoder layers [44].

Relations between the spectra of different angles are im-
portant in the analysis. The input data contain an extra
dimension for the angles in addition to the two-dimensional
cross section spectrum. However, the main operations in the
transformer are matrix multiplications that perform on the last
two dimensions of data. This feature limits the operations
within a spectrum at each angle. For this reason, we gave
the decoder input the same as the encoder input but shifted at
the extra angle dimension, [θ1, θ2, θ3] → [θ3, θ1, θ2], where θi
represents a cross section spectrum at the ith angle. By doing
so, the matrix multiplications in the encoder-decoder atten-
tions can be done between the spectra at different angles. The
decoder input does not require the look-ahead mask demanded
by the original transformer, which uses target sequences as
decoder inputs.
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TABLE II. Hyperparameters in the model. We followed the no-
tation of Ref. [38].

Hyperparameter Value

dmodel 256
dff 256
dq, dk, dv 32
h 8
The number of encoder layers 2
The number of decoder layers 2

Model hyperparameters are written in Table II. We chose
reasonable values for the hyperparameters based on several
empirical test runs but did not fine tune their values. We
found that the model performance was not highly sensitive to
different hyperparameters or architectures. The output of the
modified transformer was reshaped and passed to linear layers
at the end of the model to return the four types of parameters,
as shown in Fig. 3. Because of the different nature of our four
parameters J , π , E , and �, we split the architecture output
into four branches where two of them predict J and π and the
others predict ln(E ) and ln(�).

We used deep ensembles on top of this architecture. We
found that Nmodel = 5 was sufficient to obtain well-calibrated
uncertainties (see Sec. III C and Fig. 5). The final layer of
the model generates four predictions, i.e., ln(E ), ln(�), J , and
π . For ln(E ) or ln(�), it produces the mean and variance of
the Gaussian likelihood. For the classification of J and π , we
utilized the method presented by Ref. [45]: the logit vectors
are sampled from a Gaussian distribution, with the mean and
variance being those predicted by the model.

In the deep ensembles approach, the training procedure of
each point-estimate model is similar to that of conventional
neural networks (see Appendix 5). We performed the training
for 4200 epochs with ≈21 000 training samples and ≈5000
validation samples. The batch size was 768 on 3 GPU work-
ers. The number of samples could be freely increased at the
expense of training time. We used an Adam optimizer with a
weight decay of 10−9 [46]. The learning rate was 0.0002 with
a scheduler that decreased the learning rate by a factor of 0.99
at every 6 epochs. We constantly monitored the mean errors of
predictions and NLL. After the training, we tested the model
with a relatively large number of samples, ≈30 000, enough to
plot reliability diagrams with a sufficient number of samples
in each bin.

C. Results

This section includes diverse tests of the proposed method
and model on the test dataset, out-of-distribution samples,
and target measurement. The predictive distributions using
deep ensembles are obtained from the average of the multi-
ple model predictions (see Appendix 5). Here, the multiple
Gaussian likelihoods of ln(E ) and ln(�) were first converted
to log-normal distributions of E and �, and the mixture of
these was approximated as another Gaussian distribution. J
and π were obtained using the average of the softmax outputs
from the multiple models.

TABLE III. Test results of our model. Model performance is
presented with accuracy (for J and π ) and mean errors (for E and
�). The median values of the predictive distributions are taken to
calculate the errors.

Parameter Model performance

J2 98.7%
π2 100.0%
J3 99.0%
E1 (keV) 0.14 (0.03%)
E2 (keV) 1.24 (0.08%)
E3 (keV) 0.59 (0.04%)
�1 (keV) 0.20 (0.67%)
�2 (keV) 1.98 (4.39%)
�3 (keV) 1.32 (2.23%)

Table III shows the accuracies and errors of the trained
model on the test dataset. The accuracies on Jπ reach ≈99%,
and the mean errors on E and � are <≈2 keV. The errors
are higher on the parameters that have wider ranges in the
training data distribution, as the model faces more difficulties
with parameters that cause more complicated variations. By
using more training data or fine tuning model architecture, this
performance can be further improved if needed.

