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Designing protein-binding proteins is critical for drug discovery. However,
artificial-intelligence-based design of such proteins is challenging

dueto the complexity of protein-ligand interactions, the flexibility of
ligand molecules and amino acid side chains, and sequence-structure
dependencies. We introduce PocketGen, a deep generative model that
produces residue sequence and atomic structure of the protein regions
inwhichligand interactions occur. PocketGen promotes consistency
between protein sequence and structure by using a graph transformer for
structural encoding and a sequence refinement module based on a protein
language model. The graph transformer captures interactions at multiple
scales, including atom, residue and ligand levels. For sequence refinement,
PocketGenintegrates a structural adapter into the protein language model,
ensuring that structure-based predictions align with sequence-based
predictions. PocketGen can generate high-fidelity protein pockets with
enhanced binding affinity and structural validity. It operates ten times faster
than physics-based methods and achieves a 97% success rate, defined as the
percentage of generated pockets with higher binding affinity than reference
pockets. Additionally, it attains an amino acid recovery rate exceeding 63%.

Modulation of protein functions often involves modelling the interac-
tions between proteins and small-molecule ligands'™*. These interac-
tions are central to biological processes such as enzymatic catalysis,
signal transduction and cellular regulation. Binding small molecules
to specific protein sites caninduce conformational changes, modulate
protein activity and alter existing or produce new functional proper-
ties. Thismechanismis invaluable for designing proteins with tailored
small-molecule binders. Applications range from engineering enzymes
and catalyse reactions in the absence of natural catalysts®® to creating
biosensors for detecting environmental compounds. Such biosensors
are critical for environmental monitoring, clinical diagnostics, patho-
gendetection, drug delivery systems and food industry applications’ 2.
Typically, designs involve modifying existing ligand-binding pockets
to enable more specificinteractions with target ligands” ™. Neverthe-
less, challenges persist in computationally generating high-validity

ligand-binding protein pockets due to the complexity of protein-ligand
interactions, the flexibility of ligands and amino acid side chains, and
the dependencies between sequence and structure>°,

Methods for pocket design have traditionally relied on physics-
based modelling or template matching'*""*'®_ For example, Pock-
etOptimizer®?° uses a pipeline that predicts mutations in protein
pockets to enhance binding affinity, based on physics-based energy
functions and search algorithms. Starting with abound protein-ligand
complex, PocketOptimizer explores possible side-chain structures and
residue types, evaluating these mutations with energy functions and
ranking them using integer linear programming techniques. Another
widely used approach involves template matching and enumeration
methods™"**"”?' Forinstance, atwo-step strategy™ has been used for
pocket design. First, they identify and assemble disconnected protein
motifs (van der Mer structural units) around the target molecule to
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Fig.1| Overview of PocketGen generative model for the design of full-atom
ligand-binding protein pockets. a, Conditioned on the binding ligand molecule
and the remaining part of the protein except the pocket region (that is, scaffold),
PocketGen aims to generate the full-atom pocket structure (backbone and
side-chainatoms) and the residue-type sequence with iterative equivariant
refinement. The ligand structure is also adjusted during protein pocket
refinement. b, Bilevel graph transformer is leveraged in PocketGen for all-atom

structural encoding and update. Bilevel attention captures both residue/ligand
and atom-level interactions. Both protein pocket structure and ligand molecule
structure are updated in the refinement. ¢, Sequence refinement module adds
lightweight structural adapter layers into pLMs for sequence prediction. Only
the adapter’s parameters are fine-tuned during training, and the other layers are
fixed. In the adapter, cross-attention between sequence and structure features is
performed to achieve sequence-structure consistency.

form protein-ligand hydrogen bonds. Then, they graft these residues
onto a protein scaffold and select the optimal protein-ligand pairs
using scoring functions. This template-matching strategy enabled
the de novo design of proteins binding the drug apixaban (APX)*.
However, physics-based and template-matching methods can be
time-consuming, often requiring several hours to design asingle pro-
tein pocket. Furthermore, the focus on specific fold types, such as
four-helix bundles® or NTF2 folds', canlimit the broader applicability
of these methods.

