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Realtime bacteria detection and analysis
in sterile liquid products using deep
learning holographic imaging
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We introduce a digital inline holography (DIH) method combined with deep learning (DL) for real-time
detection and analysis of bacteria in liquid suspension. Specifically, we designed a prototype that
integrates DIH with fluorescence imaging to efficiently capture holograms of bacteria flowing in a
microfluidic channel, utilizing the fluorescent signal to manually identify ground truths for validation.
We process holograms using a tailored DL framework that includes preprocessing, detection, and
classification stages involving three specific DLmodels trained on an extensive dataset that included
holograms of generic particles present in sterile liquid and five bacterial species featuring distinct
morphologies, Gram stain attributes, and viability. Our approach, validated through experiments with
synthetic data and sterile liquid spiked with different bacteria, accurately distinguishes between
bacteria and particles, live and dead bacteria, and Gram-positive and negative bacteria of similar
morphology, all while minimizing false positives. The study highlights the potential of combining DIH
with DL as a transformative tool for rapid bacterial analysis in clinical and industrial settings, with
potential extension to other applications including pharmaceutical screening, environmental
monitoring, and disease diagnostics.

Bacteria play dual roles in our environment—they are crucial for eco-
logical balance but also pose serious health risks as pathogens and cause
significant industrial challenges as contaminants. The World Health
Organization reports that bacterial food contaminations contribute to
~33 million disability-adjusted life years lost annually, with bacteria
responsible for 60–70% of hospital admissions related to foodborne
diseases1. Economically, these incidents have profound impacts, costing
theUnited States around $15.5 billion and global losses in low-to-middle
income countries exceeding $100 billion2,3. In the pharmaceutical sector,
microbial contamination not only endangers health but also incurs
heavy financial losses due to drug recalls4,5. Thus, enhancing bacterial
detection methods in these industries is critical to public health and
economic stability.

While culture-based methods have long been the gold standard for
detecting viable bacteria through colony-forming unit counts, they lack
sensitivity and speed. Traditional culture methods often fail to detect a
significant portion of viable but non-culturable bacteria, which are believed
to be responsible for up to 80% of foodborne illnesses2,6. Additionally, these

methods can take several days to yield results, which is impractical for
industries requiring rapid responses, such as food, beverage, and pharma-
ceuticals, to prevent spoilage and avoid outbreaks7. Consequently, the
limitations of traditional methods have spurred the development of rapid
bacterial pathogen detection techniques. Among these, nucleic acid-based
methods like PCR and qPCR offer high specificity by utilizing unique
bacterial genetic sequences, yet they require well-equipped labs, specialized
personnel, and often pre-amplified DNA, limiting their field applicability8.
Other rapidmethods, including immunological assays and biosensor-based
approaches, also show promise but face challenges due to variable sensi-
tivity, a tendency for false positives, and operational instability9,10. Most
importantly, these methods generally fail to distinguish live from dead
bacteria and depend on predefined biomarkers, which can restrict their
utility in real-world applications.

To address these limitations, well-established label-free techniques
such as Fourier transform infrared (FTIR) spectroscopy and mass
spectrometry have been adapted and refined to enhance pathogen
detection. These methods offer advanced detection capabilities by
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analyzing unique molecular vibrations and precise mass measurements,
yet they often face challenges such as high costs, extensive sample pre-
paration, and reduced sensitivity at lower concentrations”11–13. Hyper-
spectral imaging and quantitative phase imaging (QPI) also provide
detailed detection through spatial and morphological data but struggle
with low throughput, high operational complexity, and costs14–16. Despite
their potential, these methods face significant challenges in practical
applications, especially when detecting low-concentration pathogens in
resource-limited settings. The ongoing demand for innovative technol-
ogies that are high-throughput, sensitive, cost-effective, and capable of
on-site analysis underscores the substantial gaps in current pathogen
detection methods.

