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Imaging is central to the clinical surveillance of brain tumors yet it provides
limited insight into a tumor’s underlying biology. Machine learning and other
mathematical modeling approaches can leverage paired magnetic resonance
images and image-localized tissue samples to predict almost any characteristic
of a tumor. Image-based modeling takes advantage of the spatial resolution of
routine clinical scans and can be applied to measure biological differences within
a tumor, changes over time, as well as the variance between patients. This
approach is non-invasive and circumvents the intrinsic challenges of inter- and
intratumoral heterogeneity that have historically hindered the complete
assessment of tumor biology and treatment responsiveness. It can also reveal
tumor characteristics that may guide both surgical and medical decision-making
in real-time. Here we describe a general framework for the acquisition of image-
localized biopsies and the construction of spatiotemporal radiomics models, as
well as case examples of how this approach may be used to address clinically
relevant questions.
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Introduction

While great strides have been made in elucidating the biology of central nervous system
tumors, our understanding of these diseases is far from complete. Brain tumors, including
but not limited to glioblastoma (GBM), are known to have profound variability between
patients (1-4). Intratumoral heterogeneity is rampant as well, and single-cell studies have
identified genotypically and phenotypically distinguishable cellular subtypes even within
the same sample (5-8). Regional nuances in a tumor’s microenvironment add another layer
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of complexity, as two biopsies with the same genotype may have
completely different phenotypes and therapeutic sensitivities (9).
The ability to train machine learning models to predict these
biological characteristics simply from MR images (i.e. radiomics)
would allow us to assess a tumor in its totality and track changes
over time. This would be immensely valuable in the context of CNS
malignancies, where tissue sampling is limited due to the tumor’s
eloquent location and biopsies are unlikely to be representative of
the entire landscape.

Since imaging is a routine component of tumor surveillance and
treatment monitoring, the scalability and value of radiomics models
are enormous. Thus far, the majority of image-based models for the
evaluation of brain tumors have focused on classifying the genomics
across the whole tumor or large regions within the tumor. For
example, several studies have used standard MRI sequences (10-
12), dynamic susceptibility contrast MRI (13, 14), and diffusion
MRIs (15-17) to discriminate between IDH wildtype and IDH
mutant gliomas. Similar approaches have been used to predict
MGMT promoter methylation status (18-23), transcriptomic
subtypes (24, 25), and classify patients as short-, mid-, and long-
term survivors (26). By definition, these whole-tumor approaches
overlook the genomic, transcriptomic, and microenvironmental
heterogeneity that is known to exist within and between tumors
(3-9).

The ability to predict regional changes on a voxel-by-voxel level
has immense potential value, as it would allow for the complete
characterization of intratumoral heterogeneity in the absence of
tissue sampling. However, spatial models are uniquely challenging
to build. Without knowing exactly where a sample was harvested
from, biological and radiographic data cannot be aligned in a
meaningful way. To overcome this limitation, intraoperative
surgical navigation can be used to localize a biopsy’s coordinates
on MRI In this way, a tissue sample’s imaging features and
characteristics from secondary biological tests (e.g. genomics,
RNA sequencing, etc.) can be combined to train machine learning
models that establish connections between tumor biology and MRI.
This approach can be applied to large cohorts to measure inter-
patient variability, as well as serial imaging from the same patient to
assess intratumoral dynamics over time. This voxelwise approach
has been utilized (20, 27-29), though to a lesser extent, due to the
more tedious nature of the data collection. Here we provide a
framework for collecting image-localized biopsies and leveraging
machine learning to build spatial radiomics models. We also
provide case examples that demonstrate the clinical potential of
these spatiotemporal models.

Framework to generate image-based
machine learning models (Methods)

Any imaging modality (e.g. CT, MRI, PET) can be used to
extract imaging features for training machine learning algorithms.
Since MRI is the clinical gold standard for patients with CNS
tumors, we will discuss a pipeline for the acquisition and
standardization of MRIs, generation of machine learning models
that predict biological characteristics from MRI, and ultimately the
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prediction of biology from new, unseen images for secondary
analysis (Figure 1).

