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A. Mullavey,61 J. Munch,90 E. A. Muñiz,70 M. Murakoshi,253 P. G. Murray,25 S. Muusse,90 S. L. Nadji,12, 13

A. Nagar,24, 254 T. Nagar,7 N. Nagarajan,25 K. Nakamura,21 H. Nakano,255 M. Nakano,61 V. Napolano,54

I. Nardecchia,132, 133 T. Narikawa,152 H. Narola,68 L. Naticchioni,62 R. K. Nayak,256 B. F. Neil,26 J. Neilson,89, 106

A. Nelson,128 T. J. N. Nelson,61 M. Nery,12, 13 S. Nesseris,110 A. Neunzert,52 K. Y. Ng,75 S. W. S. Ng,90

C. Nguyen,63 P. Nguyen,69 L. Nguyen Quynh,257 S. A. Nichols,10 G. Nieradka,88 A. Niko,143 Y. Nishino,21, 258

A. Nishizawa,126 S. Nissanke,97, 32 E. Nitoglia,153 W. Niu,8 F. Nocera,54 M. Norman,18 C. North,18

J. Novak,259, 260, 261, 262 J. F. Nuño Siles,110 G. Nurbek,163 L. K. Nuttall,121 K. Obayashi,253 J. Oberling,52

J. O’Dell,209 E. Oelker,25 M. Oertel,259, 260, 261, 263, 262 A. Offermans,101 G. Oganesyan,40, 111 J. J. Oh,227 K. Oh,210

S. H. Oh,227 T. O’Hanlon,61 M. Ohashi,45 M. Ohkawa,206 F. Ohme,12, 13 H. Ohta,126 A. S. Oliveira,160

R. Oliveri,259, 260, 261 V. Oloworaran,26 B. O’Neal,114 K. Oohara,264, 265 B. O’Reilly,61 R. G. Ormiston,29

N. D. Ormsby,114 M. Orselli,47, 81 R. O’Shaughnessy,161 Y. Oshima,266 S. Oshino,45 S. Ossokine,1 C. Osthelder,2

D. J. Ottaway,90 A. Ouzriat,153 H. Overmier,61 A. E. Pace,8 R. Pagano,10 M. A. Page,21 A. Pai,140 S. A. Pai,96

A. Pal,267 S. Pal,256 O. Palashov,211 M. Pálfi,189 C. Palomba,62 K.-C. Pan,141 P. K. Panda,215 L. Panebianco,59, 60

P. T. H. Pang,32, 68 F. Pannarale,108, 62 B. C. Pant,96 F. H. Panther,26 C. D. Panzer,29 F. Paoletti,19 A. Paoli,54

A. Paolone,62, 268 E. E. Papalexakis,34 L. Papalini,19, 80 G. Pappas,213 A. Parisi,32, 97 J. Park,236 W. Parker,61

D. Pascucci,87 A. Pasqualetti,54 R. Passaquieti,80, 19 D. Passuello,19 M. Patel,114 D. Pathak,14 M. Pathak,90

A. Patra,18 B. Patricelli,80, 19 A. S. Patron,10 S. Paul,69 E. Payne,2 T. Pearce,18 M. Pedraza,2 R. Pegna,19

M. Pegoraro,84 A. Pele,2 F. E. Peña Arellano,45 S. Penn,269 A. Perego,102, 103 A. Pereira,122 C. J. Perez,52
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38Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Mart́ı i Franquès, 1, 08028 Barcelona, Spain
39Institut de F́ısica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra

(Barcelona), Spain
40Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy

http://orcid.org/0000-0002-5703-4469
http://orcid.org/0000-0002-7255-4251
http://orcid.org/0000-0002-6589-2738
http://orcid.org/0000-0002-1890-1128
http://orcid.org/0000-0001-5792-4907
http://orcid.org/0000-0002-0928-6784
http://orcid.org/0000-0002-2280-219X
http://orcid.org/0000-0002-4394-7179
http://orcid.org/0000-0001-5710-6576
http://orcid.org/0000-0002-8501-8669
http://orcid.org/0000-0002-8833-7438
http://orcid.org/0000-0002-7290-9411
http://orcid.org/0000-0003-3772-198X
http://orcid.org/0000-0003-2198-2974
http://orcid.org/0000-0002-7627-8688
http://orcid.org/0000-0002-9929-0225
http://orcid.org/0000-0003-0524-2925
http://orcid.org/0000-0002-1544-7193
http://orcid.org/0000-0003-0381-0394
http://orcid.org/0000-0002-4301-2859
http://orcid.org/0000-0003-4145-4394
http://orcid.org/0000-0003-2166-0027
http://orcid.org/0000-0003-1829-7482
http://orcid.org/0000-0003-3191-8845
http://orcid.org/0000-0003-2849-3751
http://orcid.org/0000-0003-4813-3833
http://orcid.org/0000-0001-9138-4078
http://orcid.org/0000-0003-2703-449X
http://orcid.org/0000-0002-3020-3293
http://orcid.org/0000-0002-1423-8525
http://orcid.org/0000-0001-6919-9570
http://orcid.org/0000-0002-3033-2845
http://orcid.org/0000-0002-8181-924X
http://orcid.org/0000-0002-0808-4822
http://orcid.org/0000-0002-1251-7889
http://orcid.org/0000-0001-9873-6259
http://orcid.org/0000-0001-8083-4037
http://orcid.org/0000-0002-3780-1413
http://orcid.org/0000-0002-9825-1136
http://orcid.org/0000-0002-8065-1174
http://orcid.org/0000-0001-7127-4808
http://orcid.org/0000-0002-3251-0924
http://orcid.org/0000-0002-6011-6190
http://orcid.org/0000-0002-3710-6613
http://orcid.org/0000-0002-6494-7303
http://orcid.org/0000-0002-0147-0835
http://orcid.org/0000-0002-3931-3851
http://orcid.org/0000-0001-8095-483X
http://orcid.org/0000-0002-5756-7900
http://orcid.org/0000-0001-5825-2401
http://orcid.org/0000-0003-2542-4734
http://orcid.org/0000-0002-5432-1331
http://orcid.org/0000-0001-8324-5158
http://orcid.org/0000-0002-3567-6743
http://orcid.org/0000-0002-7453-6372
http://orcid.org/0000-0002-1521-3397


6

41Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, I-33100 Udine, Italy
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168Università degli Studi di Sassari, I-07100 Sassari, Italy
169Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
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ABSTRACT

Despite the growing number of confident binary black hole coalescences observed through gravita-
tional waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity
is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however,
remains challenging due to the limited availability of gravitational waveforms that include effects of
eccentricity. Here, we present observational results for a waveform-independent search sensitive to
eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detec-
tors. We identified no new high-significance candidates beyond those that were already identified with
searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass
(total mass M > 70M⊙) binaries covering eccentricities up to 0.3 at 15Hz orbital frequency, and use
this to compare model predictions to search results. Assuming all detections are indeed quasi-circular,
for our fiducial population model, we place an upper limit for the merger rate density of high-mass
binaries with eccentricities 0 < e ≤ 0.3 at 0.33Gpc−3 yr−1 at 90% confidence level.