We also tested the model performance using the values of
eliminated parameters used to calculate the cross sections dur-
ing the training data generation. Figure 4 shows accuracies
and normalized errors of predictions for cross section spectra
calculated with different values of eliminated parameters. The
figures for the channel radius and first background pole, in
terms of energy, are shown as representatives. The model
performances are fairly even—less than ≈2% accuracy and
≈1 keV (35%) error variations for classification and regres-
sion, respectively—on these parameters. This demonstrates
that the deep learning model performs well on data that
originated from any values of the bypassed parameters. Nev-
ertheless, certain tendencies can be seen, e.g., higher errors for
the lower BGP energy, as the BGP will have a greater impact
on the measured energy range.

FIG. 4. Mean accuracies and errors of the model predictions as a
function of bypassed parameters. See text for more details.
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FIG. 5. Reliability diagram of the current model. Each curve
shows the estimated accuracy (fraction of true data points included in
the confidence range) as a function of the corresponding confidence
level.

Figure 5 shows the reliability diagram which is the stan-
dard method to evaluate the calibration of uncertainty (see
Appendix 2). For discrete parameters (J and π ), the con-
fidence level is the predicted probability from the softmax
function, and the accuracy is the fraction of correct predic-
tions. For continuous parameters (E and �), the confidence
level is calculated from the range surrounding the median
value, and the accuracy is the fraction of true data points
included in the corresponding range. The dashed black line
shows the ideal case where the confidence level is equal to
the accuracy. It is clear that our probabilistic model achieved
a performance close to this ideal case.

Model predictions on data samples out of the training data
distribution are normally unreliable. It is desired to have a
model that can detect such out-of-distribution data samples
through uncertainty quantification. We made a set of samples
for various cases shown in Table IV to test if the model can
detect such samples. As shown in Fig. 6, we found that the
model outputs large (epistemic) uncertainties compared to the
case of the test dataset. See Appendix 2 for more discussion
on out-of-distribution data.

We derived the resonance parameters from the target mea-
surement data of Ref. [33] using the model. The inferences
for the measurement can be easily made by simply passing
the cross section spectra to the model. Tables V and VI show
the model results on the measurement data. The inferences of
the spin-parities of the second and third states are, at ≈100%
probability, J2 = 3/2, π2 = −, and J3 = 5/2, in agreement
with the literature [35]. The inferences of E and � are
mostly consistent with those of the previous R-matrix studies
[9,28,33], demonstrating the effectiveness of our model. The

TABLE IV. Various cases for the out-of-distribution data for a
test. The training dataset was composed of the 12C+p reactions with
three resonances. The input spectra for case 3 were constant lines
including no resonance.

Jπ Eres �

Case 1: 12C+p reaction with 4 resonances
1/2+ 0.4244 MeV 34.3 keV
3/2− 1.5590 MeV 55.0 keV
3/2+ 1.5765 MeV 30.0 keV
5/2+ 1.6029 MeV 50.3 keV

Case 2: 6Li+p reaction
1/2+ 0.4244 MeV 34.3 keV
3/2− 1.5590 MeV 55.0 keV
5/2+ 1.6029 MeV 50.3 keV

Case 3: Constant line without any resonance
n/aa n/a n/a

aNot available.

previous analyses used different channel radius values and
background pole configurations, which might influence their
results; e.g., Ref. [9] tested the sensitivity of the fitting results
to the ac, varying the values of ac. On the other hand, our deep
learning model did not require any use of these extraneous
parameters, as it is trained to make predictions without any
information about these.

FIG. 6. Uncertainties of model predictions for the out-of-
distribution samples in Table IV. They are normalized to the average
uncertainties of model predictions on the test dataset. The large
uncertainties indicate that the model has not been trained on such
types of data samples.
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TABLE V. Inferences of J and π for the target measurement
data. Values in the parentheses are the probabilities presented by the
model.

