Check for
Updates

Forensic Analysis of Artifacts from Microsoft’s Multi-Agent LLM
Platform AutoGen

Clinton Walker
cwall17@lsu.edu
Baggil(i) Truth (BiT) Lab
Center for Computation and
Technology
Louisiana State University
Baton Rouge, United States

Cory Hall
cory.hall@projectvic.org
Project VIC International

Severn, United States

ABSTRACT

Innovations in technology bring new challenges that need to be
addressed, especially in the field of technical artifact discovery and
analysis that enables digital forensic practitioners. Digital forensic
analysis of these innovations is a constant challenge for digital
investigators. In the rapidly evolving landscape of Artificial In-
telligence (Al), keeping up with the digital forensic analysis of
each new tool is a difficult task. New, advanced Large Language
Model (LLM)s can produce human-like artifacts because of their
complex textual processing capabilities. One of the newest innova-
tions is a multi-agent LLM framework by Microsoft called AutoGen.
AutoGen enables the creation of a team of specialist LLM-backed
agents where the agents "chat" with each other to plan, iterate,
and determine when a given task is complete. Typically one of
the agents represents the human user while the other agents work
autonomously after the human gives each agent a responsibility on
the team. Thus, from a digital forensics perspective, it is necessary
to determine which artifacts are created by the human user and
which artifacts are created by the autonomous agents. Analysis in
this work indicates that the current implementation of AutoGen
has little in artifacts for attribution outside of particular memory
artifacts, yet has strong indicators of usage in disk and network
artifacts. Our research provides the initial account on the digital arti-
facts of the LLM technology AutoGen and first artifact examination
for a LLM framework.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2024, July 30-August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670908

Taha Gharaibeh
tahatlal@gmail.com
Baggil(i) Truth (BiT) Lab
Center for Computation and
Technology
Louisiana State University
Baton Rouge, United States

Ruba Alsmadi
ralsmal@lsu.edu
Baggil(i) Truth (BiT) Lab
Center for Computation and
Technology
Louisiana State University
Baton Rouge, United States

Ibrahim Baggili
ibaggili@lsu.edu
Baggil(i) Truth (BiT) Lab
Center for Computation and
Technology
Louisiana State University
Baton Rouge, United States

KEYWORDS

digital forensics, disk forensics, memory forensics, network foren-
sics, large language model

ACM Reference Format:

Clinton Walker, Taha Gharaibeh, Ruba Alsmadi, Cory Hall, and Ibrahim
Baggili. 2024. Forensic Analysis of Artifacts from Microsoft’s Multi-Agent
LLM Platform AutoGen. In The 19th International Conference on Availability,
Reliability and Security (ARES 2024), July 30-August 02, 2024, Vienna, Austria.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3664476.3670908

1 INTRODUCTION

Large Language Model (LLM)s are a new area of science with only
a few years of history, with the first LLMs appearing between 2018
and 2019 [9, 28]. The motivation for our work comes from see-
ing the wide-variety of LLM use cases, including use cases that
may lead to illegal activity, such as: writing phishing emails, cre-
ating deepfakes, generating malware, and providing instructions
for vulnerability exploitation. The authors are active in the digital
forensics community and are interested in discovering techniques
for identifying and analyzing artifacts produced by LLMs.

With the November 2023 release of Microsoft’s AutoGen, an
open-source multi-agent conversation framework that uses LLMs
to plan, iterate, and determine the completion of tasks, it became
essential to develop techniques that help digital forensic examiners
identify and analyze AutoGen-generated artifacts and to tell them
apart from human-generated or non-Al service-generated artifacts.
The employment of agentic frameworks, such as AutoGen, gives
criminals an enormous advantage. Instead of just using an LLM to
create a phishing email, agentic frameworks could be used to plan
the phishing campaign, identify and exploit the best targets, create
all the automation needed to run the campaign, and clean up the
tracks of the operation.

AutoGen allows for communication between multiple agents,
where an agent could be an LLM, a human, or some other tool [35].
Each of the AutoGen agents are customized, where each agent is

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664476.3670908
https://doi.org/10.1145/3664476.3670908
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3670908&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30-August 02, 2024, Vienna, Austria

given a role to fulfil within the context of operating in the larger
multi-agent system. Each agent can use LLM-based API-based ser-
vices such as OpenAl x.ai, or they can be configured to use a locally
hosted LLM, such as with LLaMA.

In addition to our effort, the exploration of AutoGen by the digital
forensics research community is just getting started. Recent work
in Wickramasekara and Scanlon [34] presents a framework that
uses AutoGen agents to assist a human user with querying APIs for
digital forensics systems and publishing acceptable reports based
on retrieved artifacts. While understanding how agentic systems,
like AutoGen, are useful for advancing digital forensics applications,
there is also a need to understand how digital forensic examiners
can identify and interpret AutoGen-generated artifacts. With how
new these LLM agent-based services are, and how they are con-
stantly changing backed by significant ongoing development by
the commercial and open source communities, the forensic science
in this area is not yet developed.

Our primary objective in this paper is to identify the artifacts
left behind after running an AutoGen script on a computer. The
abundance and usefulness of certain types of artifacts could be of
significant evidentiary value. Additionally, we aim to determine
whether it is possible to attribute specific artifacts to a particular
machine, which would require the presence of sufficient evidence
on the machine to demonstrate its use in creating the artifact of
interest. Our work serves as a proof-of-concept if future outputs
from these LLM systems could be exploited for malicious purposes,
where attribution may be crucial in an investigation. With these
goals, we have established the following research questions:

RQ1 What memory, disk, and network artifacts can be found on
a machine after an AutoGen execution?

RQ2 Can a media artifact created by AutoGen be attributed to a
particular machine based on artifacts on the machine?

