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In the ever-expanding landscape of computation, graphics processing units have become one of the most essential
types of devices for personal and commercial needs. Nearly all modern computers have one or more dedicated
GPUs due to advancements in artificial intelligence, high-performance computing, 3D graphics rendering, and
the growing demand for enhanced gaming experiences. As the GPU industry continues to grow, forensic in-

NVOC C . . . . . .
Linux vestigations will need to incorporate these devices, given that they have large amounts of VRAM, computing
Volatility power, and are used to process highly sensitive data. Past research has also shown that malware can hide its

payloads within these devices and out of the view of traditional memory forensics. While memory forensics
research aims to address the critical threat of memory-only malware, no current work focuses on video memory
malware and the malicious use of the GPU. Our work investigates the largest GPU manufacturer, NVIDIA, by
examining the newly released open-source GPU kernel modules for the development of forensic tool creation. We
extend our impact by creating symbol mappings between open and closed-source NVIDIA software that enables
researchers to develop tools for both “flavors” of software. We specifically focus our research on artifacts found in
RAM, providing the foundational methods to detect and map NVIDIA Object Compiler Structures for forensic
investigations. As a part of our analysis and evaluation, we examined the similarities between open-and-closed
kernel modules by collecting structure sizes and class IDs to understand the similarities and differences. A
standalone tool, NVSYMMAP, and Volatility plugins were created with this foundation to automate this process

GPU-Assisted malware

and provide forensic investigators with knowledge involving processes that utilized the GPU.

1. Introduction

Graphics Processing Units (GPUs) are one of the most essential types
of computing technology in both personal and commercial computing,
experiencing rapid growth driven by advancements in artificial intelli-
gence (AI), High Performance Computing (HPC), and 3D graphics
rendering. Over the past decade, GPUs have become integral parts of
personal computers. With this development, more forensic in-
vestigations will involve one or more GPUs.

Currently, the GPU market is dominated by three primary manu-
facturers: NVIDIA, AMD, and Intel. At the time of writing, NVIDIA is
currently the largest manufacturer, holding 84 % of the GPU market
(Peddie 2023). In 2023, NVIDIA’s market capitalization passed one
trillion for the first time, making it one of the five trillion-dollar USD
companies in the technology market (Apple, Microsoft, Alphabet,
Amazon, and NVIDIA) (Reuters 2023). While NVIDIA is one of the
world’s largest companies, there is little research involving the use of the
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GPU for malicious intentions and even less for forensics regarding a
GPU.

As GPUs continue to become a commodity for customers, forensic
concerns arise surrounding the substantial computation power a GPU
can provide for specific tasks and the kernel level trust the operating
system provides to the device. Advanced malware/rootkits can abuse
the GPU and even hide valuable evidence within Video Random-Access
Memory (VRAM), avoiding Antivirus (AV). While there is no known
“wild” malware that hides within the GPU, nation-state attacks could
utilize the GPU to become undetectable. Currently, no one is looking
into this possibility, and in our work, we aim to start to address this
threat.

Previous research has only scratched the surface of valuable infor-
mation that can be found in the GPU ecosystem. Our work aims to
address this gap by conducting the first peer-reviewed analysis of NVI-
DIA kernel modules on Linux-based systems. Additionally, we present
methods to identify and extract NVIDIA Object Compiler (NVOC)
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structures for both open and closed-source modules, offering symbol
mappings between drivers to allow for future GPU forensic tools and
research.

Our contributions are as follows:

e We present the first peer-reviewed analysis of NVIDIA’s kernel
modules/drivers on Linux systems.

e We provide methods to identify and extract NVOC structures for
both Open and Closed-source Modules.

e We provide mappings and memory snippets' of NVOC Class Defini-
tions structures between open and closed-source NVIDIA drivers to
allow for future memory forensic tools and works focused on GPU
Forensics.

e We created multiple open-source plugins2 for Volatility to parse
important artifacts out of memory for an investigation.

e We created NVSYMMAP," a Python 3.0 tool, to automate the entire
process of mapping NVOC Class Definitions structures between new
Open and Closed Source Modules.

Our work aims to reveal how valuable artifacts can be found within a
system’s Random-Access Memory (RAM) for NVIDIA GPUs and provide
industry tools for both open and closed-source environments.

2. Motivations and goals

Until recently, NVIDIA’s code was primarily closed-source, making
the creation of forensic tools nearly impossible because of the enormous
amount of reverse engineering required to understand how the software
operates. However, in May 2022, NVIDIA released open-source GPU
Kernel modules under dual GPL/MIT licenses that allow users to opt into
(Cherukuri et al., 2023). This change is a pivotal step toward enhancing
the utilization and security of NVIDIA GPUs on Linux. However, despite
this progress, a critical limiting factor still exists: most users will still
utilize closed-source drivers.

To address this limitation, our work aims to understand the inner-
workings of both kernel modules, how structures are laid out in mem-
ory, and what type of memory to look in — RAM or VRAM. If we can
parse vital information to determine if a process used the GPU mali-
ciously and what it was trying to accomplish, then investigators will
have a greater understanding of what occurred during an incident.

We know GPUs will commonly transfer information between RAM
and VRAM. By examining the drivers of the system’s GPU, we can begin
to understand how memory management and translation occur and
leverage this to find forensic evidence. We can examine NVIDIA’s kernel
module, stored in RAM, to extract the necessary system information
regarding the GPU for an investigation.

While past research has focused on examining VRAM, we believe by
examining the contents of RAM, we can start to develop forensic tools to
detect GPU-assisted malware and standalone GPU malware. Our
research aims to provide the foundation for comprehensive forensic
methods and tools capable of extracting artifacts from RAM for any
version of NVIDIA Linux drivers.