Parameter Current model Ajzenberg-Selove [35]

J2 3/2 3/2
(1/2: 1.06 × 10−4)
(3/2: 9.99 × 10−1)
(5/2: 1.81 × 10−4)

J3 5/2 5/2
(3/2: 8.27 × 10−6)
(5/2: 9.99 × 10−1)

π2

(+: 2.05 × 10−4)
(−: 9.99 × 10−1)

Figure 7 shows the attention matrices in a self-attention and
encoder-decoder attention of our model. Although a detailed
interpretation of the matrices is challenging, they show im-
portant relations between the two input sequences (two cross
section spectra). Higher values in the matrices indicate that
more attention (weights) was paid to the corresponding data
points during the calculation. We can find the model gave
more weight not only to the peaks but also to the valleys of
the spectra to find values of the resonance parameters.

D. Implications

The model of this demonstration is specialized for the
12C+p measurement of Ref. [33]. Generalized models that
address numerous similar problems can also be built with a
larger model and dataset, e.g., a model flexible to the num-
ber of resonances. More practically, a model pretrained on a
relatively large dataset can be utilized [39,47]. It only needs
to be slightly adjusted to handle a specific task. Compared
to typical deep learning applications that require piecemeal
hand labeling, here, data preparation is relatively effortless,
significantly easing the model training process. Still, running

some physics models may require large computational costs
which will undermine such advantages.

A certain finite range should be defined for training data,
as creating data with a range (− inf, inf ) is challenging. If the
ranges for training data are difficult to set, one can first try
conventional fitting to find valid ranges. Still, such limitation
also exists in the practice of conventional fitting, as it is not
practically possible to try an infinite range of parameters. For
example, a reaction with a high l value is largely suppressed
by the centrifugal barrier, which allows an assumption of a l
value less than a particular number.

We also note that the training data distribution does not
play a role of prior in Bayesian methods, even though both
may have the common feature of representing the known
information. The data distribution does not have a direct math-
ematical effect as a prior does [24]. For example, if the prior
follows a Gaussian, it will directly affect the determination
of the posterior through Bayes’s theorem. On the other hand,
if the training data distribution is Gaussian, the model will
be fitted on an imbalanced dataset, which may result in an
imbalanced performance, i.e., better near the mean as the
model is more trained on that location.

In cases where the values of the eliminated parameters in
the physics model are difficult to obtain, the performance of
the deep learning model can exceed that of the conventional
fitting with the physics model. If the eliminated parameters
could (by some means) be correctly specified, then the perfor-
mances of the deep learning model and conventional fitting are
comparable. The deep learning model can accurately identify
distinctive features in the data, that arise from variations of
labels in training data. In cases where variations of the elim-
inated parameters can interrupt the model from finding such
features, the predictions may have high uncertainties with
diminished performance [48,49].

Although it is challenging to make unambiguous quantita-
tive one-on-one comparisons with conventional optimization
methods such as χ2 methods or Bayesian inference, there are
several advantages of the probabilistic neural network-based
method. First, once a deep learning model is trained, the

TABLE VI. Inferences of E and � for the target measurement data along with the previous results. For the current model, the median
values of the distributions are presented with the standard deviations.

Parameter Current model Ref. [33]a Ref. [28]b Ref. [9]a Ref. [9]a Ref. [9]a

E1 (MeV) 0.4244(2) 0.424 0.426(3) 0.427 0.427 0.427
E2 (MeV) 1.5590(12) 1.558 1.556(1) 1.560 1.559 1.558
E3 (MeV) 1.6029(8) 1.604 1.602(2) 1.603 1.604 1.606
�1 (keV) 34.3(3) 33 34.1(8) 33.8 32.9 30.9
�2 (keV) 55.0(8) 55 57.9(17) 51.4 51.4 51.3
�3 (keV) 50.3(7) 50 48.3(19) 48.1 48.1 47.8
ac (fm) n/a 4.0 3.4 4.0 5.0 6.0
Background poles n/a 3/2+ statec d d d d

aThe uncertainties are not presented in the papers.
bThe capture reaction data was also used in the R-matrix fitting.
cWhile it was not explicitly stated as a background pole, the experimentally known 3/2+ level at E = 5.860 MeV with � = 1400 keV was
included in the calculation in Ref. [33].
dNo background pole was considered.
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FIG. 7. Examples of the attention matrices when the target measurement data is passed as the input. (a) An attention matrix from a
self-attention in the decoder. (b) An attention matrix from an encoder-decoder attention. The top and left plots from each matrix show the
corresponding input data. See the text for the explanation of attentions.

