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ABSTRACT: Intrinsically disordered proteins and regions (IDPs) are involved in vital biological processes. To understand the IDP
function, often controlled by conformation, we need to find the link between sequence and conformation. We decode this link by
integrating theory, simulation, and machine learning (ML) where sequence-dependent electrostatics is modeled analytically while
nonelectrostatic interaction is extracted from simulations for many sequences and subsequently trained using ML. The resulting
Hamiltonian, combining physics-based electrostatics and machine-learned nonelectrostatics, accurately predicts sequence-specific
global and local measures of conformations beyond the original observable used from the simulation. This is in contrast to traditional
ML approaches that train and predict a specific observable, not a Hamiltonian. Our formalism reproduces experimental
measurements, predicts multiple conformational features directly from sequence with high throughput that will give insights into
IDP design and evolution, and illustrates the broad utility of using physics-based ML to train unknown parts of a Hamiltonian, rather
than a specific observable, in combination with known physics.

1. INTRODUCTION IDPs participate in vital biological functions including
transcriptional regulation, cellular differentiation, and the
formation of membraneless organelles, to name a few. A
growing body of data suggests that features of IDP sequence
and conformation, which in turn depend on sequence,'”°
provide insights into function.”™"” Consistent with this, IDPs
can modulate their conformation and function by biological
regulators such as mutations and post-translational modifica-
tions (e.g., phosphorylation) that alter their sequence.
Furthermore, IDPs can sensitively regulate their conformation
by responding to environmental conditions such as changes in
ionic strength, pH, or crowders (chemical regulators).é’lg_21
To advance IDP biophysics further, we need to decode the
sequence—conformation relation and its response to chemical
and biological regulators to ultimately decipher the sequence—
conformation—function link.

Machine learning (ML) can decipher complex patterns in data
that are not typically amenable to closed-form mathematical
equations. Problems in physical sciences are rife with such data
sets and are routinely subjected to ML to ultimately make
predictions. However, numerous problems are governed in
part by known quantitative laws of physics, which are
analytically tractable. In such a case, do we ignore that
knowledge or leverage it to our advantage? This intriguing
possibility presents itself in an important biophysical problem
when modeling conformations of intrinsically disordered
proteins and regions (collectively termed IDPs). Conforma-
tions of IDPs depend on both electrostatics and non-
electrostatic interactions. While physics of electrostatics is
analytically tractable, nonelectrostatics is not amenable to
closed-form mathematical relation. Hence, the approach we
take builds and applies a ML model only to address the
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and ML to model the IDP conformation that will be relevant
not only in IDP biophysics but also in general problems of
physical sciences.
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Figure 1. PML of IDP trains Hamiltonian and not a specific observable. (Left) Simulated values of end-to-end distance ((R,.)) for different
sequences (S1, S2, S3...) are used to infer sequence-dependent nonelectrostatic interaction parameters (@,) from a physics-based theory in step 1.
(Right) These sequence-dependent interaction parameters are trained with CNN in step 2. In step 3, for a new sequence, nonelectrostatic
interaction Hamiltonian (H,,..ec) parametrized by @, is predicted from the trained CNN model and combined with physics-based analytically
tractable electrostatics (H,.) to construct the overall Hamiltonian (H) from which several observables (such as distance (R;) between two residues

i and j beyond (R..)) are predicted. For the purpose of this figure, , I(R,%j) is denoted by (R;;) to avoid cumbersome notation.