Digital inline holography (DIH) has emerged as a cost-effective and
compact solution for high-throughput analysis of microparticles in
suspension17,18. Utilizing a digital camera, DIH captures interference pat-
terns (i.e., holograms) from the interaction between coherent light and
particle suspensions, encoding valuable information about the particles’ 3D
positions, morphologies, and refractive indices. In contrast to conventional
microscopy, DIH not only yields a significantly larger depth of field but also
offers detailed information about the biochemical composition of particles
(e.g., cell viability, and metabolic states) without the need for fluorescent
labels19–22. As a result, DIH has been applied to a broad range of biological
particle analysis, such as viability analysis of yeast cells23, characterization of
sperm motility 24, plankton classification25, and detection of abnormal red
blood cells26. However, the task of detecting and classifying bacteria using
DIH is notably challenging due to their similar morphologies and dimin-
ished optical signatures, which are often obscured by their small size and
refractive indices closely resembling those of their surrounding media.
Adapting this technology for industrial applications adds further com-
plexities, requiring not only low cost and high throughput but also low false
positive rates and easy integration without specialized training. To date,
DIH applications in bacterial analysis have been constrained to scenarios
like bio-locomotion measurements27, colony-level classification28, and low-
throughput post-analysis for extraterrestrial samples29. None of these
applications have demonstrated the ability to meet industry demands for
rapid, highly sensitive, andprecise detection and classification of bacteria. In
response, our study proposes a DL approach specifically designed to aug-
ment DIH’s capabilities, enabling real-time, precise detection of individual
bacteria. This advancement is achieved within a cost-effective and user-
friendly framework, effectively addressing the current limitations in DIH
applications.

Results
In this section, we conducted a thorough evaluation of our method’s per-
formance and capabilities using both synthetic and experimental datasets.
Initially, we validated our approach with datasets synthetically generated to
closely resemble real-world conditions while maintaining known ground
truths. After this synthetic dataset evaluation, we assessed the method’s
effectivenesswith experimental data by spikingmultiple types of bacteria into
a sterile liquid. The results below detail the outcomes of these evaluations.

Classification of five classes of bacteria and PMs
we first assessed ourDLDIH approach, focusing on its ability to classify five
bacterial species, i.e., Escherichia coli (EC), Pseudomonas aeruginosa (PA),
Bacillus subtilis (BS), Enterococcus faecalis (EF), and Campylobacter jejuni
(CJ), and generic particulate matter (PM) found in the sterile liquid (PMs)
within synthetic datasets. These datasets comprised 10,000 holograms fea-
turing random combinations of the aforementioned bacteria and PMs,
aiming for an average particle concentration of approximately five per
hologram. Figure 1a displays a sample hologram where the successful
detection and classification of particles are highlighted through differently
colored bounding boxes, demonstrating the DIH method’s capability to
discern the distinct holographic signatures of each particle type. Remark-
ably, theDIHmethodexcels indistinguishingbetweenbacterial species such
as EC, PA, and BS, whose morphological similarities pose challenges to
traditional microscopy. This differentiation is notably facilitated by DIH’s
sensitivity to the subtle variations in optical properties inherent to each
bacterial species. Such optical distinctions, which are minute and often
undetectable through conventionalmicroscopy, are effectively captured and
amplified by DIH.

The classification accuracy of our DL model was assessed through
receiver operating characteristic (ROC) curves, shown in Fig. 1b. These
curves evaluate the model’s accuracy by measuring the true positive rate
(TPR), or the probability of accurately classifying a particle, against the false-
positive rate (FPR), or the probability of incorrectly classifying a particle as a
different type (any of the other types), across various confidence thresholds.
This analysis, known as the one vs rest ROC curve analysis, revealed area
under curve (AUC) scores exceeding 0.995 for all bacterial species and PMs.
In particular, BS achieved the highest AUC at 0.9999, with EF at 0.9998
following closely. Importantly, even at a very low FPR of 0.1%, the TPR for
all categories remained reasonably high, with the lowest values above 65%
and most above 90%, demonstrating the model’s high precision in classi-
fying each particle type accurately.