3. Background

This section provides background knowledge for the rest of the
paper, including an introduction to Linux Kernel Modules, NVIDIA
Kernel Modules, and NVOC Structures.

1 https://github.com/LSUACL/GPU-Forensics/tree/main/memory-snippets.
2 https://github.com/LSUACL/GPU-Forensics/tree/main/plugins.
3 https://github.com/LSUACL/GPU-Forensics/tree/main/NVSYMMAP.
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3.1. Linux kernel modules and Kallsyms

Linux kernel modules are executables that can be dynamically
loaded and unloaded into kernel space when the system runs. These
modules can extend the kernel’s functionality by implementing in-
terfaces for devices as drivers. Each module serves a specific purpose and
can export symbols through Kallsyms.

Kallsyms, the Linux kernel symbol table, is a data structure that
contains information about code within kernel space, such as the address
of functions and structures in memory. Kallsyms displays the dynami-
cally loaded address of each symbol, which can be utilized to locate
essential structures in the kernel memory space and parse associated
data. Kallsyms is exported to userspace via /proc/kallsyms.

3.2. NVIDIA kernel modules

NVIDIA currently provides two distinct “flavors” of kernel drivers for
Linux-based operating systems — open source and closed source. Each
version of the drivers helps provide the kernel with an interface to access
and utilize the GPU. When an NVIDIA driver is installed on a Linux-
based system, four distinct kernel modules are loaded into kernel space:

nvidia: The main NVIDIA Kernel module we investigate in this work.

nvidia_modeset: The NVIDIA Kernel module that handles the mode

setting of the GPU.

e nvidia_drm: The NVIDIA kernel module that handles the Direct
Rendering Manager.

e nvidia_uvm: The NVIDIA kernel module that handles Unified Vir-

tual Memory.

These modules implement interfaces provided by the Direct Rendering
Manager (DRM), drm_kms_helper, and Video kernel modules. They also
provide interfaces to userland processes for accessing the GPU. To list
these modules, users can run Ismod and grep for “nvidia”. In this work,
we exclusively examine Nvidia’s 525 drivers; however, our methods
extend to future versions of the drivers.

3.3. NVIDIA object compiler

NVIDIA’s kernel modules use NVOC for a large portion of their driver
code base. NVOC is a preprocessor that allows NVIDIA to add specific
metadata to the headers of structures to allow for lookups, feature toggle
flags, and specific chip behaviors. NVIDIA uses NVOC in both their open
and closed-source kernel modules for Linux and Windows drivers. NVOC
code generator is a fork of Clang 3.X and is currently a closed-source tool
used within NVIDIA (Tijanic 2022). NVOC follows the general structure
of C++, implementing a Run-Time Type Information (RTTI) structure
for each object. Within each NVOC_RTTI structure (Listing 3) is a pointer
to a Class Definition structure, which can be used to map symbols be-
tween open and closed source modules.

In the open-source kernel modules, NVOC files are found in /src/
nvidia/generated/. Files with the endings nvoc.c and _nvoc.h were
pre-compiled using NVOC. These files contain important information for
creating memory forensics tools relating to GPUs and can be used to
understand NVIDIA’s ecosystem. In Source Code Analysis and Method
Creation, we expand upon this background knowledge to explain how
NVOC is implemented and can be used to locate and map open-to-closed
source structures.

4. Methodology

This section describes our methodology for examining NVIDIA’s
source code and creating forensic tools. We expand on our work by
explaining our methods to locate and parse NVOC structures for both
open and closed-source Nvidia drivers.

Our methodology follows:
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1. Source Code Analysis
2. Memory Acquisition
3. Memory Analysis

4. Method Creation

4.1. Source code analysis

NVIDIA’s open-source drivers can be downloaded from their GitHub
repository.” We manually analyzed the structure of the source code to
understand and identify code patterns we could utilize to locate struc-
tures in memory. After reviewing the overall architecture of the code-
base, we determined a substantial amount of the software could be
covered by focusing on the OS-agnostic and auto-generated code.

A significant number of these files and structures utilized NVOC.
NVOC structures follow a unique layout that can be utilized to map
structures in memory and between each module. Each NVOC structure
has a unique CLASSID that can be used to map and identify data struc-
tures. An example of a CLASSID declaration from the open-source code

Forensic Science International: Digital Investigation 49 (2024) 301760

Each NVOC_CLASS_DEF structure also has an associated NVOC_RTTI
structure that points to it (Listing 3). This pointer is the first member of
the RTTI structure (Listing 3 Line 2). These NVOC_RTTI structures are
also unique to each NVOC structure and can be used in mapping NVOC
structures.

Listing 3. NVOC_RTTI Definition Structure

struct NVOC_RTTI{

2 const struct NVOC_CLASS DEF xconst
pClassDef;
3 const NVOC DYNAMIC DTOR dtor;
offset ;

1 const NvU32
5| 15

In Method Creation, we explain how we use NVOC's structure format
to map symbols and structures from open to closed-source modules.

Listing 4. Nvidia Symbols From Open and Closed Source Software

1 |# sudo cat /proc/kallsyms | grep [nvidia]
2 | Closed Source:

3 |<snip>

4 r nv001945rm [nvidia]

5 r nv002176rm [nvidia]

6 r nv002136rm [nvidia]

7 r nv002246rm [nvidia]

8 r nv002112rm [nvidia]

9 |<snip>

Open Source:

r __nvoc_class_def_ DispChannel [nvidia |
r _ nvoc_class def P2PApi [nvidia]
r __nvoc_class_def OBJOS [nvidia]
r _ nvoc_class def VideoMemory [nvidia |
r _ nvoc class def OBJGVASPACE [nvidia]

can be found in Listing 1.