RQ3 Are there sufficient artifacts to make a differentiation be-
tween a Machine Learning (ML) agent prompting for output
from a LLM versus a person prompting for output on Auto-
Gen?

With the work presented in this paper, the following contribu-
tions are made:

o This work is a primary research account on the digital arti-
facts created by the LLM tool AutoGen.

o The work provides procedure for conducting a digital inves-
tigation with AutoGen artifacts involved.

e This work provides analysis on the accuracy of attribution
for artifacts to either a person or LLM service.

The remainder of this paper is organized as follows: Background
in Section 2. Related Work in Section 3. Methodology in Section
4 and Acquisition Process in Section 5. Results in Section 6 and
Discussion in Section 7. Conclusion and Future Work in Section 8.

2 BACKGROUND

LLMs can be enhanced through the use of multi-agent systems,
which involve multiple intelligent agent components working to-
gether to handle complex tasks more efficiently [31]. Integrating
LLMs into multi-agent systems can improve agents’ communica-
tion and cooperation, leading to self-adaptive system advancements.

Clinton Walker, Taha Gharaibeh, Ruba Alsmadi, Cory Hall, and Ibrahim Baggili

This approach has been applied in models which explore the possi-
ble future state of artificial general intelligence, such as Auto-GPT
and BabyAGI [23].

In a system utilizing AutoGen, there could be several agents
representing a software design team. One agent may act as a project
manager, one may act as a programmer, and another will act as
a quality assurance tester. The agents in a given system will play
out their roles and achieve the outcomes they have been given,
and communicate to each other while achieving these goals. LLM
agents can be specialized in specific tasks, such as code generation.
As the technology for AutoGen evolves, it is likely that the remote
models that can be used will expand past the OpenAl models. The
specialized training of LLMs will most become more widespread
in large companies and the use of AutoGen to interact with more
remote models is highly likely.

A technique that uses images and sounds to inject prompts and
instructions into LLMs has been demonstrated by Bagdasaryan et al.
[6]. This technique allows attackers to generate adversarial pertur-
bations and blend them into images or audio recordings. When the
user interacts with the perturbed image or audio, the LLM outputs
the attacker’s chosen text and follows their instructions. Kang et al.
[18] also highlight the dual-use risks of instruction-following LLMs,
as they can be used to produce targeted malicious content, includ-
ing hate speech and scams. Powerful LLMs like BERT, Bard, GPTs,
and LLaMA learn from vast amounts of text, letting them answer
questions and craft solutions based on the user prompts [29].

The artifacts generated by AutoGen are not yet covered in cur-
rent artifact repositories. Even with a large repository covering
a variety of artifacts, there will need to be additions made as in-
novations of technology will create new expectations of artifacts.
The type of artifacts specifically created by a service such as Auto-
Gen are not yet covered even by the massive dataset established
in Grajeda et al. [13] or the standard Computer Forensic Reference
DataSet Portal (CFReDS) created by the National Institute of Stan-
dards and Technology (NIST) NIST [25]. The artifacts generated
by such a LLM service could be of great forensic interest as similar
technologies become more ubiquitous.

3 RELATED WORK

Use of generative pre-training is a well-established ML technique
for building LLMs. LLMs are neural networks with a high number
of parameters and weights, trained on large amounts of unlabeled
text [3]. LLMs are a custom implementation of the Transformer ar-
chitecture. This architecture is used by an LLM for natural language
processing tasks, such as generating text, answering questions, and
translation. These models show promise in diverse domains. How-
ever, the widespread use of LLMs introduces security risks, enabling
attackers to generate malicious content and manipulate model out-
put [6, 18]. Prompt injection attacks on LLM-integrated applications
pose significant security risks, potentially impacting millions of
users and requiring new mitigation approaches [1, 21]. Addressing
the assimilation of LLMs into various services is crucial for effective
security risk mitigation.

Scanlon et al. [29] evaluated ChatGPT, specifically GPT-4, in
digital forensics, exploring its capabilities in artifact understanding,
evidence searching, code generation, anomaly detection, incident

Forensic Analysis of Artifacts from Microsoft’s Multi-Agent LLM Platform AutoGen

response, and education. Wickramasekara and Scanlon [34] simi-
larly investigated the use of AutoGen for use in a digital forensics
framework. While identifying potential low-risk applications, it
highlights limitations such as impractical evidence upload and the
need for knowledgeable users to identify errors. Work by Michelet
and Breitinger [22] shows the promise of LLMs, such as GPT or
LLaMA, in automating forensic reports, but challenges like model
quality and standardization remain. This exploration opens doors
for future research and improved investigative efficiency. Explor-
ing ChatGPT’s investigative potential, Henseler and van Beek [15]
focused on legal applications: building natural language queries,
summarizing/visualizing e-communication, and analyzing search
results. Findings suggest promise for Artificial Intelligence (AI)-
powered assistance in effective investigations. Despite constraints,
ChatGPT could serve as a valuable support tool in specific digital
forensics scenarios for users with sufficient expertise.

3.1 Memory Forensics

Memory forensics artifacts that can be recovered from a machine
include the list of running processes and the process memory [32].
Memory forensics opens an avenue for recovering credentials for
applications and services. Even in situations where key information
is not recoverable from disk or network forensics, memory forensics
is still a possibility for recovering this data. This includes local and
web credentials, plus other important security keys that may exist.
Analyzing memory samples allows retrieving artifacts unavailable
through traditional filesystem forensics, such as information never
written to the file system [10]. Furthermore, a comparative study of
portable web browsers revealed that data could be recovered from
the memory dump, even in private mode browsing, aiding forensic
investigators in their analysis [14].

3.2 Disk Forensics

Disk forensics artifacts that can be recovered from a machine in-
clude traces of the installation, runtime, and deletion behaviors
of virtual disk encryption tools [20]. Additionally, the analysis
of spinning media drives is well understood and accepted, but
the increased complexity and autonomous actions of Solid State
Drive (SSD)s create challenges for forensic analysis [2]. While most
forensic artifacts may be eliminated from unallocated space in SSDs,
examiners should focus on allocated files and the information left

behind [12].