Fig. 1 | Multi-bacteria classification results. a A sample of experimentally derived
synthetic hologram showing our deep learning model detects and classifies six types
of particles each marked with colored bounding boxes including E. coli (EC), P.
aeruginosa (PA), B. subtilis (BS), E. faecalis (EF), C. jejuni (CJ), and generic parti-
culate matters (PMs). The figure also includes an in-focused closeup hologram of
each type of particle showing their distinct morphologies and diffraction patterns

with a scale bar of 5 µm. b Receiver operator characteristic (ROC) curves and cor-
responding area under curve (AUC) values of our deep learning model for different
types of particles with vertical dashed line marking 0.1% false positive rate (FPR).
cThe confusionmatrix shows the accuracy andprediction errors of our classification
for each type of particle evaluated at 0.1% FPR.
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Correspondingly, the confusion matrix (Fig. 1c), evaluated at a 0.1%
FPR, elaborates further on the classification performance of our method,
with BS exhibiting the highest TPR of 99.9% due to its large size and
consistently uniform shape. Conversely, PMs, showing the lowest TPR of
66%, reflect the challenges posed by their varied shapes and sizes. EF and CJ
rank closely behind BS in TPR, attributable to their unique spherical and
spiral shapes, respectively. ECandPAexhibit lowerTPRs, i.e., 85 and70%at
0.1%FPR, respectively, primarily because of their resemblance to eachother
and BS. Particularly, PA is more frequently misclassified as BS than EC,
evidencing their closer shape and size correlation. Despite the lowest TPRof
PMs among all classes, their TPR improves significantly to above 80% with
only a slight increase in FPR to ~0.3%. This performance, albeit modest, is
deemed sufficient for scenarios prioritizing bacterial pathogen detection,
especially when the higher prevalence of PMs is a factor. This underscores
themethod’s capability in accurately identifying critical bacterial pathogens
even amid a high background of PMs.

Classification of bacteria of different Gram stain attributes
Here we further evaluated the ability of our method to discern between
Gram-positive and negative bacteria, which have different cell-wall
structures30. The underlying hypothesis posits that variations in Gram
attributes, which correlate with cell wall permeability, may influence the
diffraction patterns emanating from bacterial cell walls. Such differences,
albeit subtle, are anticipated to create distinct holographic signatures
discernible by ourDIHapproach.Toprecisely discern the impact ofGram
attributes independent ofmorphological factors such as shape and size, we
first utilized synthetic data for E. coli (EC, Gram-negative) and B. subtilis
(BS, Gram-positive), both of rod shape but with BS naturally larger than
EC. Furthermore, to eliminate bias stemming from size discrepancies, we
digitally reduced the size of BS in the synthetic dataset to align with the
average dimensions of EC, thus creating a “downscaled BS” (DsBS) var-
iant. Figure 2a displays a sample of experimentally derived synthetic
hologram that effectively demonstrates the accurate detection and clas-
sification of EC andDsBS, with bounding boxes color-coded in alignment
with Fig. 1a. Additionally, in-focused hologram samples for EC andDsBS
accompanied by the corresponding reconstructed images at 10 and 20 µm
away from the in-focusedplane showdistinct diffraction patterns between
these two bacteria despite their similarity in size and shape. The ROC
curves for both EC and DsBS showcase high classification accuracy, with
AUC values exceeding 0.999, even at the stringent FPR of 0.1% (Fig. 2b).
The confusionmatrix at this FPR further details the classification efficacy,

illustrating a remarkable performance for DsBS (95.6%). The perfor-
mance for EC (82.4%) is relatively lower but still reasonable. For this
confusionmatrix, and the following confusionmatrices in Figs. 3c and 4c,
an additional class ‘unknown’, is used to classify particleswith confidences
below the FPR threshold of our known classes. The NA values on the
confusion matrix signify that we do not have true positives for this class
(no ground truth). Overall, these results underscore the potential of our
method in differentiating bacteria with similar morphology but different
Gram attributes (Fig. 2c).