Listing 1. Example of NVOC ClassID Declaration

typedef struct GpuAccounting GpuAccounting;

w N

__nvoc_class_id_GpuAccounting 0x0f1350;

Each of these CLASSIDs are held within a unique NVOC_CLASS_DEF
structure in the NVOC_CLASS_INFO member (Listing 6 Line 3). These
class definition structures are directly exported through /proc/kall-
syms, allowing the ability to locate them after a memory sample has
been collected. In these structures, important information, such as the
size of the structure, RTTI provider ID, and name (if the NV_PRINTF -
STRINGS_ALLOWED is set), is included. With each class definition
symbol mapped, we can use the method described in Reverse NVIDIA
Object Lookup to locate any NVOC structure in memory.

Listing 2. NVOC_CLASS Definition Structure

struct NVOC_CLASS DEF{
contains classld , size, and name

const NVOC_CLASS INFO classInfo

5 const NVOC_DYNAMIC OBJ_CREATE objCreatefn;
6 const struct NVOC_CASTINFO *const
pCastlnfo;

7 const struct NVOC_EXPORT INFO const
pExportInfo;

https://github.com/NVIDIA/open-gpu-kernel-modules.

4.2. Memory acquisition

To properly assess NVIDIA’s GPUs memory footprint, we needed to
collect physical memory samples because GPUs are not easily virtualized
and, in most cases, are run on physical hardware. In future work, we aim
to explore NVIDIA’s Virtual GPU Software; however, in this work, all
memory samples acquired were with Surge Collect Pro,” a physical
memory sample acquisition tool.

We created two testing environments that included the same NVIDIA
GPU and operating system. We then installed each flavor of the drivers
(open and closed) and verified they were in use. After the drivers were
loaded into memory, we took physical memory images of the systems so
we could inspect each driver for NVOC structures. A detailed apparatus
of devices and software for our research is displayed in Table 1.

4.3. Memory analysis

To analyze each of the memory samples, we decided to use Vola-
tility® 2.6 because it is open-source and widely available. The Volatility
Framework is a collection of volatile memory tools that offer in-
vestigators insight into the current state of a machine at acquisition and
can be used to extract digital artifacts from volatile memory.

We primarily utilized the Linux volshell plugin to navigate memory
dumps to search for NVOC structures. We determined many of these
NVOC structures were in use for the open-source drivers and could be
found with their associated kallsym. We also determined that the closed-
source module followed the NVOC implementation when examining the
memory sample. With this information, we started to develop methods
to search and parse each NVOC structure for both modules.

5 https://www.volexity.com/products-overview/surge/.
6 https://github.com/volatilityfoundation/volatility.
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Table 1
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Apparatus table depicting the hardware and software utilized throughout the experiment.

Hardware/Software Use Company Software/Model Version
Volatility Memory Forensics Framework Volatility Foundation 2.6

Surge Collect Pro Memory Acquisition Tool Volexity 23.03.28

Ubuntu Operating System Canonical 22.04 LTS

NVIDIA Open-Kernel Module GPU Driver NVIDIA 525.125.06

NVIDIA Closed-Kernel Module GPU Driver NVIDIA 525

HxD Hex Editor mh-nexus 2.5

VSCode Integrated Development Environment Microsoft 1.86.0

RTX 3080ti GPU MSI n/a

4.4. Method creation

We first explain our method of mapping symbols between open-to-
closed source NVIDIA modules. To build on this, we explain how,
once mappings have been created between each module’s symbols, we
can use a reverse pointer lookup method to find the addresses of NVOC
structures in kernel memory. After identifying the location in memory of
NVOC structures, we explain our parsing methodology. With this
methodology, other researchers can build forensic tools to parse artifacts
from memory regarding NVIDIA’s GPUs. We build on this foundation in
the Tool Creation section to create plugins for Volatility 2.6 that auto-
mate each of these methods and a standalone tool, NVSYMMAP, for
automating the complete process of mapping modules.

4.4.1. Mapping open-to-closed source kernel modules symbols and objects

The first step of providing a proper memory forensics foundation for
NVIDIA GPU kernel modules is providing mappings that cover open and
closed-source software. We achieved this by creating links of symbols
between each module. Each of the module’s exported symbols can be
found in /proc/kallsyms. One major issue with mapping symbols be-
tween modules is vital symbols are “scrubbed” in the closed-source
module and can not be directly mapped by name. An example output
of each module kallsyms is shown in Listing 4. We can overcome this
issue by utilizing the following method.

We first compile a list of NVOC CLASSIDs from the open-source code.
Next, we locate the associated open-source symbol and examine its
memory contents to confirm the CLASSID. Finally, we scan each closed
source symbol (related to the Nvidia kernel module) for the same

4.4.2. Recursive descent NVIDIA ClassID lookup

A second method was also created to map symbols for either module.
With the knowledge from Source Code Analysis, we understand that all
NVOC structure’s first member points to a NVOC_RTTI structure, and
NVOC_RTTI to NVOC_CLASS_DEF. With this we can probe each kallsym
and check if the first eight bytes are a valid pointer within the context of
the kernel. If so, we follow this pointer and continue checking for
another pointer while keeping track of the depth. Once the first eight
bytes are not a valid pointer, we check to see if a valid CLASSID is found.
If so, then we check to see if the related closed-source module has the
same symbol (checking for depth and CLASSID). One result of this
method is the mapping between _nv022923rm (closed) and the g pSys
(open), with a depth of three, which points to the OBJSYS CLASSID. This
method is shown in Fig. 2a.