IDPs are naturally abundant in the human proteome, and
there is a need to understand their evolution across multiple
proteomes. Advances in synthetic biology also require the
design of IDPs with specific conformational features.
Recognizing the demand from both IDP evolution and design
that requires high-throughput modeling, it is timely to establish
a mathematical link between IDP sequence and conformation.
Different experimental tools have been developed to probe
IDP configuration, from single-molecule FRET,'”?%*3
NMR,**** to SAXS.”**” However, these specialized experi-
ments on IDPs have yet to reach the necessary throughput. All-
atom molecular dynamic simulations, despite their tremendous
success in modeling folded proteins, are limited in IDPs due to
their computational cost, sampling challenges,zg’29 and
inaccuracies in force fields. More recently, coarse-grain
simulations emerged as an alternate approach due to their
computational efficiency and ability to accurately reproduce
experimentally measured chain dimensions.'”*"~** Coarse-
grain simulations, despite their impressive throughput, are
computationally costly for long chains. Simulation throughput
is also limiting when designing an IDP with targeted
conformational properties. Mutagenesis-based design often
requires enumerating all possible mutations® and their effect
on the conformation, causing a combinatorial explosion. ML or
mathematical models based on theoretical physics can mitigate
these challenges. Furthermore, mathematical models can give
valuable insights and generate new hypotheses to be
subsequently tested by detailed experiment and/or simulation.

ML models such as AlphaFold,*® used in modeling folded
proteins with unique structure, are inapplicable to IDPs** due
to their ensemble nature and paucity of data. To overcome the
lack of direct experimental data, coarse-grain simulations are
used to generate ensemble average properties for a large set of
sequences to train ML models.'””>”> These approaches train a
large data set of a specific observable generated from the
simulation of diverse sequences to predict the same observable
for a new sequence. A separate approach has used machine
learning to directly train the ensemble and its change upon
mutation.*® Naturally, these training schemes are limited to the
prediction of the specific observable and/or an ensemble under
a given environmental condition.

We provide a novel approach integrating physics-based
theory, simulation, and ML that is not limited to one specific
observable used to train the model and is versatile in its

prediction. Our proposed formalism begins with a sequence-
dependent analytically tractable Hamiltonian from which
several ensemble average conformational properties can be
derived with an approximate closed-form relation. These
analytical models are scalable and capable of handling the
aforementioned combinatorial explosion faced in IDP design
and generating new hypotheses. A challenge, however, is to
model sequence-dependent nonelectrostatic interaction param-
eters of the Hamiltonian. This parameter for a specific
sequence is not known a priori. Sequence-dependent electro-
statics, on the other hand, can be directly calculated using
Coulomb’s law and its screening based on laws of ionic
equilibrium, amenable to analytical treatment using tools from
theoretical polymer physics.””” An appealing feature of our
theory is its ability to infer interaction parameters of the
Hamiltonian for a sequence if values of a specific observable is
known. For example, the ensemble average end-to-end
distance may be known from a simulation or experiment.
Given this knowledge, the inference of the unknown parameter
is straightforward with simple algebraic manipulation at no
computational cost or optimization. We leverage this special
feature of our formalism to infer sequence-dependent non-
electrostatic parameters from simulated values of a specific
observable for a large set of sequences (see Figure 1 left panel).
For this purpose, we utilize two recent large-scale simulation
studies.' " Since the underlying mapping between these
nonelectrostatic parameters and their parent sequences is
difficult to decipher analytically, we use ML to train these
inferred parameters for a large set of sequences. For a new
sequence, we then predict the nonelectrostatic patterning from
the machine-learned model. The predicted nonelectrostatic
interaction is further combined with our charge-patterning
theory, not machine learned, derived from physicochemical
laws (see Figure 1 right panel). This is the essence of physics-
based ML (PML) in the present context. The resulting
Hamiltonian can accurately reproduce multiple simulated
conformational properties, e.g, ensemble average distance
between any two residues and not just end-to-end distance for
a given sequence.