Classification of live and dead bacteria
Here we examine the effectiveness of our methodology in distinguishing
between live and dead (autoclaved) bacteria. This distinction is critical for
medical diagnostics, food safety, and environmental assessments, as it is
essential in identifying active biological threats and assessing the efficacy of
sterilization protocols. Here we utilize synthetic datasets generated in the
samemanner as previously described. These datasets simulate both live and
dead E. coli, ensuring a realistic and controlled environment for evaluation.
Figure 3adisplays a sample of an experimentally derived synthetic hologram
that demonstrates the accurate detection and classification of live and dead
E. coli. The accompanying in-focus hologram samples within the same
figure reveal distinct optical signatures, evidencing how autoclaving alters
the bacteria’s holographic patterns, a nuance our DIH method successfully
captures. Mirroring the outcomes observed in Fig. 2b, the ROC curves for
both live and autoclaved E. coli display a striking level of classification
precision with AUC values of approximately 0.999, at the same stringent
FPR of 0.1% (Fig. 3b). The confusion matrix (Fig. 3c), constructed at the
same FPR, conveys the remarkable accuracy of our classification, empha-
sizing the DIH method’s capability to detect essential biological states.
However, it is worth noting that various sterilization techniques may alter
the optical properties of bacteria differently, potentially influencing model
performance trained on a singular procedure. This aspect underlines a need
for further study as indicated in the discussion section of our work.

Bacteria classification in spiked experiments
In this last section of our results, we present the application of ourmethod to
real-world scenarios through spiked experiments, wherein selected bacteria
is spiked into a sterile liquid containing genericPMs. Specifically,we focused
on two bacterial strains, E. coli (EC) and E. faecalis (EF), chosen for their
distinct morphological characteristics. For these experiments, both bacteria
were labeled with SYBR Green, a nucleic acid stain, to facilitate

Fig. 2 | Gram stain attributes classification results. a A sample of experimentally
derived synthetic hologram showing our deep learning model detects and classifies
E. coli (EC) and downscaled B. subtilis (DsBS), as well as the detections below our
confidence threshold (unknown). The figure also includes in-focused hologram
samples for EC and DsBS accompanied by the corresponding reconstructed images
at 10 and 20 µm away from the in-focused plane showing distinct diffraction

patterns between these two bacteria. bReceiver operator characteristic (ROC) curves
and corresponding area under curve (AUC) values of our deep learning model for
EC and DsBS with vertical dashed line marking 0.1% false positive rate (FPR). c The
confusionmatrix showing the accuracy and prediction errors of our classification for
each type of bacteria evaluated at 0.1% FPR.
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differentiation from the generic PMs, leveraging both the fluorescent signal
for initial distinction and morphological differences for manual classifica-
tion of EC and EF. The model itself was only trained using non-stained
bacteria andour following results (i.e., the desiredperformanceof ourmodel
in detecting bacteria) confirmed that the influence of stain on the holo-
graphic signature of bacteria is negligible. The experiment was conducted
using our dual imaging system, simultaneously capturing the DIH and
fluorescence images. In this experiment, 100 µl of a 108 bacteria/ml solution
of each EC and EF were mixed into 100ml of sterile liquid. The ground
truths for this experiment were generated via manual examination of the
holograms along with cross-comparison to the corresponding fluorescent
images, to differentiate generic PMs from bacteria, ensuring precise eva-
luation of our model’s classification performance. Figure 4a showcases
hologram and corresponding fluorescent samples that illustrate the DIH
system’s accuracy indetectingECandEFamidst genericPMs.Theprecision
of the DIH identification is confirmed by the bright spots observable in the
fluorescent images, coincidingwith the locationsmarkedbyDIH. It isworth

