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ABSTRACT

We consider the problem of maximizing the gains from trade (GFT)
in two-sided markets. The seminal impossibility result by Myerson
and Satterthwaite (1983) shows that even for bilateral trade, there
is no individually rational (IR), Bayesian incentive compatible (BIC)
and budget balanced (BB) mechanism that can achieve the full GFT.
Moreover, the optimal BIC, IR and BB mechanism that maximizes
the GFT is known to be complex and heavily depends on the prior.

In this paper, we pursue a Bulow-Klemperer-style question, i.e.,
does augmentation allow for prior-independent mechanisms to
compete against the optimal mechanism? Our first main result
shows that in the double auction setting with m ii.d. buyers and
n i.id. sellers, by augmenting O(1) buyers and sellers to the mar-
ket, the GFT of a simple, dominant strategy incentive compatible
(DSIC), and prior-independent mechanism in the augmented mar-
ket is at least the optimal in the original market, when the buyers’
distribution first-order stochastically dominates the sellers’ dis-
tribution. The mechanism we consider is a slight variant of the
standard Trade Reduction mechanism due to McAfee (1992). For
comparison, Babaioff, Goldner, and Gonczarowski (2020) showed
that if one is restricted to augmenting only one side of the market,
then n(m + 44/m) additional agents are sufficient for their mecha-
nism to beat the original optimal and |log, m| additional agents
are necessary for any prior-independent mechanism.

Next, we go beyond the i.i.d. setting and study the power of
two-sided recruitment in more general markets. Our second main
result is that for any ¢ > 0 and any set of O(1/¢) buyers and
sellers where the buyers’ value exceeds the sellers’ value with
constant probability, if we add these additional agents into any
market with arbitrary correlations, the Trade Reduction mechanism
obtains a (1—¢)-approximation of the GFT of the augmented market.
Importantly, the newly recruited agents are agnostic to the original
market.
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1 INTRODUCTION

In this paper, we study the problem of maximizing the gains from
trade (GFT) in two-sided markets. Two-sided markets are ubiqui-
tous and have many practical applications; some major examples
include the FCC spectrum auction and online marketplaces such
as Uber, Lyft, and Airbnb. For example, in ride-sharing platforms,
passengers (as the role of buyers) have some private value for ob-
taining transportation services and drivers (as the role of sellers)
have some private cost for providing the necessary services. Mech-
anism design for two-sided markets poses additional challenges
over its one-sided counterpart. In a one-sided market, the mech-
anism designer aims to maximize some objective (e.g. welfare or
revenue) subject to a one-sided incentive-compatibility constraint.
The seminal papers of Vickrey [32] and Myerson [26] described
how to design mechanisms that achieve the optimal welfare and
revenue for one-sided markets, respectively. However, in a two-
sided market, one needs to ensure incentive compatibility for both
sides of the market as well as to ensure that the mechanism itself
does not run a deficit (called budget balance). The seminal impos-
sibility result of Myerson and Satterthwaite [27] show that these
additional constraints make the mechanism design problem much
more challenging. In particular, even in the simplest setting with
a single seller selling a single item to a single buyer (known as
bilateral trade), no mechanism can achieve full efficiency while
being Bayesian incentive-compatible (BIC), individually rational
(IR), and budget balanced (BB). Myerson and Satterthwaite [27]
also described the best BIC, IR and BB mechanism that maximizes
efficiency in bilateral trade. However, the optimal mechanism is
complex and heavily depends on the prior.

Motivated by the aforementioned challenges, there has been
extensive research efforts and substantial progress in recent years
investigating the two-sided market in the “simple versus optimal”
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perspective, i.e. to show that a simple mechanism can approximate
the performance of the optimal mechanism. A non-exhaustive list
includes [1, 4-6, 9-14, 16, 18, 22, 24]. However, in many of these
results, the mechanism designer requires a priori knowledge of both
the buyers’ and the sellers’ distribution. Alternatively, the designer
can increase the competition and thus her objective by recruiting
more agents to the market. In single-item one-sided markets, the
seminal work by Bulow and Klemperer [7] showed that the revenue
of a second price auction with only a single additional participant
from the same population is at least that of the optimal mechanism
with the original set of participants. More recently, this result has
been generalized to other one-sided market settings 3, 15, 17, 19-21,
23, 31]. Such results showcase how additional competition, coupled
with a simple mechanism can be used to overcome the requirement
of having precise knowledge of the underlying distributions and
using the optimal-yet-complex mechanism. A natural question is
whether such Bulow-Klemperer-type results also hold in the two-
sided market settings.

In a recent paper, Babaioff, Goldner, and Gonczarowski [2] initi-
ated this line of work to develop Bulow-Klemperer-type results for
a fundamental single-parameter two-sided market setting called a
double auction. In this problem there are n sellers that each hold an
identical item and the value of each seller is drawn i.i.d. from some
distribution Fs. There are m buyers that each wish to obtain one of
these items and their value is drawn i.i.d. from another distribution
Fp. They consider a variant of the natural, prior-independent Trade
Reduction mechanism [25], which they call Buyer Trade Reduction
(BTR). They show that when the two distributions are identical,!
BTR with one additional buyer can achieve welfare at least the best
welfare achievable in the original market even without the BIC,
IR, and BB constraints (such a benchmark is called the first best).
Note that the first best is exactly the welfare of the celebrated VCG
mechanism, which is BIC and IR, but may violate the BB constraint.
While this resolves the most basic case, it is rarely assumed that both
distributions are identical. For example, a passenger in ride-sharing
applications likely has higher value for obtaining transportation
than the driver’s cost for providing such transportation. When
there are no assumptions on the distributions, [2] prove that no
finite bound is possible. When the buyers’ distribution first-order
stochastically dominates? the sellers’ distribution, they prove that
n(m+4+/m) additional buyers are sufficient for BTR to have welfare
at least the first-best welfare in the original market when m > n.?

An immediate question from the result in [2] is whether the
number of additional agents can be improved. Does a constant
number of agents suffice for any number of buyers and sellers? The
main difficulty turns out to come from the mechanism recruiting
only one side of the market. In fact, their paper shows that |log, m]
buyers are necessary if only extra buyers are recruited, even when
there is a single seller. However in many situations, the mechanism
designer is able to recruit both buyers and sellers. For example,
in ride-sharing applications, recruiting both sides is very much
feasible — more riders will use the platform with better marketing,

!Note that no further assumptions are placed on this distribution, while similar results
in one-sided markets make certain regularity assumption about the distribution.

2A distribution D first-order stochastically dominates D’ if Pryo-p[x < ¢] <
Pr,.p [x < c] for every c.

3Their result applies to the m < n case using Seller Trade Reduction.
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advertisement, or deals, and more drivers will adopt the platform
with better incentives and marketing towards them. In this paper,
we allow recruiting from both sides of the market. We show that
with the Seller Trade Reduction (STR), a mechanism analogous to
BTR, only O(1) additional agents suffice. We give a formal definition
of the mechanism in Section 1.1.

In the above result, we assume that all the agents are independent,
that all the buyers are drawn from a common buyer distribution,
that all the sellers are drawn from a common seller distribution,
and that the buyer distribution first-order stochastically dominates
the seller distribution. These are the same assumptions that were
made by [2]. We next turn to the setting where we make minimal
assumptions on the market and ask about the power of two-sided
augmentation in such a general setting. Our second main result is
that for any £ > 0 and any set of O(1/¢) buyers and O(1/¢) sellers
where the buyers’ value exceeds the sellers’ value with constant
probability, the following holds. If we augment these buyers and
sellers into any market then Trade Reduction achieves a (1 — ¢)-
approximation of the optimal efficiency of the augmented market.
We stress that the augmentation requires zero knowledge of the
original market. We also note that one-sided augmentation cannot
be done in an agnostic manner. For example, suppose we augment
the market with buyers that happens to have values less than all
the sellers. It is not hard to see that for any prior-independent
mechanism that is incentive-compatible, IR, and BB, its GFT remains
unchanged after this augmentation.