Keywords: Gravitational wave sources, eccentricity, black holes

1. INTRODUCTION

The LIGO (Aasi et al. 2015) and Virgo (Acernese et al.
2015) gravitational wave observatories have completed

three observing runs thus far. During these runs, 90
compact binary merger candidates were identified that
had probability of astrophysical origin pastro > 0.5 (Ab-

bott et al. 2021b; Abbott et al. 2021a). These discover-
ies opened previously inaccessible avenues to study the
Universe, including the first direct information on binary

black holes (Abbott et al. 2016a,b), the multi-messenger
observation of a binary neutron star coalescence (Abbott
et al. 2017; Abbott et al. 2017a; Margutti & Chornock
2021), a new type of constraint on cosmic expansion

(Abbott et al. 2017b; Abbott et al. 2021b), and novel
tests of general relativity (Abbott et al. 2016c, 2017c;
Abbott et al. 2021c).

Despite the growing number of candidates and the
insight they have provided, the astrophysical sites and
processes that produce the observed merging binaries re-
main uncertain. Multiple viable scenarios exist. The bi-
nary black holes could have formed in an isolated stellar
binary (e.g., Bethe & Brown 1998; Dominik et al. 2015;
Inayoshi et al. 2017; Marchant et al. 2016; de Mink &
Mandel 2016; Gallegos-Garcia et al. 2021), via dynami-
cal interactions in dense stellar clusters (e.g., Portegies
Zwart & McMillan 2000; Banerjee et al. 2010; Ziosi et al.
2014; Morscher et al. 2015; Mapelli 2016; Rodriguez
et al. 2016a; Askar et al. 2017) or triple systems (e.g.,
Antonini et al. 2017; Martinez et al. 2020; Vigna-Gómez
et al. 2021), or via gas capture in the disks of active

galactic nuclei (AGN; e.g., McKernan et al. 2012; Bar-
tos et al. 2017; Fragione et al. 2019; Tagawa et al. 2020).

∗ Deceased, November 2022.
† Deceased, March 2022.

Gravitational waves carry information about the
masses and spins of the merging black holes, which
can be used to probe the binaries’ origin (Abbott et al.

2016b; Vitale et al. 2017; Zevin et al. 2021). Different
formation channels have diverse predictions for the most
common component masses, mass ratios, spin magni-
tudes and spin orientations (Belczynski et al. 2002;

Dominik et al. 2013; Vitale et al. 2017). For exam-
ple, isolated binaries are typically expected to produce
black holes with spins mostly aligned with the binary’s

orbital axis with possible misalignments that could stem
from recoil velocities imparted during supernova explo-
sion (e.g., Rodriguez et al. 2016b; Gerosa et al. 2018;
Wysocki et al. 2019). Dynamically formed binaries, on

the other hand, generally have an isotropic spin dis-
tribution (e.g., Rodriguez et al. 2016b; Fishbach et al.
2017; Baibhav et al. 2020). However, while masses and

spins provide crucial information about the binaries’
origin, there is often overlap between their distributions
for various formation channels. A catalogue of binary
black holes must therefore be considered to make statis-
tical inferences about their origins using these properties
alone.
Orbital eccentricity, e is a unique signature that dis-

favors isolated binaries and favors triple systems, stellar
clusters or AGN-assisted mergers as the possible for-
mation scenario of the binary. While isolated black
hole binaries can be born with an initial eccentricity,
gravitational-wave emission will circularize their orbit
by the time their orbital frequency reaches the sensitive

band of ground-based gravitational-wave observatories
(Peters 1964). Dynamical encounters can form bina-
ries closer to merger, leaving insufficient time for or-
bital circularization. In AGN disks, eccentricity can be
enhanced for a significant fraction of mergers, e.g., via
binary–single interactions (Samsing et al. 2022; Tagawa
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et al. 2021). Eccentricity can also be enhanced for
field binaries by a nearby third object via the Kozai–
Lidov mechanism (Kozai 1962; Lidov 1962; Naoz 2016;
Antonini et al. 2017; Randall & Xianyu 2018; Bartos
et al. 2023). Identifying orbital eccentricity (or the lack
thereof) in the population of binary black holes con-
sequently places clear constraints on the proportion of
binaries originating from various formation channels.
Despite the advantages that come with estimating the

binary’s orbital eccentricity, it has been difficult to probe
this parameter through gravitational-wave observations
for several reasons. (i) Eccentric orbits have wider dy-
namical range than quasi-circular, or e = 0 orbits, mak-
ing them more challenging to model semi-analytically
(Huerta et al. 2014; Tanay et al. 2016). (ii) Eccen-
tricity increases the dimension of the binary parameter
space, requiring more gravitational waveform templates
and substantially increasing the computational cost of
both waveform computation (Cornish & Shapiro Key

2010) and running template-based searches (Lenon et al.
2021). (iii) Given these challenges and the lack of ex-
pected eccentricity in field binaries, the development of
eccentric waveform models began with significant de-

lay compared to circular waveform models (Junker &
Schaefer 1992). Nonetheless, eccentric waveform devel-
opment has been an active area recently, with several

promising waveform models that can be useful in the
future (e.g., Hinderer & Babak 2017; Cao & Han 2017;
Liu et al. 2022; Nagar et al. 2021; Albanesi et al. 2021;

