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Evaluating generalizability of artificial 
intelligence models for molecular datasets
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Marinka Zitnik    1,4,5,6,8   & Maha Farhat    1,7,8 

Deep learning has made rapid advances in modelling molecular sequencing 
data. Despite achieving high performance on benchmarks, it remains 
unclear to what extent deep learning models learn general principles and 
generalize to previously unseen sequences. Benchmarks traditionally 
interrogate model generalizability by generating metadata- or sequence 
similarity-based train and test splits of input data before assessing model 
performance. Here we show that this approach mischaracterizes model 
generalizability by failing to consider the full spectrum of cross-split 
overlap, that is, similarity between train and test splits. We introduce 
SPECTRA, the spectral framework for model evaluation. Given a model and 
a dataset, SPECTRA plots model performance as a function of decreasing 
cross-split overlap and reports the area under this curve as a measure 
of generalizability. We use SPECTRA with 18 sequencing datasets and 
phenotypes ranging from antibiotic resistance in tuberculosis to protein–
ligand binding and evaluate the generalizability of 19 state-of-the-art deep 
learning models, including large language models, graph neural networks, 
diffusion models and convolutional neural networks. We show that sequence 
similarity- and metadata-based splits provide an incomplete assessment of 
model generalizability. Using SPECTRA, we find that as cross-split overlap 
decreases, deep learning models consistently show reduced performance, 
varying by task and model. Although no model consistently achieved the 
highest performance across all tasks, deep learning models can, in some 
cases, generalize to previously unseen sequences on specific tasks.  
SPECTRA advances our understanding of how foundation models  
generalize in biological applications.

Understanding generalizability—how well a machine learning model 
performs on unseen data—is a fundamental challenge for the broad 
use of computation in biological discovery. In living cells, informa-
tion flows from DNA to RNA to protein and dictates cell phenotypes. 
To model phenotypes, deep learning models are trained to predict 
biological relationships between and within sequences and the phe-
notype. This approach has been successfully implemented through 
a broad array of machine learning models, including convolutional 

neural networks (CNNs)1–4, recurrent neural networks5–7, graph neural 
networks8–11 and large language models12–16. However, model evaluation 
is challenging because (1) available molecular sequencing data often 
capture a small fraction of all possible sequences4,17, and (2) sequences 
evolve and acquire new mutations that are not present in existing 
datasets. This results in differences in the distribution of sequences 
and their aggregate properties between datasets, known as distribu-
tion shifts, that can lead to degradation of model performance18–20.  

Received: 31 March 2024

Accepted: 21 October 2024

Published online: 6 December 2024

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: yasha_ektefaie@hms.harvard.edu; marinka@hms.harvard.edu;  
maha_farhat@hms.harvard.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-024-00931-6
http://orcid.org/0000-0003-2759-4470
http://orcid.org/0000-0001-8530-7228
http://orcid.org/0000-0002-3871-5760
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-024-00931-6&domain=pdf
mailto:yasha_ektefaie@hms.harvard.edu
mailto:marinka@hms.harvard.edu
mailto:
maha_farhat@hms.harvard.edu
mailto:
maha_farhat@hms.harvard.edu


Nature Machine Intelligence | Volume 6 | December 2024 | 1512–1524 1513

Article https://doi.org/10.1038/s42256-024-00931-6

to 11 state-of-the-art machine learning models, including pretrained 
and finetuned large language models, CNNs, graph neural networks, 
variational autoencoders and diffusion generative models. None of the 
machine learning models tested achieves a high AUSPC across all tested 
tasks. We show that examining the SPC can help identify unconsidered 
spectral properties that influence model generalizability in molecular 
sequencing datasets. By applying SPECTRA to pretrained protein lan-
guage models, we demonstrate how SPECTRA can be used to evaluate 
foundation models in biology. SPECTRA is a new paradigm for model 
evaluation in its ability to more comprehensively characterize model 
generalizability and uncover shortcomings of existing machine learn-
ing models. These capabilities will guide the development of machine 
learning models for molecular sequencing data.

Results
Overview of SPECTRA
In contrast to the prevailing approach to machine learning model 
evaluation using MB and SB splits, the spectral framework (SPECTRA) 
provides a more comprehensive overview of model performance by 
examining a model’s spectral performance curve (SPC) for a given 
molecular sequencing dataset. The approach focuses on one or more 
characteristics of input molecular sequences or molecular sequence 
properties (MSPs) (for example, GC content of a gene). We define a 
spectral property as an MSP expected to affect model generalizability 
for a specific task (for example, three-dimensional (3D) protein struc-
ture for protein binding prediction; Methods, ‘PDBBind dataset’). The 
definition of the spectral property is task-specific and, together with 
the molecular sequence dataset and model, are the only inputs to SPEC-
TRA (Fig. 1d, Supplementary Note 5 and Supplementary Table 5). First, 
SPECTRA compares the spectral property for all pairs of sequences 
in the dataset, identifying pairs that share the spectral property. 
The procedure is used to construct a spectral property graph (SPG) 
from which adaptive train–test splits are generated with decreasing 
cross-split overlap or the proportion of samples in the test set that 
share a spectral property with the train. SPECTRA controls cross-split 
overlap by ranging an internal spectral parameter (SP) from SP = 0 
to SP = 1 for maximal and minimal cross-split overlap, respectively 
(Supplementary Note 6). Last, the model is trained and tested on each 
split to generate a plot of the model’s performance against the SP, the 
model’s SPC, for the molecular sequencing dataset. The area under 
the SPC (AUSPC) summarizes model performance across all levels 
of cross-split overlap. It can compare model generalizability to other 
models within and across tasks.

