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Deep learning has made rapid advances in modelling molecular sequencing
data. Despite achieving high performance on benchmarks, it remains
unclear to what extent deep learning models learn general principles and
generalize to previously unseen sequences. Benchmarks traditionally
interrogate model generalizability by generating metadata- or sequence
similarity-based train and test splits of input data before assessing model
performance. Here we show that this approach mischaracterizes model
generalizability by failing to consider the full spectrum of cross-split
overlap, that s, similarity between train and test splits. We introduce
SPECTRA, the spectral framework for model evaluation. Given amodel and
adataset, SPECTRA plots model performance as a function of decreasing
cross-split overlap and reports the area under this curve as a measure

of generalizability. We use SPECTRA with 18 sequencing datasets and
phenotypes ranging from antibiotic resistance in tuberculosis to protein-
ligand binding and evaluate the generalizability of 19 state-of-the-art deep
learning models, including large language models, graph neural networks,
diffusion models and convolutional neural networks. We show that sequence
similarity- and metadata-based splits provide anincomplete assessment of
model generalizability. Using SPECTRA, we find that as cross-split overlap
decreases, deep learning models consistently show reduced performance,

varying by task and model. Although no model consistently achieved the
highest performance across all tasks, deep learning models can, in some
cases, generalize to previously unseen sequences on specific tasks.
SPECTRA advances our understanding of how foundation models
generalize in biological applications.

Understanding generalizability—how well a machine learning model
performs on unseen data—is a fundamental challenge for the broad
use of computation in biological discovery. In living cells, informa-
tion flows from DNA to RNA to protein and dictates cell phenotypes.
To model phenotypes, deep learning models are trained to predict
biological relationships between and within sequences and the phe-
notype. This approach has been successfully implemented through
abroad array of machine learning models, including convolutional

neural networks (CNNs)'™*, recurrent neural networks®”, graph neural
networks® " and large language models'?'°. However, model evaluation
is challenging because (1) available molecular sequencing data often
capture asmallfraction of all possible sequences*”, and (2) sequences
evolve and acquire new mutations that are not present in existing
datasets. This results in differences in the distribution of sequences
and their aggregate properties between datasets, known as distribu-

tion shifts, that can lead to degradation of model performance'°.
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Although distribution shifts are a well-recognized challengein machine
learning more generally”*, they are less well characterized in biology
duetothelack ofapproachesthat measure model performanceinthe
context of distribution shifts. Although numerous benchmarks have
been developed to assess model performance across datasets'®** ¢,
there are still large gaps between model performance during bench-
marking and real-world use” ' (Fig. 1a). This gap in generalizability
must be addressed before machine learning models can be broadly
used inbiology.

While helpful, the central shortcoming of existing benchmarks
is the approach to model evaluation. Existing methods for model
evaluation split input molecular sequencing datasets into train and
test sets in metadata-based (MB) or similarity-based (SB) splits (Fig. 1c).
MB splits ensure specific metadata properties are not shared across
splits. One example is a temporal split of COVID-19 viral sequences in
whichavaccine escape modelis trained on sequences collected before
a specific time and tested on sequences evolved after that time®>*,
A random split is also an MB split where the metadata property is a
sample identity. SB splits ensure no two samples across splits share
sequence similarity beyond a predefined threshold, with the exact
threshold being problem specific®**°. However, as we show in this
study, MB splits cannot guarantee that high performance on the test
set will transfer to anew molecular sequencing dataset. Thisis because
MB partitioning does not control sequence similarity between data
subsets. Model generalizability can be overestimated when training
sequences are more similar tosequences in the testset thansequences
in a new dataset. In SB splits, sequence similarity can be controlled.
However, the generalizability of the model at similarity thresholds
different from a handful of those tested during model benchmarking
remains unknown, resultinginanincomplete evaluation of the model.
Further, SB splits rely on limited summary metrics such as sequence
distance to quantify similarity between sequences that may not capture
the full range of similarities. This lack of understanding about model
generalizability canlead to severalimportantissues. First, there could
be catastrophic degradation of model performance on new datasets,
which means that predictions made on unseen datamay be highly inac-
curate. Thisinaccuracy can mislead biological research, causing wasted
resources on falseleads or overlooking potential discoveries. Second,
models that perform well on training data but poorly on unseen data
can contribute to overfitting, where the model captures noise rather
thanthe underlying biological processes. This overfitting can severely
limit the applicability of computational tools in new or broader bio-
logical contexts, potentially leading to erroneous conclusions about
biological mechanisms and phenotypes*.

Here we introduce the spectral framework for model evaluation
(SPECTRA), a framework for evaluating generalizability of machine
learning models for molecular sequences. The term spectral here refers
specifically to the evaluation framework and should not be confused
with its use in matrix analysis. Given a model, a molecular sequenc-
ing dataset, and a spectral property definition, SPECTRA generates a
series of train—test splits with decreasing overlap, that is, a spectrum
of train-test splits. SPECTRA then plots the model’s performance as
afunction of cross-split overlap (Fig. 1b,d), generating a spectral per-
formance curve (SPC). We propose the area under this curve (AUSPC)
as a new, more comprehensive metric for model generalizability. As
opposed to MB or SB splits, SPECTRA can incorporate multiple simi-
larity definitions in the spectral property definition, such as sequence
distance and structural similarity of protein sequences. We apply
SPECTRA to 18 molecular sequencing datasets from three prominent
benchmarks (PEER*, ProteinGym', TAPE?®) and find (1) existing SB
and MB splits have large amounts of cross-split overlap, (2) SPECTRA
generates splits with similar levels of cross-split overlap compared to
existing SB and MB splits, and (3) existing SB and MB splits represent
single pointsinthe SPC, leaving the rest of the SPC uncharacterized. To
demonstrate the need to characterize model SPCs, we apply SPECTRA

