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VERF': Runtime Monitoring of Pose Estimation
with Neural Radiance Fields

Dominic Maggio, Courtney Mario, Luca Carlone

Abstract—We present VERF, a collection of two methods
(VERF-PnP and VERF-Light) for providing runtime assurance
on the correctness of a camera pose estimate of a monocular
camera without relying on direct depth measurements. We
leverage the ability of NeRF (Neural Radiance Fields) to render
novel RGB perspectives of a scene. We only require as input the
camera image whose pose is being estimated, an estimate of the
camera pose we want to monitor, and a NeRF model containing
the scene pictured by the camera. We can then predict if the pose
estimate is within a desired distance from the ground truth and
justify our prediction with a level of confidence. VERF-Light
does this by rendering a viewpoint with NeRF at the estimated
pose and estimating its relative offset to the sensor image up
to scale. Since scene scale is unknown, the approach renders
another auxiliary image and reasons over the consistency of
the optical flows across the three images. VERF-PnP takes a
different approach by rendering a stereo pair of images with
NeRF and utilizing the Perspective-n-Point (PnP) algorithm. We
evaluate both methods on the LLFF dataset, on data from a
Unitree A1 quadruped robot, and on data collected from Blue
Origin’s sub-orbital New Shepard rocket to demonstrate the
effectiveness of the proposed pose monitoring method across a
range of scene scales. We also show monitoring can be completed
in under half a second on a 3090 GPU.

I. INTRODUCTION

Estimating the pose of a camera from a monocular image is
a fundamental problem in computer vision. However, limited
work has been done to independently monitor the accuracy
of the estimated pose and detect incorrect estimates without
having direct access to depth information of the scene. This
need is motivated by the growing use of monocular camera
localization in high-stakes scenarios such as self driving [1I,
spacecraft entry decent and landing [2]], [3], [4], and robotics
tasks [3]. For instance, the detection of repeatedly incorrect
estimates can be used to decide when to alert the user or
trigger mitigation measures (e.g., performing a safety landing
for a drone, or disengaging the autopilot of a self-driving car).

Recent works such as [6]], [7], [8], [9]], [10], [11] explore
the use of NeRF [12] (Neural Radiance Fields) for camera
pose estimation. NeRFs are fully connected networks trained
on sequences of RGB images to learn an implicit represen-
tation of a scene, from which the network can be used to
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Fig. 1. Three main phases of VERF-Light. First, the relative error of a
pose estimate up to scale is found by comparing a sensor image (collected
at the ground truth pose, xg¢,) to a NeRF image rendered at the pose
estimate, @cs¢. Next, a test pose, Xtest, is selected at an e distance from
the estimated pose such that all three poses are co-linear. Determining if the
pose estimate is correct is lastly done by estimating the order of the three
poses by comparing optical flow between the three corresponding images.

generate RGB images at novel viewpoints. As an example,
Loc-NeRF [8] uses NeRF as a map of an environment and
utilizes a particle filter backbone to output a pose estimate
of a provided sensor image. However, there is no clear and
reliable measure to determine if the outputted pose is correct
—where we define correct as being within a distance € of the
true pose— and existing approaches can fail without notice.

To overcome this limitation, we propose VERF, a col-
lection of two approaches coined VERF-PnP and VERF-
Light. VERF uses the sensor image already present in the
pose optimization phase to provide assurance that the pose
estimate is correct. We additionally require a NeRF model
of the scene, but NeRF does not need to be used to produce
the pose estimate being monitored, which allows VERF to be
used for pose monitoring regardless of the pose estimation
method. VERF-PnP renders a stereo pair of images with
NeRF, one of which is at the estimated pose and the other
at a given baseline, and uses the Perspective-n-Point (PnP)
solver with RANSAC to estimate the relative offset to
the sensor image. VERF-Light uses a different methodology
which can be stated concisely as follows. We first render
an image with NeRF at the estimated pose, x.s;, and use it
to determine the relative translation up to scale between the
estimated pose and the ground truth pose, 4. To overcome
scale ambiguity we render a test image at a pose x;.s; which
is at a distance € from the estimate pose in the direction of the



