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Abstract: Aim: In this study, we present the results of a project which used Landsat Collection
2 Surface Reflectance data and European Centre for Medium-Range Weather Forecasts (ECMWEF)
Reanalysis v5 (ERA5) data to develop a machine learning model to estimate Secchi depth in Lake
Yojoa, Honduras. Methods: Satellite remote sensing data obtained within a 7-day window of an iz
situ measurement were matched with iz situ Secchi depth measurements and were partitioned into
train-test-validate data sets for model development. Results: The machine learning model had good
(R?*= 0.57) agreement and reasonable uncertainty (MAE = 0.58 m) between remotely estimated and
in situ observed Secchi depth. Application of the machine learning model increased the monitoring
record of Lake Yojoa from 6 years of measured data to a 23-year record. Conclusions: This model
demonstrates the utility of coordinating 77 situ sampling schedules of short-term research projects with
satellite imagery acquisition schedules in order to increase the temporal coverage of remote sensing
derived estimates of water quality in understudied lakes.

Keywords: remote sensing; water clarity; water quality trends.

Resumo: Objetivo: Neste estudo, apresentamos os resultados de um projeto que utilizou dados de
refletAncia de superficie da Landsat Collection 2 e dados de reanilise v5 (ERA5) do Centro Europeu
de Previsoes Meteoroldgicas de Médio Prazo (ECMWF) para desenvolver um modelo de aprendizado
de mdquina para estimar a profundidade do disco de Secchi no Lago Yojoa, Honduras. Métodos:
Os dados de sensoriamento remoto por satélite, obtidos dentro de uma janela de 7 dias de uma
medicio 77 situ, foram combinados com medi¢oes iz situ da profundidade de Secchi e particionados
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em conjuntos de treinamento, teste e validagdo para o desenvolvimento do modelo. Resultados: O
modelo de aprendizado de mdquina apresentou boa concordancia (R? = 0,57) e incerteza razodvel
(MAE = 0,58 m) entre as estimativas remotas da profundidade de Secchi e as observagoes in situ.
A aplicagio do modelo de aprendizado de mdquina ampliou o registro de monitoramento do Lago
Yojoa, de 6 anos de dados medidos para um total de 23 anos. Conclusées: Este modelo demonstra
a utilidade de coordenar cronogramas de amostragem 7 situ de projetos de pesquisa de curto prazo
com cronogramas de aquisi¢io de imagens de satélite, aumentando assim a cobertura temporal de
estimativas derivadas de sensoriamento remoto da qualidade da 4gua em lagos pouco estudados.

Palavras-chave: sensoriamento remoto; transparéncia da dgua; tendéncias de qualidade da dgua.

1. Introduction

Remote sensing of water quality has great
potential for expanding our understanding of inland
waters (Topp et al., 2020). For lake ecosystems,
remote sensing provides an opportunity to have
spatially rich water quality predictions, avoiding
some bias from limited spatial coverage associated
with in situ data collection (Stanley et al., 2019;
Pahlevan et al., 2020). With reliable algorithms
that convert surface reflectance to water quality
estimates, remote sensing enables regional and
global change analyses at an unprecedented spatial
scale (Yangetal., 2022; Sillen et al., 2024). Remote
sensing can also improve the temporal coverage of
lake ecosystem research by adding estimates on
additional dates during 77 situ campaigns and by
providing estimates of historic conditions predating
contemporary monitoring efforts (i.c., hindcasting,
Hansen et al., 2020). Remotely sensed estimates of
in situ parameters also have the potential to fill in
large geospatial data gaps necessary for reducing
monitoring inequities and addressing challenges in
global data disparities.