Recent advances in protein pocket design have been propelled
by deep-learning-based approaches**'“**% For instance, RFdiffu-
sion’® leverages denoising diffusion probabilistic models” alongside
RoseTTAFold* for de novo protein structure generation. Although it
can design pockets for specific ligands, RFdiffusion lacks precision
in modelling protein-ligand interactions due to its auxiliary guiding
potentials. To address this limitation, RFdiffusion All-Atom (RFAA)*®
extends the approach by enabling the direct generation of binding
proteins around small molecules through iterative denoising. This
isachieved through architectural modifications that simultaneously
consider both protein structures and ligand molecules. However,
in both RFdiffusion and RFAA, residue sequences are derived in

post-processing using ProteinMPNN® or LigandMPNN?*°, which can
resultininconsistencies betweenthe sequence and structure modali-
ties. In contrast, full-atomiterative refinement (FAIR)* simultaneously
designs the atomic pocket structure and the corresponding sequence
using atwo-stage refinement approach. FAIR employs a coarse-to-fine
method, initially refining the backbone protein structure and subse-
quently refining the atomic structure, including the side chains. This
iterative process continues until convergence is reached. However,
the gap between these two refinement stages canintroduce instability
and limit performance, underscoring the need for an end-to-end gen-
erative approachto pocket design. Related research has explored the
co-designof sequence and structure in complementarity-determining
regions of antibodies® *. Although these methods are effective for
antibody design, they encounter difficulties when applied to pocket
designs conditioned on the target ligand molecules.

Hybrid approaches that combine deep learning models with tra-
ditional methods are also being actively explored®. For example,
aluciferase® was developed by integrating protein hallucination®,
trRosetta structure prediction neural network®, hydrogen-bonding
networks and RifDock’®. This combination generated arange of ideal-
ized protein structures with diverse pocket shapes for subsequent
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filtering. Although successful, this approach applies only to specific
protein scaffolds and substrates and lacks a generalized solution.
Similarly, deep learning was merged with physics-based methods’ to
design proteinsfeaturing diverse and customizable pocket geometries.
Their method utilizes backbone generation via trRosetta hallucina-
tion, sequence design through ProteinMPNN? and LigandMPNN?*°,
and filtering with AlphaFold*. Despite the advances made, pocket
generation models continue to face challenges, such as achieving
sequence-structure consistency and accurately modelling complex
protein-ligand interactions.

Here weintroduce PocketGen, adeep generative method designed
for the efficient generation of protein pockets. PocketGen employs a
co-design scheme (Fig. 1a) in which the model predicts both sequence
and structure of the protein pocket based on the ligand molecule and
the surrounding protein scaffold (excluding the pocket itself). The
architecture of PocketGenis composed of two key modules: the bilevel
graph transformer (Fig. 1b) and the sequence refinement module
(Fig. 1c). PocketGen represents the protein-ligand complex as a geo-
metricgraph ofblocks, allowing it to handle varying numbers of atoms
across residues and ligands. Initialized pocket residues are assigned
the maximum possible number of atoms (14 atoms) to accommodate
this variability, and these atoms are mapped back to specific residue
types during the generation process.

Thegraph transformer module uses a bilevel attention mechanism
to captureinteractions at multiple granularities—bothat theatomand
residue/ligand levels—and across various aspects, including intrapro-
tein and protein-ligand interactions. To account for the redesigned
pocket’sinfluence ontheligand, theligand structureisupdated during
therefinement processto reflect potential changes inthe binding pose.
To ensure consistency between the protein sequence and structure
domains and to incorporate evolutionary information encoded in
protein language models (pLMs)*>*, PocketGen integrates a struc-
tural adapter into the sequence update process. This adapter enables
cross-attention between the sequence and structure features, ensuring
sequence-structure alignment. Only the adapter is fine-tuned during
training, whereas the remaininglayers of the pLM remain unchanged.
PocketGen outperforms methods for protein pocket generation on
two benchmarks. Itachieves an average amino acid recovery rate (AAR)
of 63.40% and a Vina score of -9.655 for the top-1-ranked generated
protein pockets on the CrossDocked dataset. Comprehensive analyses
show that PocketGen cangenerate diverse, high-affinity protein pock-
ets for functional molecules, highlighting its potential for informing
the design of small-molecule binders.

Results

Benchmarking generated protein pockets

We benchmark PocketGen on two datasets. The CrossDocked dataset*
consists of protein-molecule pairs generated through cross-docking
and is divided into training, validation and test sets based on a 30%
sequence identity threshold. The Binding MOAD dataset*’ contains
experimentally determined protein-ligand complexes, which are
splitinto training, validation and test sets according to the proteins’
enzyme commission numbers**. In line with intermolecular distance
scales relevant to protein-ligand interactions®, our default experi-
mental setup includes all the residues with atoms within 3.5 A of any
ligand-binding atoms, averaging about eight residues per pocket. We
alsoexplore PocketGen’s ability to design larger pockets with aradius
of 5.5 A, incorporating more residues (Fig. 3¢c).