Khalil et al. 2021; Ramos-Buades et al. 2022; Islam et al.
2021; Setyawati & Ohme 2021; Wang et al. 2023).
While no comprehensive eccentric gravitational-wave

template bank is currently available, indications of ec-

centricity already exist within the catalog of detected
gravitational waves. The basis of such results is that
standard gravitational-wave search algorithms devel-

oped to target circular binaries also have some sensitiv-
ity to eccentric binaries. For low masses ≲ 10M⊙, circu-
lar template-based searches show undiminished sensitiv-
ity for small residual eccentricities (e ≲ 0.05 at 40 Hz).
To detect signals with eccentricities beyond e ≳ 0.1, we
would however require template banks that include ec-
centric waveforms (Brown & Zimmerman 2010). In con-
trast, for higher masses and eccentricities, it has been
shown that eccentricities can be found without signif-
icant loss of signal-to-noise ratio (SNR) using model-

agnostic searches (Abbott et al. 2019).
To identify detected binaries as eccentric, two ap-

proaches have been carried out so far that circumvent
the need for comprehensive template banks:

• One approach is to employ Bayesian analyses us-
ing existing eccentric waveform models. An ec-

centric waveform model limited to eccentricities
e < 0.2 was used to show that the binary merger
that produced the signal GW190521 as well as
two others are consistent with originating from ec-
centric binary black holes (eBBH). (Romero-Shaw
et al. 2020, 2021). Using a different waveform
model that includes the full eccentricity range,
Gamba et al. (2023) found strong support for the
binary coalescence that produced GW190521 be-
ing highly eccentric. Both models were limited
to waveforms with black hole spins aligned with
the binary orbit. Orbital eccentricity and mis-
aligned spins that induce precession of the orbital
plane produce similar imprints in the gravitational
wave, and both of these effects should preferably
be accounted for in order to accurately analyze the
event (Calderón Bustillo et al. 2021; Romero-Shaw

et al. 2023).

• A different approach relies on numerical relativ-
ity simulations of eBBHs. Due to the compu-
tational cost, only a limited number of simula-
tions can be carried out, which can only sparsely

cover the parameter space. Gayathri et al. (2022)
used such numerical relativity waveforms that
discretely cover the full eccentricity space and

includes waveforms with both aligned and mis-
aligned spin with the binary orbit. Interpolation
methods and consistency checks were applied to

recover the eccentricity and other parameters of
the binary. They found that the signal GW190521
is most consistent with being produced by a highly
eccentric (e ∼ 0.7) binary.

The GW190521 signal for which the above analyses were
applied was already considered special even without
the indication of eccentricity, having had a high recon-
structed total black hole mass of 153.1+42.2

−16.2M⊙, along
with high and probably misaligned spin (Abbott et al.

2020).
In this paper, we carry out a search focusing on eccen-

tric black hole coalescences over the third observing run
(O3) of the LIGO–Virgo network. We use a minimally
modeled search algorithm (Klimenko et al. 2005; Salemi
et al. 2019; Tiwari et al. 2016) that we optimize for sen-
sitivity for a set of high-mass (total mass M ≥ 70M⊙),
eccentric gravitational waveforms (Hinder et al. 2018;
Boyle et al. 2019). As methods to estimate the eccen-
tricity of individual events are under development, we
instead focus on potential detections that have not al-

ready been discovered by other searches, and charac-
terize the sensitivity of our search to eccentric binaries,
relying on methods with well understood performance.



13

The paper is organized as follows. In Section 2 we in-
troduce our search algorithm and demonstrate its sen-
sitivity to eccentric waveforms. In Section 3 we present
our search results. In Section 4 we discuss constraints
on astrophysical populations based on our search results.
We conclude in Section 5.
Gravitational wave strain data (LIGO Scientific Col-

laboration, Virgo Collaboration and KAGRA Collabo-
ration 2021) and posterior samples (Abbott et al. 2021a)
for all events from GWTC-3 are available from the Zen-
odo platform or the Gravitational Wave Open Science
Center (Abbott et al. 2021b).

2. SEARCH ALGORITHM AND SENSITIVITY

2.1. Characterization of eccentricity

Due to the emission of gravitational waves, binary or-
bits have a gradually decreasing orbital separation. Ec-

centric binary orbits also circularize over time due to
the emission of gravitational waves (Peters 1964). This
makes the definition of eccentricity challenging. Deter-
mining eccentricity is particularly difficult at the late

stages of the binary evolution when less than a full orbit
separates the black holes from merger.
There have been various efforts to define eccentric-

ity for binary compact object systems. These eccen-
tricity definitions involve Keplerian orbit assumptions
(Peters & Mathews 1963; Loutrel et al. 2018), angular

frequencies at apocenter and pericenter (Mora & Will
2004), calculations using instantaneous radial accelera-
tion (Healy et al. 2018) and using coordinate separations
(Buonanno et al. 2011). A detailed list of the different

eccentricity definitions that have been developed so far
can be found in Loutrel et al. (2018).
For our analysis, we adopt the eccentricity definition

following Ramos-Buades et al. (2022), based on calcu-
lation first developed by Mora & Will (2004) and later
used by Lewis et al. (2017), Ramos-Buades et al. (2020)
and Shaikh et al. (2023). To compute eccentricity for
each orbit, we used the gravitational-wave frequencies
at apocenter (ωa) and the consecutive pericenter (ωp).
With these, eccentricity for the given orbit is

e = cos(ψ/3)−
√
3 sin(ψ/3) (1)

with

ψ = arctan

(
1− e222
2e22

)
, (2)

where

e22 =

√
ωp −

√
ωa√

ωp +
√
ωa
. (3)

We used the orbital frequency of the ℓ = 2, m = 2
multipole moments of the gravitational-wave signal.

In order to characterize the eccentricity as a function
of time, we associate this eccentricity with a frequency
that is an average of the pericenter and apocenter fre-
quencies. This method of computing eccentricity using
the waveform itself is advantageous because (i) it en-
ables us to compute the evolution of eccentricity as a
function of time (and frequency); (ii) it is gauge in-
dependent; and (iii) this definition can be uniformly
applied to all waveform models and can be computed
during post-processing. We quote eccentricity values at
15Hz gravitational-wave emission frequency unless spec-
ified otherwise. We choose this specific value as this is
approximately the low-frequency limit of LIGO–Virgo
network’s sensitivity, and is therefore of the order of the
initial frequency of detected gravitational-wave signals.
This also compares well to the frequency at which ec-
centricity is typically quoted by different astrophysical
models (usually defined at a gravitational-wave emission
frequency of ∼ 10 − 15Hz ; e.g., Fragione & Bromberg

2019; Zevin et al. 2021).