Multiparametric MRI and
image-localized biopsies

Before surgery, each patient undergoes conventional
multimodal MR imaging (T1-weighted with Gadolinium-based
contrast agent, T2-weighted, and fluid-attenuated inversion
recovery sequences). Spoiled gradient recalled-echo (SPGR)
images are obtained for use during surgical navigation. Advanced
sequences are obtained when possible (e.g. perfusion, diffusion
tensor imaging, echo-planar imaging).

Intraoperative navigation loads SPGR and T2/FLAIR images to
stereotactically guide tumor biopsy and/or resection. While several
external landmarks are used to check navigation accuracy
preoperatively, registering a patient’s preoperative images to their
intraoperative anatomy introduces a risk of measurable error.
Immediately preceding tissue collection, surgeons attempt to
validate the accuracy of the navigation system with nearby
anatomic landmarks (i.e., skull, vasculature, ventricles, etc.). If the
navigation and anatomy are aligned with minimal error (<Imm), a
biopsy is collected and the coordinates of the biopsy site are
recorded with accompanying screenshots of the navigation
monitor. Each patient has multiple samples collected with image
localization, all of which are either flash-frozen or embedded in
formalin for biological testing. The coordinates and screenshots
obtained at the time of biopsy harvesting are later co-registered with
the full preoperative MR imaging data for further analysis using
previously-described methods (30). The accuracy of this collection
process is limited by the subjective threshold set by the surgeon and
intraoperative research team. At our institution, the perceived error
between imaging location and anatomical location must be
negligible (<1mm) to qualify for biopsy collection and
downstream analyses. If one was studying a less heterogeneous
pathology where spatial resolution was of a concern, error
thresholding could theoretically be more lenient.

Image registration and normalization

Registration is the process of geometrically aligning two or more
images (or an image with a standardized atlas) such that any given
coordinate represents the same location in every image. Many linear
and non-linear registration tools exist to perform this task (31). Ata
minimum, different MRI sequences obtained at a single time point
need to be coregistered for accurate feature extraction. While not
mandatory, registering longitudinal visit-to-visit series data can be
helpful when attempting to visualize changes over the course
of treatment.

Conventional MR images have arbitrary units that are not stable
across patients, protocols, and scanners. Therefore, image
intensities must be normalized to improve the accuracy, test-
retest robustness, and generalizability of the radiomics models.
There are several mechanisms to standardize image intensities
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including histogram-based and statistical normalization methods
(32, 33). N4 normalization, available in the SimpleITK package, is a
popular example of such a bias field correction technique, that
makes use of B-spline approximation of the bias field and assumes
independent Gaussian noise (34). Z score normalization, White
Stripe normalization and Nyul normalization are some other
examples (33, 35). Although some recent work has proposed
caution in the use of such normalization methods as they can
affect the reproducibility of radiomics features (36).

Segmentation and feature extraction

Segmentation refers to the process of delineating regions of interest
(RO, ie. biopsy location, contrast-enhancing tumor, or T2/FLAIR-
hyperintense penumbra). Biopsy segmentations can be a 2-
dimensional square (one axial slice) or a 3-dimensional sphere
centered at the imaging coordinate. We formally train individuals to
manually segment tumors using in-house software. Segmentations are
overseen and approved by a team leader to ensure accuracy and
consistency. This manual approach can be tedious and time
consuming, but human expertise is better able to discern between
complex anatomy (ie., irregular borders, cysts, skip lesions, ventricle
adjacency, etc.) than automated, pattern-based pipelines. Semi-
automatic and automatic segmentation protocols are in development
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and are in high demand. Still, they are still benchmarked against the
gold-standard of expert manual segmentation. Comparable manual or
semi-automated segmentation can be achieved with most modern
personal machines using open-source packages (37).

There are several mechanisms to extract imaging features from
MRI sequences. We use PyRadiomics (38), as it can be implemented
from the command line to extract the average features across a
region (e.g. an entire biopsy ROI) or voxel-by-voxel within a
tumor’s segmentation. First- and second-order intensity-based,
shape, and texture features can be calculated. All of these values
can be extracted before or after applying imaging filters (e.g.
Gaussian, Gabor, wavelet). While the number of options for
feature extraction is vast, adherence to the Image Biomarker
Standardization Initiative guidelines is paramount for the sake of
quality control and reproducibility (39).