Thus, PML integrates ML with a physics-based mathemat-
ical formalism and provides a powerful platform to predict
both trained and untrained observables for a new sequence
going beyond traditional approaches that are limited to a
specific observable. Furthermore, this proof of concept
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principle shows the importance of training a Hamiltonian
directly from experimental data, when such data of the IDP
conformation becomes available at a large scale, even if
measurements are limited to a specific observable. This will
provide a high-throughput modeling of IDP conformation that
will be useful in IDP design and applicable to predict
conformations of disordered proteomes. Beyond IDP bio-
physics, our approach will also contribute to the emerging
frontier at the interface of ML and physics.***”

2. METHODS

2.1. Inferring Sequence-Dependent Nonelectrostatic
Parameters from Simulations. The global dimension of an
IDP can be characterized by ensemble average end-to-end
distance squared ((R%)) or a normalized swelling factor x =
(R%.)/(NP*), where N is the number of amino acids and [ = 5.5
A*" We have recently derived a sequence-dependent free
energy (F(x)) as a function of the swelling factor (x) to
determine the most likely x (by minimizing the free energy)
for a given sequence using a model that accounts for (i) chain
connectivity, (ii) electrostatic interaction and its screening by
salt described by Debye—Huckel theory, (iii) residue-pair-
specific nonelectrostatic interaction modeled by two-body
delta function potential with unknown parameters, and (iv) a
three-body mean-field repulsive interaction (with strength ws)
as a product of two delta functions”' needed to avoid collapse.
Specifically, F(x) is given by

3/2 3
3 3 Q 3 B
F(x) = 2(x —Inx) + | —| — +w|—|—
PF(x) 2(x n x) (M] a7 3(27[) e

b2\ x (1)

where 8 = 1/(k,T), k;, is Boltzmann constant, T is the absolute
temperature, J, is the Bjerrum length, assumed to be }, = 7.12 A
(293/T), and b = 3.8 A is the bond length. Sequence and chain
length dependence is embedded in three terms: £ accounting
for nonelectrostatic two-body interaction, B similarly capturing
three-body interaction, and Q for two-body electrostatic
interactions (at zero salt, see refs 21 and 40 for arbitrary salt
conditions).

1y (p —n)
B==2 2

p=3 m=2 n=1 [(P — m)(m _ n)]3/2

N
Q=3 2 X 4,8,0m—n"

m=2 n=1 ! (2)
Q is also known as sequence charge decoration (SCD)* and is
calculated from sequence charge information by assigning q =
—1 to glutamic, aspartic acids, and the C-terminal end, g = +1
to lysines, arginines, and the N-terminal end, and possibly g =
+0.5 to histidines to be consistent with coarse grain simulation
(see Supporting Information for more). The residue-pair-
specific nonelectrostatic interaction between the two residues
at m and n is @, ,, related to the residue-pair-specific Lennard-
Jones potential (or its variants) used in the simulation.’
However, the mapping between the parameters used in
simulation and ®,,, used as a prefactor of the delta function

potential in theory are unknown. We circumvent this by
defining a two-body sequence-dependent effective parameter
)

N
w, = [ z
m=2
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Minimizing free energy, the equation for the most likely
becomes

- () s EE -l
X 2r ? P — Nx
L, (2 ( 3 )3 B
+ 2/ Q+ ol —| —
V32 2T 3 o @

which can be used to predict x for a sequence if @, and w; are
known with Q computed from the sequence. Conversely, for a
given value of @3, the corresponding value of @, for a sequence
can be inferred if x is known. Ensemble average end-to-end
distance obtained from coarse-grained simulation or experi-
ment can be used to extract x for a given sequence. We use the
latter approach to infer @, values for different sequences using
two separate large-scale coarse %rain simulations performed by
Zheng et al.’’ and Tesei et al."

2.2. Training and Predicting @, with Neural Net-
works. The inferred @, values were trained against their
sequence using a convolutional neural network (CNNj, for the
Zheng set and CNN for the Tesei set) model (see Supporting
Information and Figure S1 for details of the CNN model).
Tesei data set was further modified by removing highly
homologous proteins to ensure that proteins in the test set are
significantly different from the training set (see Supporting
Information for details of detecting homologous sequences).
Excluding homologous proteins from the original Tesei set
resulted in a modified Tesei set with 27,060 proteins. We used
k-folds to predict w, values for the resulting Tesei data set and
the Zheng set. For each set, we randomly shuffled and split the
set into ten equally sized folds. We then trained ten different
models, each using a different fold for testing and validation,
and the remaining eight folds for training. Compiling the
results of all test sets provides predicted @, values for the full
data set.