SPECTRA unifies model evaluation and benchmarking 
approaches
We propose that SB and MB splits used in existing machine learning 
benchmarks represent individual points on the SPC and that SPECTRA 
provides a more comprehensive view of model generalization than 
prevailing dataset splits. To evaluate this proposition, we applied 
SPECTRA to six molecular sequencing datasets from two widely used 
protein sequence benchmarks, TAPE23 and PEER24, as well as a protein 
structural biology benchmark, PDBBind41, and a protein mutational 
benchmark, ProteinGym16 (Methods, sections ‘PEER benchmark 
datasets’ to ‘PoseBusters dataset’). First, we were interested in what 
specific points on the SPC each dataset split in these benchmarks 
corresponds to. Specifically, we calculated the cross-split overlap in 
the MB and SB splits implemented in these benchmarks and identi-
fied the SP that generates splits with similar cross-split overlap. For 
example, our analyses using SPECTRA revealed that the MB family 
split from the remote homology dataset in TAPE had a cross-split 
overlap of 97% and can be instantiated at SP = 0.025. In another 
example, the temporal-based MB split of PDBBind used to train the 
Equibind model had a cross-split overlap of 76% and was generated at  
SP = 0.55 (Fig. 2a)34.

Although distribution shifts are a well-recognized challenge in machine 
learning more generally21,22, they are less well characterized in biology 
due to the lack of approaches that measure model performance in the 
context of distribution shifts. Although numerous benchmarks have 
been developed to assess model performance across datasets16,23–26, 
there are still large gaps between model performance during bench-
marking and real-world use27–31 (Fig. 1a). This gap in generalizability 
must be addressed before machine learning models can be broadly 
used in biology.

While helpful, the central shortcoming of existing benchmarks 
is the approach to model evaluation. Existing methods for model 
evaluation split input molecular sequencing datasets into train and 
test sets in metadata-based (MB) or similarity-based (SB) splits (Fig. 1c). 
MB splits ensure specific metadata properties are not shared across 
splits. One example is a temporal split of COVID-19 viral sequences in 
which a vaccine escape model is trained on sequences collected before 
a specific time and tested on sequences evolved after that time32–34. 
A random split is also an MB split where the metadata property is a 
sample identity. SB splits ensure no two samples across splits share 
sequence similarity beyond a predefined threshold, with the exact 
threshold being problem specific35–39. However, as we show in this 
study, MB splits cannot guarantee that high performance on the test 
set will transfer to a new molecular sequencing dataset. This is because 
MB partitioning does not control sequence similarity between data 
subsets. Model generalizability can be overestimated when training 
sequences are more similar to sequences in the test set than sequences 
in a new dataset. In SB splits, sequence similarity can be controlled. 
However, the generalizability of the model at similarity thresholds 
different from a handful of those tested during model benchmarking 
remains unknown, resulting in an incomplete evaluation of the model. 
Further, SB splits rely on limited summary metrics such as sequence 
distance to quantify similarity between sequences that may not capture 
the full range of similarities. This lack of understanding about model 
generalizability can lead to several important issues. First, there could 
be catastrophic degradation of model performance on new datasets, 
which means that predictions made on unseen data may be highly inac-
curate. This inaccuracy can mislead biological research, causing wasted 
resources on false leads or overlooking potential discoveries. Second, 
models that perform well on training data but poorly on unseen data 
can contribute to overfitting, where the model captures noise rather 
than the underlying biological processes. This overfitting can severely 
limit the applicability of computational tools in new or broader bio-
logical contexts, potentially leading to erroneous conclusions about 
biological mechanisms and phenotypes40.

Here we introduce the spectral framework for model evaluation 
(SPECTRA), a framework for evaluating generalizability of machine 
learning models for molecular sequences. The term spectral here refers 
specifically to the evaluation framework and should not be confused 
with its use in matrix analysis. Given a model, a molecular sequenc-
ing dataset, and a spectral property definition, SPECTRA generates a 
series of train–test splits with decreasing overlap, that is, a spectrum 
of train–test splits. SPECTRA then plots the model’s performance as 
a function of cross-split overlap (Fig. 1b,d), generating a spectral per-
formance curve (SPC). We propose the area under this curve (AUSPC) 
as a new, more comprehensive metric for model generalizability. As 
opposed to MB or SB splits, SPECTRA can incorporate multiple simi-
larity definitions in the spectral property definition, such as sequence 
distance and structural similarity of protein sequences. We apply 
SPECTRA to 18 molecular sequencing datasets from three prominent 
benchmarks (PEER24, ProteinGym16, TAPE23) and find (1) existing SB 
and MB splits have large amounts of cross-split overlap, (2) SPECTRA 
generates splits with similar levels of cross-split overlap compared to 
existing SB and MB splits, and (3) existing SB and MB splits represent 
single points in the SPC, leaving the rest of the SPC uncharacterized. To 
demonstrate the need to characterize model SPCs, we apply SPECTRA 
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We find that model performance tends to decrease with decreasing 
cross-split overlap. The accuracy of long short-term memory (LSTM)42 
and CNN43 models decreased by 50% between family and superfam-
ily splits in the TAPE benchmark’s remote homology dataset. The 
cross-split overlap was lower for the superfamily (71%) compared to 
the family split (97%) (Fig. 2b). We observed a similar pattern when using 
SPECTRA to study models for predicting secondary protein structure 

(Fig. 2c) and protein–ligand binding affinity (Fig. 2d). These findings 
show that existing molecular benchmarks capture only a few points 
on the SPC, providing a myopic assessment of model generalizability. 
Further, the observation that model performance diminishes when 
cross-split overlap decreases identifies an overestimation of model 
performance by existing benchmarks, which would lead to suboptimal 
performance when the models are implemented in the real world.

a b

Molecular sequencing
dataset Train set

Test set

Data split generation

Test
metric

Gap in 
generalizability

C
A Wild-type nucleotide

Mutated nucleotide with deleterious phenotypic e�ect
G Mutated nucleotide with positive phenotypic e�ect

Strong performance Poor performance

MB split

SB split

5
21

3 4

0 0.5 1.0

0.5

1.0

Spectral parameter
~cross-split overlap

Te
st

 m
et

ric

SPECTRA performance
curve

Dataset A

Dataset B

< X% sequence
similarity

SPECTRA property 
graph

MSP Ex:

• Sample identity

c d

ATCGGGCCAT
ATCG G CAT
AT GGGC AT
ATC GG CAT

TA
A G

A G

1
2
3
4

A C GG CATA G5 A

ATCGGGCCAT1
AT GGGC ATA G3

ATC GG CATA G4
ATCG G CATTA2
A C GG CATA G5 A

ATCGGGCCAT
ATCG G CAT
AT GGGC AT
ATC GG CAT

TA
A G

A G

1
2
3
4

A C GG CATA G5 A

ATCGGGCCAT1
ATC GG CATA G4
A C GG CATA G5 A

ATCG G CAT
AT GGGC AT

TA
A G

2
3

ATCGGGCCAT
ATCG G CAT
AT GGGC AT
ATC GG CAT

TA
A G

A G

1
2
3
4

A C GG CATA G5 A

AT GGGC AT
ATC GG CAT

A G
A G

3
4

A C GG CATA G5 A

ATCGGGCCAT
ATCG G CATTA

1
2

ATCGGGCCAT
ATCG G CAT
AT GGGC AT
ATC GG CAT

TA
A G

A G

1
2
3
4

A C GG CATA G5 A

Spectral parameter ~ cross-split overlap
0 1

ATCGGGCCAT
ATCG G CAT

AT GGGC AT

ATC GG CAT
TA

A G

A G

1
2

3

4

A C GG CATA G5 A

ATCG G CAT

AT GGGC AT

ATC GG CAT
TA

A G

A G
2

3

4

A C GG CATA G5 A

ATCG G CAT
AT GGGC AT

TA
A G

2
3

A C GG CATA G5 A

Train set Train set Train set

Test set Test set Test set

Train set

Test set

Test set

Train set
0.5

5
21

3 4

5
21

3 4

5
21

3 4

Deleted edge 1 Deleted node 1 3 Sequence 1 and 3 share a SPECTRA property

AT GGGC AT
ATC GG CAT

A G
A G

ATC CCAT

ATCCCCCCAT

GGG

Train set Test set

Dataset A
ATCGGGCCAT
ATCG G CAT
AT GGGC AT

A T
A G

Dataset B
ATCGGGCCAT
A CG G CAT

GGGC AT
A T

A G
C
CT

Untrained model Trained model

Dataset A
ATCGGGCCAT
ATCG G CAT
AT GGGC AT

A T
A G

ATC CCATAAA

1
2
3

4
5

AT GGGC AT
ATC GG CAT

A G
A G

ATC CCAT

ATCCCCCCAT

GGG

Train set Test set

ATC CCATAAA

No cross-split
overlap

Cross-split
overlap

No shared MSP

Shared MSP

• MB attribute, geography

• MB attribute, chronology

• MB attribute, phylogeny

Metadata-based attribute (colours indicate di�erent MB attributes)

MSP = sample identity

MSP = MB attribute

Fig. 1 | The spectral framework for model evaluation (SPECTRA). a, Machine 
learning models for molecular sequencing data struggle to generalize across 
datasets. b, Every train–test split partitions samples based on a chosen molecular 
sequence property (MSP). Cross-split overlap exists between train and test sets 
when samples share MSPs. Shown are two examples of train–test splits. In the 
first, samples are split based on their identity, shown by the sample number, 
and there is no cross-split overlap as no two samples share identity across the 
train and test set. In the second, samples are split based on metadata-based 
(MB) attributes with cross-split overlap as two samples share an attribute across 
the train and test set. c, Traditional approaches for model evaluation create 
train–test splits either based on MB attributes (MB split) or sequence similarity 
(similarity based or SB split). d, SPECTRA, the spectral framework for model 
evaluation, generates train–test splits with a spectrum of cross-split overlap. It 
does so by constructing a spectral property graph where nodes are samples and 

edges are between samples that share a spectral property. The spectral property 
is a MSP that influences model generalizability. It then iteratively deletes nodes 
and edges based on the spectral parameter, an internal parameter that scales 
with cross-split overlap, to generate train and test sets. After training and 
evaluating an input model to each generated split, SPECTRA generates a spectral 
performance curve (SPC) that plots model test performance versus the spectral 
parameter. The SPC shows the gap in generalizability depicted in panel a is due 
to differing levels of cross-split overlap between splits generated in dataset A 
and those of dataset B. The area under the spectral performance curve (AUSPC) 
(highlighted in yellow) summarizes model performance across all levels of cross-
split overlap and is a new metric for model generalizability. Note that the use of 
the word spectral here refers only to the framework for model evaluation and 
should not be confused with other uses of the term in matrix analysis.
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SPECTRA reveals generalization gaps in molecular ML models
To demonstrate the use of SPECTRA in characterizing the full model 
SPC, we evaluate six models in five molecular sequencing datasets. 
Specifically, we generate SPECTRA splits for each dataset, train and 
test models on each split, generate the SPC and calculate the AUSPC 
for each model.

Our data span three diverse problems: antibiotic resistance 
in Mycobacterium tuberculosis1 (tuberculosis), vaccine escape in 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)44 
and fluorescence prediction in the green fluorescent protein (GFP) 
of Aequorea victoria45. Antibiotic resistance in tuberculosis is a whole 
organism phenotype where inputs are the nucleic acid sequences 
of genes and non-coding regions causally linked to resistance 
to the specific drug. The output is resistance binary phenotype 
determined using a culture-based assay. We consider tuberculosis 
resistance to the antibiotics rifampicin (RIF), isoniazid (INH) and 
pyrazinamide (PZA). For fluorescence prediction of A. victoria,  

we rely on the amino acid sequence of GFP protein and its variants.  
Vaccine escape in SARS-CoV-2 maps mutations in the receptor bind-
ing domain (RBD) of the spike protein to a continuous value that rep-
resents antibody escape (Methods, sections ‘Tuberculosis dataset’ 
to ‘SARS-CoV-2 dataset’).

We evaluated six approaches to modeling phenotype from molec-
ular sequence data. We generated SPCs for a logistic regression model, 
a CNN1, a pretrained (GearNet8) and finetuned structure-based graph 
neural network (GearNet-Finetuned), a pretrained (Evolutionary Scale 
Modelling or ESM2, ref. 12) and a finetuned large language model 
(ESM2-Finetuned), a multiple sequence alignment-based generative 
model (an evolutionary model of variant effect prediction, EVE32) and 
an alignment-free generative model (SeqDesign46) (Methods, ‘Train-
ing models’).