To formally state our results, it is crucial to first discuss the
measure of efficiency we adopt in this paper. There are two main
measures of efficiency in two-sided markets. The first is the stan-
dard notion of welfare in the literature, which is equal to the sum
of the value of all buyers and sellers that hold the items in the final
allocation. The second is the gain from trade (GFT) which is the
welfare of the final allocation minus the total value of sellers. At
a high-level the GFT of a mechanism is a direct measure of the
additional value of a mechanism. Note that when the set of sellers
is fixed, maximizing welfare in a market where only the buyers
are augmented (as in [2]) is identical to maximizing the GFT. In
other words, there is no need to make a distinction between welfare
and GFT. However, since we are interested in the problem where
both sides of the market can be augmented, we focus on GFT as
it is the more meaningful measure. As an extreme example, sim-
ply augmenting the market with additional sellers, and leaving
them untraded, would increase the welfare while the GFT remains
unchanged.

1.1 Our Results

We summarize prior results and our results in Table 1. Our first main
result is Theorem 1.1 which states that if we use a simple and prior-
independent mechanism, namely Seller Trade Reduction (STR)4,
then augmenting both sides of the market by a constant number
of participants has at least as much GFT as the optimal allocation
before augmentation, assuming that the buyers’ distribution first-
order stochastically dominates the sellers’ distribution. A formal
definition of the mechanisms can be found in Section 2.

4The STR mechanism was introduced by [2] and is a variant of the Trade Reduction
mechanism [25].
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Table 1: Summary of our main results. The upper bounds state the number of additional agents suffices for a prior-independent
mechanism (BTR or STR) to achieve GFT at least the first best. The lower bounds state the number of additional agents neces-
sary for any anonymous and deterministic mechanism. Results with “buyer” listed indicate that only buyers can be augmented
to the market. Note that the last row is for an approximation result instead of beating the GFT of the first best.

Upper Bound

Distribution Assumptions

Previous Work

This Work Lower Bound

Fg =Fs

1 buyer
[2, Theorem 1.1]

1 agent (trivial)

Fg FSD Fg

n(m + 4y/m) buyers
[2, Theorem 1.10]

O(1) agents
(Theorem 1.1)

[log, m] buyers
[2, Theorem 5.1]

No assumption.

any finite number
[2, Proposition 3.4]

Fgi(1—y) 2 Fgi(y)
for new buyer i, new seller j.
No assumptions on original market.

O(1/¢y?) agents for
(1 — ¢)-approximation
(Theorem 1.4)

Q(1/¢y) agents for
Trade Reduction
(Proposition 1.6)

THEOREM 1.1. Consider the double auction with m i.i.d. buyers
and n i.i.d. sellers. Suppose m > n and the buyers’ distribution Fp
first-order stochastically dominates the sellers’ distribution Fs. Then
there is a global constant integer ¢ > 0 such that the GFT of STR with
m + ¢ buyers and n + c sellers is at least the first-best GFT with m
buyers and n sellers.

Remark 1.2. While Theorem 1.1 assumes that m > n, the result
applies analogously to the case where m < n using Buyer Trade
Reduction, by negating the values/costs and swapping the role of

buyers and sellers. See [2, Proposition A.1].

Remark 1.3. Another natural benchmark is to consider the per-unit
GFT defined as the GFT divided by the number of items in the market.
In the setting where we recruit only buyers, as in [2], the per-unit GFT
objective is equivalent to the GFT objective. However, the per-unit GFT
objective is a strictly stronger benchmark when one is also allowed
to recruit sellers. Thus, it is natural to ask if recruiting O(1) agents
suffices for this stronger benchmark. In Appendix A, we build on the
lower bound example in [2] to prove that if there are m buyers in the
original market, Q(log m) agents are necessary for the per-unit GFT
in the augmented market to weakly exceed the per-unit GFT in the
original market.

Since the welfare of any mechanism is the GFT plus the sum
of the seller values, our results immediately apply to the welfare
objective, as the sum of seller values in the augmented market is at
least the one in the original market.

For our second main result, we consider a setting where we
make no assumptions on the original market and only fairly mild
assumptions on the recruited agents’ distributions.

THEOREM 1.4. Fixy € (0,1/2] along with a set of ¢ buyers with
value distributions Fg1,...,Fp. and a set of ¢ sellers with value
distributions Fs 1, .. ., Fs ¢ such that all agents’ values are mutually
independent and for all i, j € [c], we have Fg’ll.(l -y) = F;; (y). Fix
any market M with arbitrary correlation between buyers and sellers.
Suppose that we augment M by including the ¢ buyers and c sellers
described above. Let M’ be the augmented market. Then the GFT of
Trade Reduction is at least a (1 — O(1/y?c))-approximation to the
GFT of the optimal matching in M’.
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We stress that Theorem 1.4 makes no assumptions on M and
that the value distributions of the agents that we augment into the
market is completely agnostic of M.

There are several ways that one can interpret this result. The
most obvious is that simply recruiting agents into the market sud-
denly makes a simple mechanism efficient. For example, a ride-
sharing platform can simply recruit more drivers and more riders
into the platform without any further market analysis. Next, in any
large market, it is reasonable to assume that there must be a small
subset of buyers with high value and a small subset of sellers that
can produce goods at relatively low values. Our result implies that
a simple mechanism is already efficient.

Remark 1.5. Earlier, we stated that a sufficient condition for Trade
Reduction in an augmented market to obtain a (1 — €)-approximation
is that the buyers’ value exceeds the sellers’ value with constant prob-
ability. We note that this condition implies the c.d.f. condition in
Theorem 1.4, up to a constant. Indeed, if buyer i’s value exceeds seller
J’s value with probability at least y then Fg}li(l -v/2) > Fs_} (y/2)
(see [9, Lemma 3.1]).

Finally, we show that Theorem 1.4 is nearly tight but proving
the following lower bound. The proof is omitted from the current
version of the paper.

Proposition 1.6. For anyy € (0,1/2), there exists a distributions
Fp and Fs such thatFél (1-y) = F§1 (y) and the following statement
holds. If a market has c buyers whose value distributions are drawn
from Fp and c sellers whose value distributions are drawn from Fs
than running a Trade Reduction mechanism obtains a (1— Q(1/yc))-
approximation to the optimal GFT.

Due to space limitations, we do not provide complete proofs for
all our results in this version of the paper. A complete version of the
paper can be found on the arXiv https://arxiv.org/abs/2307.03844.

1.2 Additional Related Work

The paper that is mostly related to our work is [2]. They study
Bulow-Klemperer-style results in two-sided market where one side
of the market is augmented. When the buyer’s distribution is the
same as the seller’s distribution, they prove that one additional
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buyer is sufficient for BTR to achieve welfare at least the first-best
welfare in the original market. They then study the problem with
the stochastic dominance assumption, proving an upper bound of
4+/m for a single seller and n(m + 4y/m) for n sellers. They also
provide lower bounds on the number of additional buyers required.
Their lower bounds apply not only to BTR and STR, but also to any
deterministic and prior-independent mechanisms. In this paper we
study the same problem but allow both sides of the market to be
augmented.

Approximations in two-sided markets. Despite the impossibility
result by Myerson and Satterthwaite [27], many recent papers have
successfully shown a multiplicative approximation to the first-best
and second-best objective in various settings of two-sided mar-
kets. One line of work, which focuses on bilateral trade, aims to
approximate the optimal welfare or GFT and to study the difference
between the first-best and second-best [4, 6, 10, 11, 14, 22]. Another
line of work studies the approximation problem in more general
two-sided markets such as double auctions and multi-dimensional
two-sided markets [1, 9, 12, 13, 16]. In sharp contrast to our pa-
per, the mechanisms in all these works are not prior-independent:
either the mechanism designer or the agents need to know the
others’ prior distributions. Another line of work provides asymp-
totic approximation guarantees in the number of items optimally
traded for settings as general as multi-unit buyers and sellers and
k types of items [1, 25, 29, 30]. Moreover, [24] consider a model
of interactive communication in bilateral trade and prove that the
efficient allocation is achievable with a smaller number of rounds
of communication.

Bulow-Klemperer-style results in one-sided markets. There have
been many Bulow-Klemperer-style results that aim to beat or ap-
proximate the optimal revenue in auctions with the recruitment of
additional buyers. Results in single-dimensional settings include
[15, 20, 21] for regular distributions, [31] for irregular distributions,
and [23] for a dynamic single-item auction. Another line of work
extend the results to multi-dimensional auctions, when buyers are
unit-demand [28] and additive [3, 8, 17, 19]. Results in this paper
(and [2]) show that Bulow-Klemperer-style results can also be de-
rived in two-sided markets. We note that in the revenue-maximizing
auction setting, it is clearly impossible to perform augmentation
while being completely agnostic to the agents’ distributions. On
the other hand, one of our main result is that it is possible to per-
form augmentation in the efficiency-maximizing two-sided market
setting while being completely agnostic to the market.