2.3. Predicting Conformational Properties from the
Hamiltonian. For an unknown sequence, @, is first predicted
from the trained CNN model and used (in eqs 1 and 3) to
predict most likely x and the ensemble average end-to-end
distance. However, predictions are not limited to (RZ,) only.
For example, ensemble average distances ( (Rﬁ)) between any
two amino acid residues i and j, beyond just end-to-end
distance, can be determined by minimizing the corresponding
free energy F(x,-j)

PE(x. ) = é(x —Inx.)+ (1)3/2%
i/ = 5 i)j Py xsj/z
( 3 )3 ;T ; I, [6 SCDM,;
2z ) 2(i — j)xsj b\=m xil,j/2 )
with xli — P = (Rﬁ) The electrostatic contribution (in the

zero salt limit) is calculated from sequence charge decoration
matrix (SCDM); the details of which, along with its salt
dependence, can be found in ref 21 and Supporting
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Figure 2. Nonelectrostatic effective potential can be mapped to a sequence-dependent parameter using a neural network. Sequence-dependent
nonelectrostatic interaction strength @, predicted from the neural network model well reproduces true @, values extracted from two sets of
simulations: (left) simulation set performed by Tesei et al. with 27,060 sequences (correlation R = 0.94 between the predicted and true values) and
(right) simulation set performed by Zheng et al. with 15,390 sequences (correlation R = 0.97).

Information. The noncharge patterning contribution given by
sequence hydropathy decoration matrix (SHDM) is defined as

SHDM, = Z Z

7 (l_]) _]n 1

LYY

(m—J)
)5/2

w,, ,(m — n)_l/2

m=j+1 n=j
+ 3 N, L
m=i+1 n—] )
N Z Z (I—J)
m=i+1 n=1 - )5/2

(6)

For a specific sequence, SHDM;; is estimated by replacing
@,,, (in eq 6) by sequence- spec1ﬁc @, from the CNN model.
Wlth this mean-field approximation, @, and the definition of
T; (see ref 21), the most likely x; and hence (R}) can be
predlcted for a given sequence. However, an 1mproved (still
approximate) model (SHDM;) can be envisioned beyond the
mean-field model. We note that there are four interaction
terms (I1, I2, I3, and 14) in eq 6 with different summation
ranges, corresponding to interactions between different
segments of the parent sequence. These are Il, interaction
between the segment bounding (j, i) and the N-terminal
dangling end between (1, j — 1); 12, interaction between
amino acids in the segment bounded by (j, i); I3, interaction
between segment (j, i) and the C-terminal dangling end (i + 1,
N); and 14, interaction between (1, j — 1) and (i + 1, N), the
two dangling ends. These different sets of interactions can be
modeled using w, for specific sequence segments. For I1, ,, ,
can be replaced by w, for the sequence bounded by (1, i),
similarly for 13, @, could be estimated for the sequence
bounded by (j, N). For 12 and 14, @, can be estimated for the
sequence bounded by (j, i) and the parent sequence (1, N),
respectively.