inference calculation is normally very fast, with negligible
computational times [17,50]. The model for the phenomeno-
logical R-matrix took ≈0.8 seconds with 1 GPU worker to
estimate the nine parameters and corresponding uncertainties
from the target measurement. Second, making probabilistic
predictions about discrete quantities is straightforward using
a classification approach, either with softmax functions or
by defining specific distributions suitable for the likelihoods
of the quantities. Third, the quality of the uncertainties in
the model predictions can be rigorously tested through an
analysis of a subset of the data (i.e., a test dataset) using well-
developed measures such as a reliability diagram [7,22,51,52].
Robust methods also exist for cases where the uncertainty is
not properly calibrated [51–53].

IV. FUTURE WORK

In this study, we introduce a method to analyze measure-
ment data using deep probabilistic neural networks, which
offers numerous advantages over traditional approaches with
phenomenological models. The introduction of deep ensem-
bles combines the abilities of neural networks to generate
solutions of complex phenomena with an easy-to-use, statis-
tically robust mechanism to quantify uncertainties of model
predictions. We also showed that we can build a deep learning
model trained to perform accurate inferences from data with-
out specific determination of a subset of phenomenological
model parameters.

The phenomenological R-matrix has been intensively used
in nuclear physics to estimate resonance parameters and re-
produce cross sections. Still, in practice, significant time
and effort are required for the R-matrix fitting, as numerous
parameters are involved, including the channel radius and
background levels. We hope the current method can mitigate
such issues by utilizing the capacity of deep neural networks.

We implemented the transformer for the architecture
and deep ensembles for the probabilistic framework in
the demonstration. The transformer has significant poten-

tial for implementation in numerous physics tasks, given
its widespread utilization across diverse scientific disciplines
[13,39–41]. Not only deep ensembles but also a method
known as Monte Carlo dropout is straightforward to use even
for nonexperts [54]. Such methods can be extensively used
for deep learning applications in physics with well-quantified
uncertainties.

We anticipate that this approach can be widely used for
data analyses in various fields and to boost the development
of reliable deep learning applications.
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APPENDIX

Deep learning has already been extensively utilized in
physics research [15–20]. Nevertheless, due to the quick evo-
lution of the technique, misunderstandings of its concept and
modeling still prevail. In this Appendix, we present the funda-
mentals of deep learning, from the basics of machine learning
to probabilistic neural networks, to give a better understanding
of the current study and future applications.
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1. Basics of machine learning

Machine learning models generally refer to computer pro-
grams that learn to solve some tasks from experiences [55],
where deep learning is a subset of machine learning. Specifi-
cally, in machine learning, a model is fitted on refined data,
which is known as “training,” to handle data in an actual
environment.

Machine learning models are generally categorized into
generative and discriminative. While generative models find a
joint distribution over given variables, discriminative models
give predictions for given observations [56]. Additionally,
there are three learning methods: supervised, unsupervised,
and reinforcement learning [57]. In supervised learning, the
training data for machine learning carry the corresponding
answers (labels); in unsupervised learning, the model learns
on unlabeled data. Reinforcement learning uses rewards and
punishments to build an agent that can make decisions to
accomplish a task. In this study, we use supervised learning
to make discriminative models.