2.2. Eccentric waveforms

There are multiple ongoing efforts to develop a com-
prehensive set of eccentric binary coalescence wave-

forms. Multiple waveform families have been generated
using the semi-analytical effective-one-body formalism,
which are currently restricted to non-precessing spins

(Nagar et al. 2021; Ramos-Buades et al. 2022). A suite
of numerical relativity simulations have also been car-
ried out that cover virtually the full eccentric and spin
parameter space (Gayathri et al. 2022; Healy & Lousto

2022).
For our analysis, we adopted 12 state-of-the-art nu-

merical relativity waveforms from the Simulating eX-

treme Spacetimes (SXS) Collaboration (Hinder et al.
2018; Boyle et al. 2019), which were the only high-
fidelity waveforms available to us at the time of this
study. These waveforms cover the eccentricity space

up to 0.3 defined at 15Hz gravitational-wave frequency,
and include a range of mass ratios: q ≡ m2/m1 =
{1, 0.5, 0.33}, wherem2 andm1 are the lighter and heav-
ier masses, respectively.
As the numerical relativity simulations were carried

out for the late stage of the binary coalescence, they
cover the gravitational waveform for the full frequency
band of the ground-based detectors only for total bi-
nary source masses ≳ 70M⊙. Above this mass limit
any binary mass can be obtained by a simple scaling

of the simulated waveforms due to the scale invariance
of general relativity (Tiglio & Villanueva 2021). The
selected waveforms are non-spinning, which has lim-
ited effect on the sensitivity estimates we compute be-
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q e Waveform ID

0.33 0.08 SXS:BBH:1371

0.33 0.12 SXS:BBH:1372

0.33 0.27 SXS:BBH:1374

0.5 0.09 SXS:BBH:1365

0.5 0.14 SXS:BBH:1366

0.5 0.29 SXS:BBH:1369

0.5 0.30 SXS:BBH:1370

1.0 0.06 SXS:BBH:1355

1.0 0.14 SXS:BBH:1357

1.0 0.22 SXS:BBH:1361

1.0 0.29 SXS:BBH:1362

1.0 0.30 SXS:BBH:1363

Table 1. Parameters of the 12 numerical relativity simu-
lations adopted from the SXS binary black hole simulations
catalog (Boyle et al. 2019). Columns show the binary’s mass
ratio q, and eccentricity e at a reference emission frequency
of 15Hz (Section 2.1) for a binary source total mass of 90M⊙.
Spin amplitudes χ1 and χ2 are zero for all considered mod-
els.

low. When reconstructing the properties of detected

gravitational-wave signals, it is important to include
spins, as eccentricity and spin precession can mimic each
other (Calderón Bustillo et al. 2021; Romero-Shaw et al.

2023). Since we do not use these waveforms to recon-
struct properties of signals in this analysis, this problem
is not relevant here. We list the properties of the wave-

forms in Table 1. Figure 1 shows the change in signal
morphology as the orbital eccentricity is changed while
keeping other source parameters fixed.
We used this set of 12 numerical relativity wave-

forms to quantify the search sensitivity to high-mass
(≳ 70M⊙) eccentric black hole mergers. However, with
this limited set of waveforms we could not reconstruct

the eccentricity of events.

2.3. Search optimization and sensitivity improvement

Current template-based searches (Cannon et al. 2021;
Aubin et al. 2021; Nitz et al. 2017) do not include eccen-
tric gravitational waveforms. As a consequence, their
sensitivity is limited for such events, in particular at
high eccentricities and low masses (Brown & Zimmer-
man 2010). Our search was therefore based on the coher-
ent WaveBurst algorithm (cWB; Klimenko et al. 2005;
Tiwari et al. 2016; Salemi et al. 2019), which uses min-

imal assumptions about the signal waveform and hence
is expected to be sensitive to eccentric signals.
The cWB algorithm uses the Wilson–Daubechies–

Meyer filter to transform time domain detector data
to time–frequency representations (Necula et al. 2012).

Excess power regions in the time–frequency represen-
tation of strain data that are obtained from the net-
work of detectors are then identified by cWB using
clustering algorithms. Selected clusters with excess en-
ergy above the expected detector noise are identified as
events. The signal waveform, sky coordinates and wave-
form polarization of the source are then reconstructed
for these events using maximum-likelihood analysis (Kli-
menko et al. 2016).
Once the search pipeline is run, thresholds are placed

by cWB on the coherent statistics that it derives for
each candidate event. These are used to better differ-
entiate between astrophysical signals and noise artifacts
(Gayathri et al. 2019). We will refer to these thresh-
olds on cWB statistics as vetoes. Vetoes define a part
of the parameter space over the coherent statistics that
should be excluded from the analysis due to the high
rate of non-Gaussian noise artifacts there. To maximize
the sensitivity of cWB to eccentric binaries, we carried

out an optimization of these vetoes applied by cWB to
each event. The first two sets of vetoes that are common
to the standard cWB pipeline and the eccentric search
pipeline are summarized in Appendix A.

Transient non-Gaussian noise artifacts, also known
as glitches, can limit the detector’s sensitivity to
gravitational-wave signals. Targeted vetoes are placed

by the standard cWB pipeline to mitigate this problem.
These glitch-focused vetoes are derived using cWB sum-
mary statisticsQa and TF . The waveform shape param-
eter derived by cWB is denoted by Qa, and is a function

of another cWB parameter Qveto (Qa =
√
Qveto). This

parameter quantifies how well the total energy of the sig-

nal is distributed across time (Vedovato 2018; Gayathri
et al. 2019; Mishra et al. 2021). The threshold Qa > 0.3
is placed to better distinguish between gravitational
waves and a class of low-frequency transient noise arti-

facts called Blip glitches (Cabero et al. 2019; Davis et al.
2021). Signals due to Blip glitches, which have most of
their energy localized to a small time segment have low
Qa values as opposed to signals from binary coalescence,
which have higher Qa values as a consequence of signal
energy being distributed over a longer duration. The
TF parameter is a function of the signal bandwidth,
duration, and power which are additional statistics that
cWB estimates for candidate events. A threshold on
this parameter is placed to ensure that short-duration

glitches that mimic gravitational-wave signals from in-
termediate mass binary black hole systems are removed.
We injected simulated gravitational-wave signals from

equal mass, almost head-on systems (Healy & Lousto
2022) into real detector data to find the set of vetoes that
do not remove highly eccentric signals while still reject-
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Figure 1. Examples of time-domain waveforms with two different eccentricities (indicated in the legend) for equal mass binary
systems with total source mass of 90M⊙ at a distance of 100 Mpc. The simulations start at an orbital separation that translates
to an orbital frequency flow = 15Hz. The eccentricity values indicated in the legend are defined at the same flow.