2 PRELIMINARIES

Double Auction and Gains From Trade. This paper focuses on the
double auction setting, a two-sided market with m unit-demand
buyers and n unit-supply sellers. Without loss of generality, we
assume that m > n (see Remark 1.2). All items are interchangeable
and thus the value for each agent can be described as a scalar.

An allocation in a double auction is a (possibly random) set of n
agents who hold the items. A buyer trades in the allocation if she
holds the item and a seller trades if she does not hold the item. The
gains from trade (GFT) of an allocation is defined as the difference
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between the sum of all traded buyers’ values and the sum of all
traded sellers’ values.

Mechanisms. We denote the buyer values by by, ..., by, and the
seller values by si,...,s,. We also write b = (by1,...,by) and
s = (s1,...,Sn). A mechanism can be specified by, for each agents’
profile (b, s) an allocation and a payment for each agent. We assume
that all agents have quasi-linear utilities. Specifically, if a buyer
trades in the mechanism, her utility is her value minus the payment
for her. Similarly if a seller trades, her utility is the payment she
receives minus her value. A mechanism is Bayesian Incentive Com-
patible (BIC) if every agent maximizes her expected utility (over all
the other agents’ randomness and the randomness of the mecha-
nism) when she bids truthfully her value. In addition, it is Dominant
Strategy Incentive Compatible (DSIC) if every agent maximizes her
utility when she bids truthfully, no matter what the other agents
report. We say that a mechanism is individually rational (IR) if every
agent has non-negative utility when she bids truthfully, no matter
what the other agents report. A mechanism is said to be weakly
budget-balanced (WBB) if the sum of payment from the buyers is
at least the sum of payment to the sellers for any agents’ profile,
i.e. the mechanism does not run a deficit.

First Best and Trade Reduction. Given any buyers’ profile, the
first-best allocation (also denoted by OPT) is the welfare-maximizing
allocation under this profile (the allocation for the VCG mechanism).
Formally, let b > . > b be the buyer’s bids ordered in the
non-increasing order and s(!' < ... < s(" be the seller’s bids
ordered in non-decreasing order. We abuse the notation and use
b and s to represent the corresponding buyer and seller. The
first-best allocation trades buyers b, b with s, s
where r = max{i < min{m, n} : b(D) > s()}. We refer to r as the
optimal trade size. Next, we define the trade reduction mechanism
that we consider in this paper.

Definition 2.1 (Trade Reduction Mechanism [25]). Letu € [0, 1] be
a parameter. Ifr < min{m, n} andb(") > u-b(*V 4 (1-u).s+D) >
s(") then TR trades buyers b, b with s s at price
w- b+ 4 (1 —u) - sU*D Otherwise, the mechanism trades buyers
b, b igh s (-1 (if r < 1 then there is no trade).
Each traded buyer pays b") and each traded seller receives s") .

Our first main result (Theorem 1.1) holds for a particular version
of trade reduction (TR) where u = 0 which we refer to as seller’s
trade reduction (STR). We note that [2] also consider an asymmetric
version of TR where they set u = 1; they refer to this version as
buyer’s trade reduction (BTR). Our second main result (Theorem 1.4)
holds for all variants of TR in addition to the variant where we only
utilize the “otherwise” part of the above mechanism. Specifically,
we never trade buyer b and seller s(). Buyers pD, . . p(r-D
are offered a price of b(") and sellers s(l), ., s('=1 are offered a
price of s The following lemma shows that Trade Reduction is
an incentive-compatible mechanism.’

Lemma 2.2 ([2, Proposition C.1]). TR is a deterministic, prior-
independent mechanism and satisfies DSIC, IR, and WBB.

5[2] prove this for STR but it is not difficult to adapt their proof of TR.
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3 CONSTANT AGENTS SUFFICE TO BEAT
FIRST-BEST WHEN Fg FSD Fs

For the rest of the paper, we focus on the i.i.d. setting and study
the problem of beating the first-best GFT through augmentation.
We prove that STR with O(1) additional agents extracts at least
as much GFT as the first-best allocation with the original set of
agents (Theorem 1.1). Throughout this section we assume that
buyer (resp. seller) values are drawn i.i.d. according to a common
cumulative density function Fg (resp. Fs). For any quantile ¢ €
(0, 1), define the value b(q) corresponding to quantile g as b(q) =
inf{x | Prp.p,[b < x] > q}. Similarly, define s(q) = inf{x |
Prg.pg[s < x] 2 q}. Clearly both b(g) and s(q) are non-decreasing
in q. We say that Fp first-order stochastically dominates (FSD) Fg if
for every g € (0,1), b(q) = s(q).

3.1 Proof Techniques

First, we present a high-level discussion about the proof techniques
in this section. Notice that STR loses no more than a single trade
from the first-best allocation in the augmented market. Thus a
natural (but erroneous) starting point to prove Theorem 1.1 may
be to (i) show that with only a constant number of new buyers and
new sellers, at least one of the new buyers is eligible to trade with
a new seller and (ii) show that if there is a trade between a new
buyer and a new seller then the trade size must increase by 1 and
thus STR performs at least as well as OPT. If the second statement
were true then the proof should be relatively straightforward since
the first statement happens with fairly high probability due to
the stochastic dominance assumption. Unfortunately, the second
statement is false and thus the first statement is not a sufficient
condition for STR to outperform OPT. For an example where this
happens, see Appendix B.5.

The message in the previous paragraph is that having additional
trades among the new agents is not sufficient to guarantee that
the optimal trade size increases. We would like to find an event
such that the optimal trade size increases, which is sufficient for
STR to outperforms OPT. Naively, we could simply consider the
event where the optimal trade size does increase. However, the
difficulty is in being able to lower bound the gain of the expected
GFT restricted to this event and compare that with the loss of the
expected GFT when this does not happen. In order to make the
analysis more feasible, we consider more structured events that (i)
make it possible to analyze the gain or loss in GFT and (ii) we can
compare the probabilities of these events.

To make this formal, we use a coupling argument that was also
used by Babaioff, Goldner, and Gonczarowski [2]. We first fix a set
of quantiles and then assign these quantiles uniformly at random to
the new and original buyers and sellers. However, the techniques
in our paper and Babaioff, Goldner, and Gonczarowski [2] are oth-
erwise very different. Babaioff, Goldner, and Gonczarowski [2] first
consider the single seller and m buyers setting and proceed by
showing that by adding a sufficient number of buyers it must be
that (i) the GFT difference between the new and original optimal
allocations is large and (ii) the GFT difference between the new
optimal allocation and BTR is small. The only way for this to be
possible is that the GFT of BTR must be large compared to the
original optimal allocation. To handle the case with an arbitrary
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number of sellers, they show that they can reduce the problem to
the single seller case but this reduction incurs a linear overhead
(in the number of sellers). In contrast, our argument directly com-
pares the GFT difference between STR and OPT and show that this
difference is net positive.

We now proceed with additional details on our argument. In the
augmented market, m + ¢ buyers (including m original buyers and ¢
augmented buyers) draw their values i.i.d. from Fg and n + ¢ sellers
(including n original sellers and ¢ augmented sellers) draw their
values i.i.d. from Fs. Denote N = m + n + 2¢ the total number of
agents in the augmented market. We notice that the distribution of
b(q) (resp. s(q)) where q is drawn uniformly at random from (0, 1)
is exactly the distribution Fp (resp. Fs). We thus couple the random
augmented market with the following random process: We draw
N uniform quantiles from (0, 1) and then assign these quantiles to
all agents in the augmented market uniformly at random.

More specifically, denote g, . . ., gy the N uniform quantiles in
non-increasing order so that g1 > ... > qn.Let q = (q1,...,qnN).
To avoid too many subscripts, we sometimes abuse notations and
use q(i) to denote g;. These quantiles are assigned to all agents
in the augmented market, including all original (called “old”) and
augmented (called “new”) buyers and sellers. We notice that any
two old buyers (or old sellers, new buyers, new sellers) are inter-
changeable, i.e. swapping their values will not change the GFT of
the first-best allocation and STR in both the original and augmented
market. Thus it suffices to consider any assignment from quantiles
to those four labels. Formally, let z: [N] — {BO, BN, SO, SN} be
a function that maps (quantile) indices to old buyers, new buy-
ers, old sellers, and new sellers, respectively. Let II;, e = {7 :
|71 (BO)| = m, |77 (SO)| = n, |z~ '(BN)| = |z~'(SN)| = c} be
the set of valid assignments. The assignment we choose is thus
uniformly drawn from I, . c.