For supervised learning, tasks are normally handled dif-
ferently depending on labels. For regression tasks, such as
predicting energies of incoming particles, the data labels are
composed of continuous values; for classification tasks, such
as identifying a track in a detector as a proton or alpha particle,
the labels are discrete. Labels in classification are typically
encoded to numerical values using one-hot encoding [57]: for
example, if the label is “proton” or “neutron,” they can be
converted to [1, 0] or [0, 1], respectively.

Data are the essence of any machine learning task, and
it usually requires significant effort to obtain a dataset that
appropriately spans the relevant parameter space. Once ob-
tained, training data are normally divided into three subsets:
training, validation, and test datasets. The training dataset is
used to fit the model parameters, and the validation and test
datasets are used for statistical evaluation The model perfor-
mance is evaluated using the validation dataset during the
training and hyperparameter tuning processes; the test dataset
is used for the final evaluation of the fitted model.

2. Uncertainty in machine learning

The reliability of any model prediction can be quantified by
the corresponding uncertainty. This is essential for machine
learning applications in physics research, especially when the
model directly predicts physical quantities.

Any data-based model, even those constructed using con-
ventional methods, only guarantees its functionality within
the distribution from which the data was sampled. Therefore,
in actual practice, identifying a sample outside of this dis-
tribution is important. It is preferred to have an uncertainty
quantification method that can detect such cases [22,52].

Uncertainty in machine learning is normally categorized
into epistemic and aleatoric, representing uncertainties caused
by the model and data, respectively [48,49]. The epistemic
uncertainties are related to the ignorance of the model due to
a lack of data; the aleatoric uncertainties are related to the in-
trinsic uncertainties of the data itself. The disentanglement of
these two could be useful in machine learning engineering, as
it can guide how to reduce uncertainties of model predictions

FIG. 8. Sketch of simple neural network. More layers and nodes
make the network deeper. The figure is adapted from Ref. [24].

[49]. Additionally, the size of epistemic uncertainty can be
used to detect the out-of-distribution samples, as it can show
the ignorance of the model on the samples [22,52].

It is critical to quantify and calibrate uncertainties to
address issues of reliability of deep learning for physics ap-
plications [24]. While the intrinsic complications of deep
neural networks can make uncertainty quantification challeng-
ing [21,22], there are some well-developed methods, centered
around the Bayesian neural networks (see Appendix 5).

The calibration of the quantified uncertainties can be sta-
tistically tested on a subset of the dataset (test dataset). In
an ideal case, the frequency of a data point included in a
confidence range should equal the corresponding confidence
level. For example, if the model prediction is presented in a
Gaussian distribution, the true data point should be located
in the range (μ − σ,μ + σ ) at ≈68% probability. One repre-
sentative metric is known as the reliability diagram [22,51]. It
shows the frequency, or estimated accuracy, as a function of
confidence level. See Sec. III C and Fig. 5 for more details.

3. Deep neural networks

Neural networks are the core of deep learning. One of
the simplest conventional models is y = f (x) = ax + b. This
function relates the input x and the target y using its model
parameters a and b fitted to some linear data. It is funda-
mentally the same in deep learning, except that the function
becomes a neural network with a lot of parameters depending
on the number of layers and nodes. The most standard neural
network is a densely connected network that has some layers
connected to each other (Fig. 8). Each layer contains model
parameters known as weights w and biases b, acting as an
operation wx + b [57], and specialized activation functions
enable the modeling of nonlinear systems [23].

Neural nets are said to be deep if they have many layers and
a lot of parameters are entangled in the network. This feature
gives a high capacity that can handle various tasks, compared
to conventional models that are typically specialized to a
particular subset of tasks (e.g., y = ax + b for linear data).
However, simultaneously, such structures make it difficult to
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FIG. 9. The last layer can be designed to output mean and sigma
for a Gaussian likelihood. The figure is adapted from Ref. [24].

interpret the roles of any particular model parameters, instead
functioning as a “black box” [22].

The model performance frequently depends highly on the
architecture of the neural network. Numerous effective ar-
chitectures have been developed for various tasks, such as
convolutional neural networks, recurrent neural networks,
transformers, and more [57]. Currently, the transformers and
their variations have demonstrated capabilities for complex
modeling in a variety of fields, well beyond their initial
development for natural language processing [38–40]. See
Sec. III B for more details.