3. RESULTS

3.1. Simulated Hamiltonian Can Be Mapped to an
Analytically Tractable Hamiltonian. We built two separate
neural network models, CNN, and CNNy, to train sequence-
dependent nonelectrostatic interaction parameters (®,)

inferred from coarse-grain simulations of Zheng et al. and
Tesei et al,'”” respectively. Zheng and colleagues simulated
15,390 designed protein sequences and provided a linear
regression model using two patterning metrics to descrlbe
ensemble average radius of gyration and scaling exponent.*’
More recently, Tesei et al. curated and simulated 28,058
disordered regions of the human proteome using a similar but
different coarse-grain force field. Both CNN, and CNNy
models accurately reproduce sequence-specific @, values in
their respective test sets (Figure 2). We conclude that
nonelectrostatic potentials used in the simulation can be
effectively mapped to an analytically tractable delta function
potential with a sequence-specific strength (@,). Furthermore,
these effective parameters can be predicted by CNN, and
CNNr for any arbitrary sequence. The optimal value of the
three-body interaction (w; = 0.2) was determined such that
the predicted and true values (inferred from the simulation) of
@, correlate best for both Zheng and Tesei data sets
simultaneously (see Supporting Information Figure S2 for
details). While the CNN model accurately predicts @, for most
sequences, there are also a few outlier sequences with notable
differences between the predicted and true w, values. We
compared the average fraction of 20 amino acids between the
outlier and nonoutlier sets and found that outliers tend to be
enriched in charges. Furthermore, outlier sequences tend to
have a higher net charge compared to the nonoutlier sequences
(see Supporting Information Figures S3—S5).

3.2. Nonelectrostatic Patterning Can Be Predicted
Directly from the Sequence. Sequence-specific w,
predicted from the trained model yields a measure of
nonelectrostatic patterning, analogous to charge patterning
given by SCD metric." We thus define a machine-learned
sequence hydropathy decoration metric (SHD,y ) as

N m-1

SHDyy = w,[ D, D (m —

m=2 n=1

N S 0N

(7)
where in the second equality, we approximated the summation
by an integral when N is sufficiently large. The primary
nomenclature SHD was borrowed from the work of Zheng et
al.* In the present work, we use ML using CNN1 or CNNy to
compute SHD,; so it can be used directly to predict size.
Furthermore, SHD,; (or ®, removing the chain length
dependence) can be used in addition to the traditional
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Figure 3. PML can predict chain dimensions for large sets of proteins consistent with simulation. Predicted end-to-end distance from PML
reproduces simulation results for two sets of simulations: (left) Tesei set of 27,060 (correlation R = 0.99) and (right) Zheng set of 15,390
(correlation R = 0.97). Theoretical predictions were made with the conditions used in the simulation, i.., charge assignments, ionic strength,
temperature, etc., and @; = 0.2.
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Figure 4. PML can predict local and global measures of chain conformation beyond end-to-end distance. Ensemble average inter-residue distances
from Tesei set show close agreement between PML predicted (bottom triangle) and simulated maps (top triangle). Shown are the three most
compact sequences out of the representative subset of 25 randomly drawn; see Supporting Information for 22 others and for correlations across all
residue pairings for each sequence. Different colors show distances (in nanometers) between the two residues i and j shown in the two axes of the
triangles. From left to right, sequences are AOA1BOGVY4;,_,;, AOAIW2PP97,_,;, and AGNHP3,_g,.

patterning metric (hydropathy patterning30 or charge pattern-
ing3’4’4l) to build ML models for functions that are beginning
to emerge.17’42

3.3. PML-Derived Hamiltonian Can Predict Size
across the Disordered Proteome. SCD* and similar
metrics® so far have been used to qualitatively determine the
relative trend of expansion/compaction between sequences of
different charge content and patterning.”'>** However, our
theoretical formalism (eq 1) with machine-learned w, values
can predict IDP size (not just trend) for a sequence,
accounting for both electrostatic and nonelectrostatic pattern-
ing. We reiterate that this is different from traditional ML
approaches that train protein size and not the parameter of the
Hamiltonian. We leverage this unique feature of our formalism
and predict ensemble average end-to-end distance ((R%)) for a
given sequence. Predicted chain dimensions compare well with
the simulated values for the Zheng and Tesei data sets (see
Figure 3). CNN, was used to predict @, values when
comparing chain dimensions from Zheng simulations for
15,390 designed sequences. CNN was used for the Tesei set
to predict chain dimensions of 27,060 disordered proteins of
the entire human proteome. PML-predicted R,, values agree
well with the true values for most sequences, with some
outliers. We notice that some of these outliers were outliers in
the predicted @, values as well (see Supporting Information
Figure S6). However, PML also predicts the dimension well