While there are numerous advantages to
optical remote sensing, leveraging historical
datasets in locations with frequent cloud cover is
challenging since optical sensors do not penetrate
cloud cover. Still, in most regions, the rich spatial
and temporal coverage provided by remote
sensing has the potential to accurately capture
the hydrologic and ecological variation observed
in the field (Allen et al., 2020). This expansive
coverage of remotely sensed water quality allows for
explorations of both long-term trends and seasonal
changes in lakes (Topp et al., 2021). Identifying
such trends is particularly critical because changes
in intra-annual variance is an indicator of regime
shifts, ecological thresholds and transition points,
such as eutrophication (Carpenter & Brock, 2006;
Carpenter et al., 2011; Gilarranz et al., 2022).
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Remote sensing work across Latin America
demonstrates how using satellite imagery can
support data collection in data scarce tropical
regions (Melack et al., 2009; Flores-Anderson et al.,
2020; Lucia Lobo et al., 2021). Here, we present
the results from a project where we used remote
sensing and climate data to estimate Secchi depth
in Lake Yojoa, Honduras for Landsat 7 and 8
imagery. This work exemplifies how coordinating
discrete sampling campaigns (Fadum & Hall, 2022;
Fadum etal., 2023, 2024) with satellite acquisition
schedules provides an opportunity to create data
products which extend beyond the duration of
shorter studies. Below, we 1) briefly describe our
approach to creating Landsat-in situ matches and
our machine learning model approach, and 2)
highlight the model’s ability to add to the historical
record and capture ecologically relevant changes in
Secchi depth. Beyond the collection of remotely
sensed data and the development of ecosystem
monitoring tools like the described Secchi depth
model, the goal of this work is to encourage similar
limited-term research projects to consider sampling
in accordance with satellite image acquisition
schedules. In addition to enabling the creation
of ecosystem specific algorithms with improved
regional accuracy (as opposed to applying temperate
models to tropical ecosystems), this approach will
also support the more accurate assessments of
uncertainty for algorithms developed at a broader
regional or global scale.

2. Material and Methods

Lake Yojoa is a large (-83 km? surface area, ~30
m maximum depth) mesotrophic, tropical lake in
West-Central Honduras with a contemporary mean
annual Secchi depth of 3.1 m and well described
intra-annual dynamics (Fadum & Hall, 2022;
Fadum et al., 2024). We collected Secchi depth
measurements from 18 pelagic locations (twice
annual sampling of the 18 locations, identified as
A-Rin Fadum & Hall (2022) and sampling every 16
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days at a subset of five locations, identified as B, E,
E P and R in Fadum et al. (2023) concurrent with
the Landsat 7 and 8 imagery acquisition schedules
(Figure 1). To identify sampling dates, we used the
Landsat Acquisition tool (https://landsat.usgs.gov/
landsat_acq).

Landsat Collection 2 Surface Reflectance
(Masek et al., 2006; Vermote et al., 2016) values
were obtained for the 18 sampling locations in Lake
Yojoa following the methods described in Topp et al.
(2021). Minor adaptations were made for the
transition from Collection 1 (used in Topp et al.
(2021)) to Collection 2 to account for differences
in scaling factors between collections. Surface
reflectance summaries included only ‘confident
water pixels as defined by the dynamic surface
water extent algorithm (Jones, 2019). Data were
filtered for reasonable values for water reflectance
(-0.01 < surface reflectance < 0.2) for all bands.
Inter-mission handoff coefficients to standardize
surface reflectance values due to slight changes in
sensors specifications and atmospheric correction
methods between missions (Gardner et al., 2021)
were calculated based on data acquired from all
lakes greater than 25 hectares within Guatemala,
Honduras, and El Salvador using Python version
3.8 (Python Software Foundation, hteps://www.
python.org/). Precipitation, air temperature, solar
radiation, and wind speed at the approximate
geographical center of Lake Yojoa (14.8768°N,
87.9791°W, Figure 1) were obtained from the
ERAS5 dataset (Munoz Sabater, 2019) in the Google
Earth Engine Code Editor (Gorelick et al., 2017).
These data were aggregated for the previous 3, 5,
and 7 days of a satellite acquisition date for model
development and application (Kloiber etal., 2002).
For our model, a previous day and previous 5-day
window for pairing meteorological data to satellite
imagery yielded the best results. Windows for
pairing in situ Secchi depth measurements and
available satellite imagery were similarly assessed
and we determined that a 7-day matchup window
was appropriate, except in October and November
(when rapid water column turnover is expected).
For acquisition days in October and November,
only a 1-day window was permitted. While
alternative models with slightly different matchup
windows yielded moderately higher coefficients of
determination, the selected model performed bestat
higher Secchi depths, a point of focus for the region
(Fadum etal., 2023). All Landsat data were acquired
using the Google Earth Engine Python Application
Programming Interface (Gorelick et al., 2017) in
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RStudio version 2023.03.0, R version 4.2.3 (R Core
Team, 2023), ERA5 data were obtained within the
GEE Code Editor, and all data collation and model
development were completed in RStudio.