noting that a substantial presence of EF in the experiments appears as
elongated conglomerates, resembling chains of 3-4 spherically linked cells,
divergent from the individual EF samples used in training the model as
shown in Fig. 4a. Therefore, our DL model initially classified these con-
glomerates as an unknown class due to their unfamiliar appearance. Upon
revising the classification labels to correctly identify EF conglomerates, the
subsequent analysis depicted in the one vs rest ROC curves for EC and EF
(Fig. 4b) exhibits AUC values surpassing 0.996, indicative of the precision
mirrored from synthetic dataset evaluations. However, a noticeable dip in
TPR in the confusion matrix at 0.1% FPR (Fig. 4c) reflects expected varia-
tionsdue to a smaller experimental dataset, yielding greaterTPRuncertainty
at lower FPRs—evidenced by the non-zero TPR at a zero FPR value.
Contributing to the diminished TPR could also be the inconsistency in
fluorescent labeling, potentially due to incomplete labeling or imperfect
focus during image capture. Nevertheless, increasing the FPRmarginally to
0.35% aligns the TPR closely with those from synthetic dataset assessments.
These findings underscore the potential of synthetic data in calibrating and

Fig. 4 | Classification validation using fluorescent imagining. a Hologram and
corresponding fluorescent image samples showing our deep learning model detects
and classifies E. coli (EC) and E. faecalis (EF) among generic PMs, as well as the
detections below our confidence threshold (unknown). The figure also includes an
in-focused closeup hologram for each type of particle showing their distinct

diffraction patterns. b Receiver operator characteristic (ROC) curves and corre-
sponding area under curve (AUC) values of our deep learning model for PMs, EC,
and EF with vertical dashed lines marking 0.1 and 0.3% false positive rate (FPR),
respectively. cThe confusionmatrix shows the accuracy and prediction errors of our
classification for each type of particle evaluated at 0.1 and 0.35% FPR, respectively.

Fig. 3 | Live and dead classification results. a A sample of experimentally derived
synthetic hologram showing our deep learning model detects and classifies live and
dead E. coli (EC), as well as the detections below our confidence threshold
(unknown). The figure also includes in-focused hologram samples for live and dead
bacteria showing distinct diffraction patterns between them. b Receiver operator

characteristic (ROC) curves and corresponding area under curve (AUC) values of
our deep learningmodel for live and dead ECwith vertical dashed linemarking 0.1%
false positive rate (FPR). c The confusion matrix showing the accuracy and pre-
diction errors of our classification for live and dead EC evaluated at 0.1% FPR.
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gauging the accuracy of the DL DIH method. Moreover, the experiment
demonstrates our model’s potential for identifying novel particle classes,
such as the EF conglomerates, underscoring its capacity and readiness for
being fine-tuned for real-world adaptation in industrial environments,
which invariably introduce unfamiliar particulates.

Discussion
In the current study, we have developed aDIHapproach integratedwithDL
to enable real-time, label-free, bacterial detection and classification. This
innovativemethodhas shownpromise indistinguishingbetweenbacteria of
different morphology, Gram stain attributes, and viability. For the devel-
opment of this approach, we design a prototype that integrates DIH with
fluorescence imaging to efficiently capture holograms of bacteria flowing in
a microfluidic channel, further enhancing the accuracy of our analysis
through fluorescence signal validation. We process holograms using a tai-
lored DL framework that consists of preprocessing, detection, and classifi-
cation stages, which incorporates three DL models, namely YOLOv8n,
YOLOv8, and HRNet. Eachmodel is carefully chosen for its respective role
in optimizing the image analysis workflow. These models are trained on an
extensive dataset that includes holograms of generic PMs present in sterile
liquid and five bacterial species featuring distinct morphologies covering
bothGram-positive andGram-negative bacteria. The synthetic data created
from labeled experimental holograms feature various combinations of these
bacteria and PMs, offering a controlled environment for assessing the
performance of our approach. This assessment underscores the capability of
our method to effectively discern between bacteria and generic PMs, suc-
cessfully classify five bacterial species with high accuracy, and maintain a
0.1% false positive rate. Moreover, our method showcases the ability to
distinguish between morphologically similar bacteria of differing Gram
stain attributes, accurately classifying E. coli (Gram-negative) and B. subtilis
(Gram-positive)—both rod-shaped, with the latter adjusted in size tomatch
the former for comparative purposes. Furthermore, our method proves
capable of differentiating between live and dead E. coli with a performance
paralleling the former cases. The robustness of our method was also sup-
ported by experiments in sterile liquid containing two bacterial species
labeled by fluorescent dyes, where the method reliably detects and classifies
types of bacteria amidst generic PMs.