For any fixed quantiles q and valid assignment 7, STR(q, )
denotes the GFT of Seller Trade Reduction in the augmented mar-
ket and Oprt(q, ) denotes the GFT of the first-best allocation in
the original market. Both values are well-defined since they are
fully determined by the quantiles q and the assignment z. Thus
STR = STR(m + ¢, n+c) = Eq,z[STR(q, 7)] and OpT = OpT(m, n) =
Eq,z[OPT(q, 7)].

To prove that STR is at least OpT, we would like to find an event
such that the gain of the expected GFT (from first best to STR)
restricted to this event can be lower bounded and compared with
the loss of the expected GFT when the first-best allocation has more
GFT than STR. To formalize the idea, we would like to construct
two events &; and &; over the randomness of the assignment =
such that:

(1) For any q, &; is sufficient for STR(q, 7) > OPT(q, 7). More-
over, E; [STr(q, 7)-Opt1(q, 7)|E1] = C(q) for some C(q) >
0 (Lemma 3.3).

(2) For any q, &3 is necessary for Opt(q, 7) > STR(q, 7r). More-
over, E;[Oprt(q, 7) —STR(q, 7)|E2] < C(q) (Lemma 3.4 and
Lemma 3.5).

(3) Prz[E1] = Pryr[E2] (Lemma 3.6).

We notice that these conditions immediately proves Theorem 1.1
since

STR — OPT = Eq,[STR(q, ) — OPT(q, 7)]
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> Eq[E,, [STr(q, 7) — OpT(q, 7)|E1] - Pr[&Eq]
+E;[STR(q, 7) — OPT(q, 7)|E2] - Pr[E2]] = 0.

Here the first inequality follows from Property 2, which assert that
for any q, STR(q, 7) > OpT(q, ) when &; does not happen. Thus,
Str(q, ) > OPT(q, 7) on the event =&; N =&3.

To construct the above events, we first break the set of quantiles
into “buckets”. For some p, let I; correspond to the indices of the
top p quantiles (i.e. high value agents) and J; correspond to the
indices of the bottom p quantiles (i.e. low value agents).

As we will see below, the event &1 that we define ensures that
the matching obtained by STR contains (i) at least one new buyer
from I; and one new seller from J; and (ii) the other agents in
the matching have GFT at least that of OPT. For the time-being,
suppose that there were only one new buyer from I; and one new
seller from J;. Then the new buyer would be a uniform random
buyer from I; and the new seller would be a uniform random seller
from Ji. In particular, their contribution the GFT would be roughly
Ei j [b(qi) - s(qj)]; this is state formally in Lemma 3.3. If there are
multiple buyers and sellers in I; and J;, respectively, then one would
expect that their contribution to the GFT would only increase. This
suggests taking C(q) = E; ; [b(qi) - s(qj)]. However, we note that
p must be ©(n) in order for the above argument to work. If p > n
then it becomes unlikely that new buyers in I; would be included in
the first-best matching, let alone STR. On the other hand, if p < n
then it becomes too unlikely for new agents to actually be in I; or
Ji.

Analogously, it turns out that we can always upper bound the
expected loss of GFT by the above choice of C(q) provided p < n.
For the event &, an obvious choice is to set &; = =&;1. However,
when n < m, the event &, becomes a very high probability event.
For example, if n = O(1) the probability that any new agent lands
inI; U J; is O(1/m) and so Pr [E2] would be 1 — O(1/m). To make
this event smaller, we show that another necessary condition for
OPT to perform better than STR is to have all the new sellers to
be assigned the top O(n) quantiles. If n < m then this is a very
unlikely event and we show that it is much smaller than Pr [&;].

Remark 3.1. Note that some of the proofs below require that m, n,
and m—n are larger than a constant. This is without loss of generality,
since we can add a constant number of buyers and sellers and use the
first-best GFT of the augmented market as the new benchmark.

3.2 Construction of the Events

In this section, we construct events &; and &; that satisfy the
. . . . p
desired properties. For any valid assignment 7, we denote Bf
771(BO) the set of indices i such that the quantile g; is assigned
3 3 T T T
to an old buyer. Similarly, define BNEW, SOLD, SNEW as the sets for
new buyers, old sellers and new sellers respectively. We omit the
superscript 7 when the assignment is fixed and clear from context.

By adding a constant number of buyers and sellers, we assume

that m > n > 20. Let p = [ %] > 2. Define the sets
L=A{1....p}, L={p+1,...,2p},
Ji={N-p+1...N}, h={N-2p+1N-p}

In other words, I denotes the first p indices, I denote the p indices
after Ij, J; denote the last p indices, and J» denote the p indices
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before J;.Itis straightforward to check that whenn > 20,11, Ip, /1, J2
are all disjoint.

Claim 3.2. [, I, J1, J2 are all disjoint.

The good event E;. Define the event & as the set of valid assign-

ments 7 such that all of the properties below are satisfied:
e [N BI,\[IEW| > 2, i.e. there are at least 2 new buyers in Iy;

LN BgLD| > 1, i.e. there are at least 1 old buyer in Iy;
/gl SﬁEwl > 2, i.e. there are at least 2 new sellers in J;;
[J2 N SG,p| = 1, ie. there are at least 1 old sellers in J;.
Here is the intuition for this event. We first show that every original
buyer in I} U I and every original seller in J; U J, trades in the
original first-best allocation (Claim B.1). [, N B | > 1and [, N
S3.p| = 1 ensure that the original first-best allocation contains at
least one traded buyer from I, and one traded seller from J,. On
top of it, the extra conditions |I; N B, | = 2and [J1 N ST, | = 2
guarantee that the optimal trade size in the augmented market is
increased by at least 2, with new buyers in I; and new sellers in J;
joining in the trade. This suffices to not only show that STR has GFT
more than the original first-best allocation, but also prove a lower
bound on the gain using values of those new traded buyers/sellers.
Formally, we prove the following lemma, whose proof is deferred
to Subsection B.1.

Lemma 3.3. Fix any q. We have that STR(q, 7) > OpT1(q, 7) for all
7 € E1. Moreover,

Ez [STR(g, 7) — OpT(q, 7)|E1] 2 E [b(ai) = s(q))]
where i ~ I1, j ~ Ji uniformly at random.

The bad event E;. Next, we define the bad event E; as ~E1N{r €
Mnme | S S [27 +2¢]}. In other words, event &; requires that
(i) &1 does not happen and (ii) all new sellers are in the top 2n + 2¢
quantiles. Lemma 3.4 shows that &; is a necessary condition for
OPT to obtain (strictly) more GFT than STR. We point out that &; is
not a necessary condition for OPT to outperform the classic Trade
Reduction; an example can be found in Appendix B.4. Thus having

STR is necessary for our proof.

Lemma 3.4. Fix any q, we have STR(q, r) > OprT(q, ) for all
7 ¢ E.

Next, we bound in Lemma 3.5 the loss in GFT conditioned on
&y, to match the lower bound proved in Lemma 3.3. To prove the
lemma we use the following simple observation. The GFT loss
between the original first best and STR is at most the loss between
the augmented first best and STR, which is the value difference
between the smallest traded buyer and the largest traded seller in
the augmented market.

Lemma 3.5. For any q, we have E,[Oprt(q, ) — STR(q, 7)|E2] <
E;; [b(qi) - s(qj)] where i ~ I1, j ~ J1 uniformly at random.

The proofs of Lemma 3.4 and Lemma 3.5 can be found in Appen-
dix B.2 and Appendix B.3, respectively.