Choosing the image sequences to include in radiomic analysis is
a balance between generalizability and oversimplification. For
example, most patients do not routinely obtain complex vascular
imaging but do have standard post-contrast T1 and T2/FLAIR
images. Thus, training models on features extracted from ten
uncommon sequences is extremely unlikely to be adopted in
clinical practice nor be able to be validated against historical data
sets. On the other end of the spectrum, these models are being asked
to find relationships between complex biological features and
numeric voxel intensities. In our experience, at least two imaging
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sequences are needed for models to establish a relationship between
these two domains. We tend to start with T1Gd and T2/FLAIR
images and make adjustments based on preliminary model
performance with these widely available sequences.

Machine learning

In the context of CNS tumors where biopsies are typically limited
due to the eloquence of the brain and spine, the number of imaging
features will likely greatly exceed the number of samples. This
increases the risk of overfitting, the phenomenon by which a model
latches onto the details of the training data at the expense of missing
the overall, generalizable pattern. As such, it is imperative to gather as
many patients and samples as possible. While there is no universal
cutoff for the minimum number needed to train and test either a
classification or regression machine learning model, more is better
and fewer than 100 samples would raise concerns for generalizability.
An imaging feature reduction step must be performed to reduce the
likelihood of overfitting, and this step could include: 1) removal of
features with zero or near-zero variance, 2) removal of features that
are redundant or highly correlated with one another, 3) selection of
features that are highly correlated with the target variable, and 4)
calculation of variable importance scores.

After feature selection, a machine learning model can be trained to
answer the clinical question of interest. Classification models (e.g.
discriminant analysis) are trained for the prediction of discrete
variables. To predict continuous variables, regression models (e.g.
linear regression) should be employed. Some models (e.g. random
forest, k-nearest neighbors, support vector machine) can be used in
both contexts. Data should be split randomly into training and testing
cohorts to estimate the performance of the machine learning models
on data not used to train the model. Training data (usually 70% of
samples) is used to develop the model, while testing data (the
remaining 30%) is used for model validation. The target variable
should be represented equally in both the testing and training cohorts.

Machine learning models are assessed by comparing their
predictions to ground-truth (“actual”) values. Classification
models are assessed using a confusion matrix and receiver
operating characteristic curve. Regression models typically report
actual versus predicted correlation coefficients, p-values, and root-
mean-square error values. A model that performs exceptionally well
on training data but poorly on test data suggests that the model may
be overfitted and a reassessment of the feature selection may be
necessary. Small datasets run the risk of over- or under-estimating
model performance based on the way training and test data are split.
Under these circumstances, k-fold cross-validation may improve
the estimates of model performance by maintaining performance
evaluation on unseen small subsets of data and averaging the results
into a single, more generalizable performance estimate.

Pitfalls and challenges

Additional challenges may arise if there is unexpected uncertainty
within the image-localization of the samples. While the standard
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protocol is to locally validate a sample’s location using fixed
anatomical reference points, these points may remain
navigationally accurate while the brain tissue itself shifts during
surgery. This “brain shift” is more common when resecting large
lesions that were imposing significant mass effect, so extra care should
be taken under these circumstances. In such datasets, one might
expand the region within which features are extracted (e.g., increase
from a 5x5 region to a 7x7 region to allow for more uncertainty).

Although we strive to include as much data as possible within
model training for the sake of generalizability to the clinic, we may
occasionally remove patients from analyses if they do not have the
necessary imaging required to generate important model features.
Similarly, samples may be removed from analyses if there is a high
level of uncertainty or technical error (e.g., coordinates not
collected, breakdown in communication in the operating room)
during their collection (40).

