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ABSTRACT
We consider the problem of maximizing the gains from trade (GFT)

in two-sided markets. The seminal impossibility result by Myerson

and Satterthwaite (1983) shows that even for bilateral trade, there

is no individually rational (IR), Bayesian incentive compatible (BIC)

and budget balanced (BB) mechanism that can achieve the full GFT.

Moreover, the optimal BIC, IR and BB mechanism that maximizes

the GFT is known to be complex and heavily depends on the prior.

In this paper, we pursue a Bulow-Klemperer-style question, i.e.,

does augmentation allow for prior-independent mechanisms to

compete against the optimal mechanism? Our first main result

shows that in the double auction setting with𝑚 i.i.d. buyers and

𝑛 i.i.d. sellers, by augmenting 𝑂 (1) buyers and sellers to the mar-

ket, the GFT of a simple, dominant strategy incentive compatible

(DSIC), and prior-independent mechanism in the augmented mar-

ket is at least the optimal in the original market, when the buyers’

distribution first-order stochastically dominates the sellers’ dis-

tribution. The mechanism we consider is a slight variant of the

standard Trade Reduction mechanism due to McAfee (1992). For

comparison, Babaioff, Goldner, and Gonczarowski (2020) showed

that if one is restricted to augmenting only one side of the market,

then 𝑛(𝑚 + 4

√
𝑚) additional agents are sufficient for their mecha-

nism to beat the original optimal and ⌊log
2
𝑚⌋ additional agents

are necessary for any prior-independent mechanism.

Next, we go beyond the i.i.d. setting and study the power of

two-sided recruitment in more general markets. Our second main

result is that for any 𝜀 > 0 and any set of 𝑂 (1/𝜀) buyers and

sellers where the buyers’ value exceeds the sellers’ value with

constant probability, if we add these additional agents into any

market with arbitrary correlations, the Trade Reduction mechanism

obtains a (1−𝜀)-approximation of the GFT of the augmentedmarket.

Importantly, the newly recruited agents are agnostic to the original

market.

∗
Supported by a Sloan Foundation Research Fellowship and the National Science

Foundation Award CCF-1942583 (CAREER). This work was done in part while this

author was a Visiting Faculty Researcher at Google Research, Mountain View.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649669

CCS CONCEPTS
• Theory of computation→ Algorithmic mechanism design.

KEYWORDS
Two-sided Markets, Recruitment, Bulow-Klemperer

ACM Reference Format:
Yang Cai, Christopher Liaw, Aranyak Mehta, and Mingfei Zhao. 2024. The

Power of Two-Sided Recruitment in Two-Sided Markets. In Proceedings of
the 56th Annual ACM Symposium on Theory of Computing (STOC ’24), June
24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3618260.3649669

1 INTRODUCTION
In this paper, we study the problem of maximizing the gains from

trade (GFT) in two-sided markets. Two-sided markets are ubiqui-

tous and have many practical applications; some major examples

include the FCC spectrum auction and online marketplaces such

as Uber, Lyft, and Airbnb. For example, in ride-sharing platforms,

passengers (as the role of buyers) have some private value for ob-

taining transportation services and drivers (as the role of sellers)

have some private cost for providing the necessary services. Mech-

anism design for two-sided markets poses additional challenges

over its one-sided counterpart. In a one-sided market, the mech-

anism designer aims to maximize some objective (e.g. welfare or

revenue) subject to a one-sided incentive-compatibility constraint.

The seminal papers of Vickrey [32] and Myerson [26] described

how to design mechanisms that achieve the optimal welfare and

revenue for one-sided markets, respectively. However, in a two-

sided market, one needs to ensure incentive compatibility for both
sides of the market as well as to ensure that the mechanism itself

does not run a deficit (called budget balance). The seminal impos-

sibility result of Myerson and Satterthwaite [27] show that these

additional constraints make the mechanism design problem much

more challenging. In particular, even in the simplest setting with

a single seller selling a single item to a single buyer (known as

bilateral trade), no mechanism can achieve full efficiency while

being Bayesian incentive-compatible (BIC), individually rational

(IR), and budget balanced (BB). Myerson and Satterthwaite [27]

also described the best BIC, IR and BB mechanism that maximizes

efficiency in bilateral trade. However, the optimal mechanism is

complex and heavily depends on the prior.

Motivated by the aforementioned challenges, there has been

extensive research efforts and substantial progress in recent years

investigating the two-sided market in the “simple versus optimal”
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perspective, i.e. to show that a simple mechanism can approximate

the performance of the optimal mechanism. A non-exhaustive list

includes [1, 4–6, 9–14, 16, 18, 22, 24]. However, in many of these

results, the mechanism designer requires a priori knowledge of both

the buyers’ and the sellers’ distribution. Alternatively, the designer

can increase the competition and thus her objective by recruiting

more agents to the market. In single-item one-sided markets, the

seminal work by Bulow and Klemperer [7] showed that the revenue

of a second price auction with only a single additional participant
from the same population is at least that of the optimal mechanism

with the original set of participants. More recently, this result has

been generalized to other one-sidedmarket settings [3, 15, 17, 19–21,

23, 31]. Such results showcase how additional competition, coupled

with a simple mechanism can be used to overcome the requirement

of having precise knowledge of the underlying distributions and

using the optimal-yet-complex mechanism. A natural question is

whether such Bulow-Klemperer-type results also hold in the two-

sided market settings.

In a recent paper, Babaioff, Goldner, and Gonczarowski [2] initi-

ated this line of work to develop Bulow-Klemperer-type results for

a fundamental single-parameter two-sided market setting called a

double auction. In this problem there are 𝑛 sellers that each hold an

identical item and the value of each seller is drawn i.i.d. from some

distribution 𝐹𝑆 . There are𝑚 buyers that each wish to obtain one of

these items and their value is drawn i.i.d. from another distribution

𝐹𝐵 . They consider a variant of the natural, prior-independent Trade

Reduction mechanism [25], which they call Buyer Trade Reduction

(BTR). They show that when the two distributions are identical,
1

BTR with one additional buyer can achieve welfare at least the best

welfare achievable in the original market even without the BIC,

IR, and BB constraints (such a benchmark is called the first best).
Note that the first best is exactly the welfare of the celebrated VCG

mechanism, which is BIC and IR, but may violate the BB constraint.

While this resolves themost basic case, it is rarely assumed that both

distributions are identical. For example, a passenger in ride-sharing

applications likely has higher value for obtaining transportation

than the driver’s cost for providing such transportation. When

there are no assumptions on the distributions, [2] prove that no

finite bound is possible. When the buyers’ distribution first-order

stochastically dominates
2
the sellers’ distribution, they prove that

𝑛(𝑚+4
√
𝑚) additional buyers are sufficient for BTR to have welfare

at least the first-best welfare in the original market when𝑚 ≥ 𝑛.3

An immediate question from the result in [2] is whether the

number of additional agents can be improved. Does a constant

number of agents suffice for any number of buyers and sellers? The

main difficulty turns out to come from the mechanism recruiting

only one side of the market. In fact, their paper shows that ⌊log
2
𝑚⌋

buyers are necessary if only extra buyers are recruited, even when

there is a single seller. However in many situations, the mechanism

designer is able to recruit both buyers and sellers. For example,

in ride-sharing applications, recruiting both sides is very much

feasible – more riders will use the platform with better marketing,

1
Note that no further assumptions are placed on this distribution, while similar results

in one-sided markets make certain regularity assumption about the distribution.

2
A distribution 𝐷 first-order stochastically dominates 𝐷′

if Pr𝑥∼𝐷 [𝑥 ≤ 𝑐 ] ≤
Pr𝑥∼𝐷′ [𝑥 ≤ 𝑐 ] for every 𝑐 .
3
Their result applies to the𝑚 ≤ 𝑛 case using Seller Trade Reduction.

advertisement, or deals, and more drivers will adopt the platform

with better incentives and marketing towards them. In this paper,

we allow recruiting from both sides of the market. We show that

with the Seller Trade Reduction (STR), a mechanism analogous to

BTR, only𝑂 (1) additional agents suffice.We give a formal definition

of the mechanism in Section 1.1.

In the above result, we assume that all the agents are independent,

that all the buyers are drawn from a common buyer distribution,

that all the sellers are drawn from a common seller distribution,

and that the buyer distribution first-order stochastically dominates

the seller distribution. These are the same assumptions that were

made by [2]. We next turn to the setting where we make minimal

assumptions on the market and ask about the power of two-sided

augmentation in such a general setting. Our second main result is

that for any 𝜀 > 0 and any set of 𝑂 (1/𝜀) buyers and 𝑂 (1/𝜀) sellers
where the buyers’ value exceeds the sellers’ value with constant

probability, the following holds. If we augment these buyers and

sellers into any market then Trade Reduction achieves a (1 − 𝜀)-
approximation of the optimal efficiency of the augmented market.

We stress that the augmentation requires zero knowledge of the

original market. We also note that one-sided augmentation cannot

be done in an agnostic manner. For example, suppose we augment

the market with buyers that happens to have values less than all

the sellers. It is not hard to see that for any prior-independent

mechanism that is incentive-compatible, IR, and BB, its GFT remains

unchanged after this augmentation.

To formally state our results, it is crucial to first discuss the

measure of efficiency we adopt in this paper. There are two main

measures of efficiency in two-sided markets. The first is the stan-

dard notion of welfare in the literature, which is equal to the sum

of the value of all buyers and sellers that hold the items in the final

allocation. The second is the gain from trade (GFT) which is the

welfare of the final allocation minus the total value of sellers. At

a high-level the GFT of a mechanism is a direct measure of the

additional value of a mechanism. Note that when the set of sellers

is fixed, maximizing welfare in a market where only the buyers

are augmented (as in [2]) is identical to maximizing the GFT. In

other words, there is no need to make a distinction between welfare

and GFT. However, since we are interested in the problem where

both sides of the market can be augmented, we focus on GFT as

it is the more meaningful measure. As an extreme example, sim-

ply augmenting the market with additional sellers, and leaving

them untraded, would increase the welfare while the GFT remains

unchanged.

1.1 Our Results
We summarize prior results and our results in Table 1. Our first main

result is Theorem 1.1 which states that if we use a simple and prior-

independent mechanism, namely Seller Trade Reduction (STR)
4
,

then augmenting both sides of the market by a constant number

of participants has at least as much GFT as the optimal allocation

before augmentation, assuming that the buyers’ distribution first-

order stochastically dominates the sellers’ distribution. A formal

definition of the mechanisms can be found in Section 2.

4
The STR mechanism was introduced by [2] and is a variant of the Trade Reduction

mechanism [25].
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Table 1: Summary of ourmain results. The upper bounds state the number of additional agents suffices for a prior-independent
mechanism (BTR or STR) to achieve GFT at least the first best. The lower bounds state the number of additional agents neces-
sary for any anonymous and deterministicmechanism. Results with “buyer” listed indicate that only buyers can be augmented
to the market. Note that the last row is for an approximation result instead of beating the GFT of the first best.

Distribution Assumptions

Upper Bound

Lower Bound

Previous Work This Work

𝐹𝐵 = 𝐹𝑆
1 buyer

[2, Theorem 1.1]

– 1 agent (trivial)

𝐹𝐵 FSD 𝐹𝑆
𝑛(𝑚 + 4

√
𝑚) buyers

[2, Theorem 1.10]

𝑂 (1) agents
(Theorem 1.1)

⌊log
2
𝑚⌋ buyers

[2, Theorem 5.1]

No assumption. – –

any finite number

[2, Proposition 3.4]

𝐹−1
𝐵,𝑖

(1 − 𝛾) ≥ 𝐹−1
𝑆,𝑗

(𝛾)
for new buyer 𝑖 , new seller 𝑗 .

No assumptions on original market.

–

𝑂 (1/𝜀𝛾2) agents for
(1 − 𝜀)-approximation

(Theorem 1.4)

Ω(1/𝜀𝛾) agents for
Trade Reduction

(Proposition 1.6)

Theorem 1.1. Consider the double auction with 𝑚 i.i.d. buyers
and 𝑛 i.i.d. sellers. Suppose𝑚 ≥ 𝑛 and the buyers’ distribution 𝐹𝐵
first-order stochastically dominates the sellers’ distribution 𝐹𝑆 . Then
there is a global constant integer 𝑐 > 0 such that the GFT of STR with
𝑚 + 𝑐 buyers and 𝑛 + 𝑐 sellers is at least the first-best GFT with𝑚

buyers and 𝑛 sellers.

Remark 1.2. While Theorem 1.1 assumes that 𝑚 ≥ 𝑛, the result
applies analogously to the case where 𝑚 ≤ 𝑛 using Buyer Trade
Reduction, by negating the values/costs and swapping the role of
buyers and sellers. See [2, Proposition A.1].

Remark 1.3. Another natural benchmark is to consider the per-unit
GFT defined as the GFT divided by the number of items in the market.
In the setting where we recruit only buyers, as in [2], the per-unit GFT
objective is equivalent to the GFT objective. However, the per-unit GFT
objective is a strictly stronger benchmark when one is also allowed
to recruit sellers. Thus, it is natural to ask if recruiting 𝑂 (1) agents
suffices for this stronger benchmark. In Appendix A, we build on the
lower bound example in [2] to prove that if there are𝑚 buyers in the
original market, Ω(log𝑚) agents are necessary for the per-unit GFT
in the augmented market to weakly exceed the per-unit GFT in the
original market.