sensor image. If the camera origin of these three images are
co-linear with no rotation, then we show that we can compare
optical flow fields between the three images to determine the
order of the camera centers and hence the correctness of the
pose estimate (Fig. [T). To enable assurance in the presence
of noise, we incorporate an estimate of optical flow error and
add outlier rejection using geometric constraints to compute
a measure of confidence instead of a binary decision. We
remark that as the rotation error can be directly observed
between the sensor image and the image rendered at the
estimated pose, we only focus our attention on determining
the quality of the position estimate. We provide results on the
publicly available LLFF dataset [[14], on real data collected
by an Al quadruped, and on data collected onboard Blue
Origin’s sub-orbital New Shepard rocket at heights up to
8 km above the ground and at speeds over 800 km/hr.
The results showcase the potential of VERF to perform in
challenging real-world conditions. Our runtime monitoring
approach runs in less than half a second on a 3090 GPU.
The rest of the paper is organized as follows. Section
discusses related work. Section provides notation and
preliminary concepts. Our two approaches are presented in
Sections [V] and [V, Section evaluates the methods on
three types of experiments: LLFF, Al robot, and sub-orbital
rocket. Finally, Section |VII|concludes the paper. Extra results
and studies are included in the appendix (Section [VIII).

II. RELATED WORK

Neural Radiance Fields. NeRF was introduced by
Mildenhall et al. [[12] and represents a 3D scene with a neural
implicit encoding that can be used to render novel viewpoints
of the scene. Several extensions are beginning to leverage
NeRF for robotic tasks such as localization. Yen et al. [6]
develop iNeRF which inverted the NeRF paradigm by solving
for a pose given an image. Adamkiewicz et al. [7] develop
NeRF-Navigation which uses NeRF for a full autonomy
pipeline of localization, planning, and control. Zhu et al. [10]
propose LATITUDE to perform pose estimation with large-
scale scenes. Maggio et al. [8] develop Loc-NeRF which
uses a particle filter backbone and performs localization while
using NeRF as a map. Lin et al. [9] use parallelized Monte
Carlo Sampling to estimate camera poses. Rosinol ef al. [15]
develop NeRF-SLAM which builds a NeRF as images and
poses become available. Sucar et al. [16] proposes iMAP and
Zhu et al. [[1'7] develop NICE-SLAM which use depth from a
stereo camera along with RGB to create a neural implicit map
of room-size scenes. Alignment accuracy of NeRF is studied
and improved by Jiang el al. [18]]. Moreau et al. [19] develop
CROSSFIRE which uses PnP for localization with NeRF
by training self-supervised feature descriptors and rendering
depth directly from a neural renderer. Li et al. [20] develop
NeRF-Pose which uses PnP with NeRF for object pose
estimation by training a pose regression network to predict
2D-3D correspondences.

Visual Localization. Since VERF can monitor the ac-
curacy of a pose estimate independent of the estimation
method, we also include a brief mention of visual localization

methods outside the scope of NeRF. Classical methods for
robotic localization typically use either matching of sparse
keypoints [21]], [22]], [23] or a dense representation [24].
Visual terrain relative navigation is the problem of estimating
the pose of a camera given a terrain map (oftentimes built
with satellite or aerial imagery and elevation data) [25], [2],
[26], [4]. Absolute Pose Regressors [27] use Convolutional
Neural Networks to predict poses by learning the end-to-end
localization pipeline. We refer to Piasco et al. [28]] for a more
in-depth review of visual localization.