3.3 Browser Forensics

Browser forensic artifacts that can be recovered from a machine
include browsing data from regular browsing modes, minimal data
from private browsing modes, and almost no artifacts from The
Onion Router (Tor) [8]. Evidence can be recovered from Internet
Explorer even when running in private mode, while other browsers
maintain better user privacy [11]. The research also aims to under-
stand the quantity and quality of data that can be recovered from
memory dumps in different conditions, such as when browser tabs
were open or closed, using portable web browsers like Brave, Tor,
Vivaldi, and Maxthon [24].

ARES 2024, July 30-August 02, 2024, Vienna, Austria

3.4 Network Forensics

Network forensics artifacts that can be recovered from a machine in-
clude evidence of network packets and switch memory dumps [19].
These artifacts can provide valuable information for forensic ana-
lysts in their investigations. Additionally, network forensics focuses
on searching, monitoring, and analyzing network components such
as switches, routers, firewalls, and wireless systems for possible
evidence [4]. Correlating information from a host with informa-
tion collected from the network is crucial to ensure the integrity
of artifacts and detect tampering by suspects or intruders. This
approach identifies anomalies and threats that may not be evident
from system logs alone [26].

3.5 ML and Al Forensics

As Al becomes ubiquitous and further woven into critical systems,
analyzing its failures necessitates a new discipline: Al forensics. Bag-
gili and Behzadan [7] proposed its first definition, tools, and evi-
dence taxonomy (training data, hardware, applications, models)
to enable rigorous, legally sound investigations. Recent works
tackle Al-driven synthetic media security risks with innovative
approaches. Hubinger et al. [17] designed an Al system with hid-
den vulnerabilities, known as backdoors, to explore potential future
misalignment risks. Despite safety training, these backdoors persist,
raising concerns about the effectiveness of current methods. The
study calls for advanced techniques to address safety in larger Al
systems. Walker et al. [33] delves into vulnerabilities of the Tensor-
Flow 2 HDF5 model file format, which is the original data format
used for storing models in the framework. This work crafts a dedi-
cated forensic tool for identification and mitigation of security risks
in this model file type. Soares et al. [30] discusses the positive side
of synthetic media, proposing its use for ethical penetration testing.
Their comprehensive model maps how fake text, websites, audio,
and videos can aid in reconnaissance, vulnerability assessment,
and exploitation, ultimately safeguarding organizations against cy-
ber threats. This underscores the need for forensic techniques and
secure systems to counter Al-synthesized threats.

4 METHODOLOGY

Experiments in this work are performed in a virtual environment
using VMWare Workstation Pro to virtualize a Windows 10 Pro
Operating System (OS). Tools such as Autopsy and Volatility are
used for disk and memory analysis. Information on versions for
these tools can be found in Table 1. The disk and memory analysis
for each scenario is performed on the virtual disk and memory files
created by snapshots taken with VMWare Workstation Pro. Experi-
mentation in virtual environments is well utilized for forensically
sound investigation of artifacts [5, 16].

Volatility is a widely-used open-source framework specifically
designed for memory forensics. It can be invaluable for digital inves-
tigators aiming to uncover evidence from live systems or memory
snapshots as used in this work. Volatility is able to reveal valuable
insights into an OS’s state at the time of the snapshot, including
running processes, open network connections, loaded kernel mod-
ules, encrypted data in memory, and even remains of deleted files.
In places where disk-based forensics may not produce sufficient
data, memory-based forensics may uncover useful artifacts.

ARES 2024, July 30-August 02, 2024, Vienna, Austria

al (A
Local \A \)

Tasks @) AutoGen |

Clinton Walker, Taha Gharaibeh, Ruba Alsmadi, Cory Hall, and Ibrahim Baggili

((C\

= =/

Generate Code ; .

&

—y | G
F

************* o«)

Figure 1: Experimental setup of user communication with LLMs. Where (A) represents the user inputting tasks (B) to the LLMs

©.

The forensic analysis software Autopsy is utilized in this work
for disk analysis. It is adept at recovering marked deleted files
or remnants of files that may still linger on a disk from partial
erasure. Autopsy can also extract metadata from files, including
the timestamps, file paths, and user information. This can provide
valuable insights into when and how files were manipulated or
accessed, which can aid in reconstructing timelines and sequences
of events relevant to an investigation. There is the possibility of
finding software configuration files, such as the ones created to
configure AutoGen agents if they use local configuration in some
fashion. In addition to file-related evidence, Autopsy can delve into
internet activity, analyzing web browser history, cache files, cook-
ies, and other artifacts to unveil online behavior, such as websites
visited, online searches conducted, and user interactions. In the
event that any web artifacts are left from the online communication
with OpenAl servers, they may be found in the files of the disk
snapshot.

Wireshark is a powerful network protocol analyzer for analyzing
network traffic and creating Packet Capture (PCAP) files. It is able
to capture and inspect packets traversing a network in real-time and
allows for analysis of the PCAP files it creates post-event. Wireshark
is also capable of extensive filtering, making narrowing down events
on a machine’s network activity captured in a PCAP much easier.

Microsoft Strings is utilized for exporting and processing the
virtual memory captures in pure text form. Python scripts are writ-
ten to take the virtual memory as it is exported from Strings and
further filter them on markers of interest. Producing several filtered
files from the memory captures at the time of snapshot allows for
more manual analysis outside of Volatility. While Volatility pro-
vides insights into the Windows system’s memory and the overall
state of the machine related to the OS, this manual analysis of the
total memory provides insight into floating artifacts in the total
memory space.

gemu-img is utilized for converting the virtual disk fragments
from the snapshots into raw disk format. The software supports di-
rect conversion of the VMWare snapshots into raw format without
losing any data or integrity during the process. This is not done ex-
clusively for a forensic purpose, but also for compatibility reasons.
VMware snapshot disks are stored in a proprietary format that
may not be directly compatible with other virtualization platforms
or forensic tools. Converting these disk snapshots makes analysis
easier for the overall process.