Since the welfare of any mechanism is the GFT plus the sum

of the seller values, our results immediately apply to the welfare

objective, as the sum of seller values in the augmented market is at

least the one in the original market.

For our second main result, we consider a setting where we

make no assumptions on the original market and only fairly mild

assumptions on the recruited agents’ distributions.

Theorem 1.4. Fix 𝛾 ∈ (0, 1/2] along with a set of 𝑐 buyers with
value distributions 𝐹𝐵,1, . . . , 𝐹𝐵,𝑐 and a set of 𝑐 sellers with value
distributions 𝐹𝑆,1, . . . , 𝐹𝑆,𝑐 such that all agents’ values are mutually
independent and for all 𝑖, 𝑗 ∈ [𝑐], we have 𝐹−1

𝐵,𝑖
(1 − 𝛾) ≥ 𝐹−1

𝑆,𝑗
(𝛾). Fix

any market𝑀 with arbitrary correlation between buyers and sellers.
Suppose that we augment𝑀 by including the 𝑐 buyers and 𝑐 sellers
described above. Let𝑀 ′ be the augmented market. Then the GFT of
Trade Reduction is at least a (1 − 𝑂 (1/𝛾2𝑐))-approximation to the
GFT of the optimal matching in𝑀 ′.

We stress that Theorem 1.4 makes no assumptions on 𝑀 and

that the value distributions of the agents that we augment into the

market is completely agnostic of𝑀 .

There are several ways that one can interpret this result. The

most obvious is that simply recruiting agents into the market sud-

denly makes a simple mechanism efficient. For example, a ride-

sharing platform can simply recruit more drivers and more riders

into the platform without any further market analysis. Next, in any

large market, it is reasonable to assume that there must be a small

subset of buyers with high value and a small subset of sellers that

can produce goods at relatively low values. Our result implies that

a simple mechanism is already efficient.

Remark 1.5. Earlier, we stated that a sufficient condition for Trade
Reduction in an augmented market to obtain a (1− 𝜀)-approximation
is that the buyers’ value exceeds the sellers’ value with constant prob-
ability. We note that this condition implies the c.d.f. condition in
Theorem 1.4, up to a constant. Indeed, if buyer 𝑖’s value exceeds seller
𝑗 ’s value with probability at least 𝛾 then 𝐹−1

𝐵,𝑖
(1 − 𝛾/2) ≥ 𝐹−1

𝑠,𝑗
(𝛾/2)

(see [9, Lemma 3.1]).

Finally, we show that Theorem 1.4 is nearly tight but proving

the following lower bound. The proof is omitted from the current

version of the paper.

Proposition 1.6. For any 𝛾 ∈ (0, 1/2), there exists a distributions
𝐹𝐵 and 𝐹𝑆 such that 𝐹−1

𝐵
(1−𝛾) ≥ 𝐹−1

𝑆
(𝛾) and the following statement

holds. If a market has 𝑐 buyers whose value distributions are drawn
from 𝐹𝐵 and 𝑐 sellers whose value distributions are drawn from 𝐹𝑆
than running a Trade Reduction mechanism obtains a (1−Ω(1/𝛾𝑐))-
approximation to the optimal GFT.

Due to space limitations, we do not provide complete proofs for

all our results in this version of the paper. A complete version of the

paper can be found on the arXiv https://arxiv.org/abs/2307.03844.

1.2 Additional Related Work
The paper that is mostly related to our work is [2]. They study

Bulow-Klemperer-style results in two-sided market where one side

of the market is augmented. When the buyer’s distribution is the

same as the seller’s distribution, they prove that one additional
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buyer is sufficient for BTR to achieve welfare at least the first-best

welfare in the original market. They then study the problem with

the stochastic dominance assumption, proving an upper bound of

4

√
𝑚 for a single seller and 𝑛(𝑚 + 4

√
𝑚) for 𝑛 sellers. They also

provide lower bounds on the number of additional buyers required.

Their lower bounds apply not only to BTR and STR, but also to any

deterministic and prior-independent mechanisms. In this paper we

study the same problem but allow both sides of the market to be

augmented.

Approximations in two-sided markets. Despite the impossibility

result by Myerson and Satterthwaite [27], many recent papers have

successfully shown a multiplicative approximation to the first-best

and second-best objective in various settings of two-sided mar-

kets. One line of work, which focuses on bilateral trade, aims to

approximate the optimal welfare or GFT and to study the difference

between the first-best and second-best [4, 6, 10, 11, 14, 22]. Another

line of work studies the approximation problem in more general

two-sided markets such as double auctions and multi-dimensional

two-sided markets [1, 9, 12, 13, 16]. In sharp contrast to our pa-

per, the mechanisms in all these works are not prior-independent:

either the mechanism designer or the agents need to know the

others’ prior distributions. Another line of work provides asymp-
totic approximation guarantees in the number of items optimally

traded for settings as general as multi-unit buyers and sellers and

𝑘 types of items [1, 25, 29, 30]. Moreover, [24] consider a model

of interactive communication in bilateral trade and prove that the

efficient allocation is achievable with a smaller number of rounds

of communication.

Bulow-Klemperer-style results in one-sided markets. There have
been many Bulow-Klemperer-style results that aim to beat or ap-

proximate the optimal revenue in auctions with the recruitment of

additional buyers. Results in single-dimensional settings include

[15, 20, 21] for regular distributions, [31] for irregular distributions,

and [23] for a dynamic single-item auction. Another line of work

extend the results to multi-dimensional auctions, when buyers are

unit-demand [28] and additive [3, 8, 17, 19]. Results in this paper

(and [2]) show that Bulow-Klemperer-style results can also be de-

rived in two-sidedmarkets.We note that in the revenue-maximizing

auction setting, it is clearly impossible to perform augmentation

while being completely agnostic to the agents’ distributions. On

the other hand, one of our main result is that it is possible to per-

form augmentation in the efficiency-maximizing two-sided market

setting while being completely agnostic to the market.

2 PRELIMINARIES
Double Auction and Gains From Trade. This paper focuses on the

double auction setting, a two-sided market with𝑚 unit-demand

buyers and 𝑛 unit-supply sellers. Without loss of generality, we

assume that𝑚 ≥ 𝑛 (see Remark 1.2). All items are interchangeable

and thus the value for each agent can be described as a scalar.

An allocation in a double auction is a (possibly random) set of 𝑛

agents who hold the items. A buyer trades in the allocation if she

holds the item and a seller trades if she does not hold the item. The

gains from trade (GFT) of an allocation is defined as the difference

between the sum of all traded buyers’ values and the sum of all

traded sellers’ values.

Mechanisms. We denote the buyer values by 𝑏1, . . . , 𝑏𝑚 and the

seller values by 𝑠1, . . . , 𝑠𝑛 . We also write b = (𝑏1, . . . , 𝑏𝑚) and

s = (𝑠1, . . . , 𝑠𝑛). A mechanism can be specified by, for each agents’

profile (b, s) an allocation and a payment for each agent. We assume

that all agents have quasi-linear utilities. Specifically, if a buyer

trades in the mechanism, her utility is her value minus the payment

for her. Similarly if a seller trades, her utility is the payment she

receives minus her value. A mechanism is Bayesian Incentive Com-
patible (BIC) if every agent maximizes her expected utility (over all

the other agents’ randomness and the randomness of the mecha-

nism) when she bids truthfully her value. In addition, it is Dominant
Strategy Incentive Compatible (DSIC) if every agent maximizes her

utility when she bids truthfully, no matter what the other agents

report. We say that a mechanism is individually rational (IR) if every
agent has non-negative utility when she bids truthfully, no matter

what the other agents report. A mechanism is said to be weakly
budget-balanced (WBB) if the sum of payment from the buyers is

at least the sum of payment to the sellers for any agents’ profile,

i.e. the mechanism does not run a deficit.

First Best and Trade Reduction. Given any buyers’ profile, the

first-best allocation (also denoted by OPT) is the welfare-maximizing

allocation under this profile (the allocation for the VCGmechanism).

Formally, let 𝑏 (1) ≥ . . . ≥ 𝑏 (𝑚)
be the buyer’s bids ordered in the

non-increasing order and 𝑠 (1) ≤ . . . ≤ 𝑠 (𝑛) be the seller’s bids

ordered in non-decreasing order. We abuse the notation and use

𝑏 (𝑖) and 𝑠 (𝑖) to represent the corresponding buyer and seller. The

first-best allocation trades buyers 𝑏 (1) , . . . , 𝑏 (𝑟 ) with 𝑠 (1) , . . . , 𝑠 (𝑟 ) ,
where 𝑟 = max{𝑖 ≤ min{𝑚,𝑛} : 𝑏 (𝑖) ≥ 𝑠 (𝑖) }. We refer to 𝑟 as the

optimal trade size. Next, we define the trade reduction mechanism

that we consider in this paper.

Definition 2.1 (Trade ReductionMechanism [25]). Let𝑢 ∈ [0, 1] be
a parameter. If 𝑟 < min{𝑚,𝑛} and𝑏 (𝑟 ) ≥ 𝑢 ·𝑏 (𝑟+1) +(1−𝑢) ·𝑠 (𝑟+1) ≥
𝑠 (𝑟 ) then TR trades buyers 𝑏 (1) , . . . , 𝑏 (𝑟 ) with 𝑠 (1) , . . . , 𝑠 (𝑟 ) at price
𝑢 · 𝑏 (𝑟+1) + (1 − 𝑢) · 𝑠 (𝑟+1) . Otherwise, the mechanism trades buyers
𝑏 (1) , . . . , 𝑏 (𝑟−1) with 𝑠 (1) , . . . , 𝑠 (𝑟−1) (if 𝑟 ≤ 1 then there is no trade).
Each traded buyer pays 𝑏 (𝑟 ) and each traded seller receives 𝑠 (𝑟 ) .

Our first main result (Theorem 1.1) holds for a particular version

of trade reduction (TR) where 𝑢 = 0 which we refer to as seller’s

trade reduction (STR). We note that [2] also consider an asymmetric

version of TR where they set 𝑢 = 1; they refer to this version as

buyer’s trade reduction (BTR). Our secondmain result (Theorem 1.4)

holds for all variants of TR in addition to the variant where we only

utilize the “otherwise” part of the above mechanism. Specifically,

we never trade buyer 𝑏 (𝑟 ) and seller 𝑠 (𝑟 ) . Buyers 𝑏 (1) , . . . , 𝑏 (𝑟−1)

are offered a price of 𝑏 (𝑟 ) and sellers 𝑠 (1) , . . . , 𝑠 (𝑟−1) are offered a

price of 𝑠 (𝑟 ) . The following lemma shows that Trade Reduction is

an incentive-compatible mechanism.
5

Lemma 2.2 ([2, Proposition C.1]). TR is a deterministic, prior-
independent mechanism and satisfies DSIC, IR, and WBB.

5
[2] prove this for STR but it is not difficult to adapt their proof of TR.
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3 CONSTANT AGENTS SUFFICE TO BEAT
FIRST-BEST WHEN 𝐹𝐵 FSD 𝐹𝑆

For the rest of the paper, we focus on the i.i.d. setting and study

the problem of beating the first-best GFT through augmentation.

We prove that STR with 𝑂 (1) additional agents extracts at least
as much GFT as the first-best allocation with the original set of

agents (Theorem 1.1). Throughout this section we assume that

buyer (resp. seller) values are drawn i.i.d. according to a common

cumulative density function 𝐹𝐵 (resp. 𝐹𝑆 ). For any quantile 𝑞 ∈
(0, 1), define the value 𝑏 (𝑞) corresponding to quantile 𝑞 as 𝑏 (𝑞) =
inf{𝑥 | Pr𝑏∼𝐹𝐵 [𝑏 ≤ 𝑥] ≥ 𝑞}. Similarly, define 𝑠 (𝑞) = inf{𝑥 |
Pr𝑠∼𝐹𝑆 [𝑠 ≤ 𝑥] ≥ 𝑞}. Clearly both 𝑏 (𝑞) and 𝑠 (𝑞) are non-decreasing
in 𝑞. We say that 𝐹𝐵 first-order stochastically dominates (FSD) 𝐹𝑆 if

for every 𝑞 ∈ (0, 1), 𝑏 (𝑞) ≥ 𝑠 (𝑞).

3.1 Proof Techniques
First, we present a high-level discussion about the proof techniques

in this section. Notice that STR loses no more than a single trade

from the first-best allocation in the augmented market. Thus a

natural (but erroneous) starting point to prove Theorem 1.1 may

be to (i) show that with only a constant number of new buyers and

new sellers, at least one of the new buyers is eligible to trade with

a new seller and (ii) show that if there is a trade between a new

buyer and a new seller then the trade size must increase by 1 and

thus STR performs at least as well as OPT. If the second statement

were true then the proof should be relatively straightforward since

the first statement happens with fairly high probability due to

the stochastic dominance assumption. Unfortunately, the second

statement is false and thus the first statement is not a sufficient

condition for STR to outperform OPT. For an example where this

happens, see Appendix B.5.