We use three groups of metrics to evaluate the quality of protein
pockets generated by PocketGen. First, we assess the affinity between
the generated pocket and the target ligand molecule using the Auto-
Dock Vina score*®, MM-GBSA* and min-in-place GlideSP score*s. Sec-
ond, we evaluate the structural validity of the generated pockets using
self-consistent root mean squared deviation (scRMSD), self-consistent
template modelling score (scTM) and predicted local-distance

difference test (pLDDT). The amino acid sequence for the protein
pocketstructure is derived using ProteinMPNN”, and the pocket struc-
tureis predicted using ESMFold* or AlphaFold 2 (ref. 39). The scRMSD
is calculated between the generated structure’s backbone atoms and
the predicted structure. Following an established strategy>®*, eight
sequences are predicted for each generated proteinstructure, and the
sequence with the lowest scRMSD is used for reporting. Similarly, scTM
is calculated by comparing the template modelling score® between
the predicted and generated structures. Scores range from O to1,
with higher values indicating greater designability. We also report
the AscTM score to assess whether the generated pocket improves
or degrades the scTM score of the initial protein. The pLDDT score®
reflects the confidence in structural predictions on a scale from O to
100, with higher scores indicating greater confidence. The average
pLDDT score across pocket residues is reported. A generated protein
pocket is defined as designable if the overall structure’s sCRMSD is
less than 2 A and the pocket’s scRMSD is less than 1 A (refs. 26,53,54).
Supplementary Table 1 presents the percentage of designable gener-
ated pockets, and Supplementary Fig. 1 describes how these metrics
are calculated. Finally, we report the AAR as the percentage of cor-
rectly predicted pocket residue types, which reflects the accuracy of
the designed sequence. A higher AAR indicates better modelling of
sequence-structure dependencies.

We compare PocketGen against six methods, including deep-
learning-based approaches such as RFdiffusion®, RFAA', FAIR* and
dynamic multichannel equivariant graph network (dyMEAN)?, as
well as a template-matching method called Design Pocket as a Clus-
ter based on Templates (DEPACT)" and a physics-based modelling
method called PocketOpt*® (Methods). In Fig. 2 and Supplementary
Table1, PocketGen and the other methods are tasked with generating
100 sequences and structures for each protein-ligand complexin the
test sets of the CrossDocked and Binding MOAD datasets. PocketOpt
isexcluded from this comparison due toits focus on mutating existing
pockets for optimization, making it too time-consuming to generate
many protein pockets. Supplementary Table 1 presents the mean and
standard deviation of the results across three independent runs with
differentrandom seeds. InFig. 2, we apply bootstrappingto the gener-
atedresults, illustrating the distributions to demonstrate the sensitivity
of the results to the dataset composition®. As shown in Supplementary
Table1and Supplementary Fig. 2, PocketGen outperforms all the base-
lines, including RFdiffusion and RFAA, in terms of designability (by
3% and 2% on CrossDocked, respectively) and Vina scores (by 0.199
and 0.123 on CrossDocked, respectively). This performance indicates
PocketGen'’s effectiveness in generating structurally valid pockets
with high binding affinities, a result attributed to PocketGen’s ability
to captureinteractions at multiple granularities—both atom level and
residue/ligand level—and across various aspectsincludingintraprotein
and protein-ligand interactions.

PocketGen substantially outperforms the best-performingalter-
native method, RFAA, with anaverage improvement of 13.95% in AAR,
largely due to the inclusion of the pLM that captures evolutionary
sequence information. In contrast, RFdiffusion and RFAA rely on
post-processing to determine the amino acid types, which can lead
to inconsistencies between sequence and structure and lower per-
formance in AAR. In protein engineering, the common practice is to
mutate several key residues to optimize properties and keeping most
residues unchanged to preserve protein-folding stability*®”. The high
AARachieved by the generated protein pockets with PocketGen aligns
well with this practice, supporting its utility for stable and effective
protein design.

InTablel,thetop1,3,5and10 protein pockets generated by Pock-
etGen (ranked by Vinascore) consistently show the lowest Vinascores,
achieving anaverage reduction of 0.476 compared with RFAA. In addi-
tionto Vinascores, two other affinity metrics—MM-GBSA and GlideSP
scores—further validate PocketGen’s ability to generate higher-affinity
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Fig. 2| Benchmarking PocketGen on CrossDocked and Binding MOAD
datasets. a, AAR (Pvalues, 3.8 x10®and 1.5 x 10 '°). b, Vina score performance
(Pvalues, 6.1 x107>and 6.7 x 107). ¢, Designability scores using ESMFold
structure prediction method (Pvalues, 6.0 x 10™*and 2.5 x 107?). d, Designability
scores using AlphaFold 2 structure prediction method (Pvalues, 4.4 x 10 and
4.4 x107%). Uncertainty is quantified via bootstrapping, two-sided Kolmogorov-
Smirnov testis used to compare PocketGen with the best-performing existing
model (RFAA). P-value annotation legend: *p € [0, 0.1, 0.05], **p € [0.001, 0.01],
**p €[0.0001, 0.001], ***p < 0.0001. The sample size in the plots is 10 for each