ing most noise artifacts. To perform this optimization,
the cWB algorithm was used to detect these injected

signals and derive their properties. Vetoes were selected
such that they maximized the number of detections at
fixed false alarm rates.
We observed that Qa and TF vetoes were prone to

removing a significant fraction of highly eccentric sim-
ulated signals. We found that we could mitigate this
problem if we removed these two thresholds, and instead

introduced a new Qa–Qp veto to better distinguish be-
tween signals from highly eccentric binaries and short-
duration glitches. This veto removes events identified by

cWB that do not satisfy the condition Qa(Qp − 0.8) >
0.07. The summary statistic Qp quantifies the number
of cycles in the reconstructed signal. The Qa–Qp veto
along with the first two sets of vetoes from the standard

search which are summarized in Appendix A were se-
lected as the set of post-production vetoes for the eBBH
search. We will refer to this version of cWB that is op-

timized to eccentric mergers as cWB-eBBH. While the
vetoes were optimized using equal-mass waveforms, we
confirmed that the optimized search improved eccentric
event recovery for unequal mass injections as well.
Figure 2 shows an example of the standard-cWB Qa

veto and the new cWB-eBBH Qa–Qp veto for quasi-
circular and highly eccentric systems. We also look at
this veto’s performance with background events. To
generate background events, data from one detector is
time-shifted relative to the other detector’s data by an

amount greater than the maximum time for a gravita-
tional wave signal to travel between the detectors (Ab-
bott et al. 2016d). The standard veto does well in re-
moving background events and recovering the majority
of quasi-circular simulation events. However, the distri-
bution of simulation signals in the Qa−Qp space changes

for highly eccentric systems and as a consequence, the
standard cWB veto removes a significant fraction of sim-
ulation events.

We characterize the sensitivity improvement due to
the optimization procedure by computing the number of
injected gravitational waves detected by cWB-eBBH but

not by standard cWB, divided by the total number of
detections by standard cWB. Here we consider a signal
detected if it corresponds to an inverse false alarm rate
(IFAR) of ≥ 1 yr. This IFAR threshold of ≥ 1 yr was

only used to assess the improvement in sensitivity from
the introduction of the cWB-eBBH veto, and not as a
general detection threshold.

The fraction of events recovered with IFAR ≥ 1 yr by
cWB-eBBH that are removed by the standard pipeline
with respect to the total number of events recovered

by the standard pipeline is ∼ 28% for head-on collision
(highly eccentric) equal mass systems with a source total
mass of 150M⊙. Additionally, we see that this fraction
is higher (∼ 34%) for systems with more unequal mass.
Therefore, our optimization is the most significant for
highly eccentric binaries with unequal masses. The per-
formance of cWB-eBBH for low eccentricity signals re-
mains comparable (within 5%) to the standard pipeline.
We conclude that the cWB-eBBH veto does significantly
better than the standard veto to improve sensitivity for
highly eccentric systems without degrading sensitivity
to less eccentric systems.

3. RESULTS

3.1. Search sensitivity

We carried out a search for simulated gravitational-
wave signals to quantify the sensitivity of the cWB-
eBBH search algorithm. We performed injections in
offline (high-latency) re-calibrated O3 strain data with
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Figure 2. Distribution of Qa and Qp for simulated signals
(shown as two-dimensional histogram with colorbar denot-
ing number of events in each two-dimensional bin) and loud
simulated background events (shown as black dots). The
cWB statistics Qa and Qp describe the morphology of a sig-
nal. The yellow line represents the standard cWB Qa veto
and the red dashed line denotes the eBBH Qa–Qp veto. The
white dots correspond to loud background events that re-
main after all standard cWB vetoes (Lopez et al. 2022) are
applied. Top: Simulated signals correspond to equal mass,
source total mass, M = 150M⊙, quasi-circular orbit sys-
tems. Bottom: Simulated signals correspond to equal mass,
M = 150M⊙, almost head-on (highly eccentric) systems.

category 0, 1, 2 and 4 data-quality vetoes (Davis et al.
2021; Abbott et al. 2021a). Category 0 vetoes are ap-
plied to ensure that the segments of data used in this
analysis were collected when the detectors were in ob-
serving mode. Category 1 vetoes are used to discard

data from periods in which the detectors were running
in an improper configuration, data-dropout or on-site
maintenance occurred at either detector, or when there
are major problems with the operation of an instrument
at the detectors. Category 2 vetoes flag data segments
that likely contain non-Gaussian noise artifacts. Cate-
gory 4 vetoes flag data segments that contain hardware
injections. The injected waveforms have source total
mass M ∈ [70M⊙, 200M⊙]. We used the possible 12
configurations of e and q, with 6 choices of source to-
tal mass for each of these configurations. Waveforms
with different masses were obtained by scaling each of
the 12 numerical relativity waveforms listed in Table 1.
The simulated signals for each fixed set of source pa-
rameters of (M, e, q) were uniformly distributed in sky
location (θ, ϕ) and inclination ι. They were also dis-
tributed uniformly in co-moving volume up to a maxi-
mum redshift zmax. For each waveform, we separately
calculated zmax up to which they must be injected so

that we do not make unnecessary injections that the
search cannot detect. This was calculated with an opti-
mal two-detector-network (Livingston–Hanford) signal-
to-noise-ratio threshold of 5.0. Since we observe signals

with redshifted mass (Krolak & Schutz 1987), it is in
principle possible to inject simulations with total source
mass < 70M⊙ if we populate them at higher redshifts.

This was however not performed in the presented anal-
ysis. Injections spaced uniformly in time approximately
every 100 s in the O3 dataset.
We used the fraction of detected and injected wave-

forms to compute the sensitive distance of the search for
the given waveform. Sensitive distance (Abbott et al.
2019) is defined such that a detector that detects every

event within the sensitive distance and no event beyond,
it would have the same detection rate as our detector
network.