The message in the previous paragraph is that having additional

trades among the new agents is not sufficient to guarantee that

the optimal trade size increases. We would like to find an event

such that the optimal trade size increases, which is sufficient for

STR to outperforms OPT. Naively, we could simply consider the

event where the optimal trade size does increase. However, the

difficulty is in being able to lower bound the gain of the expected

GFT restricted to this event and compare that with the loss of the

expected GFT when this does not happen. In order to make the

analysis more feasible, we consider more structured events that (i)

make it possible to analyze the gain or loss in GFT and (ii) we can

compare the probabilities of these events.

To make this formal, we use a coupling argument that was also

used by Babaioff, Goldner, and Gonczarowski [2]. We first fix a set

of quantiles and then assign these quantiles uniformly at random to

the new and original buyers and sellers. However, the techniques

in our paper and Babaioff, Goldner, and Gonczarowski [2] are oth-

erwise very different. Babaioff, Goldner, and Gonczarowski [2] first

consider the single seller and 𝑚 buyers setting and proceed by

showing that by adding a sufficient number of buyers it must be

that (i) the GFT difference between the new and original optimal

allocations is large and (ii) the GFT difference between the new

optimal allocation and BTR is small. The only way for this to be

possible is that the GFT of BTR must be large compared to the

original optimal allocation. To handle the case with an arbitrary

number of sellers, they show that they can reduce the problem to

the single seller case but this reduction incurs a linear overhead

(in the number of sellers). In contrast, our argument directly com-

pares the GFT difference between STR and OPT and show that this

difference is net positive.

We now proceed with additional details on our argument. In the

augmented market,𝑚 +𝑐 buyers (including𝑚 original buyers and 𝑐

augmented buyers) draw their values i.i.d. from 𝐹𝐵 and 𝑛 + 𝑐 sellers
(including 𝑛 original sellers and 𝑐 augmented sellers) draw their

values i.i.d. from 𝐹𝑆 . Denote 𝑁 = 𝑚 + 𝑛 + 2𝑐 the total number of

agents in the augmented market. We notice that the distribution of

𝑏 (𝑞) (resp. 𝑠 (𝑞)) where 𝑞 is drawn uniformly at random from (0, 1)
is exactly the distribution 𝐹𝐵 (resp. 𝐹𝑆 ). We thus couple the random

augmented market with the following random process: We draw

𝑁 uniform quantiles from (0, 1) and then assign these quantiles to

all agents in the augmented market uniformly at random.

More specifically, denote 𝑞1, . . . , 𝑞𝑁 the 𝑁 uniform quantiles in

non-increasing order so that 𝑞1 ≥ . . . ≥ 𝑞𝑁 . Let q = (𝑞1, . . . , 𝑞𝑁 ).
To avoid too many subscripts, we sometimes abuse notations and

use 𝑞(𝑖) to denote 𝑞𝑖 . These quantiles are assigned to all agents

in the augmented market, including all original (called “old”) and

augmented (called “new”) buyers and sellers. We notice that any

two old buyers (or old sellers, new buyers, new sellers) are inter-

changeable, i.e. swapping their values will not change the GFT of

the first-best allocation and STR in both the original and augmented

market. Thus it suffices to consider any assignment from quantiles

to those four labels. Formally, let 𝜋 : [𝑁 ] → {BO, BN, SO, SN} be
a function that maps (quantile) indices to old buyers, new buy-

ers, old sellers, and new sellers, respectively. Let Π𝑛,𝑚,𝑐 = {𝜋 :

|𝜋−1 (BO) | = 𝑚, |𝜋−1 (SO) | = 𝑛, |𝜋−1 (BN) | = |𝜋−1 (SN) | = 𝑐} be

the set of valid assignments. The assignment we choose is thus

uniformly drawn from Π𝑛,𝑚,𝑐 .

For any fixed quantiles q and valid assignment 𝜋 , Str(q, 𝜋)
denotes the GFT of Seller Trade Reduction in the augmented mar-

ket and Opt(q, 𝜋) denotes the GFT of the first-best allocation in

the original market. Both values are well-defined since they are

fully determined by the quantiles q and the assignment 𝜋 . Thus

Str = Str(𝑚 + 𝑐, 𝑛 + 𝑐) = Eq,𝜋 [Str(q, 𝜋)] and Opt = Opt(𝑚,𝑛) =
Eq,𝜋 [Opt(q, 𝜋)].

To prove that Str is at least Opt, we would like to find an event

such that the gain of the expected GFT (from first best to STR)

restricted to this event can be lower bounded and compared with

the loss of the expected GFT when the first-best allocation has more

GFT than STR. To formalize the idea, we would like to construct

two events E1 and E2 over the randomness of the assignment 𝜋

such that:

(1) For any q, E1 is sufficient for Str(q, 𝜋) ≥ Opt(q, 𝜋). More-

over,E𝜋 [Str(q, 𝜋)−Opt(q, 𝜋) |E1] ≥ 𝐶 (q) for some𝐶 (q) >
0 (Lemma 3.3).

(2) For any q, E2 is necessary for Opt(q, 𝜋) > Str(q, 𝜋). More-

over, E𝜋 [Opt(q, 𝜋) −Str(q, 𝜋) |E2] ≤ 𝐶 (q) (Lemma 3.4 and

Lemma 3.5).

(3) Pr𝜋 [E1] ≥ Pr𝜋 [E2] (Lemma 3.6).

We notice that these conditions immediately proves Theorem 1.1

since

Str − Opt = Eq,𝜋 [Str(q, 𝜋) − Opt(q, 𝜋)]
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≥ Eq [E𝜋 [Str(q, 𝜋) − Opt(q, 𝜋) |E1] · Pr[E1]
+ E𝜋 [Str(q, 𝜋) − Opt(q, 𝜋) |E2] · Pr[E2]] ≥ 0.

Here the first inequality follows from Property 2, which assert that

for any q, Str(q, 𝜋) ≥ Opt(q, 𝜋) when E2 does not happen. Thus,

Str(q, 𝜋) ≥ Opt(q, 𝜋) on the event ¬E1 ∩ ¬E2.

To construct the above events, we first break the set of quantiles

into “buckets”. For some 𝑝 , let 𝐼1 correspond to the indices of the

top 𝑝 quantiles (i.e. high value agents) and 𝐽1 correspond to the

indices of the bottom 𝑝 quantiles (i.e. low value agents).

As we will see below, the event E1 that we define ensures that

the matching obtained by STR contains (i) at least one new buyer

from 𝐼1 and one new seller from 𝐽1 and (ii) the other agents in

the matching have GFT at least that of OPT. For the time-being,

suppose that there were only one new buyer from 𝐼1 and one new

seller from 𝐽1. Then the new buyer would be a uniform random

buyer from 𝐼1 and the new seller would be a uniform random seller

from 𝐽1. In particular, their contribution the GFT would be roughly

E𝑖, 𝑗
[
𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 )

]
; this is state formally in Lemma 3.3. If there are

multiple buyers and sellers in 𝐼1 and 𝐽1, respectively, then one would

expect that their contribution to the GFT would only increase. This

suggests taking𝐶 (q) = E𝑖, 𝑗
[
𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 )

]
. However, we note that

𝑝 must be Θ(𝑛) in order for the above argument to work. If 𝑝 ≫ 𝑛

then it becomes unlikely that new buyers in 𝐼1 would be included in

the first-best matching, let alone STR. On the other hand, if 𝑝 ≪ 𝑛

then it becomes too unlikely for new agents to actually be in 𝐼1 or

𝐽1.

Analogously, it turns out that we can always upper bound the

expected loss of GFT by the above choice of 𝐶 (q) provided 𝑝 ≤ 𝑛.

For the event E2, an obvious choice is to set E2 = ¬E1. However,

when 𝑛 ≪𝑚, the event E2 becomes a very high probability event.

For example, if 𝑛 = 𝑂 (1) the probability that any new agent lands

in 𝐼1 ∪ 𝐽1 is 𝑂 (1/𝑚) and so Pr [E2] would be 1 −𝑂 (1/𝑚). To make

this event smaller, we show that another necessary condition for

OPT to perform better than STR is to have all the new sellers to

be assigned the top 𝑂 (𝑛) quantiles. If 𝑛 ≪ 𝑚 then this is a very

unlikely event and we show that it is much smaller than Pr [E1].

Remark 3.1. Note that some of the proofs below require that𝑚, 𝑛,
and𝑚−𝑛 are larger than a constant. This is without loss of generality,
since we can add a constant number of buyers and sellers and use the
first-best GFT of the augmented market as the new benchmark.

3.2 Construction of the Events
In this section, we construct events E1 and E2 that satisfy the

desired properties. For any valid assignment 𝜋 , we denote 𝐵𝜋
Old

=

𝜋−1 (BO) the set of indices 𝑖 such that the quantile 𝑞𝑖 is assigned

to an old buyer. Similarly, define 𝐵𝜋
New

, 𝑆𝜋
Old

, 𝑆𝜋
New

as the sets for

new buyers, old sellers and new sellers respectively. We omit the

superscript 𝜋 when the assignment is fixed and clear from context.

By adding a constant number of buyers and sellers, we assume

that𝑚 ≥ 𝑛 ≥ 20. Let 𝑝 =
⌈
𝑛
10

⌉
≥ 2. Define the sets

𝐼1 = {1, . . . , 𝑝} , 𝐼2 = {𝑝 + 1, . . . , 2𝑝} ,
𝐽1 = {𝑁 − 𝑝 + 1, . . . , 𝑁 }, 𝐽2 = {𝑁 − 2𝑝 + 1, 𝑁 − 𝑝}.

In other words, 𝐼1 denotes the first 𝑝 indices, 𝐼2 denote the 𝑝 indices

after 𝐼1, 𝐽1 denote the last 𝑝 indices, and 𝐽2 denote the 𝑝 indices

before 𝐽1. It is straightforward to check that when𝑛 ≥ 20, 𝐼1, 𝐼2, 𝐽1, 𝐽2
are all disjoint.

Claim 3.2. 𝐼1, 𝐼2, 𝐽1, 𝐽2 are all disjoint.

The good event E1. Define the event E1 as the set of valid assign-

ments 𝜋 such that all of the properties below are satisfied:

• |𝐼1 ∩ 𝐵𝜋
New

| ≥ 2, i.e. there are at least 2 new buyers in 𝐼1;

• |𝐼2 ∩ 𝐵𝜋
Old

| ≥ 1, i.e. there are at least 1 old buyer in 𝐼2;

• |𝐽1 ∩ 𝑆𝜋
New

| ≥ 2, i.e. there are at least 2 new sellers in 𝐽1;

• |𝐽2 ∩ 𝑆𝜋
Old

| ≥ 1, i.e. there are at least 1 old sellers in 𝐽2.

Here is the intuition for this event. We first show that every original

buyer in 𝐼1 ∪ 𝐼2 and every original seller in 𝐽1 ∪ 𝐽2 trades in the

original first-best allocation (Claim B.1). |𝐼2 ∩ 𝐵𝜋
Old

| ≥ 1 and |𝐽2 ∩
𝑆𝜋
Old

| ≥ 1 ensure that the original first-best allocation contains at

least one traded buyer from 𝐼2 and one traded seller from 𝐽2. On

top of it, the extra conditions |𝐼1 ∩ 𝐵𝜋
New

| ≥ 2 and |𝐽1 ∩ 𝑆𝜋
New

| ≥ 2

guarantee that the optimal trade size in the augmented market is

increased by at least 2, with new buyers in 𝐼1 and new sellers in 𝐽1
joining in the trade. This suffices to not only show that STR has GFT

more than the original first-best allocation, but also prove a lower

bound on the gain using values of those new traded buyers/sellers.

Formally, we prove the following lemma, whose proof is deferred

to Subsection B.1.

Lemma 3.3. Fix any q. We have that Str(q, 𝜋) ≥ Opt(q, 𝜋) for all
𝜋 ∈ E1. Moreover,

E𝜋 [Str(q, 𝜋) − Opt(q, 𝜋) |E1] ≥ E
𝑖, 𝑗

[
𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 )

]
where 𝑖 ∼ 𝐼1, 𝑗 ∼ 𝐽1 uniformly at random.

The bad event E2. Next, we define the bad event E2 as¬E1∩{𝜋 ∈
Π𝑛,𝑚,𝑐 | 𝑆𝜋

New
⊆ [2𝑛 + 2𝑐]}. In other words, event E2 requires that

(i) E1 does not happen and (ii) all new sellers are in the top 2𝑛 + 2𝑐

quantiles. Lemma 3.4 shows that E2 is a necessary condition for

OPT to obtain (strictly) more GFT than STR. We point out that E2 is

not a necessary condition for OPT to outperform the classic Trade

Reduction; an example can be found in Appendix B.4. Thus having

STR is necessary for our proof.

Lemma 3.4. Fix any q, we have Str(q, 𝜋) ≥ Opt(q, 𝜋) for all
𝜋 ∉ E2.