RFAA M PocketGen

b
CrossDocked Binding MOAD
66 741
_67 |y
0 68t e 78 %
s 0 ; L er -
= -70}
-8.0 é
-7k
-72} 82
d
0.82 ¢ CrossDocked 0821 Binding MOAD
*% *%
0.80 | 0.80 |
g 078} ; 078} -
‘5 0.76 | % 0.76
T 074} — 0.74 - E
@
€ onl o2} -
8 oot = 070 %
0.68 % 0.68 %
0.66 L 0.66 |-

model. Inall the box plots, the minimum is the smallest value within the dataset,
marked at the end of the lower whisker. The first quartile (Q1), or 25th percentile,
forms the lower edge of the box. The median (50th percentile) is represented by
alineinside the box, indicating the midpoint of the data. The third quartile (Q3),
or 75th percentile, forms the upper edge of the box. The maximum is the largest
value within the dataset, marked at the end of the upper whisker. The whiskers
extend to the smallest and largest values within 1.5 times the interquartile range
(IQR).

pockets, with reductions of 4.287 in MM-GBSA and 0.376 in GlideSP
scores. PocketGen demonstrates competitive performance in pLDDT,
scRMSD and AscTM scores, underscoring its capability to produce
high-affinity pockets and maintain structural validity and sequence-
structure consistency. With a 97% success rate in generating pockets
with higher affinity than the reference cases (compared with a 93%
success rate for the strongest baseline, RFAA) on the CrossDocked
dataset, PocketGen proves its effectiveness and applicability across
diverse ligand molecules.

Toassess substructure validity and consistency with the reference
datasets, we conduct a qualitative substructure analysis (Supplemen-
tary Table 4 and Supplementary Fig. 2). This analysis focuses on three
covalent bonds in the residue backbone (C-N, C=0 and C-C), three
dihedral angles in the backbone (¢, ¢ and w) (ref. 58) and four dihe-
dral angles in the side chains (x, X», x; and x,) (http://www.mlb.co.jp/
linux/science/garlic/doc/commands/dihedrals.html). Following prior
research®®, we collect bond length and angle distributions fromboth
generated pockets and test dataset and compute the Kullback-Leibler
divergence to quantify the distance between these distributions. Lower
Kullback-Leibler divergence scores for PocketGen indicate its effec-
tiveness in accurately replicating the geometric features observed in
thereference data.

Probing generative capabilities of PocketGen

Next, we explore PocketGen’s generative capabilities. Beyond designing
high-quality protein pockets, generative models need to be efficient
and maximize the yield of biochemical experiments—rapidly producing
high-fidelity pocket candidates with only a small number of designs
necessary to find a hit. Figure 3a compares the average generation
time across various methods. Physics-based modelling (PocketOpt)
and template matching (DEPACT) cantake over1,000 sto generate 100

pockets. Advanced protein backbone generation models RFdiffusion
and RFAA are computationally expensive due to their diffusion-based
architectures, requiring 1,633.5 s and 2,210.1 s to design 100 pockets.
Iterative refinement methods like PocketGen can substantially reduce
generation time, with PocketGen taking just 44.2 s to generate 100
pockets.

Although recent methods for pocket generation focus on maxi-
mizing the binding affinity with target molecules, this strategy may
not always align with practical needs for which pocket diversity is
equally important. Examining a batch of designed pockets, rather
than a single design, improves the success rate of pocket design.
Therefore, we investigate the relationship between binding affinity
and the diversity of the generated protein pockets (Fig. 3b). Diver-
sity is quantified as (1 - average pairwise pocket residue sequence
similarity) and can be adjusted by altering the sampling temperature
7 (higher T results in greater diversity). Figure 3b compares Pocket-
Gen with the most competitive baseline, RFAA' + LigandMPNN?°
and the latest version of ProteinMPNN?’. We observe that there is
a trade-off between binding affinity and diversity. PocketGen can
generate protein pockets with higher affinity than RFAA at the same
level of diversity.