Certifiable Perception and Runtime Monitoring. Car-
lone and Dellaert [29] and Rosen et al. [30] develop op-
timality certification techniques for pose synchronization
problems. Yang et al. [31]], [32] develop certifiable algo-
rithms for outlier robust estimation. Garcia-Salguero et al.
[33], [34] certify the optimality of a relative pose estimate.
Zhao et al. [35] present a certifiably optimal approach to esti-
mate the generalized essential matrix. Here, we instead focus
on monitoring the correctness of the pose estimate, rather
than optimality of the estimation backend. Yang er al. [31]
and Carlone [36] develop estimation contracts which certify
the correctness of a geometric perception problem given
conditions are met on the inputs. Talak er al. [37]] extend
certification of correctness for learning-based object pose
estimation. Yang and Pavone [38] provide statistical bounds
on object pose estimation given a heatmap predictions of
object keypoints. Other works provide confidence metrics
to monitor the correctness of perception algorithms without
providing a certificate of correctness. Hu and Mordohai [39]
provide a survey on confidence metrics for stereo matching.
Rahman et al. [40] provide a survey on monitoring the
correctness of learning-based methods for robotic perception.
Antonante et al. [41] use a diagnostic graph to formalize
detecting and identifying faults in a perception system.

III. NOTATION AND PRELIMINARIES

Notation. We use lowercase symbols (e.g., €) to represent
scalars, bold lowercase letters (e.g., «) for vectors, and bold
uppercase letters (e.g., E) for matrices. Sets are represented
with capital calligraphic fonts (e.g., R). Unit vectors and
homogeneous vectors are denoted with a bar and tilde (e.g.,
x and ) respectively. Estimated quantities are shown with a
caret (e.g., &, E). We express the 2-norm of a vector as ||-||.

Let »; = (z,y) be a coordinate in an image I;. The
sensor image will be referred to as I, as it is taken by a
camera at the true pose. The estimated and test images will
be referenced as Ics; and Iyes. Let v(ry)r, 1, be the optical
flow vector at point r in some image ¢ to the corresponding
point in some image j such that r; +v(r;)r, 1, = ;. [a]x
is the skew-symmetric matrix such that a x b = [a]«b.

The Essential Matrix. Assuming points have been cali-
brated using the camera intrinsics, the essential matrix E; ;
relates corresponding homogeneous coordinates 7;, 7; in two
images with the following constraint:

(7)) B; ;7 = 0. (1)
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The matrix FE;; describes the relative pose transform
between two cameras defined with a rotation matrix R and
translation ¢ up to scale as:

E;; = Rlt]. 2

Decomposing E to recover t and R yields four solutions,
of which only one satisfies the cheiral inequalities [42]] which
in summary state that triangulated points must lie in front of
the two cameras. Since eq. does not restrict scale, E; ;
along with a point 7; constrains a corresponding point r; in
I; to a line known as the epipolar line.

Problem statement. Our objective is to determine if a
given position estimate x.,; is within some acceptable error
bound, ¢, from the true position & g:

Ha}est *mgtH< €. (3)

All we assume are available is the position estimate x.s:,
the sensor image I,;, and a NeRF model whose weights are
trained on a scene containing [g;.

IV. VERF-PNP

Here we present a simple yet effective method to estimate
the correctness of a pose estimate using NeRF. We leverage
NeRF to render a pair of stereo images to perform PnP.
We first render an image I, at the estimated pose ..
Since the true pose x4 is by definition the camera position
corresponding to I, the correctness constraint in eq. can
be satisfied by showing that the metric offset between x,; and
Test 1S less than e. Towards this goal, we render a second
image I jgn: at Trigne by translating 2e to the right with
respect to .s. The image pair I and I,;45: Whose poses
are both known can then be used as a classical stereo pair
of images. We compute the optical flow between these two
images using RAFT [43]] and use good features to track [44]
to get sparse optical flow from RAFT’s dense optical flow
field. Likewise, we find the correspondences between I
and I, for the same sparse points with RAFT. We then
triangulate the 3D location of the sparse points by knowing
Test and T4 and finally apply PnP with RANSAC [[13] to
estimate the transform ﬁc;? between x.s; and the unknown
x4¢. Our level of confidence in the accuracy of x.,; is then
estimated as follows:

P(||&57" ]| < €). 4

We model ||Z¢;"|| as a random variable whose mean value
is the estimated position from PnP and standard deviation is
manually selected. We will show in Section [VI]the effective-
ness of VERF-PnP despite its simplicity.