to 11 state-of-the-art machine learning models, including pretrained
and finetuned large language models, CNNs, graph neural networks,
variational autoencoders and diffusion generative models. None of the
machine learning models tested achieves ahigh AUSPC across all tested
tasks. We show that examining the SPC can help identify unconsidered
spectral properties that influence model generalizability in molecular
sequencing datasets. By applying SPECTRA to pretrained proteinlan-
guage models, we demonstrate how SPECTRA can be used to evaluate
foundation models in biology. SPECTRA is a new paradigm for model
evaluationinits ability to more comprehensively characterize model
generalizability and uncover shortcomings of existing machine learn-
ing models. These capabilities will guide the development of machine
learning models for molecular sequencing data.

Results

Overview of SPECTRA

In contrast to the prevailing approach to machine learning model
evaluationusing MB and SB splits, the spectral framework (SPECTRA)
provides a more comprehensive overview of model performance by
examining a model’s spectral performance curve (SPC) for a given
molecular sequencing dataset. The approach focuses on one or more
characteristics of input molecular sequences or molecular sequence
properties (MSPs) (for example, GC content of a gene). We define a
spectral property as an MSP expected to affect model generalizability
foraspecific task (for example, three-dimensional (3D) protein struc-
ture for protein binding prediction; Methods, ‘PDBBind dataset’). The
definition of the spectral property is task-specific and, together with
the molecular sequence dataset and model, are the only inputs to SPEC-
TRA (Fig.1d, Supplementary Note 5and Supplementary Table 5). First,
SPECTRA compares the spectral property for all pairs of sequences
in the dataset, identifying pairs that share the spectral property.
The procedure is used to construct a spectral property graph (SPG)
from which adaptive train-test splits are generated with decreasing
cross-split overlap or the proportion of samples in the test set that
shareaspectral property with the train. SPECTRA controls cross-split
overlap by ranging an internal spectral parameter (SP) from SP=0
to SP =1for maximal and minimal cross-split overlap, respectively
(Supplementary Note 6). Last, the modelis trained and tested oneach
splitto generate a plot of the model’s performance against the SP, the
model’s SPC, for the molecular sequencing dataset. The area under
the SPC (AUSPC) summarizes model performance across all levels
of cross-split overlap. It can compare model generalizability to other
models within and across tasks.

SPECTRA unifies model evaluation and benchmarking
approaches

We propose that SB and MB splits used in existing machine learning
benchmarksrepresentindividual points onthe SPC and that SPECTRA
provides a more comprehensive view of model generalization than
prevailing dataset splits. To evaluate this proposition, we applied
SPECTRA to six molecular sequencing datasets from two widely used
proteinsequence benchmarks, TAPE? and PEER*, as well as a protein
structural biology benchmark, PDBBind*, and a protein mutational
benchmark, ProteinGym'® (Methods, sections ‘PEER benchmark
datasets’ to ‘PoseBusters dataset’). First, we were interested in what
specific points on the SPC each dataset split in these benchmarks
correspondsto. Specifically, we calculated the cross-split overlapin
the MB and SB splits implemented in these benchmarks and identi-
fied the SP that generates splits with similar cross-split overlap. For
example, our analyses using SPECTRA revealed that the MB family
split from the remote homology dataset in TAPE had a cross-split
overlap of 97% and can be instantiated at SP = 0.025. In another
example, the temporal-based MB split of PDBBind used to train the
Equibind model had a cross-split overlap of 76% and was generated at
SP =0.55 (Fig. 2a)*.
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Fig.1| The spectral framework for model evaluation (SPECTRA). a, Machine
learning models for molecular sequencing data struggle to generalize across
datasets. b, Every train-test split partitions samples based on achosen molecular
sequence property (MSP). Cross-split overlap exists between train and test sets
when samples share MSPs. Shown are two examples of train-test splits. In the
first,samples are split based on their identity, shown by the sample number,
and there is no cross-split overlap as no two samples share identity across the
train and test set. In the second, samples are split based on metadata-based
(MB) attributes with cross-split overlap as two samples share an attribute across
the train and test set. ¢, Traditional approaches for model evaluation create
train-test splits either based on MB attributes (MB split) or sequence similarity
(similarity based or SB split). d, SPECTRA, the spectral framework for model
evaluation, generates train-test splits with a spectrum of cross-split overlap. It
does so by constructing a spectral property graph where nodes are samples and

Deleted edge (1) Deleted node (1)—@ Sequence 1and 3 share a SPECTRA property

edges are between samples that share a spectral property. The spectral property
isaMSP thatinfluences model generalizability. It then iteratively deletes nodes
and edges based on the spectral parameter, an internal parameter that scales
with cross-split overlap, to generate train and test sets. After training and
evaluating aninput model to each generated split, SPECTRA generates a spectral
performance curve (SPC) that plots model test performance versus the spectral
parameter. The SPC shows the gap in generalizability depicted in panelais due
to differing levels of cross-split overlap between splits generated in dataset A
and those of dataset B. The area under the spectral performance curve (AUSPC)
(highlighted in yellow) summarizes model performance across all levels of cross-
splitoverlap and is a new metric for model generalizability. Note that the use of
the word spectral here refers only to the framework for model evaluation and
should not be confused with other uses of the term in matrix analysis.