4.4.3. Heuristically searching for NVIDIA ClassIDs

Finally, we created a heuristic method to search for undocumented
CLASSIDs and structures for the closed-source drivers. We probed each
kallsym and searched for the structure of an NVOC_CLASS_DEF. If the
structure was detected, the memory was examined and verified. Inter-
estingly, we discovered by searching that some of the CLASSIDs declared
in the open-source modules that do not have associated structures in
memory or the source code are found in the closed-source modules. One
example of this occurring is the NVOC structure OBJGPULOG. This
structure is found in the closed-source modules with the associated
_nv002107rm kallsym and is initialized with a size of 496 bytes.

Listing 5. Example of NVOC Class Definition Kallsym Output

ClassID: 0x001f0074
Closed Source: nv001924rm

>>> db (0 xffffffffc4b31d60 ,
08 05 00 00 74 00 1f 00 3c
50 16 46 c2 ff ff ff 88
10 1c b3 c4 ff ff ff 08
b0 le b3 c4 ff ff ff do

64)

Oe bl
1d b3
00 00
1d b3

cd
c4
00
c4

ff ff ff ff
ff ff ff ff
00 00 00 00
ff ff ff ff

00 1 O Ui W~

Open Source: _ nvoc_ class def AccessCounterBuffer
>>> db(0xffffffffc1718f40 ,
08 05 00 00 74 00 1f 00 74
10 8f 71 c1 ff ff a0
70 8f 71 cl1 ff ff 90
08 00 00 00 00 00 a0

64)
5¢
d4
8b
90

90
48
71
71

cl
cl
cl
cl

CLASSID. Once we find each symbol for open and closed source mod-
ules, we then create a mapping. An example of the AccessCounterBuffer
NVOC structure’s class definition memory contents for both modules can
be found in Listing 5, and Fig. 1 displays an overview of the result of this
process.

With these mappings between open-to-closed source symbols, we can
now develop forensic tools that work for both kernel modules. After
mapping each symbol for NVOC_CLASS DEF, we use a reverse lookup
method, described in the Reverse NVIDIA Object Lookup section, to
locate desired structures. Note many of the closed-source scrubbed
symbols are not structures but functions; our methods focus only on
NVOC structures and their associated members.

4.4.4. Reverse NVIDIA object lookup

While each NVOC structure does not have an exported kallsym, we
can work backward from its associated NVOC_CLASS_DEF. Each struc-
ture generated by NVOC follows the same memory layout (described in
the Source Code Analysis section), which can be used to locate it.

A NVOC structure’s first member is a pointer to its associated
NVOC_RTTI structure. Listing 6 shows an example of this. By utilizing
how NVIDIA’s NVOC objects are created, with each structure pointing to
a RTTI structure and each RTTI pointing to an NVOC_CLASS_DEF (where
each Class Definition has an associated symbol in kallsyms), we can
locate any NVOC structure in memory that we desire.

Listing 6. Example of NVOC Structure
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-

Closed

| Mapped Symbols |

Open

ClassIDs

Oxaald70

nvoc_class_def Swintr

~nv002136rm

d
N]EIJ

_nv002176rm nvoc_class_def P2PApi

0x5ca633

.
0x3982b7
mvoc_class_def OBJOS /

Fig. 1. Diagram of cross-mapped symbols.

_nv002228rm

]
[

\L

1| struct GpuAccounting{

2 const struct NVOC RTTI *  nvoc rtti;

3 struct Object _ _ nvoc_base_Object;

A struct Object * nvoc_ pbase Object;
GPUACCT _GPU_INSTANCE INFO gpulnstancelnfo
[32];

6 }
’

We can use a reverse pointer lookup to map RTTI structs to NVOC
class definitions. After mapping each RTTI structure, we can continue
using reverse pointer lookup to map NVIDIA objects to RTTI structures.
This process is depicted in Fig. 2b and is automated in a volatility plugin
created as described in Tool Creation.

4.4.5. NVIDIA object parsing

After identifying where these structures are in memory and their
associated sizes, we needed a way of adequately extracting the data and
members of the structures. NVIDIA offers an option to build their open
kernel modules in debug mode by enabling the DEBUG flag — adding the
gec flag “-gsplit-dwarf” to the compilation. This flag will separate the
information of the executable into two files,*.0 (“OBJECT”) and*.dwo
(“DWARF object”). After investigating each of the files created on
compilation, we identified a way of extracting a structure’s memory
footprint from the .dwo files with the debug information. While this
method allows us to generate artificial memory structures, such as
vtypes for Volatility 2, we are unable to use this method for the closed-
source modules due to the absence of *.dwo files provided.

For closed-source modules, we utilize the NVOC_CLASS_INFO
structure, which, after investigation, appears to be the same between
open and closed modules to identify the size of the desired structure.
After parsing the structure from memory, we make use of the open-
source definition to map the closed-source structure. In most cases,
this method can be used to locate the desired data; however, each
structure will range in difficulty due to no direct references to how the
structure’s members are laid out.

Note the current standard of parsing debugging information for
Volatility vtypes/symbols is using dwarf2json’; however, this tool
currently does not support .dwo files; thus, we could not utilize it.

7 https://github.com/volatilityfoundation/dwarf2json.
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5. Tool creation

In this section, we will discuss the plugins and tools we created to
automate the process of mapping symbols between drivers and the
ability to locate desired structures in memory. After providing these
foundational plugins, we extend our work into a forensic-specific plugin
to parse valuable evidence from a system. We also provide a standalone
tool, NVSYMAP, for automating the mapping process of each driver.