As was seen for the protein benchmarks above, all evaluated 
models demonstrate a decrease in performance as cross-split overlap 
decreases (Fig. 3a). Logistic regression decreases performance from 
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Fig. 2 | Applying SPECTRA to existing molecular sequencing benchmarks. 
a, Results of applying SPECTRA on datasets from the PEER, TAPE, ProteinGym 
and PDBBind benchmarks. For every dataset, we report the corresponding task 
and benchmark, the MSP that was used to split the dataset into train and test, 
cross-split overlap and the spectral parameter in SPECTRA that generated a 
split with similar levels of cross-split overlap. If a specific name is used to refer 
to the split in literature, the name is provided in parentheses. (*Posebusters and 
LPPDBind use multiple manually defined quality control criteria to create splits). 
b, Left, cross-split overlap as spectral parameter increases in SPECTRA for the 
TAPE remote homology benchmark. Labelled are the points on the curve where 
the family, superfamily and fold splits have similar levels of cross-split overlap. 

Right, a partial SPC for an LSTM42, ResNet98 and DeepSF43 model. c, Left, cross-
split overlap as spectral parameter increases in SPECTRA for the TAPE secondary 
structure benchmark. Labelled are the points on the curve where the CASP12 
(ref. 99), TS115 (ref. 100) and CB513 (ref. 101) splits have similar levels of cross-
split similarity. Right, a partial SPC for a Transformer49, LSTM42 and HHblits102 
model. d, Left, cross-split overlap as spectral parameter increases in SPECTRA 
for the PDBBind benchmark. Labelled are the points on the curve where the 
LPPDBind66, Astex diverse set88, Equibind34 and Posebusters65 splits have similar 
levels of cross-split similarity. Right, a partial SPC for Equibind34, Diffdock84 and 
Tankbind103 models.
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an area under the curve greater than 0.9 for RIF and INH resistance pre-
diction to 0.5 (RIF AUSPC = 0.86, INH AUSPC = 0.74). ESM2-Finetuned 
decreases in performance for GFP from a Spearman’s rank correlation 
greater than 0.9 to one less than 0.4. Although all models demonstrate 
decreased performance with decreased cross-split overlap, some mod-
els continue to perform well at minimum cross-split overlap (SP = 1). In 
RIF and PZA, ESM2, ESM2-Finetuned and CNN maintain areas under the 
curve greater than 0.7 at SP = 1 (Fig. 3a). No single model outperforms 
others across all tasks by AUSPC (Fig. 3b).

SPECTRA identifies critical spectral properties
Every SPC represents a hypothesis that model performance will vary as 
a function of the defined spectral property. Any additional deviation of 
model performance from the expected performance under the defined 
SPC may indicate the presence of unconsidered spectral properties. 
By identifying these spectral properties, we can better understand 
what models learn from molecular sequencing datasets and identify 
shortcomings of existing models.

CNN model performance demonstrates a high variance across 
splits with the same SP, suggesting the presence of an unconsid-
ered spectral property (Fig. 4a). Three splits in RIF at SP = 0.9, 0.95 
and 1.0 have an AUROC standard deviation (and total performance 
decrease) of 0.09 (26%), 0.10 (31%) and 0.08 (23%), respectively 
(Fig. 4a). RIF resistance is caused by missense mutations in an 81 base 
pair region of the RNA polymerase beta-subunit (rpoB) gene, the RIF 
resistance-determining region (RRDR) (Fig. 4b)47,48. Models able to 
learn the association of RRDR to resistance most comprehensively will 
achieve high test performance. We propose that as SP increases the 
genetic distance between observed RRDR mutations in the train and 
test increases. On such splits, models may associate partial regions of 
the RRDR to resistance that do not align with RRDR regions in the test, 
resulting in poor generalizability.

To investigate this hypothesis, we calculated the difference in 
the range of positions for RRDR mutations observed in the train and 
the test splits (diff-RRDR) (Fig. 4c). Diff-RRDR explains the variance in 

model performance observed at SP = 0.9 (Spearman’s rank correlation 
of ρ = −0.51, P = 1.79 × 10−5, between diff-RRDR and AUROC, Fig. 4d). 
We observe similar patterns for the SP = 1.0 split and SP = 0.95 split 
(Fig. 4d). This correlation is model specific; ESM2 performance expe-
riences no degradation in performance as diff-RRDR increases in the 
SP = 0.9, 0.95 and 1.0 splits (Fig. 4e). ESM2 considers a larger range of 
input positions (512) than the CNN (12) when making a prediction. We 
expect this to make ESM2 more invariant to increases in diff-RRDR49. 
Our results improve our understanding of M. tuberculosis resistance 
prediction where state-of-the-art performance in this field is currently 
achieved by CNN models1. The generalizability of M. tuberculosis resist-
ance prediction models can be improved by potentially considering 
longer contexts of DNA sequence. We characterize the difference in the 
length of genetic context (diff-RRDR) as a spectral property relevant for 
phenotype prediction for proteins where functionally impactful muta-
tions concentrate along the DNA sequence surrounding the active site.