V. VERF-LIGHT

VERF-Light can be divided into three phases (Fig. [I):
computing the relative offset between x.,; and x4 up to
scale, selecting a test position a5 distance e from .
and co-linear with the latter two poses, and computing a
quality of assurance that eq. (3)) is met by using an application
of the cheiral constraint. In particular, we leverage the fact
that given three images from camera poses that are co-linear

and with the same rotation, their order along the line they
belong to can be determined by comparing the optical flow
fields between them. For this arrangement, the flow fields
between I, and I, will be in the same direction as the
flow field between I.s; and I;.s:, and the order of the three
poSitions T, Tq4¢, and Tyes; can be estimated by comparing
the magnitude of corresponding vectors between the two flow
fields. If x4 falls between x5 and X in such ordering,
we can conclude that the error of x4 is less than e.

Examples and intuition. Figure [2| shows four example
conditions that VERF-Light could potentially encounter. In
Fig. [2a] the flow field should provide confidence that the
estimated pose is correct. First, the two optical flow fields
have similar directions (and hence the same epipole) which
validates our assumption of Z.s, Ty, and T being co-
linear. Secondly, the magnitude of the optical flow between
I.s: and I;.4; (which have camera centers e apart) is signifi-
cantly greater than the corresponding flow between I.s; and
14+ meaning that x4 falls between x.,; and x5 and hence
the estimated pose is within e of the true pose. In Figure
the estimate can safely be labeled as incorrect as there is clear
evidence from the flow field that the flow between I.,; and
Iies: is less in magnitude than the flow field between I,
and Iy and again that the three perspectives are co-linear.
Figure [2¢ on the other hand does not allow drawing strong
conclusions. In this case there should be reduced confidence
in the correctness assessment as the flow field is roughly
the same and differences may be only the result of noise.
Figure [2d| should be determined to be an incorrect pose but
because of a different reason than Fig. 2b]— here a cue that
the pose is wrong is because no clear correspondences can
be found between I, and Ig;.

A. Computing Relative Error Direction of Position Estimate

We use NeRF along with ®.s; to render an image [
which is the image that the camera would see if its center
were at x.s;. We use RAFT to compute the dense optical
flow between I; and .., and use good features to track [44]
to extract a set R of n pixel coordinates r.s; to get sparse
optical flow between the two images.

We use the 5-point algorithm [45] with RANSAC to
determine the essential matrix E.g 4. RANSAC attempts to
search for a Eesmgt such that a maximum number of points
in R have sampson distance (a geometric constraint related
to eq. (1)) less than 4. In short, the sampson distance [46]]
is an approximation of error to the epipolar line for two
corresponding points. The unique solution to extracting the
relative position fcg;?t up to scale from Eeswt is found
using the cheiral constraints with maximum consensus. Any
points whose correspondence are not part of the maximum
consensus or whose sampson distance is larger than ¢ are
removed from the set of inliers R reducing the set of points
to 75t € R’ € R where n’ is the number of points currently
labeled as inliers.



(a) True position error is 1.9 cm.
The flow field should allow for con-
cluding that the pose estimate is
correct with high confidence. Order
of camera positions shown above.

(b) True position error is 10 cm.
The flow field should allow for
concluding that the pose estimate
is incorrect with high confidence.
Order of camera positions shown
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(c) True position error is 5.6 cm.
Pose can potentially be verified as
correct, but should be done with
low confidence.

(d) True position error is much
larger than € such that there are
no clear correspondences between
images.

above.

Fig. 2. Example of optical flow between I¢s¢, I4¢, and I¢est for pose estimates with a correctness condition of € = 5¢m. Top row: optical flow between

Icst and I4¢. Bottom row: optical flow between Iest and Iiest.