A similar analysis was carried out with data from the
first two observing runs of LIGO–Virgo using approxi-
mate eccentric waveform models (Abbott et al. 2019).
This analysis spanned the binary mass parameter space
from 10M⊙ to 100M⊙ while the analysis described in
this paper covers binary mass of 70M⊙ to 200M⊙. The
sensitivities reported in this paper are higher than that

analysis due to increased sensitivity of the detector dur-
ing the third observing run, and due to the higher masses
considered here. There have also been studies to char-
acterize the effect of eccentricity in the sensitivity of
long-duration signals with unmodeled search pipelines
using hybrid inspiral–merger–ringdown waveform mod-
els (Abbott et al. 2021c). However, these studies were
targeted towards low mass binary black holes and bi-
nary neutron stars as opposed to our search, which is



17

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Eccentricity [flow = 15 Hz]

1.0

1.2

1.4

1.6

1.8

S
en

si
ti

ve
D

is
ta

n
ce

[G
p

c]

200 M�
175 M�
150 M�
110 M�
90 M�
70 M�
q = 1.0

q = 0.5

q = 0.33

Figure 3. Sensitive distance as a function of orbital eccen-
tricity for different binary total masses and mass ratios. Dif-
ferent marker shapes represent systems with different mass
ratios and the different colors represent the various total
masses considered here. We used an IFAR threshold of
1.32 yr, which was the loudest new candidate’s IFAR. The
horizontal axis denotes the eccentricity of the binary at an
orbital separation that corresponds to a frequency of 15Hz.
The statistical error bars on the obtained sensitive distance
are smaller than can be presented on this plot.

targeted towards high mass eccentric binaries. There-

fore, the search sensitivities reported in Abbott et al.
(2021c) are lower than what we obtain in this paper.
The obtained sensitive distance is shown in Figure 3,

for different source total masses and mass ratios, as

a function of binary eccentricity. The statistical error
bars for the obtained sensitive distance range between
0.21Mpc and 5.63Mpc. We see that the sensitivity at

the considered high masses is mostly independent of the
eccentricity up to our highest eccentricity of 0.3. We
also see, as expected, that sensitivity is highest for equal
mass binaries, and gradually drops as the difference be-

tween the two black hole masses increases.

3.2. Search and loudest event

We carried out the cWB-eBBH search over the third
observing run of the LIGO and Virgo detectors. For
most of the observing run we used data from only the
two LIGO detectors, as search sensitivity was not ap-
preciably affected by the addition of Virgo data. For
the January 4, 2020 to January 22, 2020 period we also
incorporated Virgo in the search to analyze the candi-

date 200114 020818, which was found by the intermedi-
ate mass black hole binary search (Abbott et al. 2022) in
the three detector network configuration comprising the
LIGO and Virgo detectors. Follow-up studies for this
event (Abbott et al. 2022, Appendix B) showed incon-
sistent results under a quasi-circular binary black hole
hypothesis. We investigated if this candidate had higher

significance under the eccentric hypothesis. However,
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Figure 4. Cumulative number of events as a function of
IFAR recovered by the cWB-eBBH search. The solid line
represents the expected background for the O3 search, and
the gray regions correspond to the 50% and 90% Poisson un-
certainty regions. Green squares denote previously reported
gravitional-wave candidates (Abbott et al. 2021a; Abbott
et al. 2022) recovered by our search, and red triangles show
events that were not previously reported by other searches.

this candidate was removed by the cWB-eBBH vetoes.

The search and sensitivity results presented below were
obtained using data from only the two LIGO detectors.
Our search recovered 28 gravitational-wave candidates

with IFAR> 1 yr. By choosing this IFAR threshold, we
eliminate low significance candidates that could have
been due to noise artifacts in the detector. All but
one of these events have been identified previously by

other searches as well (Abbott et al. 2021a; Abbott et al.
2022). The results of our search are summarized in Fig-
ure 4. The search results excluding previously found

candidates is consistent with background noise.
We identified one event candidate with an IFAR> 1 yr

that was not previously reported. This most significant
new candidate, hereafter referred to as 190706 004633,
was observed on July 6, 2019. It was recovered with an
IFAR of 1.32 yr. It has an SNR of 12.2 and a central
frequency of 74Hz. Figure 5 shows the time–frequency
map of this event candidate.
In order to better understand whether 190706 004633

is of astrophysical origin, we carried out a detailed study

of the detector performance and characteristics at the
time of the event. This study was aimed to uncover signs
of instrumental or environmental artifacts that could
have altered the gravitational wave data and hence pro-
duced the candidate (Davis et al. 2021, Section 3.2.4).
No such artifacts were found. However, the Gravity Spy
machine learning classifier (Zevin et al. 2017; Soni et al.
2021) classified the excess power in LIGO Livingston as
a Tomte glitch. Tomtes are a common glitch class that
are similar in morphology to high-mass binary coales-
cence signals (Ashton et al. 2022). No glitch or signal
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Figure 5. Time-frequency map (spectrogram) of the most significant new candidate identified by the cWB-eBBH search. We
show the spectrogram for the LIGO-Hanford (left) and LIGO-Livingston (right) detectors. The individual detector SNRs in the
LIGO-Hanford and LIGO-Livingston are 5.6 and 10.9 respectively. Since the energies in the two detectors are very different,
we use different scales on the colorbar. The Virgo detector was in observing mode during the time of this event. We used data
from all three detectors for follow-up studies and observed that the SNR in the Virgo detector for this event was low (∼ 2).

was identified in the LIGO Hanford data by the same
classifier. However, as the Gravity Spy machine learning
model is not designed to search for astrophysical signals
(Glanzer et al. 2023) or to differentiate eccentric binary

black hole merger signals from glitches, we cannot rule
out an astrophysical origin.
To further investigate this event we carried out a stan-

dard parameter estimation analysis of the data using
LALInference (Veitch et al. 2015) with nested sampling
assuming a quasi-circular waveform. We investigated
properties of this event using data from the two LIGO

detectors as well as the Virgo detector. For this analysis,
in lieu of an eccentric waveform that fully covers the nec-
essary parameter space, we adopted the quasi-circular

binary approximant IMRPhenomXPHM (Pratten et al.
2021). This estimation found that the estimated source
total mass of 190706 004633 is M ∼ 320M⊙, and its
estimated redshift is z ∼ 0.3. Studies have shown that
the chirp mass of a binary with low to moderate eccen-
tricity can be reconstructed with a bias of up to 4% us-
ing parameter estimation with quasi-circular waveforms
(O’Shea & Kumar 2021). However, the reconstructed
parameters would be considerably more inaccurate if the
signal originated from a highly eccentric binary. There-
fore, these results indicate that the signal, if astrophysi-
cal, would correspond to a high-mass binary, but should
not be used to give precise indications of source proper-
ties.
Although astrophysical origin could not be ruled out,

we conclude from the large difference measured in the
LIGO Hanford and Livingston SNRs that this event is in

accordance with an incoherent noise origin rather than

a binary black hole origin. In the following section we

therefore compute upper limits to merger rates assuming
non-detection of any eccentric event.