Next, we bound in Lemma 3.5 the loss in GFT conditioned on

E2, to match the lower bound proved in Lemma 3.3. To prove the

lemma we use the following simple observation. The GFT loss

between the original first best and STR is at most the loss between

the augmented first best and STR, which is the value difference

between the smallest traded buyer and the largest traded seller in

the augmented market.

Lemma 3.5. For any q, we have E𝜋 [Opt(q, 𝜋) − Str(q, 𝜋) |E2] ≤
E𝑖, 𝑗

[
𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 )

]
where 𝑖 ∼ 𝐼1, 𝑗 ∼ 𝐽1 uniformly at random.

The proofs of Lemma 3.4 and Lemma 3.5 can be found in Appen-

dix B.2 and Appendix B.3, respectively.

Comparing probabilities of E1 and E2. To complete the proof, it

remains to show that Pr [E1] ≥ Pr [E2]. For intuition, we consider
two extremes. First, suppose that 𝑛 = 𝑚, i.e. there are an equal

number of buyers and sellers. Recall that |𝐼1 | = |𝐼2 | = |𝐽1 | = |𝐽2 | =
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𝑝 =
⌈
𝑛
10

⌉
. Assuming that 𝑚 ≫ 𝑐 , we would have |𝐼1 |/𝑁 ≈ 1/20.

In other words, if we take a random new buyer and assign it a

uniformly random index from [𝑁 ], then with probability roughly

1/20 it would land in 𝐼1. Since there are 𝑐 new buyers, we have

that E
[
|𝐼1 ∩ 𝐵𝜋

New
|
]
≈ 𝑐/20 ≥ 2 provided that 𝑐 ≥ 40. Thus by

concentration, if 𝑐 is a sufficiently large constant, then we expect

that |𝐼1 ∩ 𝐵𝜋
New

| ≥ 2 with probability at least 1 − 𝜀 for some small

constant 𝜀 > 0. Similarly, we would have |𝐼2 ∩ 𝐵𝜋
Old

| ≥ 1, |𝐽2 ∩
𝑆𝜋
Old

| ≥ 1, and |𝐽1 ∩ 𝑆𝜋
New

| ≥ 2 each with probability at least 1 − 𝜀.

By union bound the good event E1 happens with probability at

least 1− 4𝜀 while the bad event E2 ⊆ ¬E1 happens with probability

at most 4𝜀. This proves Pr[E1] ≥ Pr[E2] when 𝑛 = Θ(𝑚).
Now, let us consider the other extreme where 𝑛 ≪𝑚. In this case

|𝐼1 |/𝑁 ≈ Ω(𝑛/𝑚) (and similarly for 𝐼2, 𝐽1, 𝐽2). For any fixed agent,

a random assignment would land the agent in 𝐼1 with probability

Ω(𝑛/𝑚). Thus, the probability of |𝐼1 ∩ 𝐵𝜋
New

| ≥ 2 is Ω((𝑛/𝑚)2).
Similarly, the probability of |𝐽1 ∩ 𝑆𝜋

New
| ≥ 2 is Ω(𝑛/𝑚)2. Moreover,

the probability of the events |𝐽2 ∩ 𝑆𝜋
Old

| ≥ 1 and |𝐽2 ∩ 𝐵𝜋
Old

| ≥ 1

are both Ω(𝑛/𝑚). Note that this is a very conservative estimate

obtained by considering the event that these quantities are equal

to 1. We show that Thus, roughly speaking, the probability of E1 is

at least the product of the probabilities of the four events, which

indicates that Pr [E1] = Ω(𝑛/𝑚)6.
On the other hand, the bad event E2 is a subset of the event that

all the new sellers are in the top 2𝑛 + 2𝑐 quantiles. The probability

that a new seller receives a uniform index and lands in [2𝑛 + 2𝑐] is
(2𝑛 + 2𝑐)/(𝑚 + 𝑛 + 2𝑐) = Θ(𝑛/𝑚). Thus, the probability that all the

new sellers land in [2𝑛 + 2𝑐] is Θ((𝑛/𝑚)𝑐 ). Thus for a sufficiently

large constant 𝑐 , we have Pr [E2] ≤ Pr [E1].

Lemma 3.6. Fix 𝑐 ≥ 20000 and suppose that𝑚 ≥ 𝑛 + 2𝑐 and 𝑛 ≥ 𝑐 .
Then Pr [E1] ≥ Pr [E2].

The proof of Lemma 3.6 requires a significant amount of work to

make formal and is omitted from the present version of the paper.

Proof of Theorem 1.1. The proof now follows by combining

the previous four lemmas: Lemma 3.3, Lemma 3.4, Lemma 3.5, and

Lemma 3.6. □

4 MARKET AGNOSTIC RECRUITMENT
In this section, we prove that to obtain any constant approximation

to the original market, it suffices to augment the market by a con-

stant number of buyers and sellers, satisfying some mild conditions,

and run the Trade Reduction mechanism.

A well-known observation is that the Trade Reduction mecha-

nism loses at most one trade compared to the optimal allocation.

Moreover, the trade that is lost is the least valuable trade. Thus, if
the optimal allocation had at least 𝑘 trades then the Trade Reduc-

tion mechanism is a (1 − 1/𝑘)-approximation to the optimal GFT.

However, this is a conditional result and does not necessarily imply

that the Trade Reduction mechanism is a good approximation to

the optimal GFT.

In order to turn this conditional observation into a true approxi-

mation result, it would be sufficient to prove that the optimal GFT

comes mainly from instances where there are a lot of trades. We

do this using a coupling argument. Namely, for every instance 𝐼

that may have a small number of trades, we map this instance into

many instances 𝑓 (𝐼 )1, . . . , 𝑓 (𝐼 )𝑇 that certainly have a large number

of trades and where for each 𝑡 ∈ [𝑇 ], the optimal GFT in 𝑓 (𝐼 )𝑡
exceeds the optimal GFT in 𝐼 . A technical step here is that it is not

sufficient to simply have 𝑇 to be large; we require that the prob-

ability that we obtain the instance 𝐼 to be much smaller than the

probability of obtaining at least one of the instances 𝑓 (𝐼 )1, . . . , 𝑓 (𝐼 )𝑇 .
We prove in Lemma 4.1 that such a mapping does exist. To summa-

rize, we essentially show that (i) with high probability, we receive

an instance where Trade Reduction is a good approximation to the

optimal GFT and (ii) receiving an instance where Trade Reduction

may not be a good approximation is a low probability event.

We now formalize the above argument. First, we require the

following combinatorial lemma whose proof is omitted due to space

constraints.

Lemma 4.1. There are functions 𝛼 (𝛾) = Θ(𝛾2) and𝐶 (𝛾) = Θ(1/𝛾2)
such that the following holds. For any 𝛾 ∈ (0, 1/2], if 𝑐 ≥ 𝐶 (𝛾) then
there exists 𝑇 and a function 𝑓 :

( [𝑐 ]
≤𝛼 (𝛾 ) ·𝑐

)
→ (2[𝑐 ] )𝑇 satisfying the

following properties.
(1) For every 𝑡 ∈ [𝑇 ] and 𝑆 ∈

( [𝑐 ]
≤𝛼 (𝛾 ) ·𝑐

)
we have |𝑓𝑡 (𝑆) | ≥ 𝛾𝑐/2.

(2) For every 𝑡1, 𝑡2 ∈ [𝑇 ] and 𝑆1, 𝑆2 ∈
( [𝑐 ]
≤𝛼 (𝛾 ) ·𝑐

)
, we have 𝑓𝑡1 (𝑆1) ≠

𝑓𝑡2 (𝑆2) whenever (𝑡1, 𝑆1) ≠ (𝑡2, 𝑆2).
(3) For every 𝑆 ∈

( [𝑐 ]
≤𝛼 (𝛾 ) ·𝑐

)
, we have 𝑐 · 𝛾 |𝑆 | (1 − 𝛾)𝑐−|𝑆 | ≤∑

𝑡 ∈[𝑇 ] 𝛾
|𝑓𝑡 (𝑆) | (1 − 𝛾)𝑐−|𝑓𝑡 (𝑆) | .

For the proof, we need to define a bit of notation. We fix 𝛾 ∈
(0, 1/2] and let 𝛼,𝐶,𝑇 , 𝑓 be as given by Lemma 4.1. Note that these

parameters depend on 𝛾 but since 𝛾 is fixed for the proof, we omit

the dependence on 𝛾 . Let𝑚 be the number of buyers in the original

market and 𝑛 be the number of sellers in the original market. We

index the agents such that buyers 1, . . . , 𝑐 and sellers 1, . . . , 𝑐 are the

new agents. Let 𝐹𝐵,1, . . . , 𝐹𝐵,𝑐 be the value distributions for the new

buyers and 𝐹𝑆,1, . . . , 𝐹𝑆,𝑐 be the distributions for the new sellers. We

note that they are mutually independent and independent of the

distribution of the original market.

For a set of quantiles q𝐵 = (𝑞𝐵 (1), . . . , 𝑞𝐵 (𝑚 + 𝑐)) and q𝑆 =

(𝑞𝑆 (1), . . . , 𝑞𝑆 (𝑛 + 𝑐)), define the random sets 𝐵+ = {𝑖 ∈ [𝑐] :

𝑞𝐵 (𝑖) ≥ 1 − 𝛾} and 𝑆+ = { 𝑗 ∈ [𝑐] : 𝑞𝑆 ( 𝑗) ≤ 𝛾}. We also define the

following four events:

E(1, 1) = {|𝐵+ | ≥ 𝛼𝑐, |𝑆+ | ≥ 𝛼𝑐},
E(1, 0) = {|𝐵+ | ≥ 𝛼𝑐, |𝑆+ | < 𝛼𝑐},
E(0, 1) = {|𝐵+ | < 𝛼𝑐, |𝑆+ | ≥ 𝛼𝑐},
E(0, 0) = {|𝐵+ | < 𝛼𝑐, |𝑆+ | < 𝛼𝑐}.

Finally, for sets 𝐵′ ⊆ [𝑐], 𝑆 ′ ⊆ [𝑐], we write

Opt(𝐵′, 𝑆 ′) = E
[
Opt(q𝐵, q𝑆 )

���𝐵+ = 𝐵′, 𝑆+ = 𝑆 ′
]
.

We define Tr(𝐵′, 𝑆 ′) in a similar fashion. In addition, we write

Opt(E(𝑖, 𝑗)) = E [Opt(𝐵+, 𝑆+) · 1 [E(𝑖, 𝑗)]] and use similar nota-

tion for Tr(E(1, 1)).
First, we have the straightforward observation that the optimal

GFT is monotone in the set of buyers whose quantiles are above

1 − 𝛾 and the set of sellers whose quantiles are below 𝛾 .

Lemma 4.2. If 𝐵′′ ⊇ 𝐵′ and 𝑆 ′′ ⊇ 𝑆 ′ then we have Opt(𝐵′′, 𝑆 ′′) ≥
Opt(𝐵′, 𝑆 ′).
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The following lemma is a well-known and follows from a simple

observation that Trade Reduction loses the least valuable matching.

Lemma 4.3. Let 𝑘 = min{|𝐵′ |, |𝑆 ′ |}. Then

Tr(𝐵′, 𝑆 ′) ≥
(
1 − 1

𝑘

)
Opt(𝐵′, 𝑆 ′).

Lemma 4.4. If 𝑐 ≥ 𝐶 then Opt(E(1, 1)) ≥ (1 − 3/𝑐) · Opt.

Proof. Fix any 𝐵′ ⊆ 𝐵 and 𝑆 ′ ⊆ 𝑆 and let E(𝐵′, 𝑆 ′) = {𝐵+ =

𝐵′, 𝑆+ = 𝑆 ′}. Note that Pr [E(𝐵′, 𝑆 ′)] = 𝛾 |𝐵′ | (1 − 𝛾)𝑐−|𝐵′ |𝛾 |𝑆′ | (1 −
𝛾)𝑐−|𝑆′ | . We now consider three cases.

Case 1: |𝐵′ | < 𝛼𝑐 and |𝑆 ′ | < 𝛼𝑐. By Lemma 4.1, we have∑
𝑡1,𝑡2∈[𝑇 ]

Opt(𝑓𝑡1 (𝐵′), 𝑓𝑡2 (𝑆 ′)) · Pr
[
E(𝑓𝑡1 (𝐵′), 𝑓𝑡2 (𝑆 ′))

]
=

∑
𝑡1,𝑡2∈[𝑇 ]

(
Opt(𝑓𝑡1 (𝐵′), 𝑓𝑡2 (𝑆 ′))·

𝛾 |𝑓𝑡
1
(𝐵′) | (1 − 𝛾)𝑐−|𝑓𝑡1 (𝐵

′) |𝛾 |𝑓𝑡
2
(𝑆′) | (1 − 𝛾)𝑐−|𝑓𝑡2 (𝑆

′) |
)

≥ 𝑐 ·
∑

𝑡1∈[𝑇 ]

(
Opt(𝑓𝑡1 (𝐵′), 𝑆 ′)·

𝛾 |𝑓𝑡
1
(𝐵′) | (1 − 𝛾)𝑐−|𝑓𝑡1 (𝐵

′) |𝛾 |𝑆′ | (1 − 𝛾)𝑐−|𝑆
′ |
)

≥ 𝑐2 · Opt(𝐵′, 𝑆 ′) · 𝛾 |𝐵′ | (1 − 𝛾)𝑐−|𝐵
′ |𝛾 |𝑆′ | (1 − 𝛾)𝑐−|𝑆

′ |

= 𝑐2 · Opt(𝐵′, 𝑆 ′) · Pr
[
E(𝐵′, 𝑆 ′)

]
.