Figure 3c explores the effect of redesigned pocket size on Pock-
etGen’s performance. The redesign process targets all the residues
with atoms within 3.5 A, 4.5 A and 5.5 A of any binding ligand atoms.
We observe a slight decline in the average AAR, root mean squared
deviation (RMSD) and Vina scores as the size of the redesigned pocket
increases. Thistrend is probably due to the increased complexity and
reduced contextual informationin the case of larger redesigned pocket
areas. Larger pockets tend to enable the exploration of structures
with potentially higher affinity, asindicated by the lowest Vinascores,
whichreach -17.5 kcal mol* for designs with a 5.5 A radius. This can be
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series on the CrossDocked dataset. The green dots represent the PocketGen
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trainable parameters. e, PocketGen tends to generate pockets with higher affinity
for larger ligand molecules (Pearson correlation, p = -0.61; bands indicate the
95% confidence interval). f, Top molecular functional groups leading to high
affinity. The sample size is 100 and data are presented as mean + standard
deviation.

attributed to the enhanced structural complementarityinlarger pocket
designs. Extended DataFig.1a,b shows that PocketGen can generate full
protein binders for two ligand molecules, with the generated protein
binders achieving high scTM scores 0of 0.900 and 0.976.

Akey feature that sets PocketGen apart from other pocket genera-
tionmodelsisits integration of pLMs. Inaddition to using ESM (evolu-
tionary scale modeling)-2 650M (ref. 49) throughout our experiments,
we evaluated a broader family of ESM models, ranging in model size
from 8Mto15B trainable parameters. As shownin Fig.3d, PocketGen’s
performanceimproves with the scaling of pLMs. Specifically, the per-
formanceincreases from 54.58%t0 66.61% when transitioning from the
ESM-235Mto ESM-215B models. This follows alogarithmic scaling law,
consistent with trends observedinlarge language models®. PocketGen
efficiently trains large pLMs by fine-tuning only the adapter layers and
maintains most pLM layers fixed. As aresult, PocketGen requires sub-
stantially fewer trainable parameters than RFAA' (7.9M versus 82.9M
trainable parameters).

The characteristics of the ligand molecule can affect the perfor-
mance of PocketGen in generating binding pockets. Figure 3e shows
the relationship between the average Vina score of the generated
pockets and the number of ligand atoms, revealing that PocketGen
tendsto create pockets with higher affinity for larger ligand molecules.
This trend may result from the increased surface area for interac-
tion, the presence of additional functional groups and greater flex-
ibility in the conformations of larger molecules®>®, Key functional
groups in ligand molecules that contribute to high binding affinity
were identified using IFG (identifying functional groups)®*. Figure 3f
highlights the top-10-ranked molecular functional groups, which
include hydrogen-bond donors and acceptors (carbonyl groups),

aromatic rings, sulfhydryl groups and halogens. These groups facili-
tate favourable interactions with protein pockets, thereby enhancing
the binding affinity.

Since PocketGen also updates the ligand structures during pocket
generation, we use PoseBusters® to evaluate the structural validity of
the updated ligands. A detailed validity check (Extended Data Fig. 1e)
shows that PocketGen achieves over 95% across all tests in PoseBusters.
This is expected, as PocketGen makes only minor updates to ligand
structures during pocket generation, successfully maintaining ligand
structural integrity. In Extended Data Fig. 1c, we explore the relation-
ship between binding affinity and RMSD to the crystal structure in
PDBBind. Using a geometric interaction graph neural network® ¢
to predict affinity (log[K], where K is the equilibrium dissociation
constant), we observe that generally, lower RMSD corresponds to
higher affinity. Extended Data Fig. 1d demonstrates that PocketGen
improves most protein-ligand complexes in PDBBind by redesigning
the binding pockets.

We conducted ablation studies (Supplementary Table 5) and
hyperparameter analysis (Supplementary Fig. 3) to assess the contri-
butionofeach modulein PocketGen and theimpact of hyperparameter
choices on model performance. For comparison, we replaced the
bilevel graph transformer in PocketGen with other popular encoders
in structural biology, such as EGNN (E(n) equivariant graph neural
network)®’, GVP (geometric vector perceptron)’® and GMN (graph
mechanics network)”. The results indicate that the bilevel graph
transformer and the integration of pLMinto PocketGen substantially
enhance the performance. Furthermore, PocketGen demonstrates
robustness to hyperparameter variations, consistently yielding com-
petitive results.
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Table 1| The top 1/3/5/10 generated protein pockets (ranked by Vina score) on the CrossDocked dataset