For model generation, collecting the initial cohort for training
and validation is by far the rate determining step. To accrue biopsies
requires enthusiastic buy-in from partner neurosurgeons as well as
significant time, labor, and financial resources for analysis and
associated abstraction of longitudinal clinical data. Depending on
the model architecture, computational resources may also need to
be acquired. Model training can also take some time, especially if
using computationally expensive algorithms with parameters that
need to be tuned. Adding a further layer of complexity, once a
satisfactory model has been created, it is difficult to validate the
models using independent datasets because of the inter-institutional
heterogeneity in MRI machines, image acquisition protocols, and
limitations to data sharing. This lack of reproducibility between
institutions is a point of frustration, though many groups are
working on approaches for harmonizing images.

Potential applications
and anticipated results

Image-based models can be built to predict almost any biological
variable of interest. Of the utmost importance to clinical practice is
answering the question, “is this normal or pathologic?” Thus, many
clinical models are interested in predicting categorical variables that
are binary (e.g. pseudoprogression vs. true tumor progression),
nominal (e.g. EGFR deleted, wild type, or amplified), or ordinal
(e.g., grade I-IV). Of more interest to basic science and translational
research is the ability to predict continuous variables. For example,
the percent of malignant cells in a tumor sample, copy number
variation, transcript abundance, and percent cellular composition.
While the potential biological applications are essentially limitless, we
provide a few key examples from the literature in Table 1. Further
examples about future directions that highlight the utility of spatially
informed radiomics are provided below.

Diagnosis: genomic alterations

Numerous genetic alterations and their associated signaling
pathways have been implicated in tumorigenesis, growth, and
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TABLE 1 Key examples of clinically-relevant radiomics applications in the literature.

Outcome Variable Type Example references

High grade glioma vs. low grade glioma Binary Zacharaki et al. (2009) (41), Skogen et al. (2016) (42), Vidyadharan et al. (2022) (43)

Radiation necrosis vs. tumor progression Binary Hu et al. (2011) (44), Tiwari et al. (2016) (45), Ismail et al. (2018) (46)

Glioma grade (I-IV) Ordinal Xie et al. (2018) (47), Qi et al. (2018) (48)

Patient survival time Ordinal Baid et al. (2020) (26), Suter et al. (2020) (49), Chato et al. (2021) (50), Karami et al. (2021) (51)
EGFR mutation status Nominal Zinn et al. (2017) (52), Pease et al. (2022) (53)

IDH mutation status Nominal Hsieh et al. (2017) (54), Jakola et al. (2018) (55), Lee et al. (2019) (56), Han et al. (2019) (11)

invasion (57). While these mutations and copy number variations
are challenging to discern histologically, they correlate with tumor
subtypes and often reflect the degree of aggression. Several therapies
with genetic targets have garnered attention, but their potential for
clinical utility hinges upon identifying patients whose tumors
harbor these alterations. Surgical biopsies may only be capturing
an unrepresentative minority of the entire tumor landscape. Image-
based models overcome this limitation by predicting the genetic
landscape of the entire tumor. Classification models can be built to
predict clonal subpopulations and track their dynamics
throughout treatment.

As an example, one could build a model that predicts the
presence of CDK4 copy number amplification from imaging. The
overexpression of CDK4 induces an oncogenic transition of neural
progenitor cells into drivers of tumor growth and progression. This
phenotype is known to co-exist amongst other cellular subtypes
within a tumor (6). Since CDK4 inhibition is only effective against
CDK4-overexpressing tumors, image-based models present the
opportunity to identify patients who are uniquely susceptible to
these targeted therapies (58, 59). Spatially-resolved models of some
genomic aberrations in gliomas (e.g. copy number variations in
EGFR, PDGFR, etc.) have already been developed, with accuracies
ranging from 37.5% to 87.% depending on the gene of interest
(Figure 2) (28, 60, 61).