Comparing probabilities of &1 and E;. To complete the proof, it
remains to show that Pr [E1] > Pr [&;]. For intuition, we consider
two extremes. First, suppose that n = m, i.e. there are an equal
number of buyers and sellers. Recall that |I1| = |L| = | 1| = | 2] =
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p= {1—'6] Assuming that m > ¢, we would have |I;|/N ~ 1/20.
In other words, if we take a random new buyer and assign it a
uniformly random index from [N], then with probability roughly
1/20 it would land in I;. Since there are ¢ new buyers, we have
that E [|Il N BI’fIEwl] ¢/20 > 2 provided that ¢ > 40. Thus by
concentration, if ¢ is a sufficiently large constant, then we expect
that |I; N BY | > 2 with probability at least 1 — ¢ for some small
constant ¢ > 0. Similarly, we would have [l N Bf | > 1, |2 N
SG.pl = 1 and |J1 N ST | > 2 each with probability at least 1 —e.
By union bound the good event &; happens with probability at
least 1 — 4¢ while the bad event &, € —&; happens with probability
at most 4¢. This proves Pr[&1] > Pr[&2] when n = O(m).

Now, let us consider the other extreme where n << m. In this case
|[I1]/N = Q(n/m) (and similarly for I, Ji, J2). For any fixed agent,
a random assignment would land the agent in I; with probability
Q(n/m). Thus, the probability of |I; N B | > 2 is Q((n/m)?).
Similarly, the probability of |J; N SI’\ZIEW| > 2 is Q(n/m)?. Moreover,
the probability of the events [, N ST | = 1and [N BT | =2 1
are both Q(n/m). Note that this is a very conservative estimate
obtained by considering the event that these quantities are equal
to 1. We show that Thus, roughly speaking, the probability of &; is
at least the product of the probabilities of the four events, which
indicates that Pr [E1] = Q(n/m)S.

On the other hand, the bad event &, is a subset of the event that
all the new sellers are in the top 2n + 2c quantiles. The probability
that a new seller receives a uniform index and lands in [2n + 2c] is
(2n+2c)/(m+n+2c) = ©(n/m). Thus, the probability that all the
new sellers land in [2n + 2¢] is ©((n/m)€). Thus for a sufficiently
large constant ¢, we have Pr [E2] < Pr [&4].

Lemma 3.6. Fixc > 20000 and suppose thatm > n+ 2c andn > c.
ThenPr [E1] = Pr [&3].

The proof of Lemma 3.6 requires a significant amount of work to
make formal and is omitted from the present version of the paper.

PrRoOF OF THEOREM 1.1. The proof now follows by combining
the previous four lemmas: Lemma 3.3, Lemma 3.4, Lemma 3.5, and
Lemma 3.6. m]

4 MARKET AGNOSTIC RECRUITMENT

In this section, we prove that to obtain any constant approximation
to the original market, it suffices to augment the market by a con-
stant number of buyers and sellers, satisfying some mild conditions,
and run the Trade Reduction mechanism.

A well-known observation is that the Trade Reduction mecha-
nism loses at most one trade compared to the optimal allocation.
Moreover, the trade that is lost is the least valuable trade. Thus, if
the optimal allocation had at least k trades then the Trade Reduc-
tion mechanism is a (1 — 1/k)-approximation to the optimal GFT.
However, this is a conditional result and does not necessarily imply
that the Trade Reduction mechanism is a good approximation to
the optimal GFT.

In order to turn this conditional observation into a true approxi-
mation result, it would be sufficient to prove that the optimal GFT
comes mainly from instances where there are a lot of trades. We
do this using a coupling argument. Namely, for every instance I
that may have a small number of trades, we map this instance into
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many instances f(I)i, ..., f(I)r that certainly have a large number
of trades and where for each ¢t € [T], the optimal GFT in f(I);
exceeds the optimal GFT in I. A technical step here is that it is not
sufficient to simply have T to be large; we require that the prob-
ability that we obtain the instance I to be much smaller than the
probability of obtaining at least one of the instances f(I)1, ..., f(I)r.
We prove in Lemma 4.1 that such a mapping does exist. To summa-
rize, we essentially show that (i) with high probability, we receive
an instance where Trade Reduction is a good approximation to the
optimal GFT and (ii) receiving an instance where Trade Reduction
may not be a good approximation is a low probability event.

We now formalize the above argument. First, we require the
following combinatorial lemma whose proof is omitted due to space
constraints.

Lemma 4.1. There are functions a(y) = ©(y?) and C(y) = ©(1/y?)
such that the following holds. For anyy € (0,1/2], ifc = C(y) then
there exists T and a function f: (sa[(cll)-c) — (2lehT satisfying the
following properties.

(1) Foreveryt € [T] and S € (Sa[a})_c

(2) Foreveryty, tp € [T] andSy,S; € (Sa[f)}).c), we have f;, (S1) #
ft,(S2) whenever (t1,51) # (t2,S2).
(3) For every S € ( le] ), we have c - ylsl(l - y)c_lsl <

<a(y)-c

Sre(r) y e (1 = pye-lfe 1,

) we have |f;(S)| > yc/2.

For the proof, we need to define a bit of notation. We fix y €
(0,1/2] and let &, C, T, f be as given by Lemma 4.1. Note that these
parameters depend on y but since y is fixed for the proof, we omit
the dependence on y. Let m be the number of buyers in the original
market and n be the number of sellers in the original market. We
index the agents such that buyers 1,...,cand sellers 1, .. ., ¢ are the
new agents. Let Fg 1, ..., Fp ¢ be the value distributions for the new
buyers and Fs 1, . . ., Fs ¢ be the distributions for the new sellers. We
note that they are mutually independent and independent of the
distribution of the original market.

For a set of quantiles qg = (gg(1),...,qp(m +¢)) and qg =
(gs(1),...,qs(n + ¢)), define the random sets By = {i € [c]
qg(i) > 1—y}land Sy = {j € [c] : gs(j) < y}. We also define the
following four events:

&E(1,1) = {|B4+| = ac, |S+| = ac},
&E(1,0) = {|B+| = ac, |S+| < ac},
&(0,1) = {|B4+] < ac, |S¢| = ac},
&E(0,0) = {|B+| < ac, |S+| < ac}.

Finally, for sets B” C [c], S’ C [c], we write

Opr(B,S') = E [OPT(qB, as)|Bs = B, 5, = §'] .

We define Tr(B’,S’) in a similar fashion. In addition, we write
OrT(E(i, j)) = E[OPT(Bs+,S+) - 1 [E(], j)]] and use similar nota-
tion for TR(E(1, 1)).

First, we have the straightforward observation that the optimal
GFT is monotone in the set of buyers whose quantiles are above
1 — y and the set of sellers whose quantiles are below y.

Lemma4.2. IfB” 2 B’ andS"" 2 S’ then we have OpT(B”,S"") >
Orr(B’,5’).
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The following lemma is a well-known and follows from a simple
observation that Trade Reduction loses the least valuable matching.

Lemma 4.3. Let k = min{|B’|,|S’|}. Then
1
TrR(B,S’) > (1 - E) Ort(B’,S’).

Lemma 4.4. Ifc > C then OpT(E(1,1)) > (1 -3/c) - OpT.

Proor. Fix any B C Band §’ C S and let E(B,S”) = {B+
B',S, = 5'}. Note that Pr [£(B', §")] = yIBl(1 = e B I8 (g -
y)c_ls |. We now consider three cases.

Case 1: |B’| < ac and |S’| < ac. By Lemma 4.1, we have

DL OPT(fiy (B), £, () - Pr [E(fy (B), £, ()]

ty,t2€(T]
> (orr (i (B, (8-
t,t2€[T]
},Ifrl (B’)I(1 _ },)cflﬁl (B’)I),Ifz2 (S’)I(l _ Y)C’|ﬁ2 (S’)I)

>co ) (orr(fy (B).8):

te[T]
P B (1 — )l B 3 yyeI91)

2 - Opr(B,8") - 1Pl - ) Byl - pye S
=c?.Opr(B,S') - Pr[E(B',S")].
The first inequality uses Lemma 4.1 with S replaced by S’ and
Lemma 4.2 to show OpT(f;, (B'), f;,(S")) = Opt(f;, (B’),S’). The
second inequality is similar which uses Lemma 4.1 with S replaced
by B’ and Lemma 4.2 to show Opt(f;, (B’),S’) > OpT(B’,S’). Ob-
serve that the first line is a lower bound on OpT(E(1, 1)) (this uses
the second assertion of Lemma 4.1). Thus, we can conclude that
0rT(E(1,1)) = % - OpPT(E(0,0)).
Case 2: |B’| < ac and |S’| > ac. The calculation is similar to
the first case. By Lemma 4.1 and Lemma 4.2, we have

> OPr(fi(B),S')-Pr [E(fi(B),S)]
te[T]
> c-Opr(B,S") - Pr[E(B,S)].
We conclude that Opt(&E(1,1)) > ¢ - OpT(E(0, 1)).