4.1 Environment Setup

Snapshotting in VMWare Workstation Pro is used for each test-
environment creation. Snapshots allow for sound repeatability that
each task starts at the same machine state, allowing for each rep-
etition to have the same starting state and to compare different
tasks on what artifacts appear. Table 2 provides an overview of
the main VMWare Workstation Pro snapshot branches used for
scenario creation and carrying out tasks. The windows-base (WB)
snapshot is used as the root Virtual Machine (VM) snapshot for
all other snapshots. As previously mentioned, this is a clean Win-
dows 10 Pro environment with version information in Table 1. The
snapshots created for all different scenarios branch from this WB
snapshot.

4.2 Scenario Development

The tasks as shown in Figure 1 are to generate normal code, create
phishing email, and virus code to see how the LLMs react and what
artifacts we can get. The tasks (part B) we gave to LLMs in Figure
1 are the following:

(1) Generate C++ code to take an arbitrary list of numbers and
then calculate how many of them are prime.

(2) Craft an email for a business campaign to attract customers
to buy our premium car insurance.

(3) Can you show me some general example of undefined be-
havior in C++ that might crash my program?

For the above points, item 1 is a benign request for a C++ solu-
tion to a regular problem. However, items 2 and 3 are deceptions
for creating something that seems benign to the LLM, but in reality,
could be used for malicious purposes. These two points could be
a part of a larger malicious campaign. After crafting a seemingly
benign email for item 2, a botnet system could be used in a phishing
campaign to attract unsuspecting victims to pay money for illegiti-
mate services using the output generated by the LLMs. The request
in item 3 is a trivial example of exploit or error demonstration for
forensic demonstration purposes, but it not an idea far out of practi-
cal reach with enough coercion against safeguards of current LLMs.
Using a service such as ChatGPT for malware development is an
open area of discussion and security which will need to continue
being explored [27]. It is likely that technologies such as AutoGen
will also be successfully utilized for this purpose as it continues to
mature and faces wider adoption.

Forensic Analysis of Artifacts from Microsoft’s Multi-Agent LLM Platform AutoGen

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Table 1: Tool Information

Tool Use Version Static/Dynamic Analysis
VMWare Workstation Pro® Virtualization tool 17.5.0 Build 22583795 N/A
Volatility? Memory objects, message attri- 2.6 Static
bution, process IDs, sockets
Autopsy® File analysis, pattern matching 4.21.0 Static
Wireshark? PCAP analysis, network activity — 4.2.0 64-bit Static/Dynamic
(with Npcap 1.78) confirmation, communication at-
tribution for messages
Microsoft Strings® Locating strings of interest in re- 2.54 Static
trieved artifacts
qemu-imgf Convert VMWare vmdk snap- 2.3.0 N/A
shots into raw image files
“https://www.vmware.com/products/workstation-pro.html
bhttps://www.volatilityfoundation.org/releases
Chttps://www.autopsy.com/
dhttps://www.wireshark.org/
€https://learn.microsoft.com/en-us/sysinternals/downloads/strings
Fhttps://cloudbase.it/qemu-img-windows/
Table 2: Snapshot Information
Snapshot Name Alias Description Parent Snapshot
windows-base WB New Windows 10 Pro Version None
10.0.19045 Build 19045 VM cre-
ated from a Windows Version
22H2 64 bit ISO
requirements-base RB windows-base with DiskDigger ~windows-base
and Wireshark installed through
Microsoft Edge
autogen-tools AT requirements-base with Python requirements-base

3.12.1 and AutoGen dependency
pyautogen 0.27.7 installed

The AT snapshot as the base for executing the three tasks with
AutoGen. The AT snapshot has the Python installation and depen-
dencies for AutoGen to function. AutoGen tasks are carried out
with agents using the gpt-3.5-turbo-16k model from OpenAlI. The
tasks use two agents in this setup, the UserProxyAgent and the
AssistantAgent. Figure 2 provides a diagram of how the AutoGen
script involves human and agent interaction.

Each task uses the same base AutoGen Python script. The at. py
script used for executing the AutoGen tasks uses a simple setup. The
only change made in this script between the different executions is
the message delivered from the user, configure through the variable
message. This variable being provided from the user can be seen in
Listing 1. This interaction is what initiates conversation between the
UserProxyAgent and AssistantAgent actors. The user will provide
the initial message in the AutoGen script for the UserProxyAgent
model. After this initial information is provided from the user, the
UserProxyAgent will converse in place of the user for this system.

Listing 1: Chat initiation from the UserProxyAgent to the
AssistantAgent

1 user_proxy.initiate_chat(

2 assistant ,

3 message="""Generate C++ code to take an arbitrary
list of numbers and then calculate how many of
them are prime.""")

The UserProxyAgent is configured as seen in Listing 2. The
system_message variable provides a directive for the UserProx-
yAgent so that it can take the place of the user in the interaction.
Other settings provided change behavior and configuration of the
agent, such as when to terminate conversation in the system.