5.1. CheckNvidia

The CheckNvidia plugin runs a scan to print out if an NVIDIA kernel
module was in use. If an NVIDIA module is found, the plugin will print
out the information about the module. To obtain additional information
about the NVIDIA module, CheckNvidia will pull from two sources of
information — module_kset from the Linux kernel and pNVRM_ID from
the NVIDIA module. This information is then combined and displayed to
the user.

5.2. NVOC_CLASS_DEF scan

The NVOC_CLASS DEF Scan plugin scans the kernel pages that
contain modules. It looks for NVOC_CLASS_DEF structures in memory
using two types of scanning. The first scanning type will utilize the
“known” list of NVOC CLASSIDs. The plugin will also iteratively scan
memory using the sliding window technique (scanning byte by byte).
Once a word matches one of the list’s entries, the plugin will validate the
structure using a heuristic and add the location of the found NVOC -
CLASS_DEF structure to display. The second technique utilizes a heu-
ristic mechanism to find NVOC_CLASS DEF structures by using the
validating mechanism that method one implements. The technique will
scan all NVIDIA-specific symbols in kallsyms.

5.3. Reverse structure lookup and acquisition

The reverse structure lookup plugin will locate the NVOC Structure
in memory by working backward with the Reverse Ascent Lookup
method. The plugin begins searching for the symbol associated with the
CLASSID provided by the user. Then, the kernel will be scanned to
search for a pointer directed at the NVOC_CLASS_DEF. If the NVOC_RTTI
is found, then the plugin will again scan memory, looking for a pointer
directed at the NVOC_RTTI structure. Fig. 3 displays an example output
of this plugin when searching of the structure associated with the
OBJGPU class name with the CLASSID of 0x7ef3cb. Note that two RTTI
structures were found; this is because the RsResourcelist symbol also
held a pointer to the NVOC_CLASS_DEF of OBJGPU. For acquiring the
memory associated with the structure, the plugin will use the address of
the structure found and the size of the structure from the
NVOC_CLASS_DEF.

5.4. GPU accounting

NVIDIA provides the ability to track the usage of resources
throughout the lifespan of an individual process via the GPU Accounting
capability. When enabling this feature, users can manage and monitor
the usage of their GPU via NVIDIA Management Library (NVLM) and
nvidia-smi. The GpuAccounting structure in /src/nvidia/generated/
g_gpu_acct_nvoc.h holds this information. The NVOC structure holds
essential information for a forensic investigation, such as start time, end
time, live processes, dead processes, Process identifier (PID), and much
more. By parsing this structure from memory, we can account for the
history of the processes run on the GPU and potentially identify mali-
cious processes.

While this is straightforward for collecting forensic evidence, there
are some limitations to this method. The first limitation of this method is
there is no current way to enable GPU Accounting on the open-source
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Reverse Lookup 2

Desired Structure Reverse Lookup 1

NVOC_CLASS_DEF

(a) Recursive Descent Lookup Example

g

Pointer KallSym Symbol

NVOC_RTTI

Pointer NVOC Class

Definition

(b) Reverse Ascent Lookup Example

Fig. 2. Methods to map and extract NVOC structures.

$ python2 ./vol.py --profile = LinuxUbuntu-generic_x64x64 -f data.lime linux_reverse_pointer_lookup --ClassID = @x7ef3cb

Offset (V) Type ClassName ClassID
oxffffffffc4ablf920 KSYM OBIGPU ox7ef3cb
oxffffffffc4blfode RTII OBIGPU ox7ef3cb
oxffffffffc4e534c0 RTII OBIGPU ox7ef3cb
oxffffffffc4blfo5e OBJ OBIGPU ox7ef3cb

Fig. 3. Example of the reverse lookup plugin with the NVOC structure OBJGPU

Open-Source Drivers | |Closed-Source Drivers

(a)
Vol.

(d)

Vol.

\

(0)
NVSYMMAP
<
Legend:
— EIEE RAM L¥ Drivers
— | — Memory @ Symbol Map
(e) _ o — N -

Fig. 4. Workflow of NVSYMMAP

modules. The second limitation is that GPU Accounting is not enabled by
default for the closed-source modules. Users must enable GPU Ac-
counting with NVIDIA’s nvidia-smi tool via the command line using the
following command:

sudo nvidia—smi —i \$(GPU ID) —am ENABLED

5.5. NVSYMMAP

NVSYMMAP,® NV Symbol Mapper, is an open-source command line
tool written in Python3, created to automate the process of mapping
symbols within and between NVIDIA kernel modules on Linux with
memory forensics. NVSYMMAP was developed to map new releases of
NVIDIA drivers with ease.

Fig. 4 displays the workflow of the tool for mapping open-to-closed
source symbols. First, a user will create two environments with each
open and closed driver they desire to map (Fig. 4a). Next, the user will
acquire memory and /proc/kallsyms from each system (Fig. 4b). These
files are then passed into NVSYMMAP with the associated Volatility2
profiles. Once NVSYMMAP has the proper information, it will create
temporary files with commands (Fig. 4c) to pass into each instance of
Volatility running the Linux volshell plugin (Fig. 4d). The commands
generated by NVSYMMAP will inspect each NVIDIA-related symbol and
search for NVOC CLASSIDs in memory. This information is then passed
back into NVSYMMAP and parsed to create mappings between each
driver (Fig. 4e).

6. Evaluation

This section evaluates our methods for identifying NVOC_CLASS_DEF
structures within NVIDIA kernel drivers with NVSYMMAP. We analyze
the effectiveness and correctness of our tool by utilizing a manually
created ground truth.