PocketOpt DEPACT dyMEAN FAIR RFdiffusion RFAA PocketGen

Top-1-ranked generated protein pocket

Vina score (V) -9.216+0.154 -8.527+0.061 -8.5640+0.107 -8792+0122 -9.037+0.080 -9.216+0.091 -9.655+0.094
MM-GBSA (V) -58.754+1.220 -47130+1.372 -48.248+0.816 -51.923+0.588 -54.817+1.091 -59.255+1.260 -63.542+0.717
GlideSP (V) -8.612+0.127 -7.495+0.053 -7.472+0.088 -7.584+0.094 -8.485+0.069 -8.540+0.065 -8.916+0.047
Success Rate (1) 0.923+0.034 0.750+0.016 0.762+0.029 0.796+0.035 0.891+0.020 0.930+0.027 0.974+0.012
pLDDT (AF2) (1) - 82.164+0.241 83.053+0.397 83.285+0.240 84.432+0.152 86.571+0.178 86.830+0.145
scRMSD (AF2) (V) - 0.714+£0.025 0.708+0.022 0.693+0.018 0.675+0.015 0.654+0.012 0.645+0.009
AscTM (AF2) (1) - -0.008+0.003 -0.005+0.002 -0.011+0.005 0.022+0.006 0.020+0.003 0.028+0.002
AscTM (AF2+co) (1) - -0.012+0.003 -0.025+0.004 -0.032+0.007 - - 0.008+0.002
Top-3-ranked generated protein pockets

Vina score (V) -8.878+0.112 -8.131+0.064 -8196+0.090 -8.321+£0.045 -8.876+0.107 -8.980+0.057 -9.353+0.063
MM-GBSA (V) -53.372+1.164 -43.790+1.029 -44151+0.534  -46.050+0.809 -52.423+0.847 -53.5693+0.722 -60.770+0.589
GlideSP (V) -8.360+0.094 -7.377+£0.039 -7.325+0.078 -7.348+0.052 -8.219+0.049 -8.233+0.060 -8.670+0.056
pLDDT (AF2) (1) - 82.049+0.456 82.918+0.237 83.025+0.334 84.260+0.210 86.289+0.214 86.280+0.135
SCRMSD (AF2) (V) - 0.713+0.017 0.722+0.011 0.692+0.016 0.685+0.007 0.659+0.014 0.660+0.012
AscTM (AF2) (1) - -0.011£0.004 -0.006+0.002 -0.008+0.003 0.021+0.003 0.022+0.002 0.026+0.003
AscTM (AF2+co) (1) - -0.016+0.005 -0.026+0.004 -0.034+0.003 - - 0.005+0.001
Top-5-ranked generated protein pockets

Vina score (V) -8.702+0.090 -7.786+0.052 -7.974+0.049 -7.943+0.035 -8.510+£0.073 -8.689+0.044 -9.239+0.076
MM-GBSA (V) -52.080+1.071 -35.250+0.823 -37.924+0.340 -37.816+0.402 -46.847+0.700 -51.651+0.809 -58.083+0.561
GlideSP (V) -8.173+0.089 -7126+0.035 -7.294+0.042 -7.289+0.041 -8.022+0.030 -8.093+0.048 -8.417+0.040
pLDDT (AF2) (1) - 82.445+0.307 82.763+0.102 83.748+0.271 84.505+0.288 85.617+0.105 85.969+0.080
sCRMSD (AF2) (V) - 0.716+0.014 0.726+0.01 0.698+0.015 0.680+0.009 0.657+0.006 0.655+0.004
AscTM (AF2) (1) - -0.009+0.003 -0.007+0.002 -0.012+0.004 0.019+0.003 0.020+0.001 0.025+0.001
AscTM (AF2+co) (1) - -0.017+0.002 -0.025+0.006 -0.035+0.005 - - 0.006+0.002
Top-10-ranked generated protein pockets

Vina score (V) -8.556+0.104 -7.681+0.040 -7.690+0.054 -7.785+0.028 -8.352+0.061 -8.524+0.038 -9.065+0.057
MM-GBSA (V) -49.257+0.821 -32.534+0.680 -33.118+0.269 -33.670+0.440 -45726+0.830 -47.325+0.540 -54.800+0.406
GlideSP (V) -7.935+0.082 -6.954+0.042 -7.022+0.034 -7131£0.025 -7.806+0.022 -7.840+0.026 -8.196+0.027
pLDDT (AF2) (1) - 81.520+£0.317 82.467+0.255 83.271+0.228 84.080+0.190 85.442+0.145 85.945+0.139
sCRMSD (AF2) (V) - 0.712+0.013 0.733+0.014 0.706+0.013 0.688+0.009 0.680+0.010 0.659+0.007
AscTM (AF2) (1) - -0.014+0.002 -0.006+0.001 -0.010+0.003 0.016+0.002 0.019+0.001 0.023+0.002
AscTM (AF2+co) (1) - -0.018+0.004  -0.030+0.002 -0.033+0.002 - - 0.004+0.002