Wefind thatmodel performance tends to decrease with decreasing
cross-split overlap. The accuracy of long short-term memory (LSTM)*
and CNN* models decreased by 50% between family and superfam-
ily splits in the TAPE benchmark’s remote homology dataset. The
cross-split overlap was lower for the superfamily (71%) compared to
the family split (97%) (Fig. 2b). We observed asimilar patternwhen using
SPECTRAto study models for predicting secondary protein structure

(Fig. 2c) and protein-ligand binding affinity (Fig. 2d). These findings
show that existing molecular benchmarks capture only a few points
onthe SPC, providing amyopic assessment of model generalizability.
Further, the observation that model performance diminishes when
cross-split overlap decreases identifies an overestimation of model
performance by existing benchmarks, which would lead to suboptimal
performance when the models are implemented in the real world.
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Fig.2| Applying SPECTRA to existing molecular sequencing benchmarks.
a, Results of applying SPECTRA on datasets from the PEER, TAPE, ProteinGym
and PDBBind benchmarks. For every dataset, we report the corresponding task
and benchmark, the MSP that was used to split the dataset into train and test,
cross-split overlap and the spectral parameter in SPECTRA that generated a
split with similar levels of cross-split overlap. If a specific name is used to refer
tothesplitinliterature, the name s provided in parentheses. (*Posebusters and
LPPDBind use multiple manually defined quality control criteria to create splits).
b, Left, cross-split overlap as spectral parameter increases in SPECTRA for the
TAPE remote homology benchmark. Labelled are the points on the curve where
the family, superfamily and fold splits have similar levels of cross-split overlap.

Right, a partial SPC for an LSTM*, ResNet’® and DeepSF* model. ¢, Left, cross-
split overlap as spectral parameter increases in SPECTRA for the TAPE secondary
structure benchmark. Labelled are the points on the curve where the CASP12
(ref. 99), TS115 (ref. 100) and CB513 (ref. 101) splits have similar levels of cross-
splitsimilarity. Right, a partial SPC for a Transformer*, LSTM*? and HHblits'*
model. d, Left, cross-split overlap as spectral parameter increases in SPECTRA
for the PDBBind benchmark. Labelled are the points on the curve where the
LPPDBind®, Astex diverse set®, Equibind** and Posebusters® splits have similar
levels of cross-split similarity. Right, a partial SPC for Equibind**, Diffdock®* and
Tankbind'” models.

SPECTRA reveals generalization gaps in molecular ML models
To demonstrate the use of SPECTRA in characterizing the full model
SPC, we evaluate six models in five molecular sequencing datasets.
Specifically, we generate SPECTRA splits for each dataset, train and
test models on each split, generate the SPC and calculate the AUSPC
for each model.

Our data span three diverse problems: antibiotic resistance
in Mycobacterium tuberculosis' (tuberculosis), vaccine escape in
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)**
and fluorescence predictionin the green fluorescent protein (GFP)
of Aequorea victoria®. Antibiotic resistance in tuberculosis is awhole
organism phenotype where inputs are the nucleic acid sequences
of genes and non-coding regions causally linked to resistance
to the specific drug. The output is resistance binary phenotype
determined using a culture-based assay. We consider tuberculosis
resistance to the antibiotics rifampicin (RIF), isoniazid (INH) and
pyrazinamide (PZA). For fluorescence prediction of A. victoria,

we rely on the amino acid sequence of GFP protein and its variants.
Vaccine escape in SARS-CoV-2 maps mutations in the receptor bind-
ing domain (RBD) of the spike protein to a continuous value that rep-
resents antibody escape (Methods, sections ‘Tuberculosis dataset’
to ‘SARS-CoV-2 dataset’).

We evaluated six approaches to modeling phenotype from molec-
ular sequence data. We generated SPCs for alogistic regression model,
aCNN!, a pretrained (GearNet®) and finetuned structure-based graph
neural network (GearNet-Finetuned), a pretrained (Evolutionary Scale
Modelling or ESM2, ref. 12) and a finetuned large language model
(ESM2-Finetuned), a multiple sequence alignment-based generative
model (an evolutionary model of variant effect prediction, EVE*?) and
an alignment-free generative model (SeqDesign*®) (Methods, ‘Train-
ing models’).

As was seen for the protein benchmarks above, all evaluated
models demonstrate a decrease in performance as cross-split overlap
decreases (Fig. 3a). Logistic regression decreases performance from
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Fig.3| Application of SPECTRA to eight machine learning models across five molecular sequencing datasets. a, Test metric change between the spectral
parameter of O (maximum cross-split overlap) and 1 (no cross-split overlap) across all tested models and tasks. b, Average AUSPC across all models and tasks. The y axis

begins at random AUSPC. Error bars in both plots indicate standard deviation.

anareaunder the curve greater than 0.9 for RIF and INH resistance pre-
dictionto 0.5 (RIFAUSPC = 0.86, INHAUSPC = 0.74). ESM2-Finetuned
decreasesin performance for GFP from aSpearman’s rank correlation
greater than 0.9 to oneless than 0.4. Although allmodels demonstrate
decreased performance with decreased cross-split overlap, some mod-
els continue to perform well at minimum cross-split overlap (SP=1).In
RIF and PZA, ESM2, ESM2-Finetuned and CNN maintain areas under the
curvegreater than 0.7 at SP =1 (Fig. 3a). No single model outperforms
others across all tasks by AUSPC (Fig. 3b).

SPECTRA identifies critical spectral properties

Every SPCrepresents a hypothesis that model performance will vary as
afunction of the defined spectral property. Any additional deviation of
model performance from the expected performance under the defined
SPC may indicate the presence of unconsidered spectral properties.
By identifying these spectral properties, we can better understand
what models learn from molecular sequencing datasets and identify
shortcomings of existing models.