6.1. Identification of NVOC_CLASS_DEF structures

We first manually examined the open-source NVIDIA kallsyms that
relate to each NVOC_CLASS_DEF. Each NVOC_CLASS_DEF has an
exported kallsym starting with “_nvoc_class_def .” We created a list of
these kallsyms, and manually verified the associated NVOC CLASSIDs
(from the source code) by examining each symbol’s memory content —
resulting in 171 total CLASSIDs/structures for our ground truth. We then
used NVSYMMAP to verify our manually created data with the curated
_nvoc_class_def list. After confirming our ground truth, we “blindly”
searched all of the kallsym (related to NVIDIA) for the open-source

8 https://github.com/LSUACL/GPU-Forensics/tree/main/NVSYMMAP.
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modules, amounting to 14447 total symbols, to find each of the
_nvoc_class_def kallsyms. While we cannot create ground truth for the
closed-source modules, we decided to run NVSYMAP with the generated
list of CLASSIDs to compare the results with the open-source.

6.2. Results

Fig. 5 shows the results of our evaluation. The graph displays the
total number of NVOC Class Definitions found for each test. Our ground
truth is shown as “known” with a total of 171 structures. When testing
the list blindly on the open kernel modules, NVSYMSMAP was able to
find each of the known class definitions with 19 additional false positive
symbols. Each of these 19 false positives was associated with a parent list
structure in relation to the CLASSID. When running the test on the
closed-source module, we detected 193 total symbols in relation to the
CLASSID list.

7. Experimentation

This section describes our approach to experimenting with each open
and closed-source NVIDIA driver. We aim to evaluate the drivers’ dif-
ferences and similarities by examining each NVOC structure. We also
want to explore undocumented NVOC structures and their associated
sizes and CLASSIDs. While this experiment only examined the 525
modules, our approach can be applied to newer versions of the drivers.

7.1. Approach

For our experimentation, we used NVSYMMAP. We created two new
environments with each open and closed source 525 drivers and
extracted the necessary information to parse each NVOC structure’s
class definition. In our testing, we searched for undocumented structures
not found in the open-source code. We also examined the 171 known
structures that were in use for the open modules and compared their
sizes to the associated closed-source structures.

7.2. Findings

We found a significant amount of additional information about
NVOC structures could be obtained by examining the closed-source
NVIDIA drivers. Fig. 6a depicts the amount of NVOC structures uti-
lized per version. In the open-source code, we were able to document
263 structures, and in the closed source, we identified 67 undocumented
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structures. The closed-source drivers utilize 330 total structures, and the
open-source drivers utilize only 171 structures.

Interestingly, when examining and mapping CLASSIDs from the
open-source code to the closed-source code, we recognized that the
NVOC class definition structures are scrubbed alphabetically by class
name (ignoring capitalization) where they iterate from _nv001924rm to
_nv002253rm (AccessCounterBuffer-ZbcApi). With this knowledge, re-
searchers can potentially infer the undocumented class names and
which NVOC structures are specific to the closed-source drivers. One
example of narrowing down a symbol’s class name is _nv001979rm and
_nv001981rm, where the CLASSIDs are GpuManagementApi and
GpuResource, resulting in nv001979rm’s CLASSID name falling be-
tween GpuMa-GpuRe.

Additionally, we examined the sizes associated with the documented
open-source structures versus the closed-source structures. We sepa-
rated each group arbitrarily into three groups: exact (for the same size),
small (for less than 100 bytes in difference), and large (for greater than
100 bytes in difference). Fig. 6b shows the results; most notable from the
data is that 59 of the 171 structures tested are the exact same size in both
modules. In Appendix, we display a partial listing of the obtained data,
and the full results can be found on our github.

8. Related work

Most of the research on GPU forensics was completed in 2015, and
little work has been compiled since then. We briefly describe the related
work in GPU-Assisted Malware, GPU Forensics, and Memory Forensics.

8.1. GPU-assisted malware

GPU-Assisted malware utilizes the computational power and
elevated trust of the GPU to perform specific tasks such as packing,
unpacking, Direct Memory Access (DMA), and Crypto Mining. At the
time of writing, there is no known “wild” GPU-assisted malware that
tries to hide in VRAM to avoid AV. However, a post on a hacker forum
offered a Proof of concept (POC) malware that utilized the GPU memory
buffer to store malicious code to evade AV RAM scanning (Ilascu 2021).
In addition to this, academic researchers created malware/rootkits to
show how it could leverage hiding valuable information within the
VRAM of a GPU (Reynaud 2008; Vasiliadis et al., 2015; Ladakis et al.,
2013). One example of GPU-Assisted rootkit is JellyFish.’ JellyFish was
a POC academic malware that ran on Windows, Linux, and MAC in 2015
(Bongiorni 2015). Interestingly, JellyFish utilized OpenCl to interact
with either NVIDIA or AMD products for “snooping” via DMA.

8.2. GPU forensics

GPU forensics is the process of investigating and analyzing the ma-
licious use of the GPU. Balzarotti et al. (2015) examined the many ap-
proaches an attacker may take to misuse a GPU and its impact on
memory forensics. To address these threats, a framework was suggested
for analyzing GPU-executed malware by Apostol et al. (2021); however,
the approach focused on high-level APIs that could be avoided by
advanced attacks, whereas our approach focuses on investigating the
drivers of the GPU for forensic evidence.

8.3. Memory forensics

Memory forensics is the analysis of a system’s volatile memory. Case
& Richard III (2017) provided a critical analysis of the current state of
memory forensics and an overview of the issues that need to be
addressed. We believe addressing new architectures is one major core
issue and should be studied. Works involving Apple Silicon,

9 https://github.com/nwork/jellyfish.
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Programmable Logic Controllers (PLC), and NVIDIA GPUs extend
memory forensic’s reach and address advanced attacks (Mettig et al.,
2023, Awad et al., 2023).