The difference in treatments for regression and classifica-
tion in deep learning is at the last layer of the network. For
regression, the last layer directly outputs the predictions (la-
bels); for classification, a component of the output is normally
interpreted as a probability for a possible class. In this latter
case, the output is passed to a softmax function that converts
it to a probability vector. The softmax is defined as

Softmax(zc) = ezc∑Nclass
c′=1 e

zc′
, (A1)

which looks similar to the Boltzmann probability distribution
[24]. zc is known as a logit, which is an element of the output,
and Nc is the number of classes.

4. Model training

The optimization of the deep learning model is normally
based on the maximum likelihood estimation, the same as
conventional model optimization approaches such as the χ2

method [23,58]. This is typically done by minimizing the
negative log-likelihood. For regression, if we assume a Gaus-
sian likelihood, the negative log-likelihood (NLL) for a data
sample becomes

− ln[p(y|x, θ)] = − ln

(
1√
2πσ

e− (y−yp )2

2σ2

)
(A2)

= 1

2

(y − yp)2

σ 2
+ ln(

√
2πσ ), (A3)

where yp is the model prediction and p(y|x, θ) is the likelihood
for the given input x, output y (which are often tensors), and
parameters θ. For a constant σ , the NLL follows the mean
squared error, as constant terms can be safely dropped during
minimization. Otherwise, as shown in Fig. 9, the last layer of

FIG. 10. Sketch of a typical process for fitting a deep neural
network. The figure is adapted from Ref. [24].

the network can output the mean and standard deviation that
represents the data uncertainty (aleatoric) [45,59].

For classification, the likelihood is assumed to follow the
softmax p(y = c|x, θ) = Softmax(zc). As in regression, the
logit z can be replaced by a Gaussian distribution, where
its mean and variance are predicted by the model [45]. This
approach showed effective results regarding accuracy and un-
certainty quantification [45,60].

To reduce the NLL, the gradient descent method is nor-
mally used [23]. This method uses the gradient of the loss
function (NLL) with respect to the model parameters to deter-
mine the direction for adjusting model parameters. However,
calculating the gradient is not straightforward because of the
complicated structure of the network. Typically, an algorithm
known as the backpropagation that utilizes the chain rule is
used to obtain the gradients [23].

Figure 10 summarizes a typical training process in deep
learning. First, the data are passed to the network to calcu-
late the loss function with the labels. Second, the gradient
is calculated using the backpropagation. Finally, the model
parameters are adjusted toward the negative direction of
the gradient. The detailed method for parameter updates is
controlled by the so-called optimizer [57]. These steps are it-
erated until the local minimum of the loss function is obtained.
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FIG. 11. Sketch for comparison between (a) point-estimate and (b) probabilistic neural networks.

One of the challenges in model training is the case known
as overfitting, where the model is not well generalized outside
of the training dataset [57]. Deep neural networks are easily
specialized to the data used for fitting since they normally con-
tain a large number of parameters. Overfitting can be detected
from the difference between the model performances on the
training and validation (test) datasets, as the latter is not used
for optimization.

Treatments to prevent overfitting by restricting the com-
plexities of models are known as regularization [57]. Regu-
larization typically adds additional terms in the loss function
to drive the optimization process to favor a simpler model.
This can be seen as adding a prior to the likelihood, resulting
in the maximum a posterior estimation [22,23]. One of the
representative methods is weight decay, also known as L2
regularization [23]. This gives penalties for large parameter
values by adding a term, ||θ||, to the loss function, where λ

controls the size of the penalty. This additional term can be
seen as a Gaussian prior p(θ):

− ln[p(y|x, θ)p(θ)] (A4)

= − ln[p(y|x, θ)] − ln[Normal(θ|0, 1/2λ)] (A5)

= − ln[p(y|x, θ)] + λ||θ||2 + ln(
√
2π/2λ), (A6)

L = − ln[p(y|x, θ)] + λ||θ||2. (A7)

The ||θ|| term constrains the parameter values, as the Gaussian
gives small weights far from the mean. λ controls the width of
the Gaussian and, therefore, the range of the parameter values.