CNN model performance demonstrates a high variance across
splits with the same SP, suggesting the presence of an unconsid-
ered spectral property (Fig. 4a). Three splits in RIF at SP = 0.9, 0.95
and 1.0 have an AUROC standard deviation (and total performance
decrease) of 0.09 (26%), 0.10 (31%) and 0.08 (23%), respectively
(Fig. 4a). RIF resistance is caused by missense mutations in an 81 base
pair region of the RNA polymerase beta-subunit (rpoB) gene, the RIF
resistance-determining region (RRDR) (Fig. 4b)*"*5, Models able to
learnthe association of RRDR to resistance most comprehensively will
achieve high test performance. We propose that as SP increases the
genetic distance between observed RRDR mutations in the train and
testincreases. Onsuch splits, models may associate partial regions of
the RRDR toresistance that donot align withRRDR regionsinthetest,
resulting in poor generalizability.

To investigate this hypothesis, we calculated the difference in
the range of positions for RRDR mutations observed in the train and
thetest splits (diff-RRDR) (Fig. 4c). Diff-RRDR explains the variancein

model performance observed at SP = 0.9 (Spearman’s rank correlation
of p=-0.51, P=1.79 x1075, between diff-RRDR and AUROC, Fig. 4d).
We observe similar patterns for the SP =1.0 split and SP = 0.95 split
(Fig. 4d). This correlation is model specific; ESM2 performance expe-
riences no degradation in performance as diff-RRDR increases in the
SP=0.9,0.95 and 1.0 splits (Fig. 4e). ESM2 considers a larger range of
input positions (512) than the CNN (12) when making a prediction. We
expect this to make ESM2 more invariant to increases in diff-RRDR".
Our results improve our understanding of M. tuberculosis resistance
prediction where state-of-the-art performancein this field is currently
achieved by CNN models’. The generalizability of M. tuberculosis resist-
ance prediction models can be improved by potentially considering
longer contexts of DNA sequence. We characterize the differencein the
length of genetic context (diff-RRDR) as aspectral property relevant for
phenotype prediction for proteins where functionally impactful muta-
tions concentrate along the DNA sequence surrounding the active site.

SPECTRA evaluates generalizability of foundation models
Many machine learning models are pretrained on molecular sequencing
datasets and then trained and tested on usually smaller task-specific
datasets notencountered in pretraining'>**°, These foundation models
have the potential to offer better flexibility and adaptability to a wide
range of tasks as they have done in computer vision® and natural lan-
guage processing®>>*, Despite the potential of these models, their gen-
eralizability is unknown as they have rarely been tested prospectively
on non-overlapping datasets*>*°. Current approaches to benchmark
foundation models report the average performance across multiple
task-specific datasets. However, this approach exaggerates foundation
model generalizability by failing to consider cross-split overlap in the
task-specificdatasplitsand theoverlapbetweenthe pretrainingandtask-
specific datasets. Running SPECTRA with foundation models on
task-specific datasets evaluates generalizability by measuring AUS-
PCs. We can then assess the effect of overlap between the pretraining
and task-specific datasets on these AUSPCs to understand foundation
model generalizability.
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deviation of test metric performance across splits generated with the same
spectral parameter for the RIF, PZA, INH, GFP and SARS-CoV-2 datasets across

all tested models. Splits with a high standard deviation could have new spectral
properties. RIF CNN SP =1.0, SPECTRA splits generated for RIF dataset at SP1.0.
b, The RRDR of the rpoB gene in Tuberculosis is a 26 amino acid region strongly

associated with RIF resistance. ¢, Diff-RRDR is a metric that measures the
difference in the minimum and maximum positions of observed RRDR mutations
inthe train and test.d,e, The SPC for CNN (d) and ESM2 (e) in the RIF dataset
(shown left). Test AUROC versus diff-RRDR for CNN (d) and ESM2 (e) in the RIF
dataset (shown right). Highlighted are points representing splits generated ata
spectral parameter of 0.90, 0.95 and 1. All test metrics are averaged across three
independent runs.

To demonstrate this capability of SPECTRA, we investigate the
generalizability of several protein foundation models. From our
previous analysis, the AUSPC of pretrained ESM2 for RIF, PZA, INH,
SARS-CoV-2 and GFP phenotype prediction varied widely from 0.91in
RIF to 0.26 in SARS-CoV-2 (Fig. 3b). We calculated the overlap between
these task-specific datasets and UniRef50, the pretraining dataset used
by ESM2 (ref. 57) (Fig. 5a; Methods, ‘Using SPECTRA to evaluate foun-
dation models in biology’) finding a significant correlation between
this overlap and the AUSPC of ESM2 (Spearman rank correlation 0.9,
P=1.4x107%,Fig. 5a). Finetuning ESM2 on downstream tasks improves
ESM2 AUSPC for PZA, SARS-CoV-2 and GFP phenotypic prediction

(Fig. 3b, ESM2-Finetune). The effect of overlap between pretraining
and task-specific data holds when evaluating protein foundation mod-
els other than ESM2, including Transception, MSATransformer, ESM1v
and Progen on five molecular sequencing datasets in the ProteinGym
benchmark'® (Supplementary Note 3 and Fig. 5b; Spearman rank cor-
relation 0.9, P=0.04).