The first inequality uses Lemma 4.1 with 𝑆 replaced by 𝑆 ′ and
Lemma 4.2 to show Opt(𝑓𝑡1 (𝐵′), 𝑓𝑡2 (𝑆 ′)) ≥ Opt(𝑓𝑡1 (𝐵′), 𝑆 ′). The
second inequality is similar which uses Lemma 4.1 with 𝑆 replaced

by 𝐵′
and Lemma 4.2 to show Opt(𝑓𝑡1 (𝐵′), 𝑆 ′) ≥ Opt(𝐵′, 𝑆 ′). Ob-

serve that the first line is a lower bound on Opt(E(1, 1)) (this uses
the second assertion of Lemma 4.1). Thus, we can conclude that

Opt(E(1, 1)) ≥ 𝑐2 · Opt(E(0, 0)).
Case 2: |𝐵′ | < 𝛼𝑐 and |𝑆 ′ | ≥ 𝛼𝑐. The calculation is similar to

the first case. By Lemma 4.1 and Lemma 4.2, we have∑
𝑡 ∈[𝑇 ]

Opt(𝑓𝑡 (𝐵′), 𝑆 ′)· Pr
[
E(𝑓𝑡 (𝐵′), 𝑆 ′)

]
≥ 𝑐 · Opt(𝐵′, 𝑆 ′) · Pr

[
E(𝐵′, 𝑆 ′)

]
.

We conclude that Opt(E(1, 1)) ≥ 𝑐 · Opt(E(0, 1)).
Case 3: |𝐵′ | ≥ 𝛼𝑐 and |𝑆 ′ | < 𝛼𝑐. This is analogous to the

previous case and we get that Opt(E(1, 1)) ≥ 𝑐 ·Opt(E(1, 0)). □

Proof of Theorem 1.4. Note that on the event E(1, 1), the op-
timal trade size is at least 𝛼𝑐 and thus by Lemma 4.3, we have

Tr ≥ Tr(E(1, 1)) ≥ (1 − 1/𝛼𝑐) Opt(E(1, 1)). Next, by Lemma 4.4,

we have Opt(E(1, 1)) ≥ (1 − 3/𝑐) · Opt. We conclude that

Tr ≥ (1 − 1/𝛼𝑐) · (1 − 1/3𝑐) · Opt ≥ (1 − (3 + 1/𝛼)/𝑐) · Opt.
Recalling that 𝛼 = Θ(𝛾2) completes the proof. □

5 SUMMARY
In this paper we prove Bulow-Klemperer-style results in two-sided

markets. When the buyer distribution FSD the seller distribution,

we show that a deterministic, DSIC, IR, BB and prior-independent

mechanism with constant additional agents achieved GFT at least

the first-best GFT in the original market. Here a constant number

of buyers and sellers are both added to the market. While Babaioff,

Goldner, and Gonczarowski [2] study the problem where only the

larger side of the market is augmented (buyers are augmented with

the assumption of𝑚 ≥ 𝑛), it is an interesting direction to study the

problem where only the smaller side of the market is allowed to

augment. Intuitively, augmenting to the smaller side of the market

is more efficient in increasing the trade size and GFT. Results in

this direction yet remain open. Finally, we prove that adding in-

dependent agents agnostic to the (arbitrarily correlated) original

market such that 𝐹−1
𝐵,𝑖

(1 − 𝛾) ≥ 𝐹−1
𝑆,𝑗

(𝛾) help the prior-independent

trade reduction mechanism obtain a (1 − 𝜀)-approximation to the

optimal GFT. While we prove that 𝑂 (1/𝜀𝛾2) agents suffices, the

lower bound we construct requires only Ω(1/𝜀𝛾) agents. Closing
this gap is also an interesting direction.

A COMPARISONWITH PER-UNIT GFT
In this section, we consider the per-unit GFT which is defined as the

total GFT divided by the number of sellers.When there are𝑚 buyers

and 1 seller, Babaioff, Goldner, and Gonczarowski [2, Theorem 5.1]

give an example where if one is restricted to recruit only buyers

than Ω(log𝑚) buyers are necessary for the per-unit GFT in the

augmented market using a prior-independent mechanism to exceed

the first-best GFT in the original market. A natural question is

whether or not it is possible to recruit 𝑂 (1) sellers and 𝑜 (log𝑚)
buyers so that the total number of additional agents is 𝑜 (log𝑚).

In this section, we provide an examplewhich shows thatΩ(log𝑚)
additional agents are necessary for any prior independent mech-

anism to achieve at least the same per-unit GFT as the optimal

allocation without augmentation. More specifically, we describe

an instance with𝑚 buyers and 1 seller where if we add 𝑠 sellers

(for 1 ≤ 𝑠 <
√
𝑚) then we require 𝑏 ≥ Ω(𝑠 log𝑚) buyers just for

the optimal per-unit GFT in the augmented market to exceed the

optimal per-unit GFT in the original market.

The instance we consider is the following which is identical to

the instance that appears in [2]. The buyer distribution, 𝐹𝐵 , is as

follows. With probability 0.5, the buyer value is 2 and otherwise,

the buyer value is 0. For the seller distribution, 𝐹𝑆 , we assume that

the seller value is 1 with probability 0.5 and otherwise, it is equal

to 0. Clearly, the buyer distribution FSD the seller distribution.

We assume that𝑚 is the number of original buyers and 𝑛 = 1

is the number of original sellers. Let 𝑋𝐵 be the number of original

buyers with value 2. If the seller has value 0 then the optimal per-

unit GFT is given 2min(𝑋𝐵, 1) and if the seller has value 1 then the

optimal (per-unit) GFT is given by min(𝑋𝐵, 1). Since the buyer and
seller values are independent, the expected per-unit GFT is

Opt(𝑚, 1) = 1.5 · E [min(𝑋𝐵, 1)]
= 1.5 · Pr [𝑋𝐵 ≥ 1] = 1.5 · (1 − 2

−𝑚). (A.1)

Now, let us assume we have𝑚 + 𝑏 buyers and 1 + 𝑠 sellers. Note
that for 𝑘 ≤ 𝑠 , we have

E
[
Opt(𝑚 + 𝑏, 1 + 𝑠)

���𝑋𝐵 = 𝑘

]
= 𝑘 + E [min(𝑋𝑆 , 𝑘)]

≤ 𝑠 + E [min(𝑋𝑆 , 𝑏)]

= 1.5𝑠 + 0.5 − 2
−(𝑠+1) ,
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where the last equality uses Claim A.1. We also have that

E
[
Opt(𝑚 + 𝑏, 1 + 𝑠)

���𝑋𝐵 ≥ 1 + 𝑠
]
= 1.5(1 + 𝑠) .

Thus, we have

E [Opt(𝑚 + 𝑏, 1 + 𝑠)]

= E
[
Opt(𝑚 + 𝑏, 1 + 𝑠)

���𝑋𝐵 ≤ 𝑠

]
Pr [𝑋𝐵 ≤ 𝑠]

+ E
[
Opt(𝑚 + 𝑏, 1 + 𝑠)

���𝑋𝐵 ≥ 1 + 𝑠
]
Pr [𝑋𝐵 ≥ 1 + 𝑠]

≤
(
1.5(𝑠 + 1) − 1 − 2

−(𝑠+1)
)
· Pr [𝑋𝐵 ≤ 𝑠]

+ 1.5(𝑠 + 1) · (1 − Pr [𝑋𝐵 ≤ 𝑠])

= 1.5(𝑠 + 1) −
(
1 + 2

−(𝑠+1)
)
· Pr [𝑋𝐵 ≤ 𝑠]

≤ 1.5(𝑠 + 1) − Pr [𝑋𝐵 ≤ 𝑠] .
Thus, the per-unit GFT satisfies

E [Opt(𝑚 + 𝑏, 1 + 𝑠)]
1 + 𝑠 ≤ 1.5 − Pr [𝑋𝐵 ≤ 𝑠]

1 + 𝑠 . (A.2)

Comparing Eq. (A.1) and comparing Eq. (A.2), we have that a suffi-

cient condition for the per-unit GFT with𝑚 buyers and 1 seller to

be strictly larger than the per-unit GFT with𝑚 +𝑏 buyers and 1 + 𝑠
sellers is if 2

−𝑚 <
Pr[𝑋𝐵 ≤𝑠 ]

1+𝑠 . Note that we have

Pr [𝑋𝐵 ≤ 𝑠] ≥ Pr [𝑋𝐵 = 𝑠] =
(
𝑚 + 𝑏
𝑠

)
2
−(𝑚+𝑏)

≥
(
𝑚 + 𝑏
𝑠

)𝑠
2
−(𝑚+𝑏) >

(𝑚
𝑠

)𝑠
2
−(𝑚+𝑏) .

Thus, a sufficient condition for the above inequality to hold is

2
−𝑚 < 1

𝑠+1
(
𝑚
𝑠

)𝑠
2
−(𝑚+𝑏)

, which, after rearranging, is equivalent

to 2
𝑏 < 1

𝑠+1
(
𝑚
𝑠

)𝑠
. We conclude that 𝑏 ≥ 𝑠 log

2
(𝑚/𝑠) − log

2
(𝑠 + 1)

is necessary for the per-unit GFT in the augmented market to be

at least the per-unit GFT in the original market. Note that this

last bound implies that Ω(log𝑚) additional agents are required

for the per-unit GFT in the augmented market to be at least the

per-unit GFT in the original market. If 𝑠 = 1 then we require

𝑏 ≥ Ω(log𝑚). and if 2 ≤ 𝑠 ≤
√
𝑚 − 1 then the inequality requires

𝑏 ≥ 𝑠 log
2
(
√
𝑚) − log

2
(
√
𝑚) = 𝑠−1

2
log

2
𝑚.

ClaimA.1. Let 𝑠 ≥ 1 be an integer. Suppose that the random variable
𝑋 ∼ Binom(0.5, 𝑠 + 1). Then E [min(𝑋, 𝑠)] = 0.5(𝑠 + 1) − 2

−(𝑠+1) .

Proof. Note that we can write

E [min(𝑋, 𝑠)] = E [min(𝑋, 𝑠 + 1)] − Pr [𝑋 = 𝑠 + 1]

= 0.5(𝑠 + 1) − 2
−(𝑠+1) ,

where in the second equality, we used that min(𝑋, 𝑠 + 1) = 𝑋 and

E [𝑋 ] = 0.5(𝑠 + 1). □

B MISSING PROOFS FROM SECTION 3
We prove Theorem 1.1 in this section. We first provide some no-

tations used throughout this section. Let 𝑖𝜋
1

≤ . . . ≤ 𝑖𝜋𝑚+𝑐 be the

indices of all buyers, in an decreasing order of their quantiles and

thus their values. Let 𝑗𝜋
1
≥ . . . ≥ 𝑗𝜋𝑚+𝑐 be the indices of all sellers (in

an increasing order of their quantiles and thus their values). Simi-

larly, let 𝑖O
1
≤ . . . ≤ 𝑖O𝑚 be the indices of all old buyers, 𝑖N

1
≤ . . . ≤ 𝑖N𝑐

be the indices of all new buyers. Let let 𝑗N
1
≥ . . . ≥ 𝑗O𝑛 be the indices

of all old sellers, 𝑗N
1
≥ . . . ≥ 𝑗N𝑐 be the indices of all new sellers.

B.1 Proof of Lemma 3.3
Claim B.1. In the original first-best matching, every original buyer
in 𝐼1 ∪ 𝐼2 is matched and every original seller in 𝐽1 ∪ 𝐽2 is matched.
Similarly, in the augmented first-best matching, every buyer in 𝐼1 ∪ 𝐼2
is matched and every seller in 𝐽1 ∪ 𝐽2 is matched.

Proof. For the first statement, we prove only that every original

buyer in 𝐼1 ∪ 𝐼2 is matched. The proof for the sellers is analogous.

Let 𝑘 = | (𝐼1 ∪ 𝐼2) ∩ 𝐵𝜋
Old

| be the number of original buyers in

𝐼1 ∪ 𝐼2. Note that 𝑘 ≤ 2 · ⌈𝑛/10⌉. We prove that there are at least 𝑘

original sellers outside of 𝐼1 ∪ 𝐼2, i.e. |𝑆𝜋
Old

∩ ([𝑁 ] \ (𝐼1 ∪ 𝐼2)) | ≥ 𝑘 .