B. Computing Location of Test Position

We now calculate a test position, T;.s:, that is distance €
from x..¢ and co-linear with Iy and Ig:

Tiest = Test T G%;‘zt' (5)
The correctness condition in (3)) can now be stated as:
Hwest - wgtH< ||west - wtest”: € (6)

where the exact pose of s and s, are known and chosen
to be e apart. Note that since the positions are collinear by
construction, the condition ||Test — Tgi||< [|Test — Trest]]
is the same as requiring that these positions are ordered as
Test, Tgt, Tiest along the line they belong to. We render a
new image ly.5; at @45 using NeRFE.

C. Determining the Confidence Score

We again use RAFT to compute the dense optical flow,
this time between I.,; and I;.s; and get sparse optical flow
O(Pest) I, Ios; TOr coordinates r.q € R'.

We now consider several properties given our particular
choice of x;.s:. The first is that it is unnecessary to compute
E i tcst as we directly know it without error from the true
poses of x.s; and x;.5;. Furthermore, it is simply the same as
our estimate of Feg gt SINCE Test, Tye, and Tyeq are aligned
and co-linear. This is summarized in the following relation:

)

Determining whether eq. () is satisfied now reduces to
solving an image ordering problem for I, I, I;cs; outlined
visually in Fig. |1} If R’ contains only true, noiseless inliers,

Eest,gt = Eest,test .

the image ordering problem could now be solved using an
application of the cheiral constraint:

|Test — Tgi||< € <=

Vrest € R/, ||'U(rest)lest,1gt||< Hv(Test)Iest,Itest

®)

Equation (8) states that for noiseless optical flow fields, the
condition of correctness in (6) implies the optical flow vector
relating a point ., to its corresponding point in I ; should
be of less magnitude than the flow vector relating 7.5, to its
corresponding point in I;.s. The two corresponding vectors
are in the same direction since the three poses are co-linear
and hence the points 7y; and 7., corresponding to 7. are
bound to the same epipolar line.

However, in the presence of noise and false inliers, we
must consider the possibility that the epipolar constraint in
eq. is not exactly satisfied and hence R’ may contain
false inliers, the location of points rg; and 7. along the
epipolar line Eest,gt": I1.., are perturbed by noise, and that
EAest)gt differs from E.g 4. A primary source of error in
our proposed monitoring method is the calculation of optical
flow. Our estimate of the optical flow for any particular point
can be expressed as follows:

©))

where ||7;;||< ¢ and o;; is 0 if ©(r;);; is an inlier with
sampson distance less than §. Otherwise, in the case of an
outlier, 0;; is any arbitrary value such that ©(7;);; can exist
at any location in the image. By computing the sampson
distance of each O(Test)1,,, 1,0, WL EA'est,gt, we can filter
out points with error larger than §. Note this does not
check for error along the epipolar line. We additionally

0(r;)ij = v(ri)ij + 055 +vij



filter out points which are not part of the cheiral set of
maximum consensus. We again prune out any points whose
correspondences have been labeled as outliers from a set of
size n/ to a set of n”, ie., Ty € R” € R'. Lastly, we
project all of 7y, and 7. to the epipolar line defined
by Eest,gtﬁest yielding ;'gt and f*test such that pairs of
corresponding points satisfy eq. (I).

Computing the confidence score. Now we must estimate
the confidence, ¢, that the optical flow for corresponding
points between I ¢ to I;.4 is greater than the ones between
Iest to Igt’ Le., H’U(TGSt)Iest,Igt |< ||'U(T€St)fest,1test | USng
the optical flow vectors from 7.4 to the projected points }gt
and ;'test we define the following confidence score:

1 "

q= W ZIP(HII.)<T55t)IestaIgt ||< ||/i)(rest)lest7[test
=1

). (10)

Explicitly, the confidence score in is computed using
the Normal CDF with a user-specified variance V. Standard
deviation is set to a reasonable value of pixel error (e.g., 0.5).
As a results, we rewrite as:

" ~

q= 1 Z P U(TESt)Iest7Itest - v(r€5t)(r€$t)leshlgt
R -
" V[’i)(reSt)Iyt]

1D
where ® is the Normal CDF. The confidence score mimics a
probability, however due to simplifying assumptions such as
approximating optical flow uncertainty and potential errors
in computing the essential matrix, we do not claim it to be
a true probability.