Discussion

Understanding how well molecular machine learning models
perform on unseen data is a fundamental problem for protein
design®®*’, defence against emerging pathogens®**® and therapeutic
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MSATransformer, ESM1v and Progen2, in five molecular sequencing datasets
from ProteinGym (dataset names in order from left to right: A4D664-9INFA-
Soh-CCL141-2019, AOA140D2T1-ZIKV-Sourisseau-growth-2019, A4-HUMAN-
Seuma-2021, AACC1-PSEAI-Dandage-2018, A4GRB6-PSEAI-Chen-2020). All
correlations shown are significant (P < 0.05).

science®®®*, Increasingly, studies are demonstrating how reported
benchmarking model performance is overly optimistic about model
generalizability**®>*°, We show this generalizability gap between
model performance on benchmarks and external datasets is due to
inadequate assessment of overlap between training, test and exter-
nal datasets. We demonstrate that model performance decreases in
existing benchmarks as cross-split overlap decreases. To address this
challenge, we introduce SPECTRA to evaluate, compare and understand
model generalizability by explicitly controlling cross-split overlap
when constructing train-test splits to generate SPCs and calculate
the AUSPC. We demonstrate that SPECTRA summarizes model test
performance more comprehensively than in previous benchmarks. We
show SPECTRA can help identify new and relevant spectral properties
thatinfluence model generalizability. We also demonstrate SPECTRA’s
ability to be used as a tool to evaluate foundation models in biology.
After applying SPECTRA to four protein foundation models across 11
molecular sequencing datasets, we found that foundation models have
better generalizability in task-specific datasets with greater similarity to
the pretraining dataset. These findings corroborate existing literature,
whichindicates single-cell foundation models struggle to generalize in
task-specific datasets dissimilar from pretraining datasets™.

Existing SB and MB splits are attractive because they are computa-
tionally inexpensive. However, as shownin this paper, the time saved in
computation leads to amischaracterization of model generalizability.
Model evaluation should be seen as a step in model development as
computationally expensive as model training, not an afterthought
to generate a performance metric. The purpose of this study is not
to rank models by their AUSPCs but to demonstrate SPECTRA on
state-of-the-art models. To rank models requires averaging over many
AUSPCs calculated across various tasks in a SPECTRA benchmark for
molecular sequencing data.

Our framework makes urgent the need to define and then refine
MSP benchmarks for generalizability. In the case of M. tuberculosis’
resistance to RIF, previous work has found high AUROC using logistic
regression models, which supported the development of commercial
genotypicassays for RIF resistance prediction. SPECTRA found logistic
regression has high AUROC at SP = 0 (maximal cross-split overlap), but
degradestonear-random performance at SP =1(no cross-split overlap).
This corresponds to the current understanding that resistance toRIF is
encoded by a handful of very common mutations concentrated in the
active siteand alongtail of rare mutations ina more distant proximity
that can be more commonin specific regions of the world. As aresult,
these RIF resistance commercial tests were later recognized to misclas-
sify resistance in large populations of patients in specific geographic
areas®”. SPECTRA could have provided a more realistic understanding
of the sensitivity of these tests and the mutations they are based on

before deployment. This case of M. tuberculosis’ resistance to RIF has
implications for any protein where mutations with a functional effect
on phenotype concentrate along the protein’s length or structure,
including, for example, the concentration of immune escape mutations
inthe SARS-CoV spike RBD.

SPECTRA canbe used with models beyond the molecular sequenc-
ing domain. For example, inmachine learning for smallmolecule thera-
peutics, the chemical structureis the spectral property that separates
moleculesintostructurally dissimilar train—test splits®®. Ininverse pro-
tein folding problems, when models associate the amino acid sequence
that folds into a particular protein structure, the ontological label of
protein folds canbe used as the spectral property®. Future directions
include applying SPECTRA to other molecular sequence modalities
such as RNA sequences, metabolomics or epigenetic sequences and
considering metrics beyond the area under the curve to summarize
the SPC.

Inbiology, there is a general belief that observations made in the
pastcanonly predictsimilar future observations or that models canonly
generalize to sequences similar to previously encountered sequences.
Our results challenge this belief by demonstrating that models can, in
some cases, perform well on sequences with never-before-seen muta-
tions, motifs or sequence identity. Our work identifies MSPs that allow
models to generalize in these scenarios, such as sequence similarity
to a pretraining set. The SPECTRA framework for model evaluation
represents anew frontier, generating arobust understanding of model
performance beyond a metric ona MB or SB split.

Methods

This section describes the details for (1) the SPECTRA framework, (2)
the curation of all molecular sequencing datasets used in this study,
(3) model architecture and training and (4) characterizing distribution
shiftsin molecular sequencing datasets.

The SPECTRA framework for model evaluation

Foraninput molecular sequencing dataset and model, SPECTRA con-
sists of three steps: (1) spectral property definition, (2) spectral prop-
erty graph (SPG) constructionand split generationand (3) model SPC
generation.

Defining spectral properties. An MSP is a property thatis either given
or calculatedinherent to amolecular sequence. Spectral properties are
MSPs that influence model generalizability. Spectral properties are task
and dataspecific: what may be aspectral property for one datatype and
taskis not one in another data modality and task. For example, for pre-
dicting DNA binding motifs, the number of adenines in aninputnucleic
acid sequence is an MSP but not a spectral property. For secondary
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structure prediction, the 3D structure of an amino acid sequence is an
MSP, which is also an spectral property because the structural motifs
presentinatrainset versusatestset willinfluence modelgeneralizability.

The choice of how to define spectral properties is dataset and
problem specific. The datasets used in this study can be divided into
two categories: (1) mutational scan datasets (MSDs), which comprise
asingle set of sequences with different mutations and their effect on
phenotype and (2) sequence-to-sequence datasets, which comprise
different sequences and their properties.