Indeed, we have

|𝑆𝜋
Old

∩ ([𝑁 ] \ (𝐼1 ∪ 𝐼2)) | = |𝑆𝜋
Old

∩ [𝑁 ] |︸          ︷︷          ︸
=𝑛

−|𝑆𝜋
Old

∩ (𝐼1 ∪ 𝐼2) |

≥ 𝑛 − 2

⌈ 𝑛
10

⌉
≥ 8𝑛

10

− 2 ≥ 2𝑛

10

+ 2 ≥ 2

⌈ 𝑛
10

⌉
≥ 𝑘,

where in the third inequality we use 𝑛 ≥ 20. Recall that 𝑖O
𝑘
is the

index of the 𝑘-th highest original buyer and 𝑗O
𝑘
is the index of the 𝑘-

th lowest original seller. The above argument immediately implies

that 𝑞(𝑖O
𝑘
) ≥ 𝑞( 𝑗O

𝑘
) and thus 𝑏 (𝑞(𝑖O

𝑘
)) ≥ 𝑠 (𝑞( 𝑗O

𝑘
)) since 𝐹𝐵 FSD 𝐹𝑆 .

Thus there are at least 𝑘 trades in the original first-best matching,

which implies that every original buyer in 𝐼1 ∪ 𝐼2 is matched.

The second statement follows from a similar argument. Let 𝑘 =

| (𝐼1 ∪ 𝐼2) ∩ (𝐵𝜋
Old

∪𝐵𝜋
New

) | be the number of buyers in 𝐼1 ∪ 𝐼2. Note

that 𝑘 ≤ 2 · ⌈𝑛/10⌉. We prove that there are at least 𝑘 sellers outside

of 𝐼1 ∪ 𝐼2, i.e. | (𝑆𝜋
Old

∪ 𝑆𝜋
New

) ∩ ([𝑁 ] \ (𝐼1 ∪ 𝐼2)) | ≥ 𝑘 . Indeed, we

have

| (𝑆𝜋
Old

∪ 𝑆𝜋
New

) ∩ ([𝑁 ] \ (𝐼1 ∪ 𝐼2)) |
= | (𝑆𝜋

Old
∪ 𝑆𝜋

New
) ∩ [𝑁 ] |︸                        ︷︷                        ︸

=𝑛+𝑐

−|(𝑆𝜋
Old

∪ 𝑆𝜋
New

) ∩ (𝐼1 ∪ 𝐼2) |

≥ 𝑛 + 𝑐 − 2

⌈ 𝑛
10

⌉
≥ 8𝑛

10

+ 𝑐 − 2 ≥ 2𝑛

10

+ 2 ≥ 2

⌈ 𝑛
10

⌉
≥ 𝑘,

where in the third inequality we use 𝑛 ≥ 20. Since 𝐹𝐵 FSD 𝐹𝑆 , every

buyer in 𝐼1∪𝐼2 has value no less than the cost of every seller outside
of 𝐼1 ∪ 𝐼2. Thus there are at least 𝑘 trades in the augment first-best

matching, which implies that every buyer in 𝐼1 ∪ 𝐼2 is matched. □

Proof of Lemma 3.3. Let 𝜋 be any assignment in event E1. Let

𝑇 be the number of trades in the original first-best matching. We

prove in the following claim that there are at least 𝑇 + 2 trades in

the augmented first-best matching. An immediate consequence of

this is that STR must have at least 𝑇 + 1 trades.

Claim B.2. Recall that 𝑖N
2
is the index of the second-highest new

buyer and 𝑗N
2

is the index of the second-lowest new seller. Then
𝑏 (𝑞(𝑖N

2
)) ≥ 𝑏 (𝑞(𝑖𝑇+2)) ≥ 𝑠 (𝑞( 𝑗𝑇+2)) ≥ 𝑠 (𝑞( 𝑗N

2
)). Thus there are

at least 𝑇 + 2 trades in the augmented first-best matching.

Proof. Let 𝑖 ′ ∈ 𝐼2∩𝐵Old be the index of any original buyer in 𝐼2
(by definition of E1 there is at least one). By Claim B.1, 𝑖 ′ is matched

in the original first-best matching and thus 𝑞(𝑖 ′) ≥ 𝑞(𝑖O
𝑇
). By the

property of E1 that |𝐼1∩𝐵New | ≥ 2, we have 𝑞(𝑖N
2
) ≥ 𝑞(𝑖 ′) ≥ 𝑞(𝑖O

𝑇
)

since 𝑖N
2
∈ 𝐼1 while 𝑖

′ ∈ 𝐼2. Therefore, 𝑞(𝑖N
2
) ≥ 𝑞(𝑖𝑇+2) ≥ 𝑞(𝑖O

𝑇
) as
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both the highest and second-highest new buyer have quantile no

less than 𝑞(𝑖O
𝑇
). A similar argument shows that 𝑞( 𝑗N

2
) ≤ 𝑞( 𝑗𝑇+2) ≤

𝑞( 𝑗O
𝑇
). We conclude that 𝑏 (𝑞(𝑖N

2
)) ≥ 𝑏 (𝑞(𝑖𝑇+2)) ≥ 𝑏 (𝑞(𝑖O

𝑇
)) ≥

𝑠 (𝑞( 𝑗O
𝑇
)) ≥ 𝑠 (𝑞( 𝑗𝑇+2)) ≥ 𝑠 (𝑞( 𝑗N

2
)). The third inequality is because

there are 𝑇 trades in the original first-best matching. □

Claim B.2 shows that STR trades the 𝑇 + 1 highest buyers and

the𝑇 + 1 lowest sellers (it may trade more). Therefore, Str(q, 𝜋) ≥∑𝑇+1
𝑡=1 [𝑏 (𝑞(𝑖𝑡 )) − 𝑠 (𝑞( 𝑗𝑡 ))]. On the other hand, OPT trades the 𝑇

highest original buyers with the 𝑇 lowest original sellers and thus,

Opt(q, 𝜋) = ∑𝑇
𝑡=1 [𝑏 (𝑞(𝑖O𝑡 )) − 𝑠 (𝑞( 𝑗O𝑡 ))].

We claim that

∑𝑇+1
𝑡=1 𝑏 (𝑞(𝑖𝑡 )) −

∑𝑇
𝑡=1 𝑏 (𝑞(𝑖O𝑡 )) ≥ 𝑏 (𝑞(𝑖N

1
)). This

is because by Claim B.2, buyers 𝑖N
1
and 𝑖N

2
are among the top 𝑇 + 2

highest-value buyers. So 𝑖N
1

must be in the top 𝑇 + 1 highest-

value buyers, which is contributed in the first term. Note that

{𝑖1, . . . , 𝑖𝑇+1} \ {𝑖N
1
} correspond to the 𝑇 highest value buyers ex-

cluding 𝑖N
1
and {𝑖O

1
. . . , 𝑖O

𝑇
} correspond to the top 𝑇 highest value

original buyers. Thus, we conclude that
∑𝑇+1
𝑡=1 𝑏 (𝑞(𝑖𝑡 )) −𝑏 (𝑞(𝑖N1 )) ≥∑𝑇

𝑡=1 𝑏 (𝑞(𝑖O𝑡 )). By a similar argument, we have

∑𝑇+1
𝑡=1 𝑠 (𝑞( 𝑗𝑡 )) −∑𝑇

𝑡=1 𝑠 (𝑞( 𝑗O𝑡 )) ≤ 𝑠 (𝑞( 𝑗N
1
)). Thus

Str(q, 𝜋) − Opt(q, 𝜋) ≥ 𝑏 (𝑞(𝑖N
1
)) − 𝑠 (𝑞( 𝑗N

1
)) ≥ 0

It remains to lower bound the expected difference between

Str(q, 𝜋) and Opt(q, 𝜋) conditioned on the event E1. From the

above inequality, Str(q, 𝜋) − Opt(q, 𝜋) is lower bounded by the

value of the highest new buyer subtracting the cost of the lowest

new seller. We need the following definition.

Definition B.3. For any event E over an assignment 𝜋 , E is swap-
pable in a set 𝑆 if: For every 𝜋 ∈ E, the assignment 𝜋 ′ obtained by
swapping the label for any two indices in 𝑆 is also in E. In other
words, for every 𝜋 ∈ E and every 𝑖 ′, 𝑖 ′′ ∈ 𝑆 , if 𝜋 ′(𝑖 ′) = 𝜋 (𝑖 ′′),
𝜋 ′(𝑖 ′′) = 𝜋 (𝑖 ′), and 𝜋 ′(𝑖) = 𝜋 (𝑖) for 𝑖 ∉ {𝑖 ′, 𝑖 ′′} (clearly 𝜋 ′ is also a
valid assignment), then 𝜋 ′ ∈ E.
Lemma B.4. E1 is swappable in 𝐼1 and it is swappable in 𝐽1.

Proof. The lemma directly follows from the fact that swapping

the label for any two indices in 𝐼1 (or 𝐽1) will not change the value

of |𝐼1 ∩ 𝐵𝜋
New

|, |𝐼2 ∩ 𝐵𝜋
Old

|, |𝐽1 ∩ 𝑆𝜋
New

|, |𝐽2 ∩ 𝑆𝜋
Old

|. □

Consider the following process that generates a random assign-

ment 𝜋 from E1:

(1) Choose an index 𝑖 uniformly at random from 𝐼1 and assign

it to the “New Buyer” label. Choose an index 𝑗 uniformly at

random from 𝐽1 and assign it to the “New Seller” label.

(2) Denote Π𝑖, 𝑗 the set of valid assignments in set E1 such that

𝑖 is assigned to the “New Buyer” label and 𝑗 is assigned to

the “New Seller” label. Draw an assignment 𝜋 uniformly at

random from Π𝑖, 𝑗 and assign the indices accordingly.

By Lemma B.4, we have that |Π𝑖′, 𝑗 ′ | = |Π𝑖′′, 𝑗 ′′ | for any indices

𝑖 ′, 𝑖 ′′ ∈ 𝐼1, 𝑗
′, 𝑗 ′′ ∈ 𝐽1: For any assignment in Π𝑖′, 𝑗 ′ , we can swap the

label between indices 𝑖 ′, 𝑖 ′′ and swap between 𝑗, 𝑗 ′′. This generates
an assignment in Π𝑖′′, 𝑗 ′′ and vice versa. Moreover, for any valid

assignment 𝜋 , the number of “New Buyer” (or “New Seller”) labels

is 𝑐 . Hence, for every valid assignment 𝜋 , |{𝑖 ∈ 𝐼1, 𝑗 ∈ 𝐽1 : 𝜋 ∈
Π𝑖, 𝑗 }| = 𝑐2. Thus the above random process chooses the assignment

𝜋 uniformly at random from E1.

For any realization of the above process, the value of the highest

new buyer is at least 𝑏 (𝑞𝑖 ) and the cost of the lowest new seller is

at most 𝑠 (𝑞 𝑗 ). Thus the difference is at least 𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 ). Taking
expectation over the random process, we have

E𝜋 [Str(q, 𝜋) − Opt(q, 𝜋) |E1] ≥ E
𝑖, 𝑗

[
𝑏 (𝑞𝑖 ) − 𝑠 (𝑞 𝑗 )

]
where 𝑖 ∼ 𝐼1, 𝑗 ∼ 𝐽1 uniformly at random according to Step 1 of the

process. □

B.2 Proof of Lemma 3.4
Proof of Lemma 3.4. We know from Lemma 3.3 that on the

event E1, we have Str(q, 𝜋) ≥ Opt(q, 𝜋). Hence it suffices to show

the inequality on the event E ′ = {𝜋 ∈ Π𝑛,𝑚,𝑐 | 𝑆𝜋
New

∩ [2𝑛 + 2𝑐] ≠
𝑆𝜋
New

}. LetOpt′ be the first-best matching in the augmentedmarket.

For any 𝜋 ∈ E ′
, we consider two cases based on the number of

trades inOpt
′
compared withOpt. SupposeOpt has𝑇 trades. Note

that the number of trades in Opt
′
is least 𝑇 .

Case 1: Opt′ has at least 𝑇 + 1 trades. Now in Str the top 𝑇

(original and new) buyers and bottom 𝑇 (original and new) sellers

trade. The GFT from this is larger than the GFT from Opt which

trades the top 𝑇 original buyers and the bottom 𝑇 original sellers.

Case 2: Opt′ also has 𝑇 trades. Our goal is to show that Str has

the exact same 𝑇 trades as Opt
′
. Thus the GFT of Str is the same

as the GFT of Opt
′
, which is at least the GFT of Opt. By definition

of STR, it suffices to show that 𝑏 (𝑞(𝑖𝑇 )) ≥ 𝑠 (𝑞( 𝑗𝑇+1)), i.e. the 𝑇 -th
highest buyer value is least the (𝑇 + 1)-th lowest seller cost.

First, we claim that 𝑖𝑛+𝑐 ≤ 2𝑛 + 2𝑐 . Indeed, there are 𝑛 + 𝑐 sellers
in the augmented market. Thus, the (𝑛 + 𝑐)-th highest value buyer

must have index at most 2𝑛 + 2𝑐 .