SPECTRA evaluates generalizability of foundation models
Many machine learning models are pretrained on molecular sequencing 
datasets and then trained and tested on usually smaller task-specific 
datasets not encountered in pretraining12,15,50. These foundation models 
have the potential to offer better flexibility and adaptability to a wide 
range of tasks as they have done in computer vision51 and natural lan-
guage processing52–54. Despite the potential of these models, their gen-
eralizability is unknown as they have rarely been tested prospectively 
on non-overlapping datasets55,56. Current approaches to benchmark 
foundation models report the average performance across multiple 
task-specific datasets. However, this approach exaggerates foundation 
model generalizability by failing to consider cross-split overlap in the 
task-specific data splits and the overlap between the pretraining and task- 
specific datasets. Running SPECTRA with foundation models on 
task-specific datasets evaluates generalizability by measuring AUS-
PCs. We can then assess the effect of overlap between the pretraining 
and task-specific datasets on these AUSPCs to understand foundation 
model generalizability.
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To demonstrate this capability of SPECTRA, we investigate the 
generalizability of several protein foundation models. From our 
previous analysis, the AUSPC of pretrained ESM2 for RIF, PZA, INH, 
SARS-CoV-2 and GFP phenotype prediction varied widely from 0.91 in 
RIF to 0.26 in SARS-CoV-2 (Fig. 3b). We calculated the overlap between 
these task-specific datasets and UniRef50, the pretraining dataset used 
by ESM2 (ref. 57) (Fig. 5a; Methods, ‘Using SPECTRA to evaluate foun-
dation models in biology’) finding a significant correlation between 
this overlap and the AUSPC of ESM2 (Spearman rank correlation 0.9, 
P = 1.4 × 10−27, Fig. 5a). Finetuning ESM2 on downstream tasks improves 
ESM2 AUSPC for PZA, SARS-CoV-2 and GFP phenotypic prediction 

(Fig. 3b, ESM2-Finetune). The effect of overlap between pretraining 
and task-specific data holds when evaluating protein foundation mod-
els other than ESM2, including Transception, MSATransformer, ESM1v 
and Progen on five molecular sequencing datasets in the ProteinGym 
benchmark16 (Supplementary Note 3 and Fig. 5b; Spearman rank cor-
relation 0.9, P = 0.04).

Discussion
Understanding how well molecular machine learning models 
perform on unseen data is a fundamental problem for protein 
design58,59, defence against emerging pathogens33,60,61 and therapeutic 
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science62–64. Increasingly, studies are demonstrating how reported 
benchmarking model performance is overly optimistic about model 
generalizability56,65,66. We show this generalizability gap between 
model performance on benchmarks and external datasets is due to 
inadequate assessment of overlap between training, test and exter-
nal datasets. We demonstrate that model performance decreases in 
existing benchmarks as cross-split overlap decreases. To address this 
challenge, we introduce SPECTRA to evaluate, compare and understand 
model generalizability by explicitly controlling cross-split overlap 
when constructing train–test splits to generate SPCs and calculate 
the AUSPC. We demonstrate that SPECTRA summarizes model test 
performance more comprehensively than in previous benchmarks. We 
show SPECTRA can help identify new and relevant spectral properties 
that influence model generalizability. We also demonstrate SPECTRA’s 
ability to be used as a tool to evaluate foundation models in biology. 
After applying SPECTRA to four protein foundation models across 11 
molecular sequencing datasets, we found that foundation models have 
better generalizability in task-specific datasets with greater similarity to 
the pretraining dataset. These findings corroborate existing literature, 
which indicates single-cell foundation models struggle to generalize in 
task-specific datasets dissimilar from pretraining datasets55.

Existing SB and MB splits are attractive because they are computa-
tionally inexpensive. However, as shown in this paper, the time saved in 
computation leads to a mischaracterization of model generalizability. 
Model evaluation should be seen as a step in model development as 
computationally expensive as model training, not an afterthought 
to generate a performance metric. The purpose of this study is not 
to rank models by their AUSPCs but to demonstrate SPECTRA on 
state-of-the-art models. To rank models requires averaging over many 
AUSPCs calculated across various tasks in a SPECTRA benchmark for 
molecular sequencing data.

Our framework makes urgent the need to define and then refine 
MSP benchmarks for generalizability. In the case of M. tuberculosis’ 
resistance to RIF, previous work has found high AUROC using logistic 
regression models, which supported the development of commercial 
genotypic assays for RIF resistance prediction. SPECTRA found logistic 
regression has high AUROC at SP = 0 (maximal cross-split overlap), but 
degrades to near-random performance at SP = 1 (no cross-split overlap). 
This corresponds to the current understanding that resistance to RIF is 
encoded by a handful of very common mutations concentrated in the 
active site and a long tail of rare mutations in a more distant proximity 
that can be more common in specific regions of the world. As a result, 
these RIF resistance commercial tests were later recognized to misclas-
sify resistance in large populations of patients in specific geographic 
areas67. SPECTRA could have provided a more realistic understanding 
of the sensitivity of these tests and the mutations they are based on 

before deployment. This case of M. tuberculosis’ resistance to RIF has 
implications for any protein where mutations with a functional effect 
on phenotype concentrate along the protein’s length or structure, 
including, for example, the concentration of immune escape mutations 
in the SARS-CoV spike RBD.

SPECTRA can be used with models beyond the molecular sequenc-
ing domain. For example, in machine learning for small molecule thera-
peutics, the chemical structure is the spectral property that separates 
molecules into structurally dissimilar train–test splits68. In inverse pro-
tein folding problems, when models associate the amino acid sequence 
that folds into a particular protein structure, the ontological label of 
protein folds can be used as the spectral property69. Future directions 
include applying SPECTRA to other molecular sequence modalities 
such as RNA sequences, metabolomics or epigenetic sequences and 
considering metrics beyond the area under the curve to summarize 
the SPC.

In biology, there is a general belief that observations made in the 
past can only predict similar future observations or that models can only 
generalize to sequences similar to previously encountered sequences. 
Our results challenge this belief by demonstrating that models can, in 
some cases, perform well on sequences with never-before-seen muta-
tions, motifs or sequence identity. Our work identifies MSPs that allow 
models to generalize in these scenarios, such as sequence similarity 
to a pretraining set. The SPECTRA framework for model evaluation 
represents a new frontier, generating a robust understanding of model 
performance beyond a metric on a MB or SB split.

Methods
This section describes the details for (1) the SPECTRA framework, (2) 
the curation of all molecular sequencing datasets used in this study, 
(3) model architecture and training and (4) characterizing distribution 
shifts in molecular sequencing datasets.

The SPECTRA framework for model evaluation
For an input molecular sequencing dataset and model, SPECTRA con-
sists of three steps: (1) spectral property definition, (2) spectral prop-
erty graph (SPG) construction and split generation and (3) model SPC 
generation.