9. Discussion and future work

Our work provides a foundation for future research involving GPU
forensics. We created the first memory forensic tools for GPUs that
provide forensic investigators with valuable insight into which processes
accessed the GPU for NVIDIA drivers. We also presented the first anal-
ysis of NVIDIA open-source kernel modules and mapping to associate
closed-source modules. Comparing our work with previous research, we
contributed significant improvements to the current state of forensics
involving GPUs, specifically NVIDIA products.

As described in Section 4, we created methods to accurately and
reliably locate NVOC structures in memory for both open and closed-
source NVIDIA kernel modules. These methods provided will help
make future work possible surrounding GPU forensics.

In addition, we provide a comprehensive list of mappings for
NVOC_CLASS_DEF symbols between kernel modules to extend the reach
of future work and make new tool creation more accessible. With this
new foundation of how NVIDIA stores information related to their GPUs
on Linux-based systems, forensic investigators can start to detect and
analyze malicious software that utilizes the GPU.

In future work, we aim to extend the amount of forensic evidence
that can be found by an investigator. Notably, we want to investigate
methods of obtaining physical VRAM images. In previous research, tools
were created with OPENCL and CUDA to obtain a VRAM image; how-
ever, these tools operate from user-land, causing significant changes to
RAM and potentially VRAM due to context switches required to map the
memory. One patch was developed by NVIDIA for the DFRWS 2015
memory forensics challenge'® that obtained a physical VRAM image
from kernel space; however, this was specifically for the 343.13 drivers.
Once we create tools for obtaining VRAM, we believe that we will be

10 https://github.com/dfrws/dfrws2015-challenge.

able to map the pages a process utilizes in the GPU with the NVOC
structures that control address translation and memory allocation.

10. Conclusions

GPU memory forensics is possible and should be studied. Within our
work, we showed that NVIDIA has opened up parts of its software that
researchers can utilize to create tools and methods to extract vital
forensic information. It is possible to examine both sets of modules, open
and closed, and begin to understand the inner workings of how a GPU
operates.

Malicious cyber attacks will continue to advance over time, so we
need to keep improving our defensive tools. We need to address the
threat of malware hiding information within VRAM, and we can only do
that with a physical memory image of VRAM and RAM. Our approach of
starting in RAM and working towards VRAM is the correct way of
developing tools, and we believe that it is the solution to solving this
blind spot in the forensics realm. With the methods and mappings we
provided, researchers can begin to extend the view of memory forensics
into the GPU environment. Our work has resulted in a new foundation
for this area, and we are committed to building on it to combat the
evolving landscape of cyber threats.

Acknowledgments

We want to thank our reviewers for their helpful comments. We
would also like to thank Brennen Calato and Kyle McCleary for their
time reviewing our paper and offering suggestions. We also want to
thank Louisiana State University for funding equipment and software.

This material is based upon work supported by the National Science
Foundation under Grant Number 1946626. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.


https://github.com/dfrws/dfrws2015-challenge

C.J. Bowen et al.