Listing 2: Configuration of the UserProxyAgent

user_proxy = UserProxyAgent(

name="user_proxy",

human_input_mode="TERMINATE" ,

max_consecutive_auto_reply =10,

is_termination_msg=lambda x: x.get("content", "").
rstrip () . endswith ("TERMINATE") ,

QR W =

https://www.vmware.com/products/workstation-pro.html
https://www.volatilityfoundation.org/releases
https://www.autopsy.com/
https://www.wireshark.org/
https://learn.microsoft.com/en-us/sysinternals/downloads/strings
https://cloudbase.it/qemu-img-windows/

ARES 2024, July 30-August 02, 2024, Vienna, Austria

message ha

Clinton Walker, Taha Gharaibeh, Ruba Alsmadi, Cory Hall, and Ibrahim Baggili

Agent Interaction
e o

«—|aD

User

UserProxyAgent

AssistantAgent

Figure 2: AutoGen configuration showing the two agents in the experiment: UserProxyAgent and AssistantAgent.

6 code_execution_config={"work dir": "web"},

Ilm_config=1lm_config ,

8 system_message="""Reply TERMINATE if the task has
been solved at full satisfaction.

9 Otherwise, reply CONTINUE, or the reason why the task

is not solved yet.""")

~

The AssistantAgent is configured as seen in Listing 3. This agent
operates as the problem solver in this system, with the goal of
providing a correct answer to the UserProxyAgent.

Listing 3: Configuration of the AssistantAgent

1 assistant = AssistantAgent(
2 name="assistant",
3 llm_config=1lm_config)

After the UserProxyAgent begins conversation the AssistantA-
gent will try to provide a solution for the task prompt, while the
UserProxyAgent judges the responses given and provides feedback.
This is the structure of the feedback loop between the two models
which will continue until the UserProxyAgent is satisfied entirely
with the solution given by the AssistantAgent.

5 ACQUISITION PROCESS

The three tasks are carried out on the AT snapshot after before
another snapshot is taken post-task. Each snapshot for experimenta-
tion is taken immediately after the requests were made for that task.
Thes AT snapshot is restored in VMWare between experiments to
ensure that there is no contamination of the VM.

Algorithm 1 shows the acquisition method used for each task. A
Wireshark PCAP is started before each task is performed and the
entireity of network traffic is captured while the task executes for
later PCAP analysis (line 2). For each task, the Python file containing
the task on AutoGen is uploaded to the machine (line 3). The task is
then executed on Powershell and responses are awaited by the user
(line 4). After three messages are successfully interchanged between
the two agents, the Powershell execution is force quit (line 5). This
gives the two agents enough interactions to successfully analyze
interactions from both agents present. Wireshark capture is then
ended for either scenario, and the resulting PCAP file is saved to the
Desktop of the scenario machine (line 6). A snapshot is taken of the
VM so that virtual memory can be used in post-analysis (lines 7-8).
This process on lines 2-7 involves a human executing these steps
exactly the same for each task systematically. Post analysis is then
performed on the disk, memory, and network artifacts captured
during this procedure.

6 RESULTS

In this section, we present the results of our investigation, which
includes the execution of three tasks on two scenarios (see Figure
1). We answer the research questions individually by providing the

Algorithm 1 Memory Acquisition for AutoGen

1: procedure COMBINEDPROCEDURE

2 Start Wireshark capture

3 Upload Python file containing the Task for AutoGen

4 Execute Task on PowerShell

5: Force quit after the success of 3 messages between agents
6 Stop Wireshark capture and save pcap to desktop

7 Snapshot state for vmem

8 Post analysis

9: end procedure

results, analysis, and an overall answer to the question. Microsoft
Strings is used in the investigation to collect all printable strings
that can be found in memory. Volatility 2 plugins were used the
examine network connectivity on Windows at the time of a task
snapshot. Manual and scripted string analysis was performed on
gemu-img conversions of vmem snapshot files to examine the state
of memory and processes on the VM. Wireshark was used for ana-
lyzing PCAP files captured during a task execution. We revisit the
research questions previously introduced and provide and overall
answer for each.

[RQ1] What memory, disk, and network artifacts can be found
on a machine after an AutoGen execution?

The combination of memory, disk, and network artifacts does
allow an interesting total picture to the made in the use of AutoGen
being apparent. With the disk and network artifacts captured, the
use of AutoGen on a machine of interest is readily apparent from
the library files and network traffic. The memory artifacts captured
prove to be very interesting overall, but are inconsistent between
the different tasks as to what is captured. The tasks being executed
through AutoGen provide the possibility that a JSON response will
be loaded into memory. The disk artifacts captured are very useful
in proving the installation and use of AutoGen on a machine of
interest. The site-packages for Python on the Windows machine
show that the pyautogen library is installed and provide a timeline
of when this installation took place. Figure 3 shows a sample of the
directory information providing evidence of AutoGen’s installation
to the machine.

Network traffic communicated from running the AutoGen scripts
for these tasks provides evidence of connection. Communication
over AutoGen can take place on several different IP addresses hosted
through Akamai DNS records. Connections are opened in these
AutoGen tasks to several different addresses, including 23.47.48.247,

Forensic Analysis of Artifacts from Microsoft’s Multi-Agent LLM Platform AutoGen

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Python312/Lib/site-packages/openai/cli/ api/chat/ pycache / init .cpython-312.pyc
Python312/Lib/site-packages/openai/cli/ api/completions.py
Python312/Lib/site-packages/openai/types/chat/completion create params.py
Python312/Lib/site-packages/pyautogen-0.2.7.dist-info/METADATA
Python312/Lib/site-packages/openai/types/chat/ pycache /chat completion message.cpython-312.pyc
Python312/Lib/site-packages/openai/types/chat/ pycache /chat completion.cpython-312.pyc
Python312/Lib/site-packages/openai/cli/ api/ pycache /audio.cpython-312.pyc
Python312/Lib/site-packages/openai/cli/ api/ pycache /completions.cpython-312.pyc
Python312/Lib/site-packages/openai/types/chat/ pycache /chat completion_ chunk.cpython-312.pyc

Figure 3: A sample of the site-packages for the Python directory on a task snapshot of Windows.