Our study represents a significant advancement in rapid bacterial
pathogen detection, effectively addressing key limitations present in current
methodologies. Our method surpasses state-of-the-art techniques such as
rapidPCR, immunological assays, and various biosensors byproviding real-
time, label-free results. It offers these advantages while also reducing
operational costs and complexity, a critical consideration for practical
applications. The sensitivity of our system allows for the detection of indi-
vidual bacteria with a reduced FPR relative to many other advanced tech-
niques.Compared to conventionalmicroscopy,DIHachieves a significantly
larger depth of field, which substantially enhances throughput. Moreover,
DIH captures both morphological and subtle optical changes in samples.
This capability is crucial for differentiating between live and dead bacteria,
andmay also enable the distinction betweendifferent strains of bacteria that
appear morphologically similar but vary optically due to changes in their
biochemical composition. Additionally, compared to other label-free
methods such as mass spectrometry, FTIR, hyperspectral imaging, or
QPI, our approach is more cost-effective and features a more compact
design, making it ideally suited for integration into sterile liquid examina-
tion and processing workflows across various industrial settings.

The modular design of our DL framework enhances its adaptability,
facilitating the detection and analysis of a wide range of bacteria and PM
contaminants. This adaptability was evident in our experiments where our
system successfully identified and isolated an unfamiliar particle (con-
glomerate) during spiked tests. Subsequently, the model swiftly collected
data on this unknown signature, analyzed it, and integrated the new
information, exemplifying the system’s capacity to continuously adapt and
classify new and unfamiliar particle types. The broad applicability of our
method offers substantial potential in several biotechnological arenas,

including real-time bioreactor monitoring, rapid pharmaceutical manu-
facturing screening, environmental monitoring, and clinical diagnostics for
various diseases31,32.

While the system’s current throughput of ~3 µL/min may fall short of
industrial standards, integrating preconcentration techniques like a cross-
flow filtration unit could substantially increase throughput33. The afford-
ability and compact design of the system facilitate such enhancements,
paving the way for scalability and improved performance. Comprehensive
validation with a broader variety of samples, including a wide range of
bacteria and particulate contaminants and samples treated under different
sterilizationmethods, is critical to fully assess themethod’s applicability and
robustness. Additionally, the system’s limitations in detecting smaller bac-
terial species call for further refinement and optimization. Future devel-
opments of ourDL frameworkwill aim to address those issues to extend the
system’s application range significantly.

Methods
Method overview
For our study, we developed a prototype DIH-fluorescent dual imaging
system that captures synchronized DIH and fluorescent images within the
same field of view. This setup allows for direct validation of our DL algo-
rithm by enabling comparison between theDIH images and the fluorescent
signals from tagged bacteria. By utilizing this system, we can confirm the
presence of bacteria detected by the DL algorithm in the DIH images
through corresponding fluorescent signals in the fluorescent images. This
method effectively distinguishes actual bacterial detections from false
positives, which are indicated by a lack of fluorescent signal when the
algorithm mistakenly identifies generic particles as bacteria.