Forensic Science International: Digital Investigation 49 (2024) 301760

Appendix
Class Name Class ID Open-Source Kallsym Open-Size Closed-Source Kallsym Closed-Size Difference
AccessCounterBuffer 0x1f0074 _nvoc_class_def AccessCounterBuffer 1288 _nv001924rm 1288 0
BinaryApi 0xb7a47c _nvoc_class_def BinaryApi 1204 _nv001927rm 1072 132
BinaryApiPrivileged 0x1c0579 _nvoc_class_def BinaryApiPrivileged 1288 _nv001928rm 1360 72
ChannelDescendant 0x43d7c4 _nvoc_class_def ChannelDescendant 1256 _nv001932rm 1272 16
ComputelnstanceSubscription 0xd1f238 _nvoc_class_def ComputelnstanceSubscription 1048 _nv001935rm 1048 0
ConsoleMemory Oxaac69e _nvoc_class_def ConsoleMemory 1312 _nv001938rm 1320 8
ContextDma 0x88441b _nvoc_class_def ContextDma 1256 _nv001939rm 1256 0
DebugBufferApi 0x5e7alb _nvoc_class_def DebugBufferApi 1032 _nv001940rm 1032 0
DeferredApiObject 0x8ea933 _nvoc_class_def DeferredApiObject 1632 _nv001941rm 1648 16
Device Oxe0ac20 _nvoc_class_def Device 1608 _nv001942rm 1856 248
DiagApi 0xaa3066 _nvoc_class_def DiagApi 1320 _nv001943rm 1352 32
DispCapabilities 0x99db3e _nvoc_class_def DispCapabilities 1032 _nv001944rm 1032 0
DispChannel 0xbd2ff3 _nvoc_class_def DispChannel 1256 _nv001945rm 1256 0
DispChannelDma Oxfe3d2e _nvoc_class_def DispChannelDma 1576 _nv001946rm 1576 0
DispChannelPio 0x10dec3 _nvoc_class_def DispChannelPio 1576 _nv001947rm 1576 0
DispCommon 0x41f4f2 _nvoc_class_def DispCommon 2232 _nv001948rm 3056 824
DisplayApi 0xe9980c _nvoc_class_def DisplayApi 984 _nv001954rm 992 8
DisplayInstanceMemory 0x8223e2 _nvoc_class_def DisplayInstanceMemory 200 _nv001955rm 208 8
DispObject 0x999839 _nvoc_class_def DispObject 1504 _nv001949rm 1512 8
DispSfUser 0xba7439 _nvoc_class_def DispSfUser 1032 _nv001951rm 1032 0
DispSwObj Ox6aa5e2 _nvoc_class_def DispSwODbj 1296 _nv001952rm 1304 8
DispSwObject 0x99ad6d _nvoc_class_def DispSwObject 1824 _nv001953rm 1804 20
Event Oxadecfc _nvoc_class_def Event 720 _nv001958rm 720 0
EventBuffer 0x63502b _nvoc_class_def EventBuffer 1000 _nv001959rm 1000 0
Fabric 0x0ac791 _nvoc_class_def Fabric 144 _nv001963rm 136 8
FABRIC_VASPACE 0x8c8f3d _nvoc_class_def FABRIC_VASPACE 696 _nv001961rm 696 0
FlaMemory Oxe6leel _nvoc_class_def FlaMemory 1336 _nv001968rm 1344 8
FmSessionApi 0xdfbd08 _nvoc_class_def FmSessionApi 904 _nv001969rm 904 0
GenericEngineApi 0x4bc329 _nvoc_class_def GenericEngineApi 1040 _nv001974rm 1416 376
GenericKernelFalcon Oxabcf08 _nvoc_class_def GenericKernelFalcon 312 _nv001975rm 400 88
GpuAccounting 0x0f1350 _nvoc_class_def GpuAccounting 127560 _nv001977rm 93768 33792
GpuDb 0xcdd250 _nvoc_class_def GpuDb 128 _nv001978rm 120 8
GPUlInstanceSubscription 0x91fde7 _nvoc_class_def GPUInstanceSubscription 1104 _nv001972rm 1104 0
GpuManagementApi 0x376305 _nvoc_class_def GpuManagementApi 704 _nv001979rm 704 0
GpuResource 0x5d5dof _nvoc_class_def GpuResource 768 _nv001981rm 768 0
GpuUserSharedData 0x5e7d1f _nvoc_class_def GpuUserSharedData 1024 _nv001982rm 1024 0
GSyncApi 0x214628 _nvoc_class_def GSyncApi 1208 _nv001973rm 1208 0
Hdacodec 0xf59a20 _nvoc_class_def Hdacodec 1024 _nv001991rm 1040 16
Heap 0x556e9a _nvoc_class_def Heap 1560 _nv001992rm 1560 0
12cApi Oxceb8f6 _nvoc_class_def 12cApi 1064 _nv001998rm 1064 0
INotifier 0xf8f965 _nvoc_class_def Inotifier 56 _nv001999rm 56 0
Intr 0xc06e44 _nvoc_class_def Intr 5344 _nv002006rm 6160 816
IntrService 0x2271cc _nvoc_class_def_IntrService 48 _nv002007rm 48 0
IoAperture 0x40549c _nvoc_class_def IoAperture 264 _nv002008rm 264 0
KernelBif 0xdbe523 _nvoc_class_def KernelBif 816 _nv002010rm 752 64
KernelBus 0xd2ac57 _nvoc_class_def KernelBus 30064 _nv002011rm 28832 1232
KernelCcu 0x5d5b68 _nvoc_class_def KernelCcu 824 _nv002013rm 720 104
KernelCcuApi 0x3abed3 _nvoc_class_def KernelCcuApi 1056 _nv002014rm 1056 0
KernelCE 0x242aca _nvoc_class_def KernelCE 1080 _nv002012rm 1056 24
KernelCeContext 0x2d0ee9 _nvoc_class_def KernelCeContext 1592 _nv002015rm 1608 16
KernelChannel 0x5d8d70 _nvoc_class_def KernelChannel 2056 _nv002016rm 2144 88
KernelChannelGroup Oxec6del _nvoc_class_def KernelChannelGroup 456 _nv002017rm 504 48
KernelChannelGroupApi 0x2b5b80 _nvoc_class_def KernelChannelGroupApi 1192 _nv002018rm 1192 0
KernelCtxShare Ox5ae2fe _nvoc_class_def KernelCtxShare 184 _nv002019rm 192 8
KernelCtxShareApi 0x1f9afl _nvoc_class_def KernelCtxShareApi 1064 _nv002020rm 1064 0
KernelDisplay 0x55952¢ _nvoc_class_def KernelDisplay 912 _nv002021rm 848 64
KernelFalcon Oxb6blaf _nvoc_class_def KernelFalcon 136 _nv002022rm 224 88
KernelFifo 0xf3el55 _nvoc_class_def KernelFifo 1552 _nv002023rm 1664 112
KernelFsp 0x87fb96 _nvoc_class_def KernelFsp 880 _nv002024rm 776 104
KernelGmmu 0x29362f _nvoc_class_def KernelGmmu 24544 _nv002025rm 24624 80
KernelGraphics Oxea3fa9 _nvoc_class_def KernelGraphics 1592 _nv002026rm 1544 48
KernelGraphicsContext 0x7ead09 _nvoc_class_def KernelGraphicsContext 1064 _nv002027rm 1144 80
KernelGraphicsContextShared Oxe7abeb _nvoc_class_def KernelGraphicsContextShared 1600 _nv002028rm 160 1440
KernelGraphicsManager 0xd22179 _nvoc_class_def KernelGraphicsManager 1216 _nv002029rm 1112 104
KernelGraphicsObject 0x097648 _nvoc_class_def KernelGraphicsObject 1656 _nv002030rm 1704 48
KernelGsp 0x311d4e _nvoc_class_def KernelGsp 79048 _nv002031rm 79144 96
KernelHead 0x0145e6 _nvoc_class_def KernelHead 152 _nv002032rm 192 40
KernelHostVgpuDeviceApi 0xb12d7d _nvoc_class_def KernelHostVgpuDeviceApi 1328 _nv002033rm 1328 0
Kernelloctrl 0x880c7d _nvoc_class_def Kernelloctrl 632 _nv002035rm 528 104
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