23.47.48.217, 23.47.50.223, and 23.47.50.220. The traffic communi-
cated between the inspected machine and the OpenAl servers in
this experiment is transfered via HTTPS, and the application data
in the packets is encrypted with Transport Layer Security (TLS)
version 1.3. While TLS encryption inhibits digital forensic analysis
by obscuring network artifacts, these connections can still be used
well when linked with other artifacts. By monitoring the patterns
of encrypted communication, it can be established that communi-
cation over AutoGen has taken place. Correlating network events
with other sources of information can still establish a timeline for
a totality of events.

[RQ2] Can a media artifact created by AutoGen be attributed to
a particular machine based on artifacts on the machine?

For this research question, memory artifacts show to be the most
significant in proving attribution between an artifact of interest and
a particular machine. If a JSON response from AutoGen is appears
in memory, then this particular type of artifact can be useful for
attribution. In this is the case that a response is captured in mem-
ory extraction for analysis, the output artifact from the LLM can
give an indication if a particular artifact came from the machine
of interest. The Python source code for AutoGen does historically
have a logging function which would generate more artifacts in
use. As of AutoGen version 0.2, however, this function has been
deprecated. The lack of logging in the current version of AutoGen
does not leave many disk artifacts behind when run only in the
memory space and not saved to the disk of the machine. If this
logging functionality is reintroduced in future versions of the Auto-
Gen library, it could provide a viable avenue to capture the entireity
of information about a transaction through AutoGen. Even with
logging being an option, if it is not enabled then there is a possibility
that information may only be saved in memory. Overall, attribution
of an artifact to a particular machine is difficult with the artifacts
captured from this work’s scope of analysis.

[RQ3] Are there sufficient artifacts to make a differentiation
between a ML agent prompting for output from a LLM versus a
person prompting for output on AutoGen?

This research question requires more analysis and different meth-
ods in future work. The artifacts captured from AutoGen do not
give a direct trace of artifacts through the entire process because of
the amount of processing that takes place server side. Information

is provided back to the user throughout the execution of the Auto-
Gen script, but the lack of computation on the user’s side does not
provide enough end-to-end analysis to determine if the entire trace
being reported to the machine comes from a particular source. The
mixing of different LLM agents and the possibility of other sources
interacting with a series of prompts leaves the user machine with-
out a significant amount of information on the process. It is possible
through memory artifacts and the initial AutoGen script in disk
artifacts to determine what the initial prompt from the user was.
Aside from this, some memory artifacts would have to appear on
the machine of interest which come from the user of that machine.

7 DISCUSSION

ROQ1 is the primary digital forensic interest in this work. A LLM
technology such as AutoGen may be involved in a situation that
calls for digital forensic analysis. In the context of incident response,
knowing the artifacts left behind by AutoGen can be crucial for
identifying and responding to security incidents. If this case arises,
it is of pertinent interest to an investigator what to expect in terms
of possible artifacts and how to locate these in a timely manner.
Examining memory, disk, and network artifacts provides insights
into the impact and footprint of AutoGen on a machine.

RQ2 is of interest for attribution, since an artifact of any type that
appears in a situation might have LLM involvement in its creation.
LLMs are now involved in a multimedia, code generation, textual
generation, and a variety of other tasks which used to be strictly
or majorly human involved. LLMs are often trained on diverse
datasets that include a broad range of topics and writing styles.
As a result, the generated artifacts may lack specific features or
patterns that uniquely identify a particular machine. LLMs aim to
produce coherent and contextually appropriate text for a user, but
this can lead to a certain level of homogeneity in the generated
content.

RQ3 is of interest since the new domain of LLM interaction
shown in AutoGen can mix human and agent prompting in a sys-
tem. Understanding whether there are distinguishable artifacts in
the outputs of LLMs based on the entity initiating the prompts is
crucial for attribution and accountability. The research question has
legal implications, particularly in contexts where the responsibility
for generated content is a subject of legal inquiry. Determining
whether a machine or a human initiated a particular interaction
with an LLM can impact legal considerations regarding liability and
accountability.

This work targetted to the areas of forensic analysis and attribu-
tion in realm of new LLM technologies. Systems such as AutoGen

ARES 2024, July 30-August 02, 2024, Vienna, Austria

are just the beginning of LLM technologies and services. As new
services become available to the public, digital forensics in the
realm of LLM and ML in general will need to keep up. Diversity in
the area of how and where LLM technologies are used is growing
right now, and it will most likely continue growing for the near
future.

There is a limitation in the analysis of network traffic in this work.
The encrypted information from the PCAP files is not explored and
any attempt at decrypting it is not made. For timeline purposes,
the acknowledgment that the connection is made to an identifable
source is useful, but more useful would be attempted decryption
of the traffic. This could be of interest for future work with the
decryption of the entireity of traffic captured with TLS.

There is a great possibility that artifacts for AutoGen will change
drastically over time. An important example of this is logging func-
tionality for the backing code which was previously discussed.
These experiments are performed with version 0.27.7 and so this
function is not covered in this work. Documentation ! for AutoGen
indicates that it will be supported in later releases, which opens
an opportunity to revisit the artifacts created by AutoGen as its
codebase continues to evolve.

8 CONCLUSION AND FUTURE WORK

This work acts as the initial account on forensics of the LLM tech-
nology AutoGen. We have explored the three research questions
presented on the artifacts generated on these services and attri-
bution of a LLM as the creator of a particular artifact of interest.
Using a LLM tool for this purpose can be helpful for practical for
an offensive team performing its job, just as it can be useful for a
malicious actor leveraging the LLM for better harmful activity.