Hardware description
The hardware of the system is composed of three main modules: sample
delivery,DIH, andfluorescent imaging (Fig. 5). The sample deliverymodule
is equipped with two pressure pumps and a microfluidic chip, ensuring a
tightly focused sample stream and a controlled flow rate optimal for DIH-
fluorescent imaging. The custom-made microfluidic chip features a central
sample inlet channel flanked by two sheath flow channels at 45 degrees, to
focus the sample to the center of the channel of 200 μm× 80 μm for precise
imaging. Customized pressure pumps independently control the main and
sheath flows, ensuring minimal flow fluctuation even at rates below 3 µl/
min. In this study, the operational flow rates were set to 3 μL/min for the
bacteria-spiked samplefluid in the center inlet channel and 6 μL/min for the
sheathflow foroptimal sample focusing.This sampleflowratewill ensure all
the particleswithin the sample streamwill be examinedby ourDIH imaging
module considering the specification of our camera and hologram proces-
sing speed discussed later. The imaging modules are built on a standard
finite conjugate microscope framework. A 405 nm laser diode replaces the
microscope’s LED to generate DIH signals, and an additional 488 nm laser
diode illuminates the sample to excite fluorescent signals. Both laser diodes
are chosen to have low power outputs (<50mW) and are operatedwith 1 µs
pulse widths per exposure, ensuring that irradiation levels remained sig-
nificantly below the threshold that causes cellular changes in bacteria, as
documented by Cheong et al.34. The short pulse width also effectively pre-
vents image degradation (blurring) due to bacterial movement within the
microfluidic channel. The signals are captured through a ×40 imaging
objective, then split towards DIH and fluorescent cameras, each equipped
with a series of bandpass and dichroic filters tailored to isolate specific
signals, i.e., 405 nm DIH and 522 nm fluorescent emission, respectively.
Both cameras simultaneously capture images of a 125 × 93 μm2

field of view
with a high-resolution of 87 nm/pixel at a rate of 100 frames/s. This mag-
nification ensures a good compromise between image resolution and the
throughput required for efficient and accurate bacterial detection and
analysis in our system. The imaging focal plane is adjusted to the center of
the 80 µm channel depth, ensuring that the bacteria are consistently
maintainedwithin a focus rangeof±40 µmfromthe central focal plane.This
specific z-focus range is crucial for optimizing the signal-to-noise ratio and
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maintaining the contrast of holographic fringes, which are essential for
accurate bacterial detection and classification.

Data processing software description
A Python-based graphical user interface (GUI) was developed to integrate
hardware control, image acquisition, and data processing. This GUI allows
users to adjust flow rates and fine-tune laser power and pulsing settings. It
also enables the configuration of camera settings such as sensor size,
exposure time, frame rate, gain, and contrast to optimize image quality.
Additionally, an image analysis panel is included for real-time image dis-
play, bacteria detection and classification using machine learning models,
and data archiving for future analysis.

The DIH image analysis undergoes a customizable framework, as
depicted in Fig. 6. This framework comprises three main stages: preproces-
sing, detection, and classification, each tailored to optimize the efficiency and
accuracy of our system. In the preprocessing phase, images arefirst enhanced
to eliminate background noise using a moving window background sub-
tractionacross20consecutive frames. Subsequently,wedeploy theYOLOv8n
model35, chosen for its swift inference time, toperformpreliminaryfilteringof
these enhanced holograms. This model efficiently identifies and isolates
frames containing recognizable objects, significantly reducing the volume of
data that undergoes more intensive processing. The frames identified by
YOLOv8n as containing particles are then processed by the more

comprehensiveYOLOv8model,which, although requiring longerprocessing
time, provides a balanced trade-off between inference speed and improved
accuracy. This targeted application of YOLOv8 allows for precise localization
of particles within the hologram and generates bounding boxes tomark their
location and size, ensuring that only relevant data is subjected to further
analysis. This two-step approach of employing YOLOv8n followed by
YOLOv8 not only minimizes computational resources but also reduces total
processing time, enabling real-time performance for efficient and effective
particle detection. The final classification stage employs the HRNet36, a high-
resolution network known for its accuracy. HRNet classifies each object
within the bounding boxes, assigning them to specific particle types based on
distinctive holographic signatures, thereby enhancing the precision of our
particle characterization. Using our current hardware, our processing fra-
mework can analyze holograms in real-time for particle concentrations up to
350 particles/µL, about one particle every three frames. According to US
Pharmacopeia standards (USP < 788 > ), PM concentrations for injectable
fluids are capped at 0.25 particles/µL for particles ≥10 µm37. Although higher
concentrations could theoretically increase processing demands, typical
sterile liquid applications rarely reach these levels.