4. ECCENTRIC BINARY POPULATION MODELS

In order to understand the astrophysical implications
of our results, we computed the expected number of de-

tections for a fiducial source model. For this we adopt
the joint total mass and mass ratio probability density
p(M, q) which was found to be the best fit for LIGO–
Virgo’s observations listed in the GWTC-3 catalog (Ab-

bott et al. 2021a; Abbott et al. 2023) assuming the
Power Law + Peak model described in Abbott et al.
(2021a). As we have waveforms and simulations that

are sparsely sampled in mass and mass ratio, we linearly
interpolated the sensitivity of the existing waveforms to
points in between the available points in order to obtain
a sensitive distance for any source total mass and mass

ratio within 70M⊙ ≤M ≤ 200M⊙ and 0.33 < q < 1.0.
For a more general distribution, we considered a power-
law black hole mass distribution of M−2.3 (assuming a
Salpeter initial mass function; Perna et al. 2019) and a
uniform distribution in mass ratio. We further adopted
an eccentricity distribution in which the probability den-
sity of the binaries’ eccentricity is p(e) ∝ 2(1− e). This
distribution is chosen to characterize a population which
has a larger fraction of low eccentric binaries.
Having defined the probability density of our fiducial

population with respect to the binary parameters, using
the sensitive distance obtained over the considered pa-
rameter space (see Section 3.1), we computed the total
volume–time VT (Abbott et al. 2019, Appendix A) cov-
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ered by our search during O3, assuming an IFAR thresh-
old of 1.32 yr, which is the IFAR of our search’s loudest
new event. For our fiducial model, we obtained VT =
6.88 Gpc3 yr for eccentric binaries with 0 < e < 0.3. As-
suming non-detection of any eccentric event, this would
correspond to a constraint of < 0.33Gpc−3 yr−1 on
the merger rate density at 90% confidence level in the
70M⊙ ≤ M ≤ 200M⊙ and 0.33 < q < 1.0 parameter
space.
With the small number of available eccentric wave-

forms for this study, we cannot determine if discovered
binaries are eccentric. Therefore, we cannot discount
the possibility that previously identified gravitational-
wave candidates originate from eccentric binaries. In
this case, the number of observed eccentric binaries is
greater than zero, and so the merger rate could po-
tentially be higher than our upper limits. Conversely,
for some parts of the parameter space, template-based
searches have better sensitivities, although we expect

them to lose sensitivity at higher eccentricities. Hence,
including the VT from these searches (Abbott et al.
2021b; Abbott et al. 2021a) would tighten our upper
limits. For simplicity, we limit our results to those from

the cWB-eBBH analysis assuming all previously identi-
fied candidates are from quasicircular binaries.
Since binary mergers from dynamical formation chan-

nels can follow a mass distribution different from the
one obtained from GWTC-3, we additionally computed
VT assuming other parameter distributions. We sum-
marize our results in Table 2. Our focus on high-mass,

eccentric events can be particularly interesting for as-
trophysical formation channels that favor the produc-
tion of both high mass and high eccentricity, such as

gas-driven capture in AGN disks. For this scenario
we adopted the AGN model of Gayathri et al. (2021)
as an illustrative example. Our search sensitivity for

this model is marginally higher than for the GWTC-
3 distribution because this model favors higher masses
that are more likely to fall in the mass interval that we
are most sensitive to in this analysis. Assuming non-
detection of any eccentric event, we place a constraint
of < 0.29Gpc−3 yr−1 on the merger rate density at 90%
confidence level for AGN-assisted mergers. Taking an
estimated ∼ 70% of mergers being eccentric (Samsing
et al. 2022) and ∼ 4% of mergers having M > 70M⊙
(Gayathri et al. 2021), we project the corresponding up-

per limit on the merger rate density to obtain upper
limits on the overall AGN-assisted merger rate density
as ∼ 0.29Gpc−3 yr−1 /(0.7 × 0.04) ∼ 10.4Gpc−3 yr−1.
This is consistent with rate estimates in the literature
(e.g., Yang et al. 2019; Gayathri et al. 2021).

As a second illustrative model we used the distri-
bution expected in dense star clusters (DSC), adopted
from Zevin et al. (2021). For this population, we are
able to place a constraint of < 0.34Gpc−3 yr−1 on the
merger rate density at 90% confidence level assuming
non-detection of any eccentric event. Taking an esti-
mated ∼ 10% being eccentric and ∼ 18% of mergers
having M > 70M⊙, we project the corresponding up-
per limit on the merger rate density to obtain upper
limits on the overall DSC-assisted merger rate density
as ∼ 0.34Gpc −3 yr−1 /(0.1× 0.18) ∼ 18.9Gpc−3 yr−1.
This is consistent with rate estimates in the literature
(Kremer et al. 2020; Zevin et al. 2021).

p(M) p(q) p(e)
VT

[Gpc3yr]

GWTC-3 GWTC-3 2(1− e) 6.88

GWTC-3 GWTC-3 uniform 6.93

M−2.3 uniform 2(1− e) 8.22

M−2.3 uniform uniform 8.27

AGN AGN 2(1− e) 7.85

AGN AGN uniform 7.91

DSC DSC DSC 6.69

Table 2. Total volume–time covered by cWB-eBBH search
assuming various source total mass, mass ratio, and eccen-
tricity probability density functions for the different illustra-
tive models described in Section 4.

5. CONCLUSION

We carried out a search that does not rely on tem-

plate banks, and optimized it to be sensitive to high-
mass (M > 70M⊙) eccentric binary black hole coales-
cences. We characterized the sensitivity for this search

to understand our findings’ implications for possible ec-
centric astrophysical populations. Our conclusions are
as follows:

1. We did not identify any high significance candidate
that was not already detected by other searches.
Our loudest and most significant new event has an
IFAR of 1.32 yr. We performed detailed follow-
up for this event, and concluded that astrophysi-
cal origin could not be ruled out. However, our
search results are consistent with the expected

background for O3.

2. For our fiducial model, we adopted a mass dis-
tribution that assumes a Power Law + Peak
model and best fits the observations listed in the
GWTC-3 catalog. We also chose an eccentric-

ity distribution (defined in Section 4) that favors
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quasi-circular binaries. For this assumed popula-
tion, our search sensitivity is such that assuming
non-detection of eccentric events, we can place a
constraint of < 0.33Gpc−3 yr−1 on the merger
rate density at 90% confidence level. This ob-
tained overall sensitivity is similar to that of other
searches for circular black hole mergers in a similar
mass range (cf. inferred rate of 0.08+0.19

−0.07 Gpc−3

yr−1 of mergers similar to GW190521; Abbott
et al. 2022).