The forensics of AutoGen is also going to be of interest based on
how its codebase develops and the future of multi-agent interactions
with LLMs. AutoGen is going to have an evolving codebase which
may introduce new artifacts. A changing codebase can produce
more interesting artifacts for forensic analysis over time due to
the dynamic nature of software development and its impact on
the digital environment. As Microsoft continues to modify, update,
and add new features to AutoGen, a continuous evolution of the
artifacts produced will reflect these changes. With the codebase for
this technology being so new, it may be of interest to revisit the
artifacts on a short timeframe and see how they change with major
revisions.

Further work on this subject would be the artifacts produced by
specific agents in a system such as AutoGen. Understanding the
unique disk and memory artifacts generated by different agents with
distinct roles could be of high importance for security and digital
forensics. It would allow investigators to analyze and attribute
specific actions to individual agents, aiding in the identification and
response to security incidents. This is especially important in the
area of incident response, where understanding the agents utilized
in an event can be incredibly important.

In the event of a security breach or suspicious activity in a multi-
agent environment, the ability to differentiate between artifacts left
by different agents can enhance incident response capabilities. It

!https://github.com/microsoft/autogen/blob/b9bb0ee32a83b3974e409d350470e0be733c0772/

autogen/oai/completion.py#L1129

Clinton Walker, Taha Gharaibeh, Ruba Alsmadi, Cory Hall, and Ibrahim Baggili

provides insights into the actions of each agent, facilitating a more
targeted and effective response. Individual analysis of artifacts from
specific agents with a collective case study of a large multi-agent
system would be of great interest.

Another area of interest in this area is the forensic capability
built into LLM systems such as AutoGen. These systems can be
more useful in a forensic context if they are implemented to recall
the interactions and actions taken by agents. This is not only useful
for forensic investigation, but further understanding of the actions
of a LLM and its interaction in a system.

REFERENCES

[1] Sahar Abdelnabi, Kai Greshake, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not What You’ve Signed Up For: Compromising Real-
World LLM-Integrated Applications with Indirect Prompt Injection. In Proceedings
of the 16th ACM Workshop on Artificial Intelligence and Security. 79-90.

[2] Noora Al Mutawa, Ibtesam Al Awadhi, Ibrahim Baggili, and Andrew Marring-
ton. 2011. Forensic artifacts of Facebook’s instant messaging service. In 2011
International Conference for Internet Technology and Secured Transactions. IEEE,
771-1776.

[3] Marwah Alaofi, Luke Gallagher, Mark Sanderson, Falk Scholer, and Paul Thomas.
2023. Can generative llms create query variants for test collections? an ex-
ploratory study. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1869-1873.

[4] Izzat Alsmadi and Mamoun Alazab. 2017. A model based approach for the
extraction of network forensic artifacts. In 2017 Cybersecurity and Cyberforensics
Conference (CCC). IEEE, 16-18.

[5] Muhammad Raheel Arshad, Mehdi Hussain, Hasan Tahir, Sana Qadir, Faraz Igbal
Ahmed Memon, and Yousra Javed. 2021. Forensic Analysis of Tor Browser on
Windows 10 and Android 10 Operating Systems. IEEE Access 9 (2021), 141273~
141294. https://doi.org/10.1109/ACCESS.2021.3119724

[6] Eugene Bagdasaryan, Tsung-Yin Hsieh, Ben Nassi, and Vitaly Shmatikov. 2023.
(Ab) using Images and Sounds for Indirect Instruction Injection in Multi-Modal
LLMs. arXiv preprint arXiv:2307.10490 (2023).

[7] Ibrahim Baggili and Vahid Behzadan. 2019. Founding the domain of Al forensics.
arXiv preprint arXiv:1912.06497 (2019).

[8] Stuart Berham and Sarah Morris. 2022. A critical comparison of Brave Browser
and Google Chrome forensic artefacts. Journal of Digital Forensics, Security and
Law 17,1 (2022), 4.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

http://arxiv.org/abs/1810.04805 arXiv:1810.04805 [cs].

S Dija, TR Deepthi, C Balan, and KL Thomas. 2012. Towards retrieving live

forensic artifacts in offline forensics. In Recent Trends in Computer Networks and

Distributed Systems Security: International Conference, SNDS 2012, Trivandrum,

India, October 11-12, 2012. Proceedings 1. Springer, 225-233.

[11] Cassandra Flowers, Ali Mansour, and Haider M Al-Khateeb. 2016. Web browser
artefacts in private and portable modes: a forensic investigation. International
Journal of Electronic Security and Digital Forensics 8, 2 (2016), 99-117.

[12] John William Fulton. 2014. Solid State Disk forensics: Is there a path forward?
Ph.D. Dissertation. Utica College.

[13] Cinthya Grajeda, Laura Sanchez, Ibrahim Baggili, Devon Clark, and Frank Bre-

itinger. 2018. Experience constructing the Artifact Genome Project (AGP): Man-

aging the domain’s knowledge one artifact at a time. Digital Investigation 26

(2018), S47-S58. https://doi.org/10.1016/j.diin.2018.04.021

Meenu Hariharan, Akash Thakar, and Parvesh Sharma. 2022. Forensic Analysis of

Private Mode Browsing Artifacts in Portable Web Browsers Using Memory Foren-

sics. In 2022 International Conference on Computing, Communication, Security and

Intelligent Systems (IC3SIS). IEEE, 1-5.

Hans Henseler and Harm van Beek. 2023. ChatGPT as a Copilot for Investigating

Digital Evidence. (2023).

[16] Markus Huber, Martin Mulazzani, Manuel Leithner, Sebastian Schrittwieser,

Gilbert Wondracek, and Edgar Weippl. 2011. Social snapshots: digital forensics

for online social networks. In Proceedings of the 27th Annual Computer Security

Applications Conference (Orlando, Florida, USA) (ACSAC ’11). Association for

Computing Machinery, New York, NY, USA, 113-122. https://doi.org/10.1145/

2076732.2076748

Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte

MacDiarmid, Tamera Lanham, Daniel M Ziegler, Tim Maxwell, Newton Cheng,

et al. 2024. Sleeper Agents: Training Deceptive LLMs that Persist Through Safety

Training. arXiv preprint arXiv:2401.05566 (2024).