VI. EXPERIMENTS

We now present results of running VERF-PnP and VERF-
Light on three types of environments ranging from small-
scale indoor scenes to a rocket trajectory spanning 8 km.
For all experiments, we use torch-ngp [47] as our NeRF
model. To get experimental sensor images we use randomly
selected images from the NeRF training set. For each image,
we generate a pose estimate to be checked for correctness
by adding a random offset to the corresponding ground-truth
position. To get a diverse distribution of correct and incorrect
poses, we randomly selected either a low or high error regime
when generating offsets.

In addition to comparing the two proposed methods, we
include a simple baseline method that we refer to as Disparity
Check. For this, we simply compute the optical flow between
I.ss and Iy and determine the mean disparity from sparse
flow. A naive approach is to assume low disparity means
a correct pose estimation whereas a high disparity points
to an incorrect pose. We use a folded normal distribution
which computes a confidence level of correctness given a
mean disparity. All experiments use a standard deviation of
4 pixels for the folded normal distribution. Since this method
makes no efforts to handle scale ambiguity, we will show that
it does not generalize well across varying scene size.

We pick a 0.5 cutoff confidence level for each method
to estimate if the pose is correct or not. To show the

generalizability of VERF, for all experiments we use the
same standard deviation in for VERF-Light (0.5 pixels)
and the same standard deviation for VERF-PnP in (4).
Likewise, the same RANSAC, RAFT, and good features to
track parameters are used for all experiments.

A. LLFF dataset

Setup. We first evaluate VERF on 4 scenes (Fern, Fortress,
Horns, and Room) from the LLFF dataset [14]. We pick 250
randomly selected views from the training set of images for
each scene to serve as the sensor image I, and for each
image randomly generate a choice for x.s;. We downscale
T4 to 504x378 and render the same resolution images when
using NeRF. For these 1000 tests, we set € to be 5 cm.

Results. In Fig. [3| we show the level of confidence VERF
computed that the position error is less than e compared to the
actual position error for each test. As expected, confidence
levels approach 1 as the position error is well less than e and
approach 0 when the position error is much greater than €. On
a 3090 GPU, total time to produce a confidence score from
VERF-Light is on average 0.4 seconds with 0.25 seconds of
that used for NeRF rendering, and is on average 0.35 seconds
for VERF-PnP with the same time used for rendering since
each method renders two NeRF images.

A summary of results is provided in Table[[. Similar perfor-
mance is observed by VERF-Light and VERF-PnP with most
misclassifications occurring for pose estimates with errors
near epsilon. Both methods outperform the Disparity Check
baseline by a vast margin.

1.0 ° Disparity Check
. VERF-Light
° o VERF-PnP
0.8 epsilon
. -=-- 0.5 cutoff

o
o

o
IS

Confidence Level 0-1 that pose error is < epsilon
o
N

o©
o

15 20 25 30
Position Error (cm)

Fig. 3. VERF confidence level that for 1000 randomly sampled position
estimates for LLFF scenes error is less than e = 5 cm

Disparity Check VERF-PnP | VERF-Light
True Positives (423) 146 415 381
True Negatives (577) 572 494 545
False Positives 5 83 32
False Negatives 277 8 42
Total Correct 72% 91% 93%

TABLE I. Summary of results for all proposed methods on 1000 tests on
LLFF dataset. Classification is made with a 0.5 confidence score cutoff.