The success rate measures the percentage of proteins for which the model generates binding pockets with higher affinity than those in the reference datasets. Besides the Vina score, we
use MM-GBSA and min-in-space GlideSP scores to calculate the binding affinity. We report the average pLDDT of the predicted pocket, the scRMSD of the pocket backbone coordinates and
the change in scTM scores of the whole protein. AF2 means the scores are calculated with AlphaFold 2 as the folding tool (Supplementary Table 2 lists the ESMFold results). Co indicates
co-design, where co-design methods use the designed sequence for consistency calculation. The pLDDT, scRMSD and AscTM values for PocketOpt are not reported, as PocketOpt keeps
protein backbone structures fixed. The results of affinity-related metrics, pocket-structure-related metrics and whole-protein-structure metrics are marked. We report the mean and standard

deviation over three independent runs. Best-performing results are indicated in bold.

Generating protein pockets for small molecule therapeutics

We demonstrate PocketGen'’s ability to redesign the pockets of anti-
bodies, enzymes and biosensors for specific target ligands, building
on previous research®'%', Specifically, we consider the following mol-
ecules. Cortisol (HCY)”?is a primary stress hormone that raises glucose
levelsin thebloodstream and serves as a biomarker for stress and other
conditions. We redesign the pocket of a cortisol-specific antibody
(Protein DataBank (PDB) ID: 8CBY), potentially aiding the development
ofimmunoassays. APX”* is an oral anticoagulant approved by the FDA
in 2012 for patients with non-valvular atrial fibrillation to reduce the
risk of stroke and blood clots™. APX target factor Xa (PDB ID: 2P16)
isan enzyme in blood coagulation that converts prothrombin into
thrombinto facilitate clot formation. Redesigning the pocket of factor

Xa has therapeutic implications. Fentanyl (7V7)” is a widely abused
opioid contributing to the opioid crisis. Computationally designing
fentanyl-binding proteins (biosensors) can support detection and
neutralization efforts'. InFig. 4, aprotein-ligand interaction profiler™
illustrates the interactions between the redesigned protein pockets
and ligands, comparing these predicted interactions with the original
binding patterns.

To generate pockets for the aforementioned small molecules,
we pretrained PocketGen on the Binding MOAD dataset, excluding
protein-ligand complexes consideredin this analysis. The pockets pro-
duced by PocketGen successfully replicate most non-bonded interac-
tions observed in experimentally measured protein-ligand complexes
(achievinga13/15 match for HCY) and introduce additional physically
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Fig. 4| Using PocketGen to design protein pockets for binding with important
ligands. a-c, lllustrations of protein-ligand interaction analysis for three target
molecules (HCY (a), APX (b) and 7V7 (c)). PocketGen refers to the protein pocket
designed by PocketGen, and Original denotes the original protein-ligand
structure. HP indicates hydrophobic interactions, HB signifies hydrogen bonds
and tdenotes the m-tt stacking/m-cation interactions. In the residue sequences,
the red ones denote the designed residues that differ from the original pocket.

d-f, Pocket binding affinity distributions of PocketGen and baseline methods and baselines for rucaparib (i) and DTZ (j).
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for the three target molecules (HCY (d), APX (e) and 7V7 (f)). We mark the Vina
Score of the original pocket with the vertical dotted lines. For each method, we
sample 100 pockets for each target ligand. The ratio of the generated pockets by
PocketGen with higher affinity than the corresponding reference pocket are 11%,
40% and 45%, respectively. g, h, Protein-ligand interaction analysis for unseen
proteins in the training dataset (PiB* and luxsit®). The target molecules are
rucaparib (g) and DTZ (h).ij, Pocket binding affinity distributions of PocketGen

plausible interaction patterns not present in the original complexes.
For example, the generated pockets for HCY, APX and 7V7 molecules
form 2, 3 and 4 extra interactions, respectively. Specifically for HCY,
PocketGen preserves key interaction patterns such as hydrophobic
interactions (TRP47,PHE50, TYR59 and TYR104) and hydrogen bonds
(TYR59), astwo new hydrogen-bond-mediated interactions are intro-
duced within the pocket. For protein pockets designed to bind APX
and 7V7 ligands, PocketGen maintains important interactions like
hydrophobic contacts, hydrogen bonds and -t stacking, as well as
establishes additionalinteractions, for example, at-cationinteraction

optimize the binding affinity.