for a significant fraction of the sequences identified as outliers
when predicting ®,. This finding suggests that modest
inaccuracy in predicting @, is masked in the prediction of
the chain dimension, possibly due to the dominant role of
electrostatics on the chain dimension for these sequences. To
further investigate the nature of the outlier sequences, we
divided the original set in seven bins based on the net charge of
the proteins. We computed the correlation coeflicient between
the predicted and true values of R,, within each bin (see Figure
S7 in Supporting Information). While each bin has high
correlation coefficient, there is a slight drop in correlation with
increased net charge. While dimensions of these proteins were
already predicted from these large-scale simulations, our goal
here is not to derive further biological insights by reproducing
these results. Instead, we want to highlight that our formalism
provides a fast and accurate model to predict ensemble average
end-to-end distances directly from the sequence. The end-to-
end distance for the entire proteome could be predicted in
about 16 h. Thus, if new sets of sequences—either for design
or for another proteome—are constructed, our methodology
will provide a quick prediction of conformations for further
analysis without having to run lengthy simulations at first.
From these preliminary predictions, new hypotheses can be
generated and further tested with detailed but limited
simulations afterward.
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3.4. Ensemble Average Distance Maps Can Be
Predicted Directly from the Sequence. Mathematical
models grounded on Hamiltonian models can formally predict
several ensemble average properties. Consistent with this
expectation, our theoretical formalism can predict multiple
ensemble average properties beyond just end-to-end distance,
for example, ensemble average distance (R;) between any two
amino acid residues i and j. To showcase this broad predictive
power of the PML approach, we have chosen 2$ representative
sequences from the Tesei list of the human proteome (see
Supporting Information for details of the selection criteria).
Predicted distance maps for each of the sequences compare
well with the maps generated from the simulation. Following
Tesei, the CALVADOS simulation package was used to
generate simulated conformations to benchmark theoretical
predictions (see Supporting Information for details of
CALVADOS). The results for the three sequences with the
most compact chain dimensions (quantified by «x) are shown
here for illustration (Figure 4); the remaining comparisons can
be found in the Supporting Information (see Figures S8—S12
in the Supporting Information).

Simulated maps highlight regions of relative expansion and
compaction even when sequence separation is fixed (li — jl is a
constant), reflecting deviation from the homopolymer model.
These detailed features are well reproduced in the predicted
maps. Quantitative comparisons between predicted distances
are also provided as correlations in the Supporting Information
(see Figures S8—S12 in Supporting Information). Similar
comparisons were performed for the Zheng set using 29
sequences, with reasonable agreement between simulation and
prediction (see Figures S13—S17 in Supporting Information
for details). For these predictions, we used CNNy. As an
additional test of our PML prediction, we predicted distance
maps of these 29 sequences from the Zheng list but using
CNNry and compared against simulations carried out using
CALVADOS (different from Zheng simulation force field).
Again, PML predictions agree well with these new simulations
(Figures S18—S22 in Supporting Information). This additional
analysis shows that simulated distance maps for the same
sequence can be different depending on the force field. Not
surprisingly, PML predictions made using different models of
@, (ie, CNN; and CNN,) are also different. Finally, we
notice that specific sequences (13,550, 14,175, 14,782, and
15,339 in the Zheng list) can have noticeable differences
(Pearson correlation below 0.95) between the predicted and
simulated (using Zheng force field) distance maps. We
hypothesized that the discrepancy is possibly due to the
mean-field assumption w,, , & @, used to estimate SHDM. We
used the improved model SHDM; to predict these distance
maps for these specific sequences from the Zheng list. SHDM;
yields improved prediction of the distance maps (see
Supporting Information Figure $23). However, it is important
to note that SHDM; is still an approximate model and further
improvement would require building models that retain amino
acid pair-specific interactions @,, ,. This would be needed when
modeling an IDP without any charge residues where variations
in the distance map will purely arise from nonelectrostatics, not
accounted for in our mean-field model (w,,,, & ®,) at present.