Insequence-to-sequence datasets, the spectral property of inter-
est is sequence identity. To calculate whether two sequences share
sequence identity, we perform a pairwise alignment between input
sequences and calculate the proportion of aligned positions to the
length of the pairwise alignment. If this proportionis greater than 0.3,
then the two sequences share this spectral property’. We use Biopy-
thon”' to align with amatch score of 1, amismatch score of -2 and agap
score of -2.5. We used heuristics to define the comparator for larger
datasets when exhaustive pairwise comparison of all sequences was
not computationally feasible (Methods, ‘Using SPECTRA to evaluate
foundation models in biology’). In MSDs, phenotypically meaningful
differencesarein the scale of single mutations. Thus, using the defini-
tion of the spectral property from sequence-to-sequence datasets
would underestimate differences between samples. To address this,
we represent samples in MSDs by their sample barcode or a string
representation of the mutations present in the sample. The spectral
property of a sample is its sample barcode. Two samples share this
property if their sample barcodes share at least one mutation.

Constructing SPECTRA property graphs and splits. After the spectral
property is defined, a SPG is constructed where nodes are samples in
theinput dataset, and edges are between samples that share aspectral
property (Supplementary Figs.1and 2). Findinga split such that notwo
samples share a spectral property is the same as finding the maximal
independent set of the SPG or the maximum set of vertices such that
notwo nodes share an edge’. Finding the maximalindependent setis
NP-Hard”, we approximate it viaagreedy randomalgorithm where we
(1) randomly order SPG vertices, (2) choose the first vertex and remove
allneighbours and (3) continue untilno verticesremainin the graph. To
create an overlap in generated splits, we introduce the SP to the algo-
rithm. Instead of deleting every neighbour, we delete each neighbour
with a probability equal to the SP. If the SP is 1, we approximate the
maximalindependentset;ifitis O, we performarandom split. Givena
set of nodes returned by the independent set algorithm, we produce
an80-20 train-test split. Sample SPGs can be found in Supplementary
Figs.1and 2, and statistics for all generated SPGs can be found in Sup-
plementary Table 2.

This procedure is complicated in MSDs where sample barcodes
map to multiple samples (thatis,in MSDs where the number of unique
sample barcodes is not equal to the number of samples). As aresult, if
split generation does not consider the number of samples, splits can
be generated with a small or uneven distribution of samples (that is,
atrain set with 100 samples and a test set with 10,000 samples). To
address this, we applied two changes: (1) weighing nodes in the SPG by
the number of samples represented by the sample barcode and biased
thealgorithmto choose these nodes, and (2) when splitting the nodes
into train-test splits, we ranasubset sumalgorithmto ensure trainand
test splits had 80 and 20% of samples, respectively (Supplementary
Note1). Statistics for all generated SPECTRA splits canbe found in the
supplement (Supplementary Figs. 5and 6).

Generating SPCs. To generate aSPC, we create splits with SPs between
0and1in0.05increments. For each SP, we generate three splits with
different random seeds. We then train and test models on generated
splits and plot model test performance versus SP. The area under
this curve is the AUSPC. We provide SPCs and AUSPCs for all relevant

models in the GFP, SARS-CoV-2, RIF, PZA and INH datasets (Supple-
mentary Figs. 7-11).

Datasets
This section outlines the datasets and processing performed for this
study.

Tuberculosis dataset. Tuberculosis sequencing and antimicrobial
screening data come from ref. 1. Paired-end reads are trimmed with
trimmomatic’, assembled using Spades™ into contigs, and aligned to
reference tuberculosis reference genome H37Rv via minimap?2 (ref. 76).
Alltuberculosis datasets used in this study are MSDs. To generate sam-
ple barcodes for input tuberculosisisolates, we use Pilon”’ to generate
VCEF files. Beftools’ is then used to pull all variants identified in the
regions of interest for a particular drug (Supplementary Table1). From
the output of Bcftools, each variant is summarized as amutational bar-
codeorastringrepresentation of the position and nucleicacid change
that defines the mutation. Eachisolate is then summarized with asam-
plebarcode or a concatenation of the mutational barcodes presentin
theisolate. We collect nucleic acid sequences from the contigs mapped
totheregions ofinterest (Supplementary Note 2). For the RIF resistance
prediction task, we have 17,474 M. tuberculosis clinical isolates where
4,963 are resistant and 12,511 are susceptible. There are 3,998 unique
samplebarcodesand 2,066 unique mutational barcodes. For PZA, there
arel2,146isolates, where 2,166 areresistantand 9,980 are susceptible.
There are 2,571 unique sample barcodes and 2,742 unique mutational
barcodes. For INH, there are 26,574 isolates, where 10,580 are resistant
and 15,994 susceptible. There are 4,952 unique sample barcodes and
4,455 unique mutational barcodes.

GFP dataset. GFP dataset is an MSD where amino acid sequences,
sample barcodes and phenotypes are obtained fromref. 45. The data-
set maps amino acid sequences of the GFP of the A. victoria jellyfish
to a value representing the fluorescence of the GFP protein. This is a
regressive task where fluorescence values are log-transformed and
min-max normalized. GFP has 54,024 samples with 54,024 unique
sample barcodes and 1,880 unique mutation barcodes (Supplemen-
tary Fig. 3). The performance metric is Spearman’s rank correlation
between predicted and experimentally measured fluorescence values.

SARS-CoV-2 dataset. SARS-CoV-2 dataset isan MSD where amino acid
sequences, sample barcodes and phenotypes are obtained fromref. 44.
The dataset maps mutations of the amino acid sequences for the RBD
ofthe SARS-CoV-2 spike protein to a value representing vaccine escape.
This phenotype is measured by exposing an RBD sequence to a series
of humanantibodies and reporting the proportion of RBD sequences
boundby each antibody. The higher the proportion, the less the muta-
tioninthe RBD domainis associated with vaccine escape. We take the
smallest bound proportion for each mutated sequence to generate
labels, log-transform and min-max normalize the values. This is a
regressive task with 438,046 samples with 22,341 unique sample bar-
codes and 2,391 unique mutationbarcodes (Supplementary Fig.4). The
performance metricis Spearman’s rank correlationbetween predicted
and ground truth escape values.