Surgical planning: tumor cell burden
and distribution

By the time a patient receives the formal diagnosis of GBM,
tumor cells can already be found throughout the entirety of their
brain (62). However, the overall distribution of malignant cells can
range from nodular to diffuse (63-65). Together, a tumor’s cellular
distribution and the extent of surgical tumor resection have
implications for prognosis (64-69). Machine learning models can
be trained to predict histology-based estimates of tumor cell density
from imaging (27, 70). In some cases, it may be beneficial to
supplement machine learning with mechanistic models of tumor
biology (71, 72). This can be particularly valuable when biological
processes are well defined and machine learning models may not be
trained on enough samples to fully detect the known relationship.
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In a study that compares a machine learning model, a mechanistic
model, and a hybrid model, the hybrid outperformed the other two
models (p<0.001) and had mean absolute predicted error value less
than half of either model alone. Taken together, these approaches
provide a means to convert routine clinical imaging into maps of
tumor cell density and invasion. Such tools can provide insight to
help balance aggressive surgical cytoreduction (i.e. supramarginal
resection) with sparing functional brain tissue (69).

Treatment assessment: immunotherapies

The profound inter- and intratumoral heterogeneity in GBM
make it challenging to assess treatment response to novel
therapeutics. The results of almost all GBM clinical trials have
been deemed underwhelming because, on average, patient
outcomes are not significantly improved. However, there may be
small groups of patients who are responding to these experimental
therapies but remain undetected when averaged together with such
large, diverse cohorts. Worse yet, treatment response can appear the
same or very similar to tumor progression on routine clinical
imaging, particularly in the case of immunotherapies. This
imaging ambiguity creates a major challenge in clinical decision-
making, as it is unclear whether the immunotherapy is working or a
change in treatment is warranted. There are numerous documented
cases of such circumstances in which surgical biopsies reveal
treatment-related immune infiltrate in the absence of tumor
cells (73).

Image-based machine learning models offer us the opportunity
to identify groups of patients who responded to therapies through a
targeted, hypothesis-driven approach. For example, many
immunotherapies are anticipated to boost a patient’s systemic and
intratumoral T-cell response. T-cell abundance can be estimated
through a variety of means (e.g., flow cytometry,
immunohistochemistry, RNA sequencing followed by
deconvolution) and used as the biological target variable in the
generation of radiomics models. Image-based models, trained on T-
cell estimates from samples paired with image-localized biopsies,
can be applied to MRIs from immunotherapy trials to measure the
changes in predicted intratumoral T-cell dynamics over the course
of therapy (Figure 3) (29). The ultimate long-term goal of this
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Image-based EGFR amplification model

EGFR-targeted therapy
3 months

Pre-treatment

EGFR wild-type
Progressing

FIGURE 2

Spatially-resolved radiomics models can predict tumor regions with genomic alterations. In this illustration, an image-based machine learning model
predicted EGFR amplification on serial imaging of a patient receiving erlotinib, an EGFR-targeting therapy. Notably, the regions which lose contrast
enhancement over the course of therapy are the same regions that were predicted to be EGFR amplified (red). Regions of tumor progression were
in locations that the model predicted to be EGFR wild-type (yellow). These results are consistent with the reality that intra-tumoral heterogeneity
limits the efficacy of targeted therapies to only subregions within a tumor.

A Pre-immunotherapy B Post-immunotherapy
T1Gd T2/FLAIR  Predictions T1Gd T2/FLAIR  Predictions

High
T-cells

Low
T-cells

FIGURE 3

Illustrative case using image-based modeling to predict intratumoral T-cell abundance (A) before and (B) after the initiation of immunotherapy. Serial
predictions over time may aid in the evaluation of novel immunotherapies, as treatment-responsive patients may go undetected with traditional
methods of clinical trial assessment.
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approach is to identify patients who responded or are responding to
novel therapies. This identification will allow us to effectively
streamline targeted therapies and move us closer towards a reality
of individualized medicine.

Conclusions

Image-based models have the potential to transform the way we
evaluate CNS tumors, prognosticate patient outcomes, and even assess
the efficacy of novel therapeutics. While whole-tumor classification
models have gained popularity and certainly hold value, the innate
intratumoral heterogeneity of these malignancies requires a spatial,
voxelwise approach to truly assess the entire landscape. The collection
of image-localized biopsies in the operating room can be resource-
intensive, and it will require massive amounts of data collection to
validate and apply these spatiotemporal machine learning approaches
on a large scale. However, this effort will pay dividends when
physicians can non-invasively assess a patient’s dynamic tumoral
and microenvironmental landscape in real-time and make

personalized treatment decisions accordingly.
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