Model training
The training dataset for the YOLOv8n model consists of 10,000 labeled
particle holograms derived from PMs found in the sterile liquid. These

Fig. 6 | Image analysis framework. Illustration of the DIH image analysis framework including preprocessing, detection, and classification steps involving three different
deep learning models.

Fig. 5 | Hardware setup. Illustration of digital inline holography (DIH) and fluorescent dual imaging system including DIH imaging module, fluorescent imaging module,
and sample delivery module.
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particles (referred to as generic PMs) with average size >2 µm are present in
the sterile liquid at very low concentration. This dataset was augmented from
an initial collection of 5000 manually labeled experimental holograms and
200 background-only holograms, through processes including random
cropping, flipping, contrast and brightness adjustments, and rotations,
effectively doubling the original dataset for a robust training process. The
YOLOv8 detectionmodel was trained on the same augmented dataset with a
specific focus on identifying and localizing theparticleswithin theholograms.
The classification HRNet model was trained on a dataset of 4000 labeled
holograms for eachparticle class, includinggenericparticles andvarious types
of bacteria. These holograms were carefully cropped using the detection
model to center the particle and include up to the third diffraction fringe for
precision. Similarly, the classificationmodel’s datasetwas augmented froman
original 1000 manually labeled holograms to enrich the diversity of particle
morphology and orientations. An additional set of 1000 labeled holograms
per class was similarly augmented to create a validation dataset of 2000
holograms, ensuring the model’s accuracy and reliability in classifying dif-
ferent particle types.

Data collection for model training and evaluation
To accumulate training data for our DL DIH approach, we conducted
comprehensive experiments using our prototype DIH imaging system. The
dataset encompasses holograms from a variety of particles including generic
PMs and five bacterial species of distinct morphologies and Gram stain
attributes: EC, PA, CJ, EF, and BS. This selection ensures a representative
cross-section of rod-shaped, spiral, and spherical bacteria, as well as Gram-
negative (EC,PA,CJ) andGram-positive (EF,BS) types.Thebacteria samples
were spiked into our sterile liquid at a high concentration, ~108 bacteria/ml,
and flowed through ourmicrofluidic chip at a controlled rate of 3 µL/min for
consistent sample delivery. The DIH system, operating at a frame rate of 100
frames/s, recorded holographic data over a 10-minute span. The targeted
concentration allowed the system to consistently image 2–3 bacteria per
frame, given the defined DIH sampling volume. The dead EC samples were
createdbyautoclaving the freshlyovernight culturedECsamples foronehour
at 121 °C and 15 psi, as outlined by Robertson et al.38. The efficacy of this
sterilizationmethod was verified through colony-forming unit plating on LB
agar, confirming the absence of viable bacteria post-treatment. From this
process, a total of 30,000 holograms of the dead EC samples were acquired,
providing a substantial dataset for training andvalidating the capability of our
system to discern between live and dead bacterial states.

In addition to training our DL model, the experimental data gathered
from the aforementioned experiments also serve a crucial role in developing
a comprehensive synthetic dataset. This dataset is instrumental in evaluating
the performance of our DL DIH approach in the Results Section. Specifi-
cally, we first identified individual bacteria within experimentally generated
holograms, as outlined in the Materials and Methods Section, and isolated
the regions surrounding themusingboundingboxes.These boundingboxes
were sized to contain the bacterial entity and include three sets of diffraction
fringes from the center, creating a collection of 10,000 holograms for each
type of bacteria and PM. This dataset captures images of the particles at
various focal depths and orientations relative to the optical axis of DIH
sensor. To generate synthetic holograms, we randomly selected five holo-
grams of particles from each category (bacteria and PMs) and blended them
onto experimentally derived background holograms using a gray-scale
weighted mean. This method, applied to a diverse background pool of
10,000 experimental holograms, produced highly realistic holograms with
accurately known compositions of bacteria and PMs39–41.
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