PEER benchmark datasets. PEER* is a benchmark consisting of
17 tasks spanning five task categories (protein function prediction,
protein localization prediction, protein structure prediction, pro-
tein—-protein interaction prediction and protein-ligand interaction
prediction). From PEER, we run SPECTRA on the subcellular localiza-
tion dataset for the protein localization prediction task from ref. 79,
a sequence-to-sequence dataset with 13,949 samples, which maps
protein sequences to one of ten labels that present subcellular loca-
tions. This dataset is a classification task reporting per-label and/or
class accuracy as a performance metric.
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ProteinGym benchmark datasets. ProteinGym'®is abenchmark con-
sisting of 94 deep MSDs assessing the effect of mutations on measured
protein properties. From ProteinGym, we run SPECTRA on the amyloid
beta protein aggregation dataset. This dataset fromref. 80 maps muta-
tions of theamyloid beta peptide that aggregatesin Alzheimer’s disease
toanenrichmentscore reflecting the ability of the mutated peptide to
aggregate ina cell-based selection assay. This is a regressive task with
14,483 sample barcodes. The performance metric is Spearman’s rank
correlation between predicted and ground truth assay readouts. We
also run SPECTRA on the RNA recognition motif dataset. This dataset
from ref. 81 maps mutations in the RNA recognition motif-2 domain of
the Saccharomyces cerevisiae yeast poly(A)-binding protein (Pabl) toan
enrichmentscore. Thisscoreis calculated by taking the proportion of
yeast strains with a specific mutationinaninput population before and
after selection. This is aregressive task with 37,708 sample barcodes.
The performance metricis Spearman’s rank correlation between pre-
dicted and ground truth enrichment values.

TAPE benchmark dataset. TAPE* is a benchmark comprising five
tasks (secondary structure prediction, contact prediction, remote
homology detection, fluorescence landscape prediction and stabil-
ity landscape prediction). We run SPECTRA on a dataset from ref. 82
for the remote homology detection task, which maps input protein
sequences to one of 1,195 different fold classifications. This dataset is
asequence-to-sequence dataset with16,291 samples and isasequence
classification task, reporting average accuracy across labels. We also
runSPECTRA onasecondary structure dataset for the secondary struc-
ture predictiontask fromref. 83, asequence-to-sequence dataset with
11,411samples, which maps proteins to one of three classes represent-
ing different secondary structures. This dataset is a classification task
reporting per-label and/or class accuracy as a performance metric.

PDBBind dataset. The Protein Data Bank (PDB) bind (PDBBind)
dataset" is a collection of protein-ligand complexes along with their
binding affinities. This is a generative task where models generate a
protein-ligand complex from aprotein structure and aligand SMILES
structure. The performance metric is the root mean square error
between the predicted and actual protein-ligand complex®***, We test
two splits of the PDBBind dataset, one fromref. 66 with 14,993 protein—
ligand complexes and another from ref. 34 with 16,742 protein-ligand
complexes. Torun SPECTRA, we first download the dataset from Stark
et al. from the provided source and gather protein sequences via the
PDB REST APl and use Open Babel® to convert ligand Mol2 files to SMI
files containing ligand SMILES structural fingerprint. We use the pro-
cedureoutlinedinLietal. to calculate ligand similarity. We use BLAST®®
to calculate sequence similarity and Foldseek® to calculate structural
similarity. We then construct a SPG where every node represents a
protein-ligand pair. Edges are between nodes with proteins more than
30% similar or ligands more than 99% similar.

Astex diverse dataset. The Astex diverse dataset®® is a collection of 85
crystallized protein-ligand pairs used to benchmark binding models.
We download the Astex diverse set from the Cambridge Crystallo-
graphic Data Centre®, To extract ligand smile structures, we use Open
Babel to convert ligand Mol2 files to SMI files containing ligand smile
structures. To extract protein sequences, we create a custom Python
parser to pull protein sequences from protein Mol2 files.

PoseBusters dataset. The PoseBusters dataset® is a collection of
428 protein-ligand pairs used to benchmark binding models. It was
created to uncover model performance when tested on dissimilar
protein-ligand pairs according to PDBBind. We download the Pose-
Busters dataset, gather protein sequences via the PDB REST APl and
use Open Babel® to convert ligand Mol2 files to SMI files containing
ligand SMILES structural fingerprints.

Training models
This section outlines the inputs, architecture and training details of
the machine learning models used in this study.

Model architectures and inputs. Logistic regression. Logistic regres-
sion architecture and training is based on ref. 90. This model uses
one-hotencoded vectors to represent samples, where vector positions
indicate the presence of aspecific mutational barcode foundintraining
samples. A logistic regression model then fits onto one-hot encoded
vectors to predict the interest phenotype.

CNN.CNN architecture and training are based onref. 1. Thismodel uses
one-hot encoded vectors to represent nucleic acid and amino acid
sequences where vector positions indicate the presence or absence
of a base pair or amino acid. The architecture is modified to take in
unaligned sequences where sequences are padded to the length of the
longest input sequence.