B. Al Quadruped

Setup. We train a NeRF (Fig. 4) using RGB images col-
lected with a Realsense D455 camera mounted on a Unitree
Al quadruped robot (Fig. ). The robot transverses around
a table at varying distances to the table in a motion capture
room. Training images and sensor images are downscaled to
640 x 360. Ground-truth poses are estimated with COLMAP
[48]]. To correct from the ambiguous scale from COLMAP,
we use vicon odometry to add metric scale to the poses. We
again randomly select 1000 images with replacement from
the dataset as sensor images and generate a random pose
estimate for each image to be verified.

— - -

Fig. 4. Al quadruped robot collecting monocular RGB data for NeRF
training and VERF evaluation (top left). Three example NeRF-rendered
views using weights trained by camera data collected onboard an Al robot.

Results. We pick epsilon to be 5 cm and observe similar
results as with the LLFF experiment with nearly all VERF
mistakes occurring for position errors near the value of
epsilon. Results are summarized in Table |lI] and shown
visually in Fig. 5] The Disparity Check baseline is shown
to generalize poorly for different scale scenes as most of its
errors are false negatives for the LLFF experiment whereas
most of its errors are false positives for the Al experiment.

Disparity Check | VERF-PnP | VERF-Light
True Positives (421) 304 418 411
True Negatives (579) 513 561 551
False Positives 66 18 28
False Negatives 117 3 10
Total Correct 82% 98% 96 %
TABLE II. Summary of results for all proposed methods on 1000 tests of

Al robot dataset. Classification is made with a 0.5 confidence score cutoff.

C. Sub-Orbital Rocket

Setup. Here we demonstrate the potential for VERF to
be used in a highly complex scenario such as for precision
spacecraft navigation. This experiment uses data we collected
for [4] in which we mounted two cameras inside the capsule
of Blue Origin’s New Shepard rocket which point out the
capsule windows towards the terrain (Fig. [6).

We train on 140 images collected during the rocket’s ascent
from an altitude range of approximately 0.2 to 8 km above

1.0 Disparity Check
o VERF-Light
« VERF-PnP
0.8 epsilon
--- 0.5 cutoff

o
o

o
»

o
N

o
S)

Confidence Level 0-1 that pose error is < epsilon

15 20 25 30
Position Error (cm)

Fig. 5. VEREF confidence level that for 1000 randomly sampled position
estimates of the Al’s pose, error is less than € = 5 cm

ground level during which the rocket reaches a speed up to
880 km/hr. We do not include data at higher altitudes as there
was a mishap during flight NS-23 which triggered the capsule
escape system. The curious reader can refer to [4] for more
details of our flight data collection.

For simplicity, we train on images collected during the
flight and use estimated poses from COLMAP as ground
truth. In practice, a NeRF could be trained from prior
satellite maps as was done in [49]. Again, similar to the
Al experiment, VERF is run on a scaled NeRF model and
we provide metric scale to the COLMAP reconstruction from
ground truth poses of the training images — in this case from
GPS inside the rocket’s capsule.

Fig. 6. Sub-orbital rocket on launch pad used for data collection (left).
Close view of camera mounted inside the capsule window (bottom right)
and a view of both cameras inside the capsule before launch (top right).
Images courtesy of Blue Origin.

Results. We pick 40 m for epsilon since this is on the
order of typical spacecraft landing accuracy for planetary
exploration [2]. A summary of results is shown in Table [[II|
and visually in Fig. [§] VERF-PnP performs notably better
than VERF-Light on this dataset which we believe to be
caused by inaccuracies in the essential matrix estimation due
to the scene being approximately planar at high altitudes.



Fig. 7. Example of four NeRF rendered views from sub-orbital rocket
ascent from an altitude range of approximately 1 km to 8 km.

Section [VIIT provides a study on the effects of error in the
essential matrix on VERF-Light.

°© epsilon
o --- 0.5 cutoff
o Disparity Check
° o VERF-Light
e VERF-PnP

PPN | &

Confidence Level 0-1 that pose error is < epsilon

0 50

100 150
Position Error (m)

200

Fig. 8. VEREF confidence level that for 1000 randomly sampled position
estimates of the rocket’s pose, error is less than € = 40 m

Disparity Check | VERF-PnP | VERF-Light
True Positives (260) 38 259 214
True Negatives (740) 738 710 640
False Positives 2 30 100
False Negatives 222 1 46
Total Correct 78% 97 % 85%

to correct after 4 km) while VERF-PnP and VERF-Light
perform consistently throughout the rocket’s accent.