We used the R package xgboost (Chen et al.,
2023) to develop the best performing gradient
tree boost algorithm for this application. We used
a random 60%/20%/20% train-test-validation
split for model development, where the train and
test sets were provided for model development
and the validation was performed with hold-out
data to test performance independently of model
development (Figure 2). To select the optimal
xgboost hyperparameters, we used a grid search
method partitioning the top 20 performing models
as measured by lowest RMSE. From these models,
we selected the booster that had the lowest RMSE
and a train-test RMSE that was within 0.15 m to
avoid selecting an overfit model. If no models met
these conditions the one with the closest train-test
RMSE was selected as the optimal xgboost model.
We evaluated model performance based on root
mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE),
bias, and symmetric mean absolute percentage error

(SMAPE).

3. Results

Our results demonstrate that optical remote
sensing offers a viable tool for monitoring Secchi
depth in Lake Yojoa, Honduras. Our model (RMSE
= 0.78 m, MAE = 0.58 m, MAPE = 0.22, Bias =
-0.31 m, SMAPE = 0.19) produced comparable
estimates of Secchi depth in the validation (hold-
out) dataset (R?> = 0.57, inclusive all locations,
Figure 2) and we achieved a comparable RMSE to
other studies which used passive remote sensing to
estimate Secchi depth (R? = 0.89, RMSE = 0.77
m Alikas & Kratzer (2017), and R? = 0.97, RMSE
= 0.26 m Majozi et al. (2014)) though weaker
coeflicient of determination.

After creating a location-specific algorithm for
estimating Secchi depth from remote sensing in
situ pairs for Lake Yojoa, we created a timeseries
from the full remote sensing record using the same
algorithm (Figure 3). While early Landsat data
is limited due to a lack of international ground
receiving stations (U.S. Geological Survey, 2016;
Wulder et al., 2016), application of the model
increased the Secchi depth record from limited
observations in 2006 and 2018-2022 to a more
complete record from 2000-2022. While other
studies (e.g. Topp et al., 2021), use the full Landsat
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Figure 1. /n situ sampling points covering bi-annual sampling events (white circles) and bi-monthly sampling points
(red triangles). The asterisk (*) identifies the geographic center of Lake Yojoa used to obtain data from ERAS5. Exact

latitudes and longitudes available in Steele et al. (2023).
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Figure 2. Model performance as observed versus
predicted of hold-out data (randomly selected 20% of
dataset). Black line is the 1:1 line.

record, including Landsat 5, we explicitly chose not
to include predictions from either Landsat 5 or 9,
because we had no matchup data to robustly test
algorithm performance with these satellites. Early
record Secchi depth predictions are limited by
cloud-contaminated images despite a 16-day return
frequency for Landsat 7. The increased density of
modeled Secchi depth beginning in 2013 is due to
Landsat 8 deployment which runs co-currently with
Landsat 7, separated by 8 days resulting in a virtual
8-day return frequency. /z situ sampling in 2006
occurred every 3-10 days at the geographic center
of Lake Yojoa (Basterrechea, 2008) which differs
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from the sampling frequency beginning in 2018
which was bi-monthly. Additionally, sampling was
disrupted in 2020 due to the COVID-19 pandemic
resulting in fewer Secchi depth observations.

Our model captured ecologically meaningful
changes in Secchi depth, and subsequently trophic
state (Fadum & Hall, 2022), as exhibited by the
model’s ability to detect the documented increases
in water clarity following Hurricanes Eta and Iota
(Fadum etal., 2023) (Figure 3). These two large, late
season tropical cyclones brought an unprecedented
amount of precipitation to the Lake Yojoa watershed
in November 2020. The rapid introduction of
nutrient depleted water into Lake Yojoa in the
subsequent weeks produced a dilution effect which
decreased algal productivity and therefore increased
Secchi depth above the annual mean. It is possible
that the back-to-back timing of Hurricanes Stan and
Beta in 2005 were responsible for a similar dilution
effect as Hurricanes Eta and lota (Figure 3). Other
tropical cyclone events showed little or no effect on
the clarity of Lake Yojoa (e.g., Tropical Depression
Barry in 2013) and some tropical cyclone events had
too little data before/after to assess whether there was
any change (e.g., Tropical Depression 16, Tropical
Storm Ida). While we could not identify any other
distinct tropical cyclone impacts in Lake Yojoa, the
differing impact of back-to-back late season storms
compared with more isolated incidents of extreme
precipitation highlights the need to further explore
characteristics of tropical cyclones which maximally
impact ecosystem function in low-latitude lakes.
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annual variation, and stochastic climatic events such
as the impacts of tropical cyclones on understudied

tropical freshwater resources. Tropical storms can

1scussion

The approach we demonstrate here offers a

an asterisk in Figure 1) using remote sensing (squares) and 77 sizu observations (black circles). Large rainfall events
promising tool for understanding inter- and intra-