Next, recall that 𝑗O
𝑇

is the index of the 𝑇 -th lowest value original
seller. We claim that 𝑗O

𝑇
≤ 2𝑛 + 2𝑐 . For the sake of contradiction,

suppose 𝑗O
𝑇

> 2𝑛+2𝑐 . Recall that 𝑗N
1
is the index of the lowest-value

new seller. Since 𝜋 ∈ E ′
, we have 𝑆New ∩ [2𝑛 + 2𝑐] ≠ 𝑆New and

thus, 𝑗N
1

> 2𝑛 + 2𝑐 . In particular, 𝑗𝑇+1 ≥ min{ 𝑗O
𝑇
, 𝑗N
1
} > 2𝑛 + 2𝑐 ≥

𝑖𝑛+𝑐 ≥ 𝑖𝑇+1. Thus 𝑞(𝑖𝑇+1) > 𝑞( 𝑗𝑇+1) and 𝑏 (𝑞(𝑖𝑇+1)) > 𝑠 (𝑞( 𝑗𝑇+1)).
This implies that Opt

′
has at least 𝑇 + 1 trades, a contradiction.

To finish the proof, we have 𝑏 (𝑞(𝑖𝑇 )) ≥ 𝑏 (𝑞(𝑖O
𝑇
)) ≥ 𝑠 (𝑞( 𝑗O

𝑇
)) ≥

𝑠 (𝑞( 𝑗𝑇+1)) . The first inequality uses 𝑖𝑇 ≤ 𝑖O
𝑇
. The second inequality

follows from the fact thatOpt has𝑇 trades. The last inequality holds

because 𝑗O
𝑇

≤ 2𝑛 + 2𝑐 < 𝑗N
1
and thus, 𝑗𝑇+1 ≥ min{ 𝑗O

𝑇
, 𝑗N
1
} = 𝑗O

𝑇
. We

conclude that Str has the same 𝑇 trades as Opt
′
. □

B.3 Proof of Lemma 3.5
Proof of Lemma 3.5. For every (q, 𝜋), letOpt′(q, 𝜋) be theGFT

of the first-best matching in the augmented market. We clearly

have Opt(q, 𝜋) ≤ Opt
′(q, 𝜋). For each (q, 𝜋), we let 𝑏∗ (q, 𝜋)

(resp. 𝑠∗ (q, 𝜋)) denote the lowest value among buyers (resp. the

largest value among sellers) traded in the augmented first-best

matching. Let F be the event that there is no trade in the augmented

first-best matching and define 𝑏∗ (q, 𝜋) = 0 and 𝑠∗ (q, 𝜋) = 0 if there

is no trade. Then by definition of the Str mechanism,

Opt(q, 𝜋) − Str(q, 𝜋) ≤ Opt
′(q, 𝜋) − Str(q, 𝜋)

≤ (𝑏∗ (q, 𝜋) − 𝑠∗ (q, 𝜋))·1 [𝜋 ∈ F ] .
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We will show that

E
[
𝑏∗ (q, 𝜋)1 [𝜋 ∈ F ]

���E2

]
≤ E

𝑖
[𝑏 (𝑞(𝑖))]

where 𝑖 ∼ 𝐼1 uniformly at random. A similar argument shows that

E
[
𝑠∗ (q, 𝜋)1 [𝜋 ∈ F ]

���E2

]
≥ E

𝑗
[𝑠 (𝑞( 𝑗))]

where 𝑗 ∼ 𝐽1 uniformly at random. To do so, we consider three

cases: (i) where at least one new buyer is in 𝐼1, (ii) where no new

buyers are in 𝐼1 but at least one original buyer is in 𝐼1, and (iii)

where no buyers (original or new) are in 𝐼1. In each of these cases,

we prove that E𝑖 [𝑏 (𝑞(𝑖))] is an upper bound on the value of lowest

value traded buyer in the augmented market, in expectation.

Case 1: |𝐼1 ∩𝐵𝜋
New

| ≥ 1. Let E ′
be the event that |𝐼1 ∩𝐵𝜋

New
| ≥ 1,

i.e. at least one new buyer is in 𝐼1. The following lemma is similar

to Lemma B.4 and follows from the definition of E ′
and E2.

LemmaB.5. E ′∩E2 is swappable (see Definition B.3) in 𝐼1. Moreover,
it is swappable in 𝐽1.

Proof. Let 𝜋 be any assignment in E ′ ∩ E2 = E ′ ∩ ¬E1 ∩ {𝜋 ∈
Π𝑛,𝑚,𝑐 | 𝑆𝜋

New
⊆ [2𝑛 + 2𝑐]} and 𝜋 ′

be the assignment obtained

by swapping any two labels in 𝐼1 (or 𝐽1). We notice that swapping

the label for any two indices in 𝐼1 (or 𝐽1) will not change the value

of |𝐼1 ∩ 𝐵𝜋
New

|, |𝐼2 ∩ 𝐵𝜋
Old

|, |𝐽1 ∩ 𝑆𝜋
New

|, |𝐽2 ∩ 𝑆𝜋
Old

|. Thus the new
assignment 𝜋 ′

is also in E ′ ∩ ¬E1. Moreover, since 𝐼1 ⊆ [2𝑛 + 2𝑐],
𝑆𝜋
New

⊆ [2𝑛 + 2𝑐] implies that 𝑆𝜋
′

New
⊆ [2𝑛 + 2𝑐]. Thus 𝜋 ∈ {𝜋 ∈

Π𝑛,𝑚,𝑐 | 𝑆𝜋
New

⊆ [2𝑛 + 2𝑐]}. □

Consider the following random process of choosing an assign-

ment 𝜋 :

(1) Choose an index 𝑖 uniformly at random from 𝐼1 and assign

it to the “New Buyer” label.

(2) Denote Π𝑖 the set of valid assignments in set E ′ ∩ E2 such

that 𝑖 is assigned to the “New Buyer” label. Draw an assign-

ment 𝜋 uniformly at random from Π𝑖 and assign the indices

accordingly.

By Lemma B.5, we have that |Π𝑖′ | = |Π𝑖′′ | for any indices 𝑖 ′, 𝑖 ′′ ∈
𝐼1: For any assignment in Π𝑖′ , we can swap the label for index 𝑖 ′

and index 𝑖 ′′ and generate an assignment in Π𝑖′′ and vice versa.

Moreover, for any valid assignment 𝜋 , the number of “New Buyer”

labels is 𝑐 . So 𝜋 is in 𝑐 different Π𝑖′s. Thus the above random process

chooses the assignment 𝜋 uniformly random from E ′ ∩ E2.

By Claim B.1, we note that for any realization of the above pro-

cess, the new buyer with index 𝑖 trades in the augmented first-best

matching and therefore 1 [𝜋 ∈ F ] = 1. Thus 𝑏∗ (q, 𝜋), the lowest
value among buyers traded in the augmented first-best matching, is

upper bounded by𝑏 (𝑞(𝑖)). Thus E𝜋 [𝑏∗ (q, 𝜋)1 [𝜋 ∈ F ] |E ′∩E2] ≤
E𝑖 [𝑏 (𝑞(𝑖))], where 𝑖 draws from 𝐼1 uniformly at random.

Case 2: |𝐼1 ∩ 𝐵𝜋
New

| = 0 and |𝐼1 ∩ 𝐵𝜋
Old

| ≥ 1. Next, let E ′′
be the

event such that no new buyer is in 𝐼1 and at least one old buyer is in

𝐼1, i.e. |𝐼1∩𝐵𝜋
Old

| ≥ 1 and |𝐼1∩𝐵𝜋
New

| = 0. One can easily verify that

E ′′ ∩ E2 is also swappable in 𝐼1. And using a similar argument (by

assigning index 𝑖 to the “Old Buyer” label in the random process),

we have E𝜋 [𝑏∗ (q, 𝜋)1 [𝜋 ∈ F ] |E ′′ ∩ E2] ≤ E𝑖 [𝑏 (𝑞(𝑖))], where 𝑖
draws from 𝐼1 uniformly at random.

Case 3: |𝐼1 ∩ 𝐵𝜋
New

| = 0 and |𝐼1 ∩ 𝐵𝜋
Old

| = 0. Finally, let E ′′′ =
¬(E ′ ∪ E ′′) be the event such that no buyer is in 𝐼1. Then for any

𝜋 ∈ E ′′′
, 𝑏∗ (q, 𝜋) · 1 [𝜋 ∈ F ] ≤ 𝑏 (𝑞(⌈𝑛/10⌉)) · 1 [𝜋 ∈ F ]. To see

this, note that if there is no trade (i.e. 𝜋 ∉ F ) then both sides are

equal to 0. On the other hand, if there is a trade (i.e. 𝜋 ∈ F ) then

all buyers have at most 𝑏 (𝑞(⌈𝑛/10⌉)) and thus, so does 𝑏∗ (q, 𝜋).
Thus E𝜋 [𝑏∗ (q, 𝜋) ·1 [𝜋 ∈ F ] |E ′′′∩E2] ≤ 𝑏 (𝑞(⌈𝑛/10⌉)) Pr [F ] ≤
E𝑖 [𝑏 (𝑞(𝑖))], where 𝑖 draws from 𝐼1 uniformly at random.

Summarizing the three inequalities above, we have that

E𝜋 [𝑏∗ (q, 𝜋)1 [𝜋 ∈ F ] |E2] ≤ E𝑖 [𝑏 (𝑞(𝑖))],
where 𝑖 draws from 𝐼1 uniformly at random. An analogous argu-

ment gives that E𝜋 [𝑠∗ (q, 𝜋)1 [𝜋 ∈ F ] |E2] ≥ E𝑗 [𝑠 (𝑞( 𝑗))], where
𝑗 draws from 𝐽1 uniformly at random. Therefore,

E𝜋 [Opt(q, 𝜋) − Str(q, 𝜋) |E2]
≤E𝜋 [(𝑏∗ (q, 𝜋) − 𝑠∗ (q, 𝜋)) · 1 [𝜋 ∈ F ] |E2]
≤ E
𝑖, 𝑗

[𝑏 (𝑞(𝑖)) − 𝑠 (𝑞( 𝑗))] ,

where 𝑖 ∼ 𝐼1, 𝑗 ∼ 𝐽1 uniformly at random. □

B.4 Trade Reduction versus STR
As mentioned in Section 3.2, our argument crucially makes use

the fact that we use STR instead of the classic Trade Reduction

mechanisms [25]. In particular, a key observation we use is that, if

(i) the optimal allocation in the augmented market, Opt
′
is not the

same as the optimal allocation in the original marketOpt and (ii) the

size of the optimal matching remains the same then Str and Opt
′

have the same GFT. This would not be true using McAfee’s Trade

Reduction mechanism [25]. As an instructive example, consider the

following scenario (we will assume the both sides have the same

distribution so that values and quantiles are consistent). We have

one original buyer with value 1, one original seller with value 0.9,

one new buyer with value 0, and one new seller with value 0.8. In

this example, the original first-best matching has size 1 and a GFT

of 0.1. Once we add in the new buyers and sellers, the first-best

matching remains at size 1 but the GFT is now 0.2. In STR, we use

the second-lowest value seller to price the buyers and sellers, if

possible. Here, this means a price of 0.9 is offered to buyer with

value 1 and the seller with value 0.8 resulting in a trade. On the

other hand, the Trade Reduction mechanism offers a price equal to

the average of the next unmatched buyer and seller. This means a

price of 0.45 is offered to the buyer and seller. The seller will not

accept this price so the match is reduced resulting in zero trades.

It is not too difficult to extend the above example that show

that E2 is not a necessary condition for OPT to outperform Trade

Reduction. Concretely, suppose we have 𝑛 original buyers with

value 2, 𝑛 − 1 original sellers with value 1, one original seller with

value 1+𝜀, and 2𝑐 original buyers with value 0.9 for a total of 2𝑛+2𝑐 .
Here, the first-best allocation trades the 𝑛 value-2 buyers with all

sellers, resulting in a GFT of 𝑛 + 𝜀. We then add 𝑐 new buyers with

value 0, 𝑐 − 1 new sellers with value 100, and one new seller with

value 0.8. In particular, E2 does not happen since one of the new

seller is outside the top 2𝑛 + 2𝑐 values (and thus quantiles) in the

augmented market. In the augmented first-best matching, the seller

with value 1 + 𝜀 would be removed from the matching and the new

seller with value 0.8 would be added to the matching. STR would

then offer a price of 1+𝜀 which is accepted by the buyers with value
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2 and the sellers with value at most 1. On the other hand, Trade

Reduction would offer a price of (0.9 + 1 + 𝜀)/2 < 1 if 𝜀 < 0.1. This

price is not accepted by those sellers with value 1. Thus in Trade

Reduction, 𝑛−1 buyers with value 2will trade with one (new) seller

with value 0.8 and 𝑛− 2 (old) sellers with value 1. The GFT of Trade

Reduction would be 2(𝑛 − 1) − (𝑛 − 2) − 0.8 = 𝑛 − 0.8 < 𝑛, which is

worse than the original first-best GFT.

B.5 Example Where New Agents Can Trade but
STR Loses a Trade

In this short section, we give an example where the new agents

can trade but STR is still worse than OPT in the augmented market.

Let 𝜀 > 0. There are 3 original buyers with values 𝑏O
1

= 3, 𝑏O
2

=

2 + 𝜀, 𝑏O
3
= 2 and 3 original sellers all with value 𝑠O

1
= 𝑠O

2
= 𝑠O

3
= 1.

The original optimal GFT is 4+𝜀. Now, suppose we add a new buyer

with value 𝑏N = 2 + 3𝜀 and a new seller with value 𝑠N = 2 + 2𝜀.