Case 3: |[B’| > ac and |S’| < ac. This is analogous to the
previous case and we get that OpT(E(1,1)) > ¢ - OpT(E(1,0)). O

ProoF oF THEOREM 1.4. Note that on the event E(1, 1), the op-
timal trade size is at least ac and thus by Lemma 4.3, we have
Tr > TrR(E(1,1)) = (1 - 1/ac) OrT(&E(1,1)). Next, by Lemma 4.4,
we have OpT(E(1,1)) > (1 —3/c) - OpT. We conclude that

TrR > (1 —1/ac) - (1-1/3¢) -OpT > (1 —(3+1/a)/c) - OpT.

Recalling that & = ©(y?) completes the proof. O

5 SUMMARY

In this paper we prove Bulow-Klemperer-style results in two-sided
markets. When the buyer distribution FSD the seller distribution,
we show that a deterministic, DSIC, IR, BB and prior-independent
mechanism with constant additional agents achieved GFT at least
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the first-best GFT in the original market. Here a constant number
of buyers and sellers are both added to the market. While Babaioff,
Goldner, and Gonczarowski [2] study the problem where only the
larger side of the market is augmented (buyers are augmented with
the assumption of m > n), it is an interesting direction to study the
problem where only the smaller side of the market is allowed to
augment. Intuitively, augmenting to the smaller side of the market
is more efficient in increasing the trade size and GFT. Results in
this direction yet remain open. Finally, we prove that adding in-
dependent agents agnostic to the (arbitrarily correlated) original
market such that ng.(l -y = Fg }.(y) help the prior-independent
trade reduction mechanism obtain a (1 — ¢)-approximation to the
optimal GFT. While we prove that O(1/ey?) agents suffices, the
lower bound we construct requires only Q(1/¢y) agents. Closing
this gap is also an interesting direction.

A COMPARISON WITH PER-UNIT GFT

In this section, we consider the per-unit GFT which is defined as the
total GFT divided by the number of sellers. When there are m buyers
and 1 seller, Babaioff, Goldner, and Gonczarowski [2, Theorem 5.1]
give an example where if one is restricted to recruit only buyers
than Q(logm) buyers are necessary for the per-unit GFT in the
augmented market using a prior-independent mechanism to exceed
the first-best GFT in the original market. A natural question is
whether or not it is possible to recruit O(1) sellers and o(log m)
buyers so that the total number of additional agents is o(log m).

In this section, we provide an example which shows that Q(log m)
additional agents are necessary for any prior independent mech-
anism to achieve at least the same per-unit GFT as the optimal
allocation without augmentation. More specifically, we describe
an instance with m buyers and 1 seller where if we add s sellers
(for 1 < s < 4/m) then we require b > Q(slogm) buyers just for
the optimal per-unit GFT in the augmented market to exceed the
optimal per-unit GFT in the original market.

The instance we consider is the following which is identical to
the instance that appears in [2]. The buyer distribution, Fg, is as
follows. With probability 0.5, the buyer value is 2 and otherwise,
the buyer value is 0. For the seller distribution, Fg, we assume that
the seller value is 1 with probability 0.5 and otherwise, it is equal
to 0. Clearly, the buyer distribution FSD the seller distribution.

We assume that m is the number of original buyers and n = 1
is the number of original sellers. Let Xg be the number of original
buyers with value 2. If the seller has value 0 then the optimal per-
unit GFT is given 2 min(Xp, 1) and if the seller has value 1 then the
optimal (per-unit) GFT is given by min(Xp, 1). Since the buyer and
seller values are independent, the expected per-unit GFT is

Ort(m,1) = 1.5 - E [min(Xp, 1)]
=15-Pr[Xg>1]=15-(1-2"). a1

Now, let us assume we have m + b buyers and 1 + s sellers. Note
that for k < s, we have

E[opr(m+b,1+ s)‘XB - k] = k +E [min(Xs, k)]
< s+E[min(Xs, b)]
=1.55+0.5— 2”5+,
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where the last equality uses Claim A.1. We also have that
E [OPT(m +b,1+ s)‘XB >1 +s] =1.5(1+s).
Thus, we have

E [OpT(m+b,1+5)]
=E [OPT(m +b,1 +s)‘XB < s] Pr([Xp <s]

+E [OPT(m+b, 1+5)

XBZl+s]Pr[XBZ 1+s]

< (1.5(3 +1)—1- 2‘<s+1)) -Pr[Xp < 5]
+15(s+1)- (1-Pr[Xp <s])
=15(s+1) - (l + 2_(s+1)) -Pr[Xp < s]
<15(s+1)—Pr[Xp <s].
Thus, the per-unit GFT satisfies
E [OpT(m+b,1+5)] Pr[Xp < s]
1+s 1+s '
Comparing Eq. (A.1) and comparing Eq. (A.2), we have that a suffi-

cient condition for the per-unit GFT with m buyers and 1 seller to
be strictly larger than the per-unit GFT with m + b buyers and 1+

Pr[)1<—fsss]' Note that we have

(m + b)zf(m+b)
N

<15- (A.2)

sellers is if 27™ <

Pr[Xg < s] = Pr[Xp =s]

(m+b
>
s

Thus, a sufficient condition for the above inequality to hold is

oo com

27 < ﬁ (%)s 2-(m+b) which, after rearranging, is equivalent
to 20 < ﬁ (%)S We conclude that b > slog,(m/s) —log,(s +1)

is necessary for the per-unit GFT in the augmented market to be
at least the per-unit GFT in the original market. Note that this
last bound implies that Q(logm) additional agents are required
for the per-unit GFT in the augmented market to be at least the
per-unit GFT in the original market. If s = 1 then we require
b > Q(logm). and if 2 < s < y/m — 1 then the inequality requires
b 2 slog,(Vm) - log,(vm) = 71 log, m.

Claim A.1. Lets > 1 be an integer. Suppose that the random variable
X ~ Binom(0.5,s + 1). Then E [min(X, s)] = 0.5(s + 1) — 2~ (s*1)

Proor. Note that we can write
E [min(X,s)] =E [min(X,s+1)] = Pr[X =s+ 1]
=0.5(s+1) — 274D,

where in the second equality, we used that min(X, s + 1) = X and
E[X] = 0.5(s +1). o

B MISSING PROOFS FROM SECTION 3

We prove Theorem 1.1 in this section. We first provide some no-
tations used throughout this section. Let i < ... < iy}, be the
indices of all buyers, in an decreasing order of their quantiles and
thus their values. Let jF > ... > j},. be the indices of all sellers (in
an increasing order of their quantiles and thus their values). Simi-

larly, let i? <...<Z ig be the indices of all old buyers, iIl\I <...< iy
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be the indices of all new buyers. Let let j{\l >, 2 j,(l) be the indices
of all old sellers, ji\l > ... > jNbe the indices of all new sellers.

B.1 Proof of Lemma 3.3

Claim B.1. In the original first-best matching, every original buyer
in I; U I is matched and every original seller in J; U J, is matched.
Similarly, in the augmented first-best matching, every buyer in Iy UI
is matched and every seller in J; U J, is matched.

Proor. For the first statement, we prove only that every original
buyer in I} U I is matched. The proof for the sellers is analogous.
Let k = |[(I; U I2) N BY, | be the number of original buyers in
I; U L. Note that k < 2 - [n/10]. We prove that there are at least k
original sellers outside of I} U Iy, i.e. [SE N ([N]\ (I U I))| > k.

OLp
Indeed, we have

1S3 N (INT\ (I UI)| = 1S5, N [NT =155, N (11 U I2)|

[ S—
=n
n 8n 2n n
Zn—Z[—-‘Z — =22 —+222’7—-‘2k,
10 10 10 10
where in the third inequality we use n > 20. Recall that i]? is the

index of the k-th highest original buyer and jl? is the index of the k-
th lowest original seller. The above argument immediately implies
that q(if) = q(j) and thus b(q(iP)) = s(q(j?)) since Fg FSD Fs.
Thus there are at least k trades in the original first-best matching,
which implies that every original buyer in I; U I is matched.