Defining spectral properties. An MSP is a property that is either given 
or calculated inherent to a molecular sequence. Spectral properties are 
MSPs that influence model generalizability. Spectral properties are task 
and data specific: what may be a spectral property for one data type and 
task is not one in another data modality and task. For example, for pre-
dicting DNA binding motifs, the number of adenines in an input nucleic 
acid sequence is an MSP but not a spectral property. For secondary 
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structure prediction, the 3D structure of an amino acid sequence is an 
MSP, which is also an spectral property because the structural motifs 
present in a train set versus a test set will influence model generalizability.

The choice of how to define spectral properties is dataset and 
problem specific. The datasets used in this study can be divided into 
two categories: (1) mutational scan datasets (MSDs), which comprise 
a single set of sequences with different mutations and their effect on 
phenotype and (2) sequence-to-sequence datasets, which comprise 
different sequences and their properties.

In sequence-to-sequence datasets, the spectral property of inter-
est is sequence identity. To calculate whether two sequences share 
sequence identity, we perform a pairwise alignment between input 
sequences and calculate the proportion of aligned positions to the 
length of the pairwise alignment. If this proportion is greater than 0.3, 
then the two sequences share this spectral property70. We use Biopy-
thon71 to align with a match score of 1, a mismatch score of −2 and a gap 
score of −2.5. We used heuristics to define the comparator for larger 
datasets when exhaustive pairwise comparison of all sequences was 
not computationally feasible (Methods, ‘Using SPECTRA to evaluate 
foundation models in biology’). In MSDs, phenotypically meaningful 
differences are in the scale of single mutations. Thus, using the defini-
tion of the spectral property from sequence-to-sequence datasets 
would underestimate differences between samples. To address this, 
we represent samples in MSDs by their sample barcode or a string 
representation of the mutations present in the sample. The spectral 
property of a sample is its sample barcode. Two samples share this 
property if their sample barcodes share at least one mutation.

Constructing SPECTRA property graphs and splits. After the spectral 
property is defined, a SPG is constructed where nodes are samples in 
the input dataset, and edges are between samples that share a spectral 
property (Supplementary Figs. 1 and 2). Finding a split such that no two 
samples share a spectral property is the same as finding the maximal 
independent set of the SPG or the maximum set of vertices such that 
no two nodes share an edge72. Finding the maximal independent set is 
NP-Hard73, we approximate it via a greedy random algorithm where we 
(1) randomly order SPG vertices, (2) choose the first vertex and remove 
all neighbours and (3) continue until no vertices remain in the graph. To 
create an overlap in generated splits, we introduce the SP to the algo-
rithm. Instead of deleting every neighbour, we delete each neighbour 
with a probability equal to the SP. If the SP is 1, we approximate the 
maximal independent set; if it is 0, we perform a random split. Given a 
set of nodes returned by the independent set algorithm, we produce 
an 80–20 train–test split. Sample SPGs can be found in Supplementary 
Figs. 1 and 2, and statistics for all generated SPGs can be found in Sup-
plementary Table 2.

This procedure is complicated in MSDs where sample barcodes 
map to multiple samples (that is, in MSDs where the number of unique 
sample barcodes is not equal to the number of samples). As a result, if 
split generation does not consider the number of samples, splits can 
be generated with a small or uneven distribution of samples (that is, 
a train set with 100 samples and a test set with 10,000 samples). To 
address this, we applied two changes: (1) weighing nodes in the SPG by 
the number of samples represented by the sample barcode and biased 
the algorithm to choose these nodes, and (2) when splitting the nodes 
into train–test splits, we ran a subset sum algorithm to ensure train and 
test splits had 80 and 20% of samples, respectively (Supplementary 
Note 1). Statistics for all generated SPECTRA splits can be found in the 
supplement (Supplementary Figs. 5 and 6).

Generating SPCs. To generate a SPC, we create splits with SPs between 
0 and 1 in 0.05 increments. For each SP, we generate three splits with 
different random seeds. We then train and test models on generated 
splits and plot model test performance versus SP. The area under 
this curve is the AUSPC. We provide SPCs and AUSPCs for all relevant 

models in the GFP, SARS-CoV-2, RIF, PZA and INH datasets (Supple-
mentary Figs. 7–11).

Datasets
This section outlines the datasets and processing performed for this 
study.

Tuberculosis dataset. Tuberculosis sequencing and antimicrobial 
screening data come from ref. 1. Paired-end reads are trimmed with 
trimmomatic74, assembled using Spades75 into contigs, and aligned to 
reference tuberculosis reference genome H37Rv via minimap2 (ref. 76).  
All tuberculosis datasets used in this study are MSDs. To generate sam-
ple barcodes for input tuberculosis isolates, we use Pilon77 to generate 
VCF files. Bcftools78 is then used to pull all variants identified in the 
regions of interest for a particular drug (Supplementary Table 1). From 
the output of Bcftools, each variant is summarized as a mutational bar-
code or a string representation of the position and nucleic acid change 
that defines the mutation. Each isolate is then summarized with a sam-
ple barcode or a concatenation of the mutational barcodes present in 
the isolate. We collect nucleic acid sequences from the contigs mapped 
to the regions of interest (Supplementary Note 2). For the RIF resistance 
prediction task, we have 17,474 M. tuberculosis clinical isolates where 
4,963 are resistant and 12,511 are susceptible. There are 3,998 unique 
sample barcodes and 2,066 unique mutational barcodes. For PZA, there 
are 12,146 isolates, where 2,166 are resistant and 9,980 are susceptible. 
There are 2,571 unique sample barcodes and 2,742 unique mutational 
barcodes. For INH, there are 26,574 isolates, where 10,580 are resistant 
and 15,994 susceptible. There are 4,952 unique sample barcodes and 
4,455 unique mutational barcodes.

GFP dataset. GFP dataset is an MSD where amino acid sequences, 
sample barcodes and phenotypes are obtained from ref. 45. The data-
set maps amino acid sequences of the GFP of the A. victoria jellyfish 
to a value representing the fluorescence of the GFP protein. This is a 
regressive task where fluorescence values are log-transformed and 
min–max normalized. GFP has 54,024 samples with 54,024 unique 
sample barcodes and 1,880 unique mutation barcodes (Supplemen-
tary Fig. 3). The performance metric is Spearman’s rank correlation 
between predicted and experimentally measured fluorescence values.