Note that 𝑏N and 𝑠N are eligible to trade with each other. The new

optimal matching matches 𝑏O
1
, 𝑏N, 𝑏O

2
with 𝑠O

1
, 𝑠O
2
, 𝑠O
3
. STR checks if

𝑠N is able to price the buyers and the sellers; in this case it has higher

value than 𝑏O
2
. Thus, STR removes 𝑏O

2
and 𝑠O

3
(say) and matches

only 𝑏O
1
, 𝑏N with 𝑠O

1
, 𝑠O
2
for a GFT of 3 + 3𝜀. This is strictly worse

than the original GFT if 𝜀 < 1/2. Note that a similar example could

be possible even if there are multiple trades among the new agents.

REFERENCES
[1] Moshe Babaioff, Yang Cai, Yannai A. Gonczarowski, and Mingfei Zhao. 2018. The

Best of Both Worlds: Asymptotically Efficient Mechanisms with a Guarantee

on the Expected Gains-From-Trade. In Proceedings of the 2018 ACM Conference
on Economics and Computation (EC ’18). Association for Computing Machinery,

New York, NY, USA, 373. https://doi.org/10.1145/3219166.3219203

[2] Moshe Babaioff, Kira Goldner, and Yannai A. Gonczarowski. 2020. Bulow-

klemperer-style results for welfare maximization in two-sided markets. In Pro-
ceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’20). Society for Industrial and Applied Mathematics, USA, 2452–2471.

https://dl.acm.org/doi/10.5555/3381089.3381239

[3] Hedyeh Beyhaghi and S Matthew Weinberg. 2019. Optimal (and benchmark-

optimal) competition complexity for additive buyers over independent items. In

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing.
686–696. https://dl.acm.org/doi/10.1145/3313276.3316405

[4] Liad Blumrosen and Shahar Dobzinski. 2021. (Almost) efficient mechanisms

for bilateral trading. Games and Economic Behavior 130 (2021), 369–383. https:

//www.sciencedirect.com/science/article/abs/pii/S0899825621001184

[5] Liad Blumrosen and Yehonatan Mizrahi. 2016. Approximating gains-from-trade

in bilateral trading. In Web and Internet Economics: 12th International Conference,
WINE 2016, Montreal, Canada, December 11-14, 2016, Proceedings 12. Springer,
400–413. https://dl.acm.org/doi/abs/10.1007/978-3-662-54110-4_28

[6] Johannes Brustle, Yang Cai, Fa Wu, and Mingfei Zhao. 2017. Approximating

gains from trade in two-sided markets via simple mechanisms. In Proceedings
of the 2017 ACM Conference on Economics and Computation. 589–590. https:

//dl.acm.org/doi/10.1145/3033274.3085148

[7] Jeremy I Bulow and Paul D Klemperer. 1994. Auctions vs. negotiations. https:

//www.jstor.org/stable/2118262

[8] Linda Cai and Raghuvansh R Saxena. 2021. 99% revenue with constant enhanced

competition. In Proceedings of the 22nd ACM Conference on Economics and Com-
putation. 224–241. https://dl.acm.org/doi/10.1145/3465456.3467647

[9] Yang Cai, Kira Goldner, StevenMa, andMingfei Zhao. 2021. Onmulti-dimensional

gains from trade maximization. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 1079–1098. https://dl.acm.org/doi/10.5555/

3458064.3458131

[10] Yang Cai and Jinzhao Wu. 2023. On the Optimal Fixed-Price Mechanism in

Bilateral Trade. (2023), 737–750. https://doi.org/10.1145/3564246.3585171

[11] Riccardo Colini-Baldeschi, Paul Goldberg, Bart de Keijzer, Stefano Leonardi,

and Stefano Turchetta. 2017. Fixed price approximability of the optimal gain

from trade. In International Conference on Web and Internet Economics. Springer,
146–160. https://dl.acm.org/doi/abs/10.1007/978-3-319-71924-5_11

[12] Riccardo Colini-Baldeschi, Paul W Goldberg, Bart de Keijzer, Stefano Leonardi,

Tim Roughgarden, and Stefano Turchetta. 2020. Approximately efficient two-

sided combinatorial auctions. ACM Transactions on Economics and Computation

(TEAC) 8, 1 (2020), 1–29. https://dl.acm.org/doi/10.1145/3381523

[13] Riccardo Colini-Baldeschi, Bart de Keijzer, Stefano Leonardi, and Stefano

Turchetta. 2016. Approximately efficient double auctions with strong budget

balance. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms. SIAM, 1424–1443. https://dl.acm.org/doi/10.5555/2884435.

2884533

[14] Yuan Deng, Jieming Mao, Balasubramanian Sivan, and Kangning Wang. 2022.

Approximately efficient bilateral trade. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing. 718–721. https://dl.acm.org/doi/10.

1145/3519935.3520054

[15] Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. 2009. Revenue

submodularity. In Proceedings of the 10th ACM conference on Electronic commerce.
243–252. https://dl.acm.org/doi/10.1145/1566374.1566409

[16] Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. 2014. Modularity

and greed in double auctions. In Proceedings of the fifteenth ACM conference on
Economics and computation. 241–258. https://dl.acm.org/doi/10.1145/2600057.

2602854

[17] Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S Matthew

Weinberg. 2017. The Competition Complexity of Auctions: A Bulow-Klemperer

Result for Multi-Dimensional Bidders. In Proceedings of the 2017 ACM Conference
on Economics and Computation. 343–343. https://dl.acm.org/doi/10.1145/3033274.

3085115

[18] Yumou Fei. 2022. Improved approximation to first-best gains-from-trade. In Web
and Internet Economics: 18th International Conference, WINE 2022, Troy, NY, USA,
December 12–15, 2022, Proceedings. Springer, 204–218. https://link.springer.com/

chapter/10.1007/978-3-031-22832-2_12

[19] Michal Feldman, Ophir Friedler, and Aviad Rubinstein. 2018. 99% revenue via

enhanced competition. In Proceedings of the 2018 ACM Conference on Economics
and Computation. 443–460. https://dl.acm.org/doi/10.1145/3219166.3219202

[20] Hu Fu, Christopher Liaw, and Sikander Randhawa. 2019. The Vickrey auction

with a single duplicate bidder approximates the optimal revenue. In Proceedings
of the 2019 ACM Conference on Economics and Computation. 419–420. https:

//dl.acm.org/doi/10.1145/3328526.3329597

[21] Jason DHartline and Tim Roughgarden. 2009. Simple versus optimal mechanisms.

In Proceedings of the 10th ACM conference on Electronic commerce. 225–234. https:

//dl.acm.org/doi/10.1145/1566374.1566407

[22] Zi Yang Kang, Francisco Pernice, and Jan Vondrák. 2022. Fixed-price approxima-

tions in bilateral trade. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 2964–2985. https://epubs.siam.org/doi/

pdf/10.1137/1.9781611977073.115

[23] Siqi Liu and Christos-Alexandros Psomas. 2018. On the competition complexity

of dynamic mechanism design. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2008–2025. https://dl.acm.org/

doi/10.5555/3174304.3175436

[24] Jieming Mao, Renato Paes Leme, and Kangning Wang. 2022. Interactive Com-

munication in Bilateral Trade. In 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Infor-

matik. https://drops.dagstuhl.de/storage/00lipics/lipics-vol215-itcs2022/LIPIcs.

ITCS.2022.105/LIPIcs.ITCS.2022.105.pdf

[25] R PrestonMcAfee. 1992. A dominant strategy double auction. Journal of Economic
Theory 56, 2 (1992), 434–450. https://www.sciencedirect.com/science/article/abs/

pii/002205319290091U

[26] Roger B Myerson. 1981. Optimal auction design. Mathematics of Operations
Research 6, 1 (1981), 58–73. https://www.jstor.org/stable/3689266

[27] Roger B Myerson and Mark A Satterthwaite. 1983. Efficient mechanisms for

bilateral trading. Journal of Economic Theory 29, 2 (1983), 265–281. https:

//www.sciencedirect.com/science/article/abs/pii/0022053183900480

[28] Tim Roughgarden, Inbal Talgam-Cohen, and Qiqi Yan. 2012. Supply-limiting

mechanisms. In Proceedings of the 13th ACM Conference on Electronic Commerce.
844–861. https://dl.acm.org/doi/10.1145/2229012.2229077

[29] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. 2018. Double

Auctions in Markets for Multiple Kinds of Goods. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Jérôme

Lang (Ed.). ijcai.org, 489–497. https://doi.org/10.24963/ijcai.2018/68

[30] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. 2018. MUDA: A

Truthful Multi-Unit Double-Auction Mechanism. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), Sheila A. McIlraith

and Kilian Q. Weinberger (Eds.). AAAI Press, 1193–1201. https://www.aaai.org/

ocs/index.php/AAAI/AAAI18/paper/view/16593

[31] Balasubramanian Sivan and Vasilis Syrgkanis. 2013. Vickrey auctions for irregular

distributions. In Web and Internet Economics: 9th International Conference, WINE
2013, Cambridge, MA, USA, December 11-14, 2013, Proceedings 9. Springer, 422–435.
https://dl.acm.org/doi/10.1007/978-3-642-45046-4_35

[32] William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed

tenders. The Journal of Finance 16, 1 (1961), 8–37. https://www.jstor.org/stable/

2977633

Received 11-NOV-2023; accepted 2024-02-11

212

https://doi.org/10.1145/3219166.3219203
https://dl.acm.org/doi/10.5555/3381089.3381239
https://dl.acm.org/doi/10.1145/3313276.3316405
https://www.sciencedirect.com/science/article/abs/pii/S0899825621001184
https://www.sciencedirect.com/science/article/abs/pii/S0899825621001184
https://dl.acm.org/doi/abs/10.1007/978-3-662-54110-4_28
https://dl.acm.org/doi/10.1145/3033274.3085148
https://dl.acm.org/doi/10.1145/3033274.3085148
https://www.jstor.org/stable/2118262
https://www.jstor.org/stable/2118262
https://dl.acm.org/doi/10.1145/3465456.3467647
https://dl.acm.org/doi/10.5555/3458064.3458131
https://dl.acm.org/doi/10.5555/3458064.3458131
https://doi.org/10.1145/3564246.3585171
https://dl.acm.org/doi/abs/10.1007/978-3-319-71924-5_11
https://dl.acm.org/doi/10.1145/3381523
https://dl.acm.org/doi/10.5555/2884435.2884533
https://dl.acm.org/doi/10.5555/2884435.2884533
https://dl.acm.org/doi/10.1145/3519935.3520054
https://dl.acm.org/doi/10.1145/3519935.3520054
https://dl.acm.org/doi/10.1145/1566374.1566409
https://dl.acm.org/doi/10.1145/2600057.2602854
https://dl.acm.org/doi/10.1145/2600057.2602854
https://dl.acm.org/doi/10.1145/3033274.3085115
https://dl.acm.org/doi/10.1145/3033274.3085115
https://link.springer.com/chapter/10.1007/978-3-031-22832-2_12
https://link.springer.com/chapter/10.1007/978-3-031-22832-2_12
https://dl.acm.org/doi/10.1145/3219166.3219202
https://dl.acm.org/doi/10.1145/3328526.3329597
https://dl.acm.org/doi/10.1145/3328526.3329597
https://dl.acm.org/doi/10.1145/1566374.1566407
https://dl.acm.org/doi/10.1145/1566374.1566407
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.115
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.115
https://dl.acm.org/doi/10.5555/3174304.3175436
https://dl.acm.org/doi/10.5555/3174304.3175436
https://drops.dagstuhl.de/storage/00lipics/lipics-vol215-itcs2022/LIPIcs.ITCS.2022.105/LIPIcs.ITCS.2022.105.pdf
https://drops.dagstuhl.de/storage/00lipics/lipics-vol215-itcs2022/LIPIcs.ITCS.2022.105/LIPIcs.ITCS.2022.105.pdf
https://www.sciencedirect.com/science/article/abs/pii/002205319290091U
https://www.sciencedirect.com/science/article/abs/pii/002205319290091U
https://www.jstor.org/stable/3689266
https://www.sciencedirect.com/science/article/abs/pii/0022053183900480
https://www.sciencedirect.com/science/article/abs/pii/0022053183900480
https://dl.acm.org/doi/10.1145/2229012.2229077
https://doi.org/10.24963/ijcai.2018/68
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16593
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16593
https://dl.acm.org/doi/10.1007/978-3-642-45046-4_35
https://www.jstor.org/stable/2977633
https://www.jstor.org/stable/2977633

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Additional Related Work

	2 Preliminaries
	3 Constant Agents Suffice to Beat First-Best when FB FSD FS
	3.1 Proof Techniques
	3.2 Construction of the Events

	4 Market Agnostic Recruitment
	5 Summary
	A Comparison with per-unit GFT
	B Missing Proofs from Section 3
	B.1 Proof of Lemma 3.3
	B.2 Proof of Lemma 3.4
	B.3 Proof of Lemma 3.5
	B.4 Trade Reduction versus STR
	B.5 Example Where New Agents Can Trade but STR Loses a Trade

	References