5. Bayesian deep learning

To be reliable, any model prediction should be accom-
panied by its corresponding uncertainty. Figure 11 shows
the difference between conventional and probabilistic neural
networks. Conventional neural networks typically only give
a single value, known as a point estimate, for a prediction
without the corresponding uncertainty. The black box feature
prevents the interpretation of the parameters and, as a result,
poses challenges for uncertainty quantification [22]. On the
other hand, probabilistic neural networks can output predic-
tions as probabilities or distributions. Particularly, Bayesian
deep learning has been developed as the core method for

uncertainty quantification in deep learning [21,59]. In this
section, we introduce the concept of Bayesian neural networks
(BNNs) and a representative technique known as deep ensem-
bles [61].

Parameters θ in BNNs are distributions or sampled from
distributions determined using Bayes’s theorem [22]:

p(θ|Dx,Dy) = p(Dy|Dx, θ)p(θ)

p(Dy|Dx)
, (A8)

where Dx and Dy are inputs and labels of the training dataset.
Training of BNNs is (Bayesian) inference to obtain the pos-
terior p(θ|D), where D represents the training dataset; in
contract, the training of conventional neural networks is op-
timization [62].

A key feature of Bayesian deep learning is the marginal-
ization over the model parameters using the posterior, erasing
the dependency of predictions on the model parameters [62]:

p(y|x,D) =
∫

θ

p(y|x, θ′)p(θ′|D)dθ′. (A9)

p(y|x,D) is the final prediction, known as the predictive distri-
bution. Equation (A9) shows the way to quantify uncertainties
in Bayesian deep learning. Bayesian deep learning uses every
possible parameter set to determine the prediction, while a
point-estimate model uses a single parameter set. The model
(epistemic) and data (aleatoric) uncertainties are considered
in the posterior p(θ′|D) and likelihood p(y|x, θ′), respectively
[22]. The likelihood can be estimated from the network out-
puts (see Appendix 4).

Normally, Monte Carlo methods are used for Bayesian
inference [6]. However, due to a large number of parame-
ters, Monte Carlo methods are computationally challenging
for deep neural networks and are limited to use in very
small networks, which may be insufficient to model complex
physics phenomena [22]. For this reason, variational inference
is critically used in Bayesian deep learning [59]. Variational
inference is a method to approximate the posterior with a well-
known distribution [63]. Additionally, many ideas, such as
deep ensembles, have been developed to implement Bayesian
deep learning easily [22,54,61].

While deep ensembles were first proposed as an alternative
method to BNNs, they can be interpreted as another approach
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to Bayesian deep learning [22,62]. Deep ensembles have been
validated as a straightforward and highly effective method
[52,61]. Multiple point-estimate models are first trained using
NLL and random initial model parameters. The predictions
from these models are then combined to get the predictive
distribution:

p(y|x) = 1

Nmodel

Nmodel∑
n=1

p(y|x, θn), (A10)

where Nmodel is the number of point-estimate models.
This expression can be obtained from Eq. (A9) if the
posterior follows a mixture of multiple delta functions:
p(θ|D) ≈ (1/Nmodel)

∑Nmodel
n=1 δ(θ − θn). Therefore, the idea of

deep ensembles can be seen as the marginalization in
Bayesian deep learning using variational inference with a
mixture of delta functions as the approximate distribution
[22,62].

In practice, deep ensembles can be done by simply training
multiple conventional neural networks with different initial
parameters. For regression with Gaussian likelihoods, the pre-
dictive distribution is a mixture of Gaussian distributions,
which can be further approximated as a Gaussian [61]. For
classification, the prediction will be the average of the softmax
outputs from the models. Suitable Nmodel can be determined
through statistical examinations of uncertainty calibration (see
Appendix 2).
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