[18] Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tat-
sunori Hashimoto. 2023. Exploiting programmatic behavior of llms: Dual-use

=
2

[14

[15

(17

https://github.com/microsoft/autogen/blob/b9bb0ee32a83b3974e409d350470e0be733c0772/autogen/oai/completion.py#%23L1129
https://github.com/microsoft/autogen/blob/b9bb0ee32a83b3974e409d350470e0be733c0772/autogen/oai/completion.py#%23L1129
https://doi.org/10.1109/ACCESS.2021.3119724
http://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.diin.2018.04.021
https://doi.org/10.1145/2076732.2076748
https://doi.org/10.1145/2076732.2076748

Forensic Analysis of Artifacts from Microsoft’s Multi-Agent LLM Platform AutoGen

[19]

[20

[21]

[22]

[23

[24

[25]

[26

[27]

through standard security attacks. arXiv preprint arXiv:2302.05733 (2023).
Kyung-Soo Lim, Jeong-Nye Kim, and Deok-Gyu Lee. 2015. Forensic Artifacts in
Network Surveillance Systems. In Ubiquitous Computing Application and Wireless
Sensor: UCAWSN-14. Springer, 341-348.

Sungsu Lim, Jungheum Park, Kyung-soo Lim, Changhoon Lee, and Sangjin
Lee. 2010. Forensic artifacts left by virtual disk encryption tools. In 2010 3rd
International Conference on Human-Centric Computing. IEEE, 1-6.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Tianwei Zhang, Yepang Liu,
Haoyu Wang, Yan Zheng, and Yang Liu. 2023. Prompt Injection attack against
LLM-integrated Applications. arXiv preprint arXiv:2306.05499 (2023).

Gaétan Michelet and Frank Breitinger. 2023. ChatGPT, Llama, can you write my
report? An experiment on assisted digital forensics reports written using (Local)
Large Language Models. arXiv preprint arXiv:2312.14607 (2023).

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. 2023. Self-adaptive
large language model (llm)-based multiagent systems. In 2023 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C). IEEE, 104-109.

Rebecca Nelson, Atul Shukla, and Cory Smith. 2020. Web Browser Forensics in
Google Chrome, Mozilla Firefox, and the Tor Browser Bundle. Digital Forensic
Education: An Experiential Learning Approach (2020), 219-241.

NIST. 2024. Computer Forensic Reference Data Sets (CFReDS).
cfreds.nist.gov/. [Online; accessed February 5, 2024].

Livinus Obiora Nweke. 2019. A Framework for the Validation of Network Arti-
facts. (2019).

Yin Minn Pa Pa, Shunsuke Tanizaki, Tetsui Kou, Michel van Eeten, Katsunari
Yoshioka, and Tsutomu Matsumoto. 2023. An Attacker’s Dream? Exploring
the Capabilities of ChatGPT for Developing Malware. In Proceedings of the 16th
Cyber Security Experimentation and Test Workshop (<conf-loc>, <city>Marina del
Rey</city>, <state>CA</state>, <country>USA</country>, </conf-loc>) (CSET

https://

[28

[29

[30

[32

[33

(34

[35

]

ARES 2024, July 30-August 02, 2024, Vienna, Austria

’23). Association for Computing Machinery, New York, NY, USA, 10-18. https:
//doi.org/10.1145/3607505.3607513

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. [n.d.]. Language Models are Unsupervised Multitask Learners. ([n. d.]).
Mark Scanlon, Frank Breitinger, Christopher Hargreaves, Jan-Niclas Hilgert, and
John Sheppard. 2023. ChatGPT for digital forensic investigation: The good, the
bad, and the unknown. Forensic Science International: Digital Investigation 46
(2023), 301609.

Nathalia Soares, Steven Seiden, Ibrahim Baggili, and Andrew M. Webb. 2023. On
the Application of Synthetic Media to Penetration Testing. In The 2nd Workshop
on the security implications of Deepfakes and Cheapfakes (WDC °23).

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-Agent Collaboration:
Harnessing the Power of Intelligent LLM Agents. arXiv preprint arXiv:2306.03314
(2023).

Sunu Thomas, KK Sherly, and S Dija. 2013. Extraction of memory forensic
artifacts from windows 7 ram image. In 2013 IEEE Conference on Information &
Communication Technologies. IEEE, 937-942.

Clinton Walker, Ibrahim Baggili, and Hao Wang. 2023. Decoding HDF5: Machine
Learning File Forensics and Data Injection. In International Conference on Digital
Forensics and Cyber Crime 2023 (ICDF2C 2023).

Akila Wickramasekara and Mark Scanlon. 2024. A Framework for Integrated
Digital Forensic Investigation Employing AutoGen AI Agents. In Proceedings of
the 12th International Symposium on Digital Forensics and Security. IEEE.
Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li
Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W. White, Doug Burger, and Chi Wang. 2023. AutoGen: Enabling Next-
Gen LLM Applications via Multi-Agent Conversation. http://arxiv.org/abs/
2308.08155 arXiv:2308.08155 [cs].

https://cfreds.nist.gov/
https://cfreds.nist.gov/
https://doi.org/10.1145/3607505.3607513
https://doi.org/10.1145/3607505.3607513
http://arxiv.org/abs/2308.08155
http://arxiv.org/abs/2308.08155

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Memory Forensics
	3.2 Disk Forensics
	3.3 Browser Forensics
	3.4 Network Forensics
	3.5 ML and AI Forensics

	4 Methodology
	4.1 Environment Setup
	4.2 Scenario Development

	5 Acquisition Process
	6 Results
	7 Discussion
	8 Conclusion and Future Work
	References