0.8

0.6

Confidence Level 0-1 that pose error is < epsilon

0.4
-=-- 0.5 cutoff
0.2 Disparity Check
« VERF-Light
00 o VERF-PnP
1000 2000 3000 4000 5000 6000 7000 8000
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Fig. 9. VEREF confidence level vs altitude for rocket dataset with fixed 15
m of position error. Epsilon is selected as 40 m. Disparity Check is shown to
not generalize with varying scene scale while VERF-PnP and VERF-Light
performance are independent of the rocket’s altitude.

VII. CONCLUSION

We have presented two approaches (VERF-PnP and
VERF-Light) to leverage Neural Radiance Fields to monitor
the correctness of a pose estimate acquired from a monocular
camera. Our methods functions independently of how the
pose is estimated (i.e., NeRF does not have to be used for
pose estimation) and can provide a level of assurance in under
half a second. Experiments have shown the effectiveness
of VERF on scene scales ranging from small rooms to
kilometer-scale outdoor scenes. As a limitation, we remark
that VEREF is intended to be a local pose monitoring approach
in the sense that if an arbitrarily large epsilon were used, it
is possible for NeRF rendered images to be outside the range
of the trained NeRF or fail to match features to the sensor
image leading to a false assumption of an incorrect pose.
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VIII. APPENDICES
A. Effects of Essential Matrix Error

Here we study the effects of the accuracy of the essential
matrix estimation for VERF-Light. We repeat each of the
three experiments with the same setup except we now provide
VERF-Light with the true essential matrix g 4. Table
shows notable improvements on all experiments with VERF-
Light correctly classifying 99% of pose estimates. The most
significant improvement is on the rocket dataset. Not only
does accuracy go from 86% to 99% but as shown in Fig. [I0]
the confidence levels follow a cleaner distribution. We believe
this to be caused by the approximate planar scene from high
altitudes. This study thus shows the potential to improve
VERF-Light with a more effective essential matrix estimation
method.

oy
210 ° ° ° °
wv
[oR
()] °
v .
208 . .
o
=
(7]
(] .
8 0.6 ° —— epsilon
s --- 0.5 cutoff
2 R o VERF-LIGHT
— 04 e  VERF-LIGHT true E
o
o °
> °
]
2 0.2 .
2 o
() © .
) . e
=
5 0.0 =  — -
O
0 100 150 200 250

Position Error (m)

Fig. 10. VERF confidence level that for 1000 randomly sampled position
estimates for rocket data that their error is less than € = 40m. VERF-Light
shown with and without the true essential matrix.

LLFF Al Rocket
True Positives 415 420 255
True Negatives 574 567 736
False Positives 3 12 4
False Negatives 8 1 5
Total Correct 99 % 99 % 99 %

TABLE IV. Summary of results on running VERF-Light on all experi-
ments using the true essential matrix.

B. Estimating Metric Error with PnP

A logical question to pose is since PnP can estimate
metric distance, how well can VERF-PnP estimate the true
error instead of just estimating correctness with respect to
an epsilon threshold. With an estimate of the true error,
the pose estimate can then be corrected. Figures [T1] and [12]
show position errors before an after being corrected in this
fashion by VERF-PnP with errors decreasing by an order of
magnitude. For each experiment there were a small number
of pose estimates omitted (1 for Fig. [T1] and 9 for Fig.
as PnP diverged. One potential option to automatically check
and prevent this is to only accept the updated pose if VERF-
Light predicts that the corrected pose is less than epsilon.
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Fig. 11. Position errors before and after being corrected using the position
error estimate from VERF-PnP. Results shown for 1000 tests on the Al
dataset.
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dataset.
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