3.5. PML Can Reproduce Experimental Data. How well
do PML predictions compare against the experimental
measurement of protein size? To answer this, we curated 64
protein sequences (including wild type and mutants) for which
radius of gyration values were reported using SAXS and/or

FRET.””" PML predictions were made using the CNNy
model (Figure S). Furthermore, we accounted for experimental
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Figure 5. PML well reproduces experimental measurement of radius
of gyration (R,) across 64 different protein sequences. PML
prediction was made assuming @; = 0.2 and using CNN to estimate

®,. R®ML was estimated from \/((R:e)/é). We trained ten models,

each with different training, validation, and test set. @, and
subsequently R, values were calculated from these models and
averaged to yield R™™. Error bars are standard deviation of the ten R,
values. Different colors denote data reported by different groups;
details of which can be found in Supporting Information.

salt, pH, and temperature conditions varying across experi-
ments (see Table S1 in Supporting Information for different
sequences and conditions). These conditions directly impact
the electrostatic contributions in our model but ignore their
impact on ®,. CNNy-based prediction is chosen here for
comparison for two reasons. First, Tesei simulation was carried
out with the force field that was originally adjusted to
reproduce the majority of the proteins, although not all, in the
benchmark set. No such adjustments were made for the force
field used by Zheng. Furthermore, CNN| was trained against
sequences from human proteome that are expected to well
represent the benchmark set consisting of natural sequences or
their mutations. However, we ensured that none of these
proteins in the benchmark set were used in the original Tesei
set. In contrast, CNN, was trained against protein sequences
that were designed and not naturally occurring. These could be
the reasons why CNNy performs better than CNN, (see
Figure S$24 in Supporting Information). We also notice minor
deviations between PML prediction and experimental
measurement, even when using CNNp. The discrepancy
could arise from two additional sources beyond training
inaccuracies. First, the solution dependence of w, is not
included in the current model. Furthermore, we have estimated
the radius of gyration from the ensemble average end-to-end
distance by using a simple conversion based on homopolymer
theory. Nevertheless, the close agreement between prediction
and experiment (Figure S) shows that PML with CNNy; offers
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a reliable and fast tool to predict protein size directly from the
sequence.

4. DISCUSSION

We present a Hamiltonian-based mathematical formalism to
determine conformational properties of IDPs accounting for
sequence-specific charge and noncharge interactions simulta-
neously. While the effect of charge decoration can be
analytically computed, noncharge patterning is difficult to
describe mathematically. We overcome this difficulty by using
the formalism in reverse: with the knowledge of the protein
size such as ensemble average end-to-end distance, we infer the
sequence-specific noncharge interaction parameter. In the
absence of large-scale experimental data, we determine the
protein size from recently performed high-throughput coarse-
grain simulations originally benchmarked against experimental
data. These simulated values serve as a proxy for experimental
data and are used to extract noncharge parameters for a large
set of sequences. Next, we trained these inferred sequence-
dependent interaction parameters using a neural network to
predict their values for a new sequence outside of the training
set. The predicted values were combined with electrostatic
contributions to reproduce a simulated observable (ensemble
average end-to-end distance), demonstrating our ability to
predict the ensemble average end-to-end distance directly from
a sequence in an accurate and efficient manner. We further
benchmarked our approach against pre-existing experimental
data on multiple (64) protein sequences including wild type
and mutants. Critically, our formalism, due to its reliance on
Hamiltonian, can predict observables beyond end-to-end
distance such as the ensemble average distance between any
two arbitrary residues. These predictions provide a detailed
knowledge of the sequence-dependent distance map, capturing
both local and global measures of chain dimension. As a result,
it can now predict conformational differences due to
differences in both charge and noncharge patterning.***
These broad-ranging predictions reiterate the power of an
integrated approach that (i) deploys ML to selectively train
part of the Hamiltonian that is not analytically tractable and
(ii) combines with interactions that are known from the laws
of physics and are analytically tractable. This integrated
approach has been termed PML.