ESM2. The ESM2 pretrained model is from ref. 12 (650 million param-
eter version) and is used to generate protein embeddings for input
sequences. We chunk up input sequences longer than 512 amino acids,
embed each chunk and average the embeddings. If the dataset has
multiple protein sequences as input, we embed each input protein
sequence and average before prediction. We convert nucleic acid
sequences to protein. We tokenize sequences by amino acid iden-
tity before input into ESM2. Once input sequence embeddings are
obtained, we trainalinear probe”, alogistic regression model oninput
embeddings to predict phenotype. To finetune ESM2, we freeze the
first 30 layers of ESM2 and replace the masked language head with a
linear layer to predict phenotype. We then train the modified ESM2 to
predict phenotype.

EVE. EVE architecture is from ref. 32. To construct the multiple
sequence alignments (MSAs) necessary for EVE, we use Jackhmmr®?
to pull sequences from UniRep100 (ref. 57) similar to the wild-type
sequence for the GFP protein and resistance binding domain of
the SARS-CoV-2 spike protein. We then use Muscle to align pulled
sequences and the codebase from EVCouplings® and EVE* to process
and filter MSAs. We then train EVE with default suggested param-
eters. The input for EVE is the input sequence aligned with pulled
sequences from UniRep100. EVE then returns alow-dimensional rep-
resentation of theinput MSA, whichis then used to predict phenotype
viaalinear probe®.

SegDesign. SeqDesign architecture is from ref. 46. Seqdesign input
processing is the same as EVE except as input it takes in raw una-
ligned sequences of the input sequence with pulled sequences from
UniRepl100.

GearNet training. GearNet architecture is from ref. 8. The GearNet
model is a graph neural network that learns protein representations
from the 3D structure of the protein. We use a pretrained GearNet
model to generate embeddings using protein structures. Structures
are generated from protein sequences using ESMFold™. The structures
are then passed into the pretrained GearNet model to create embed-
dings of size 512. We generate output predictions from the graph-level
embeddings by training a linear probe” to predict the phenotype of
interest. A finetuned GearNet model is trained on each dataset. Both
pretrained and finetuned Gearnet models are trained and evaluated
onthe GFP and the SARS-CoV-2 datasets.

Training details. We use suggested hyperparameters from source stud-
iestotrain allmodels except otherwise noted. Our objective function
for models trained on the GFP and SARS-CoV-2 datasets is mean abso-
luteerror; for the RIF, INH and PZA datasets, it is binary cross-entropy.
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Allmodels were trained on one TeslaA10 except ESM2-Finetuned, which
wastrained on four TeslaA100s on an Azure cluster. When applicable,
we leverage weights and biases’ to select optimal hyperparameters
viaarandomsearch foreachmodel over learning rate. All code is writ-
tenin PyTorch®.

Uncovering spectral properties in molecular datasets
Ultimately, choosing a spectral property should capture domain-
specificknowledge about the MSPs learned by models during training.
However, SPECTRA can detect whether there exists an unconsidered
spectral property. This occurs if large variations exist in model per-
formance in splits generated with the same SP or if there is a positive
slopeintheshape ofthe SPC (thatis, model performanceimproves with
decreasing cross-split overlap). In our study, we focus on diff-RRDR to
explain the variance observed in the SPC of the CNN in the RIF resist-
ance prediction task in M. tuberculosis. To calculate diff-RRDR for a
train-test split, we identify all positions in each split where amutation
occurred in the RRDR of the RNA polymerase beta-subunit (rpoB)
gene. diff-RRDR is determined by finding the difference between the
maximum position observed in the train set compared to the test set
and likewise for the minimum positions, then adding these differences
together, as shown below:

diff-RRDR = (max(position,,;.) — max(position,.))

+(min(position,,;,) — min(position ., ))

Using SPECTRA to evaluate biological foundation models
Beyond the cross-split overlap in evaluation datasets, the cross-split
overlap between pretraining and evaluation datasets influences
model performance for foundation models. The protein founda-
tion model we evaluated with SPECTRA, ESM2, is pretrained with
UniRef50 (ref. 57) with more than 60 million clusters of sequences.
Eachclusterin UniRef50 has arepresentative sequence thatis at least
50% similar to all cluster sequences. To understand what level of simi-
larity between two sequences is significant in UniRef50, we sample
100,000 random pairs of representative sequences and calculate the
distribution of average random pairwise similarity (Supplementary
Fig.12). Two sequences are similar if the sequence similarity, or the
proportion of aligned positions in a pairwise alignment, is greater
thantwo standard deviations above mean random pairwise similarity
orasequence similarity of 0.4.

Calculating the sequence similarity between asequence of inter-
est and UniRef50 representative sequences is computationally infea-
sible. However, most representative sequences will not be similar to
aninput sequence. By finding clusters with annotations similar to the
proteinencoded by theinput sequence, we canselect the clusters most
similar to the input sequences. Once similar clusters areidentified, we
calculate sequence similarity between the input and representative
sequences of selected clusters and count the number of clusters with
sequence similarity greater than 0.4. The number of similar clusters
represents the similarity of the input sequence to UniRef50. For tasks
with multiple input proteins, we average thisnumber across sequences.
The names and similarities calculated for all sequences in this study
canbe found in Supplementary Tables 3 and 4.

Data availability

All data used in this study are publicly available. The data used for
the RIF, INH and PZA datasets can be found in Green et al.". The data
used for the GFP dataset come from Sarkisyan et al.*’. The dataused
for the SARS-CoV-2 dataset are from Greaney et al.**. All other data-
sets were directly downloaded from their benchmark of origin. All
dataarealso available on the project GitHub at https://github.com/
mims-harvard/SPECTRA and on Harvard Dataverse at https://data-
verse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/
WSUUNN (ref. 96).

Code availability

The code to reproduce results, along with documentation and usage
examples, isavailable on GitHub at https://github.com/mims-harvard/
SPECTRA (ref. 97).
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