3. As an illustrative example, we found that non-
detection of any eccentric event corresponds a con-
straint of < 10.4Gpc−3 yr−1 on the AGN-assisted
merger rate density, consistent with rate estimates
in the literature (e.g., Yang et al. 2019; Gayathri
et al. 2021).

4. As a second illustrative model, we computed our

search sensitivity to mergers in dense star clusters,
considering the model of Zevin et al. (2021). The
results are similar to the AGN channel and our

expected sensitivity for a generic eccentric model.
For this model, we found that non-detection of
eccentric events corresponds to a constraint of

< 18.9Gpc−3 yr−1 on the merger rate density,
consistent with rate estimates in literature (Kre-
mer et al. 2020; Zevin et al. 2021).

The constraints we place on the rate of eccentric bi-
nary coalescences in this work are significantly improved
over those computed with data obtained from the first

and second observing runs (Abbott et al. 2019). This
improvement can be attributed to increased sensitivity
of the detectors, progress in the development of highly

accurate eccentric waveforms in the high mass domain,
and an optimized eccentric search. In view of the ex-
pected sensitivity of the fourth observing run by LIGO–
Virgo–KAGRA (Abbott et al. 2018), we anticipate to

see a significant rise in the number of binary black hole
detections. This increases our prospects of detecting
gravitational-wave signals from eccentric binary coales-
cences. Regardless, a non-detection would enable us to
further constrain the binary black hole merger rates in
astrophysical models favouring eccentric orbits.
Future works will need to expand the study to eccen-

tricities greater than 0.3, and to include masses below
70M⊙ as well as black hole spins.

Data-quality products and event-validation results
were computed using the DQR Collaboration & Collabo-
ration (2018), DMT John Zweizig (2006), gwdetchar Ur-
ban et al. (2021), hveto Smith et al. (2011) and iDQ Es-

sick et al. (2020) software packages and contributing

software tools. Analyses in this paper relied upon the
LALSuite software library LIGO Scientific Collabora-
tion (2018). The detection of the signals and subsequent
significance evaluations in this paper were performed
with the coherent WaveBurst (cWB) Klimenko et al.
(2005, 2016) package. Estimates of the noise spectra
and glitch models were obtained using BayesWave Cor-
nish & Littenberg (2015); Littenberg et al. (2016); Cor-
nish et al. (2021). Source-parameter estimation was
performed with the LALInference Veitch et al. (2015)
library. PESummary was used to post-process and
collate parameter-estimation results Hoy & Raymond
(2021). Plots were prepared with Matplotlib Hunter
(2007) and GWpy Macleod et al. (2021). NumPy Har-
ris et al. (2020) and SciPy Virtanen et al. (2020) were
used in the preparation of the manuscript.
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APPENDIX

A. POST-PRODUCTION VETOES

In this appendix, we will describe in detail the post-production vetoes that are applied by the standard cWB pipeline
(Gayathri et al. 2019; Lopez et al. 2022) to distinguish between true gravitational-wave signals and non-Gaussian noise
artifacts that can mimic gravitational-wave signals.

The first set of vetoes are based on the morphology of the reconstructed signals. These vetoes are applied to
the following cWB summary statistics: the energy-weighted central frequency of the signal f0; M∗ which is the
reconstructed chirp mass parameter is obtained by fitting the signal with the characteristic time–frequency evolution

for a quasi-circular binary (f ∝ (t − tc)
−3/8), and Qa, the waveform shape parameter introduced in Section 2.3. Qa

is a function of the cWB parameter Qveto (Vedovato 2018; Gayathri et al. 2019; Mishra et al. 2021), which quantifies
how well the total energy of the signal is distributed across time. The first set of vetoes removes events that do not
satisfy 24Hz < f0 < 100Hz, |M∗/M⊙| > 10, |(M∗/M⊙)/Q

2
a| > 15, M∗/M⊙ > −100.

The next set of vetoes are based on cWB reconstruction, and the correlation of the event across the network of
detectors. The cWB summary statistics involved in this set are: norm, defined as the ratio between the total energy
over all wavelet resolution levels used for the analysis and the reconstructed energy of the event; χ2, a parameter

that quantifies the quality of signal reconstruction by computing the residual noise energy that remains once the
reconstructed signal is subtracted from data (Gayathri et al. 2019), and finally the cc[0] and cc[2] parameters that
describe the correlation of the signal across the network of detectors in time domain and frequency domain, respectively
(Tiwari et al. 2015). The second set of vetoes remove candidate events that do not satisfy norm > 4, log10(χ

2) < 0.4,
cc[0] > 0.8, cc[2] > 0.7.
The two sets of vetoes described above were optimized with gravitational waveforms for quasi-circular binary black

hole coalescences for the standard cWB pipeline. We found that they performed optimally in recovering eBBH signals
as well. Therefore, these vetoes along with the new eBBH veto introduced in Section 2.3 were chosen as the final set
of vetoes for the cWB-eBBH search pipeline.
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Vigna-Gómez, A., Toonen, S., Ramirez-Ruiz, E., et al.

2021, ApJL, 907, L19

Virtanen, P., et al. 2020, Nature Meth., 17, 261

Vitale, S., Lynch, R., Sturani, R., & Graff, P. 2017, Class.

Quant. Grav., 34, 03LT01

Wang, H., Zou, Y.-C., & Liu, Y. 2023, arXiv:2302.11227

Wysocki, D., Lange, J., & O’Shaughnessy, R. 2019,

PhRvD, 100, 043012

Yang, Y., Bartos, I., Haiman, Z., et al. 2019, ApJ, 876, 122

Zevin, M., Romero-Shaw, I. M., Kremer, K., Thrane, E., &

Lasky, P. D. 2021, ApJL, 921, L43

Zevin, M., et al. 2017, CQGra, 34, 064003

Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ,

910, 152

Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G.

2014, MNRAS, 441, 3703

https://doi.org/10.5281/zenodo.2575786
https://gwburst.gitlab.io/documentation/latest/html/faq.html?highlight=qveto#the-qveto
https://gwburst.gitlab.io/documentation/latest/html/faq.html?highlight=qveto#the-qveto