Although our theory has been applied to describe the
equilibrium properties of a single IDP, it can extend far
beyond. For example, it can serve to develop a theory of IDP
dynamics under dilute conditions or even IDP solution when a
single-chain Hamiltonian is extended to a multichain
Hamiltonian. Modeling IDP solution will have implications
in building a sequence-specific quantitative theory of liquid—
liquid phase separation (LLPS). Analytical theories of LLPS
are currently limited to predicting effects of charge patterning
only due to their inability to quantify and model noncharge
patterning. Consequently, qualitative trends are predicted
when comparing two sequences with different charge
patterning neglecting variations in noncharge interactions or,
at best, phase diagrams are fitted.*>*” Several models of
noncharge interactions are being investigated to account for
their effect on the phase diagrams.”® A multichain Hamiltonian
accounting for noncharge patterning, building on the PML
formalism presented here, will be able to make quantitative
predictions avoiding these approximations. It can also model
differences in phase separation propensity between two
sequences that only differ in noncharge patterning.44 However,

there are some limitations to our approach. The overall success
of the proposed formalism to model IDP conformation,
dynamics, and phase behavior will only be as accurate as the
force fields from which interaction parameters were derived
and trained. If better force fields for IDPs are generated, new
simulations should be performed, and the neural network
model should be retrained. The role of force field is apparent
when comparing distance maps of 29 sequences (compare
Figures S13—S17 and S18-S22 in the Supporting Informa-
tion) generated from two different PMLs trained with different
force fields used in Zheng and Tesei simulation. This is also
evident in our comparison of the two models against known
experimental data (see Figures S and S24 in Supporting
Information). We have also ignored the presence of folded
domains that may surround intrinsically disordered regions
(IDRs) and alter the conformation due to additional
interactions arising between IDR and the folded domain.
However, inferred @, would still serve as a measure of
intrachain nonelectrostatic interaction. Similarly, these param-
eters can be further augmented to model salting out effect,”
not included in the present model.

In summary, our approach makes four important points.
First, it forms a bridge between simulation and theory.
Specifically, it maps potentials used in coarse-grain simulations
to effective interactions used in analytical theory. The ability to
map these potentials allows us to predict numerous
observables of multiple sequences without having to run new
simulations. This would be critical when high-throughput
calculation is needed in the design of IDPs and understanding
conformations of multiple proteomes that would be computa-
tionally prohibitive, even for coarse-grain simulations. The gain
in computational efficiency would be even more drastic if the
formalism is extended to multichain problem or dynamics of
IDPs that are typically plagued by associated computational
costs of modeling multiple chains or hydrodynamic inter-
actions. This is not to say that PML should completely replace
simulation; rather, PML formalism should be used for
preliminary analysis to generate insights and hypotheses that
should be further tested with detailed but limited simulation
and experiment. Second, the machine-learned noncharge
patterning parameter will add a new metric to understand
and train other models of protein function such as LLPS.
Third, our approach shows a proof of concept principle to train
interaction parameters and not observables when experimental
data of IDP dimensions become available at a large scale. This
is in contrast with traditional ML approaches. Finally, our PML
approach shows how to integrate quantitative laws of physics
and ML to problems not only in IDP biophysics but also in
other areas in physical sciences where part of the problem is
analytically solvable.
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