SARS-CoV-2 dataset. SARS-CoV-2 dataset is an MSD where amino acid 
sequences, sample barcodes and phenotypes are obtained from ref. 44.  
The dataset maps mutations of the amino acid sequences for the RBD 
of the SARS-CoV-2 spike protein to a value representing vaccine escape. 
This phenotype is measured by exposing an RBD sequence to a series 
of human antibodies and reporting the proportion of RBD sequences 
bound by each antibody. The higher the proportion, the less the muta-
tion in the RBD domain is associated with vaccine escape. We take the 
smallest bound proportion for each mutated sequence to generate 
labels, log-transform and min–max normalize the values. This is a 
regressive task with 438,046 samples with 22,341 unique sample bar-
codes and 2,391 unique mutation barcodes (Supplementary Fig. 4). The 
performance metric is Spearman’s rank correlation between predicted 
and ground truth escape values.

PEER benchmark datasets. PEER24 is a benchmark consisting of 
17 tasks spanning five task categories (protein function prediction, 
protein localization prediction, protein structure prediction, pro-
tein–protein interaction prediction and protein–ligand interaction 
prediction). From PEER, we run SPECTRA on the subcellular localiza-
tion dataset for the protein localization prediction task from ref. 79, 
a sequence-to-sequence dataset with 13,949 samples, which maps 
protein sequences to one of ten labels that present subcellular loca-
tions. This dataset is a classification task reporting per-label and/or 
class accuracy as a performance metric.
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ProteinGym benchmark datasets. ProteinGym16 is a benchmark con-
sisting of 94 deep MSDs assessing the effect of mutations on measured 
protein properties. From ProteinGym, we run SPECTRA on the amyloid 
beta protein aggregation dataset. This dataset from ref. 80 maps muta-
tions of the amyloid beta peptide that aggregates in Alzheimer’s disease 
to an enrichment score reflecting the ability of the mutated peptide to 
aggregate in a cell-based selection assay. This is a regressive task with 
14,483 sample barcodes. The performance metric is Spearman’s rank 
correlation between predicted and ground truth assay readouts. We 
also run SPECTRA on the RNA recognition motif dataset. This dataset 
from ref. 81 maps mutations in the RNA recognition motif-2 domain of 
the Saccharomyces cerevisiae yeast poly(A)-binding protein (Pab1) to an 
enrichment score. This score is calculated by taking the proportion of 
yeast strains with a specific mutation in an input population before and 
after selection. This is a regressive task with 37,708 sample barcodes. 
The performance metric is Spearman’s rank correlation between pre-
dicted and ground truth enrichment values.

TAPE benchmark dataset. TAPE23 is a benchmark comprising five 
tasks (secondary structure prediction, contact prediction, remote 
homology detection, fluorescence landscape prediction and stabil-
ity landscape prediction). We run SPECTRA on a dataset from ref. 82 
for the remote homology detection task, which maps input protein 
sequences to one of 1,195 different fold classifications. This dataset is 
a sequence-to-sequence dataset with 16,291 samples and is a sequence 
classification task, reporting average accuracy across labels. We also 
run SPECTRA on a secondary structure dataset for the secondary struc-
ture prediction task from ref. 83, a sequence-to-sequence dataset with 
11,411 samples, which maps proteins to one of three classes represent-
ing different secondary structures. This dataset is a classification task 
reporting per-label and/or class accuracy as a performance metric.

PDBBind dataset. The Protein Data Bank (PDB) bind (PDBBind) 
dataset41 is a collection of protein–ligand complexes along with their 
binding affinities. This is a generative task where models generate a 
protein–ligand complex from a protein structure and a ligand SMILES 
structure. The performance metric is the root mean square error 
between the predicted and actual protein–ligand complex34,84. We test 
two splits of the PDBBind dataset, one from ref. 66 with 14,993 protein–
ligand complexes and another from ref. 34 with 16,742 protein–ligand 
complexes. To run SPECTRA, we first download the dataset from Stärk 
et al. from the provided source and gather protein sequences via the 
PDB REST API and use Open Babel85 to convert ligand Mol2 files to SMI 
files containing ligand SMILES structural fingerprint. We use the pro-
cedure outlined in Li et al. to calculate ligand similarity. We use BLAST86 
to calculate sequence similarity and Foldseek87 to calculate structural 
similarity. We then construct a SPG where every node represents a 
protein–ligand pair. Edges are between nodes with proteins more than 
30% similar or ligands more than 99% similar.

Astex diverse dataset. The Astex diverse dataset88 is a collection of 85 
crystallized protein–ligand pairs used to benchmark binding models. 
We download the Astex diverse set from the Cambridge Crystallo-
graphic Data Centre89. To extract ligand smile structures, we use Open 
Babel to convert ligand Mol2 files to SMI files containing ligand smile 
structures. To extract protein sequences, we create a custom Python 
parser to pull protein sequences from protein Mol2 files.

PoseBusters dataset. The PoseBusters dataset65 is a collection of 
428 protein–ligand pairs used to benchmark binding models. It was 
created to uncover model performance when tested on dissimilar 
protein–ligand pairs according to PDBBind. We download the Pose-
Busters dataset, gather protein sequences via the PDB REST API and 
use Open Babel85 to convert ligand Mol2 files to SMI files containing 
ligand SMILES structural fingerprints.

Training models
This section outlines the inputs, architecture and training details of 
the machine learning models used in this study.

Model architectures and inputs. Logistic regression. Logistic regres-
sion architecture and training is based on ref. 90. This model uses 
one-hot encoded vectors to represent samples, where vector positions 
indicate the presence of a specific mutational barcode found in training 
samples. A logistic regression model then fits onto one-hot encoded 
vectors to predict the interest phenotype.

CNN. CNN architecture and training are based on ref. 1. This model uses 
one-hot encoded vectors to represent nucleic acid and amino acid 
sequences where vector positions indicate the presence or absence 
of a base pair or amino acid. The architecture is modified to take in 
unaligned sequences where sequences are padded to the length of the 
longest input sequence.