The second statement follows from a similar argument. Let k =
[(I; L) N (BE _UBT__ )| be the number of buyers in I; U I. Note

OLp NEw
that k < 2-[n/107]. We prove that there are at least k sellers outside

of 1 UD,ie. |(S3,, YU STeyw) N (IN]\ (It UL))| 2 k. Indeed, we
have
1(SBp Y SNew) N (INT\ (I1 U I2)) ]
= [(S01p Y Sxw) N INTI=1(S8,5 U Sgy) N (11 U I2)|
=n+c
n 8n 2n n
2n+c—2[—] > —+c-22> —+222[—} >k,
10 10 10 10

where in the third inequality we use n > 20. Since Fg FSD Fs, every
buyer in I; UI, has value no less than the cost of every seller outside
of I1 U I. Thus there are at least k trades in the augment first-best
matching, which implies that every buyer in I; U I, is matched. O

ProoF oF LEMMA 3.3. Let & be any assignment in event &;. Let
T be the number of trades in the original first-best matching. We
prove in the following claim that there are at least T + 2 trades in
the augmented first-best matching. An immediate consequence of
this is that STR must have at least T + 1 trades.

Claim B.2. Recall that 1'12\I is the index of the second-highest new
buyer and jgl is the index of the second-lowest new seller. Then

b(q(iy)) = b(qlirs2)) = s(q(jr+2)) = s(q(j})). Thus there are
at least T + 2 trades in the augmented first-best matching.

Proor. Leti’ € I;NBoyyp, be the index of any original buyer in I
(by definition of &; there is at least one). By Claim B.1, i’ is matched
in the original first-best matching and thus q(i’) > q(i(T) ). By the
property of &; that |l N Bygw| > 2, we have q(i})) > (i) > q(i?)
since iIZ\I € I while i’ € I,. Therefore, q(iIZ\I) > q(iT+2) = q(i?) as
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both the highest and second-highest new buyer have quantile no
less than q(zT) A similar argument shows that q(j, NY < q(jr42) <

q(JT) We conclude that b(q(iy)) 2 b(q(irs+2)) 2 b(q(i)) =

s(q(]T)) > s(q(r+2)) = s(q(]gl)) The third inequality is because
there are T trades in the original first-best matching. O

Claim B.2 shows that STR trades the T + 1 highest buyers and
the T + 1 lowest sellers (it may trade more). Therefore, STR(q, 7) >
ZT” [6(q(ir)) — s(q(jr))]. On the other hand, OPT trades the T
highest original buyers with the T lowest original sellers and thus,

Orr(q, 7) = X1, [b(q(ip)) = s(g(GP))].
We claim that ZTH b(q(ir)) — z b(q(i,o)) > b(q(iY)). This
is because by Claim B.2, buyers i and iy are among the top T + 2

highest-value buyers. So 11 must be in the top T + 1 highest-
value buyers, which is contributed in the first term. Note that
{it, .., ite1}\ {iII\I} correspond to the T highest value buyers ex-
cluding iN and {io 'O} correspond to the top T highest value
orlgmal buyers Thus, we conclude that ZTH b(q(ir)) - b(q(zN)) >

i
py

b(q(zo)) By a similar argument, we have ZT“ s(q(jr)) —
15(q(P) < s(q(j})). Thus

orr(q, 1) > b(q(iY)) - s(g(iY)) > 0

It remains to lower bound the expected difference between
Str(q, 7) and OrT(q, 7) conditioned on the event &;. From the
above inequality, STR(q, ) — OPT(q, ) is lower bounded by the
value of the highest new buyer subtracting the cost of the lowest
new seller. We need the following definition.

Str(q, ) —

Definition B.3. For any event & over an assignment 7, & is swap-
pable in a set S if: For every & € &, the assignment ’ obtained by
swapping the label for any two indices in S is also in &. In other
words, for every r € & and every i’,i"” € S, if n'(i") = =(i"),
' (i") = n(i"), and «’ (i) = = (i) fori & {i’,i"”’} (clearly n’ is also a
valid assignment), then =’ € &.

Lemma B.4. &; is swappable in I and it is swappable in J;.

Proor. The lemma directly follows from the fact that swapping
the label for any two indices in I; (or J;) will not change the value

of L NBZ, 11 NBE | Ui NST I 1NSE |- o

Consider the following process that generates a random assign-
ment 7 from &Ey:

(1) Choose an index i uniformly at random from I; and assign
it to the “New Buyer” label. Choose an index j uniformly at
random from J; and assign it to the “New Seller” label.

(2) Denote IT; j the set of valid assignments in set &; such that
i is assigned to the “New Buyer” label and j is assigned to
the “New Seller” label. Draw an assignment 7 uniformly at
random from II; ; and assign the indices accordingly.

By Lemma B 4, we have that |[Iy j| = |II;» j»| for any indices

i’,i"” € I, j', j” € Ji: For any assignment in Il s, we can swap the
label between indices i’, i’ and swap between j, j”’. This generates
an assignment in II;» j» and vice versa. Moreover, for any valid
assignment 7, the number of “New Buyer” (or “New Seller”) labels
is ¢. Hence, for every valid assignment 7, [{i e [1,j € J; : 7 €
IT; j}| = c2. Thus the above random process chooses the assignment
7 uniformly at random from &;.
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For any realization of the above process, the value of the highest
new buyer is at least b(q;) and the cost of the lowest new seller is
at most s(q;). Thus the difference is at least b(q;) — s(q;). Taking
expectation over the random process, we have

Er[STR(q, 7) — OPT(q, 7)|E1] > E [b(qi) —s(q))]

where i ~ I1, j ~ J; uniformly at random according to Step 1 of the
process. O

B.2 Proof of Lemma 3.4

ProoF oF LEMMA 3.4. We know from Lemma 3.3 that on the
event 81, we have STR(q, r) > OpT(q, r). Hence it suffices to show
the inequality on the event & = {7 € I m,c | ST, N [27 +2¢] #

S{w - Let OPT’ be the first-best matching in the augmented market.
For any n € &’, we consider two cases based on the number of
trades in Op1’ compared with OpT. Suppose OpT has T trades. Note

that the number of trades in OpT’ is least T.

Case 1: OpT’ has at least T + 1 trades. Now in STR the top T
(original and new) buyers and bottom T (original and new) sellers
trade. The GFT from this is larger than the GFT from OpT which
trades the top T original buyers and the bottom T original sellers.

Case 2: OpT’ also has T trades. Our goal is to show that STR has
the exact same T trades as Op1’. Thus the GFT of STR is the same
as the GFT of Op1’, which is at least the GFT of OpT. By definition
of STR, it suffices to show that b(q(iT)) > s(q(jT+1)), i.e. the T-th
highest buyer value is least the (T + 1)-th lowest seller cost.

First, we claim that i+ < 2n + 2c. Indeed, there are n + ¢ sellers
in the augmented market. Thus, the (n + ¢)-th highest value buyer
must have index at most 2n + 2c.

Next, recall that j? is the index of the T-th lowest value original
seller. We claim that j? < 2n + 2c¢. For the sake of contradiction,
suppose jIQ > 2n+2c. Recall that ji\l is the index of the lowest-value
new seller. Since 7 € &', we have Sngw N [21 + 2¢] # Snew and
thus, ji\l > 2n + 2c. In particular, jri; > min{j?,j{\l} >2n+2c >
intc 2 iT41- Thus q(iT+1) > q(iT+1) and b(q(iT+1)) > s(q(iT+1))-
This implies that OpT’ has at least T + 1 trades, a contradiction.

To finish the proof, we have b(q(it)) > b(q(zo)) > s(q(] ) >
s(q(jr+1)). The first inequality uses it < i. O The second inequality
follows from the fact that OpT has T trades. The last inequality holds
because j? <2n+2c< ji\l and thus, j741 > min{j?,j{\l} = j(T). We
conclude that STR has the same T trades as Op1’. O

B.3 Proof of Lemma 3.5

Proor oF LEMMA 3.5. Forevery (q, 7),let Opt’(q, 7) be the GFT
of the first-best matching in the augmented market. We clearly
have Opt(q,7) < Opt’(q, 7). For each (q, ), we let b*(q, x)
(resp. s*(q, 7)) denote the lowest value among buyers (resp. the
largest value among sellers) traded in the augmented first-best
matching. Let # be the event that there is no trade in the augmented
first-best matching and define b*(q, 7) = 0 and s*(q, ) = 0 if there

is no trade. Then by definition of the STR mechanism,
Orr(q, ) — STR(q, 7) < OPT’(q, 7) — STR(q, )
< (b*(q,7) —s"(q, 7)1 [z e F|.