Figure 3. Complete synthetic timeseries of Secchi depth from estimations at center of Lake Yojoa (identified with
identified with vertical dashed lines and the name of the tropical cyclone(s).
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have devastating impacts on aquatic ecosystems and
by extension, water security. Assessing the response
of ecosystems to storms of varying intensities is of
critical importance to local communities impacted
by increasingly frequent and intense hurricane
activity in the Atlantic basin (Morris et al., 2002;
Bender et al., 2010; Knutson et al., 2010).

In addition to understanding ecosystem
disturbance response in Lake Yojoa, aligning routine
sampling with satellite image acquisition schedules
could increase our understanding of tropical lake
ecology more broadly. Future work could build
a larger macchup dataset including data not just
from Lake Yojoa but from other lakes within the
region to create a more generalizable model. The
presented work could then be collated with both
existing and new studies to create a rich collection
of remotely sensed data across Latin American
lakes within the region, expanding on efforts such
as AlgaeMAP which currently includes reservoirs
in and around Sao Paulo, Brazil (Lucia Lobo et al.,
2021). For example, Lakes Zirahuén (Mexico),
Atitldn (Guatemala) and Nicaragua have all been
the focus of previous remote sensing of trophic
state and water quality research (Chang etal., 2017;
Flores-Anderson et al., 2020; Pantoja et al., 2021).

While we would expect some lakes to carry
unique spectral signatures that may impact the
generalizability of a regional or continental model,
understanding the broad regional patterns will
help identify key aspects of the underlying ecology
of individual lakes to better separate the impacts
of global and local stressors. For example, Lake
Atitldn, which was assessed using the Hyperion
satellite (Flores-Anderson et al., 2020), may have
similar spectral characteristics as Lake Yojoa during
the stratified water column season (summer)
because Lyngbya robusta, a non-heterocyst forming
cyanobacteria, is a dominant lineage in the June
epilimnion in Lake Yojoa (Fadum et al., 2024) and
dominates summer algal blooms in Lake Atitlin
as well (Rejmdnkovd et al., 2011; Komdrek et al.,
2013). Collating in situ and spectral data products
for those two lakes over the past 20 years may allow
for an estimation of the broad impact of climate
that is separate from the regional impact of land use
(i.e., distinguishing between local/watershed drivers
and global/climatic drivers of ecosystem change).
To further generalize a model to estimate Secchi
depth throughout other lakes within the region
will require collaboration amongst disperse research
efforts in tropical lake ecosystems with varying
spectral signatures. However, continued remote
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sensing applications in tropical lakes may provide
novel insights into intra-annual ecosystem dynamics
and inter-annual trends and help to close the gap in
remotely sensed data between Brazilian reservoirs
and tropical inland waters at higher latitudes
(Watanabe etal., 2015; Watanabe et al., 2018, 2019;
Cairo et al., 2020; Pompéo et al., 2021).

We have demonstrated how remotely sensed
data can be used to expand the temporal coverage of
research efforts in understudied lakes, such as Lake
Yojoa. Moreover, this work exemplifies how monitoring
schedules that align with satellite acquisition days create
an additional opportunity to invest in data availability
beyond the duration of a single study through the value
of providing data to local communities, stakeholders,
and managers. This type of data production, sharing,
and accessibility made possible through remote sensing
is an important component of environmental justice
and may be particularly impactful when paired with
interactive platforms and data viewers (Weigand etal.,
2019; Sayyed et al., 2024). Possible outcomes of
increasing efforts to pair remote sensing data with
concurrent monitoring work in low-latitude lakes
include increased tropical research, increased access
to monitoring technologies, improved understanding
of the interactive and distinct impacts of local and
global change, reduction of barriers to data-driven
management practices, and increased environmental

justice through data availability.
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