ESM2. The ESM2 pretrained model is from ref. 12 (650 million param-
eter version) and is used to generate protein embeddings for input 
sequences. We chunk up input sequences longer than 512 amino acids, 
embed each chunk and average the embeddings. If the dataset has 
multiple protein sequences as input, we embed each input protein 
sequence and average before prediction. We convert nucleic acid 
sequences to protein. We tokenize sequences by amino acid iden-
tity before input into ESM2. Once input sequence embeddings are 
obtained, we train a linear probe91, a logistic regression model on input 
embeddings to predict phenotype. To finetune ESM2, we freeze the 
first 30 layers of ESM2 and replace the masked language head with a 
linear layer to predict phenotype. We then train the modified ESM2 to 
predict phenotype.

EVE. EVE architecture is from ref. 32. To construct the multiple 
sequence alignments (MSAs) necessary for EVE, we use Jackhmmr92 
to pull sequences from UniRep100 (ref. 57) similar to the wild-type 
sequence for the GFP protein and resistance binding domain of 
the SARS-CoV-2 spike protein. We then use Muscle to align pulled 
sequences and the codebase from EVCouplings93 and EVE32 to process 
and filter MSAs. We then train EVE with default suggested param-
eters. The input for EVE is the input sequence aligned with pulled 
sequences from UniRep100. EVE then returns a low-dimensional rep-
resentation of the input MSA, which is then used to predict phenotype  
via a linear probe91.

SeqDesign. SeqDesign architecture is from ref. 46. Seqdesign input 
processing is the same as EVE except as input it takes in raw una-
ligned sequences of the input sequence with pulled sequences from 
UniRep100.

GearNet training. GearNet architecture is from ref. 8. The GearNet 
model is a graph neural network that learns protein representations 
from the 3D structure of the protein. We use a pretrained GearNet 
model to generate embeddings using protein structures. Structures 
are generated from protein sequences using ESMFold12. The structures 
are then passed into the pretrained GearNet model to create embed-
dings of size 512. We generate output predictions from the graph-level 
embeddings by training a linear probe91 to predict the phenotype of 
interest. A finetuned GearNet model is trained on each dataset. Both 
pretrained and finetuned Gearnet models are trained and evaluated 
on the GFP and the SARS-CoV-2 datasets.

Training details. We use suggested hyperparameters from source stud-
ies to train all models except otherwise noted. Our objective function 
for models trained on the GFP and SARS-CoV-2 datasets is mean abso-
lute error; for the RIF, INH and PZA datasets, it is binary cross-entropy. 
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All models were trained on one Tesla A10 except ESM2-Finetuned, which 
was trained on four TeslaA100s on an Azure cluster. When applicable, 
we leverage weights and biases94 to select optimal hyperparameters 
via a random search for each model over learning rate. All code is writ-
ten in PyTorch95.

Uncovering spectral properties in molecular datasets
Ultimately, choosing a spectral property should capture domain- 
specific knowledge about the MSPs learned by models during training. 
However, SPECTRA can detect whether there exists an unconsidered 
spectral property. This occurs if large variations exist in model per-
formance in splits generated with the same SP or if there is a positive 
slope in the shape of the SPC (that is, model performance improves with 
decreasing cross-split overlap). In our study, we focus on diff-RRDR to 
explain the variance observed in the SPC of the CNN in the RIF resist-
ance prediction task in M. tuberculosis. To calculate diff-RRDR for a 
train–test split, we identify all positions in each split where a mutation 
occurred in the RRDR of the RNA polymerase beta-subunit (rpoB) 
gene. diff-RRDR is determined by finding the difference between the 
maximum position observed in the train set compared to the test set 
and likewise for the minimum positions, then adding these differences 
together, as shown below:

diff-RRDR = (max(positiontrain) −max(positiontest))

+(min(positiontrain) −min(positiontest))

Using SPECTRA to evaluate biological foundation models
Beyond the cross-split overlap in evaluation datasets, the cross-split 
overlap between pretraining and evaluation datasets influences 
model performance for foundation models. The protein founda-
tion model we evaluated with SPECTRA, ESM2, is pretrained with 
UniRef50 (ref. 57) with more than 60 million clusters of sequences. 
Each cluster in UniRef50 has a representative sequence that is at least 
50% similar to all cluster sequences. To understand what level of simi-
larity between two sequences is significant in UniRef50, we sample 
100,000 random pairs of representative sequences and calculate the 
distribution of average random pairwise similarity (Supplementary 
Fig. 12). Two sequences are similar if the sequence similarity, or the 
proportion of aligned positions in a pairwise alignment, is greater 
than two standard deviations above mean random pairwise similarity 
or a sequence similarity of 0.4.

Calculating the sequence similarity between a sequence of inter-
est and UniRef50 representative sequences is computationally infea-
sible. However, most representative sequences will not be similar to 
an input sequence. By finding clusters with annotations similar to the 
protein encoded by the input sequence, we can select the clusters most 
similar to the input sequences. Once similar clusters are identified, we 
calculate sequence similarity between the input and representative 
sequences of selected clusters and count the number of clusters with 
sequence similarity greater than 0.4. The number of similar clusters 
represents the similarity of the input sequence to UniRef50. For tasks 
with multiple input proteins, we average this number across sequences. 
The names and similarities calculated for all sequences in this study 
can be found in Supplementary Tables 3 and 4.

Data availability
All data used in this study are publicly available. The data used for 
the RIF, INH and PZA datasets can be found in Green et al.1. The data 
used for the GFP dataset come from Sarkisyan et al.45. The data used 
for the SARS-CoV-2 dataset are from Greaney et al.44. All other data-
sets were directly downloaded from their benchmark of origin. All 
data are also available on the project GitHub at https://github.com/
mims-harvard/SPECTRA and on Harvard Dataverse at https://data-
verse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
W5UUNN (ref. 96).

Code availability
The code to reproduce results, along with documentation and usage 
examples, is available on GitHub at https://github.com/mims-harvard/
SPECTRA (ref. 97).
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