The Power of Two-Sided Recruitment in Two-Sided Markets

We will show that
B |6 (@1 7 € 71[&] < Blb(g()]
where i ~ I; uniformly at random. A similar argument shows that
E[s' (@01 [ € F1|€2] = Bls(a(1)]

where j ~ J; uniformly at random. To do so, we consider three
cases: (i) where at least one new buyer is in Ij, (ii) where no new
buyers are in I; but at least one original buyer is in I3, and (iii)
where no buyers (original or new) are in I;. In each of these cases,
we prove that E; [b(q(i))] is an upper bound on the value of lowest
value traded buyer in the augmented market, in expectation.

Case 1: |l N B, | > 1. Let &’ be the event that | NBlpw! = 1
i.e. at least one new buyer is in I;. The following lemma is similar

to Lemma B.4 and follows from the definition of &” and &,.

Lemma B.5. &'NE; is swappable (see Definition B.3) inI;. Moreover,
it is swappable in Ji.

ProoF. Let 7 be any assignmentin &' N&E, =& N-E N{# €
Mpme | SﬁEW C [2n + 2c]} and 7’ be the assignment obtained
by swapping any two labels in I; (or J;). We notice that swapping
the label for any two indices in 1 (or J;) will not change the value
of [l N BI’fIEWL | N Bgml, Ji 0 SﬁEWL [N SSLDL Thus the new
assignment 7’ is also in &’ N =&;. Moreover, since I} C [2n + 2¢],
Sigw S [2n + 2¢] implies that Sg;w C [2n+2c]. Thus 7 € {# €
Mnme | SRy E [27 +2¢]} O

Consider the following random process of choosing an assign-
ment 7:

(1) Choose an index i uniformly at random from I; and assign
it to the “New Buyer” label.

(2) Denote II; the set of valid assignments in set &’ N &, such
that i is assigned to the “New Buyer” label. Draw an assign-
ment 7 uniformly at random from IT; and assign the indices
accordingly.

By Lemma B.5, we have that |I1;7| = |II;#| for any indices i’,i"’ €
I;: For any assignment in Iy, we can swap the label for index i’
and index i’ and generate an assignment in II;» and vice versa.
Moreover, for any valid assignment 7, the number of “New Buyer”
labels is c. So 7 is in ¢ different IT;s. Thus the above random process
chooses the assignment 7 uniformly random from &’ N &,.

By Claim B.1, we note that for any realization of the above pro-
cess, the new buyer with index i trades in the augmented first-best
matching and therefore 1 [7 € #] = 1. Thus b*(q, ), the lowest
value among buyers traded in the augmented first-best matching, is
upper bounded by b(q(i)). Thus E; [b*(q, 7)1 [z € F]|E'NE2] <
E;i[b(q(i))], where i draws from I; uniformly at random.

Case 2:|I; N B | = 0 and |l; N BT | > 1. Next, let & be the
event such that no new buyer is in I; and at least one old buyer is in
Liie |[hNBE | > 1and [l NB, | = 0. One can easily verify that
&” N &; is also swappable in I;. And using a similar argument (by
assigning index i to the “Old Buyer” label in the random process),
we have E; [b*(q, 7)1 [x € F]|E" N &E2] < Ei[b(q(i))], where i

draws from I uniformly at random.
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Case 3: |I; N BY,| = 0 and |I; N BY | = 0. Finally, let & =
=(&’ U E”) be the event such that no buyer is in I;. Then for any
7e&”,b*(qr) - 1[reF]| <blq([n/10])) -1 [x € F]. To see
this, note that if there is no trade (i.e. 7 ¢ ¥) then both sides are
equal to 0. On the other hand, if there is a trade (i.e. 7 € ¥) then
all buyers have at most b(q([n/107)) and thus, so does b*(q, 7).
Thus B, [b*(q, 7)1 [x € F]|E"N&E2] < b(q([n/10])) Pr[F] <
E;[b(q(i))], where i draws from [; uniformly at random.

Summarizing the three inequalities above, we have that

Ex[b"(q. M1 [7 € F]|E2] < Ei[b(q(D)].

where i draws from I; uniformly at random. An analogous argu-
ment gives that E;[s"(q, 7)1 [z € F]1E2] = Ej[s(q(j))], where
Jj draws from J; uniformly at random. Therefore,
Ex[Orr(q, 7) — STR(q, 7)|E2]
<Er[(b*(q.7) —s"(q,7)) - L[7 € F]|&]
< IE} [b(q(i)) = s(qg(iN],
where i ~ I1, j ~ J1 uniformly at random.

B.4 Trade Reduction versus STR

As mentioned in Section 3.2, our argument crucially makes use
the fact that we use STR instead of the classic Trade Reduction
mechanisms [25]. In particular, a key observation we use is that, if
(i) the optimal allocation in the augmented market, OpT’ is not the
same as the optimal allocation in the original market OpT and (ii) the
size of the optimal matching remains the same then STr and Opt’
have the same GFT. This would not be true using McAfee’s Trade
Reduction mechanism [25]. As an instructive example, consider the
following scenario (we will assume the both sides have the same
distribution so that values and quantiles are consistent). We have
one original buyer with value 1, one original seller with value 0.9,
one new buyer with value 0, and one new seller with value 0.8. In
this example, the original first-best matching has size 1 and a GFT
of 0.1. Once we add in the new buyers and sellers, the first-best
matching remains at size 1 but the GFT is now 0.2. In STR, we use
the second-lowest value seller to price the buyers and sellers, if
possible. Here, this means a price of 0.9 is offered to buyer with
value 1 and the seller with value 0.8 resulting in a trade. On the
other hand, the Trade Reduction mechanism offers a price equal to
the average of the next unmatched buyer and seller. This means a
price of 0.45 is offered to the buyer and seller. The seller will not
accept this price so the match is reduced resulting in zero trades.
It is not too difficult to extend the above example that show
that &; is not a necessary condition for OPT to outperform Trade
Reduction. Concretely, suppose we have n original buyers with
value 2, n — 1 original sellers with value 1, one original seller with
value 1+¢, and 2c original buyers with value 0.9 for a total of 2n+2c.
Here, the first-best allocation trades the n value-2 buyers with all
sellers, resulting in a GFT of n + . We then add ¢ new buyers with
value 0, ¢ — 1 new sellers with value 100, and one new seller with
value 0.8. In particular, &; does not happen since one of the new
seller is outside the top 2n + 2¢ values (and thus quantiles) in the
augmented market. In the augmented first-best matching, the seller
with value 1 + ¢ would be removed from the matching and the new
seller with value 0.8 would be added to the matching. STR would
then offer a price of 1+¢ which is accepted by the buyers with value
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2 and the sellers with value at most 1. On the other hand, Trade
Reduction would offer a price of (0.9 + 1+¢)/2 < 1if ¢ < 0.1. This
price is not accepted by those sellers with value 1. Thus in Trade
Reduction, n— 1 buyers with value 2 will trade with one (new) seller
with value 0.8 and n — 2 (old) sellers with value 1. The GFT of Trade
Reduction would be 2(n—1) — (n—2) — 0.8 = n— 0.8 < n, which is
worse than the original first-best GFT.

B.5 Example Where New Agents Can Trade but
STR Loses a Trade

In this short section, we give an example where the new agents
can trade but STR is still worse than OPT in the augmented market.

Let ¢ > 0. There are 3 original buyers with values b? =3, bg) =
2+e¢, bg) = 2 and 3 original sellers all with value s? = s? = sg) =1
The original optimal GFT is 4+ ¢. Now, suppose we add a new buyer
with value bN = 2 + 3¢ and a new seller with value sN = 2 + 2¢.
Note that bN and sN are eligible to trade with each other. The new

optimal matching matches blo, BN, bg with slo, sg) , 330 . STR checks if

sNis able to price the buyers and the sellers; in this case it has higher
value than bzo. Thus, STR removes bzo and 330 (say) and matches
only b9, bN with s?, sg) for a GFT of 3 + 3e. This is strictly worse
than the original GFT if ¢ < 1/2. Note that a similar example could
be possible even if there are multiple trades among the new agents.
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