PocketGen generates high-affinity pockets

with LYS192 for APX and hydrogen bonds with ASN35 for 7V7, thereby
enhancing the binding affinity with the target ligands. PocketGen effec-
tively captures non-covalentinteractions derived from protein-ligand
structure data and introducing new, plausible interaction patterns to

Withits ability to establish favourable protein-ligandinteractions,

for these drug ligands. In

Fig. 4d-f, we present the affinity distributions of pockets generated
by PocketGen compared with alternative methods. The percentage of
generated pockets with higher affinity than the reference is 11%, 40%
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Fig. 5| Attention maps in PocketGen capture interactions between atoms in
protein and ligand molecules. a, Two-dimensional interaction plot of the
designed pocket by PocketGen for APX. b, Heat map of attention matrices
between residues and ligand atoms from the last layer of PocketGen. We show two
selected attention heads with notable attention patterns marked with red
rectangles. We notice that each head emphasizes different interactions. For

Ligand atoms

example, PocketGen recognizes the hydrogen-bond interaction and assigns a
strong attention weight between residues (1) THR146 and (2) ASP220 and ligand
atom 7inthe first head. The m-tt stacking and m-cation interactions of (3) TYR99
and (4) LYS192 are well captured in the second head. The values are normalized by
the maximum value (v,,,,) and the minimum value (v,;,,) in each heat map (that is,

/ — _Y"Umin
v Ymax—Vmin

and 45% for PocketGen. In contrast, the best runner-up method, RFAA,
achieves only 0%,10% and 18% across the same cases.

Protein stability is a critical factor in protein design, ensuring that
the designed protein canfold into and maintainits three-dimensional
structure’’. Stability is quantified by the difference in Gibbs free energy
(AAG) between the redesigned protein and the wild-type (original)
protein, where AAG = AG i, — AG qesign- A pOSitive AAG value indicates
increased stability, whereas a negative value suggests decreased stabil-
ity. We used DDMut’® to predict the change in stability for the pockets
generatedin Fig.4, with AAGvalues 0of0.09 (HCY), 0.92 (APX), 0.13(7V7),
0.27 (rucaparib) and 0.02 (DTZ). These results suggest that PocketGen
can generate protein structures likely to remain sufficiently stable to
bind the ligand molecules.

To demonstrate the generalization capability of PocketGen, we
tested it on unseen proteins from the training set, including PiB* and
luxsit®, with the binding ligands rucaparib and DTZ, respectively.
Figure 4g,h shows the interaction analysis, whereas Fig. 4i,j presents
the distribution of Vina scores. PocketGen consistently outperforms
other methods in generating higher-affinity pockets. Generating
pockets with higher affinity for DTZ proved more challenging, as the
original pocket was designed using site-saturation mutagenesis® to
achieve optimal design. In Extended Data Fig. 1f, we present case stud-
ies involving a pair of activity cliff ligand molecules (C19 and C52)” to
further explore PocketGen’s adaptability. The generated interactions
vary across molecular fragments: for one fragment, hydrogen bonds
and hydrophobic interactions are generated, whereas for another
fragment, halogen bonds are produced. This suggests that PocketGen
haslearned key protein-ligand interaction rules, allowing it to design
high-affinity binding pockets.

Interpreting PocketGen's protein-ligand interactions

We analyse attention maps learned by PocketGen using the gener-
ated pocket for the APX ligand. Figure 5a presents a two-dimensional
interaction plot drawn with the Schrodinger Maestro tool (v.2018-1). To
evaluate PocketGen’s recognition of key protein-ligand interactions,
we plot the heat map of attention weights produced by the final layer of
its neural architecture. InFig. 5b, two attention heads are shown, with
eachrowand columnrepresentingaproteinresidue oraligand atom,

respectively. The attention heat maps are sparse, reflecting PocketGen’s
use of sparse attention (Methods). The attention heads exhibit diverse
patterns, focusing on different aspects of the interactions. For exam-
ple, the first attention head emphasizes hydrogen bonds, assigning
high weights to interactions between residues THR146 and ASP220
and ligand atom 7. The second attention head captures - stacking
and mt-cation interactions, specifically between residue TYR99 and
ligand atoms 15, 21, 23, 25,29 and 33; and residue LYS192 and ligand
atoms 1, 14,17,19 and 20. These findings suggest that, despite being
data-driven, PocketGen has learned to recognize biochemical inter-
molecularinteractions.

Discussion
Understanding how proteins bind to ligand molecules is critical for
enzyme catalysis, immune recognition, cellular signal transduction,
gene expression control and other biological processes. Recent devel-
opmentsinclude deep generative models designed to study protein-
ligand binding, such as Lingo3DMol®*’, ResGen®' and PocketFlow®,
which generate de novo drug-like ligand molecules for fixed protein
targets. NeuralPLexer* can create the structure of protein-ligand
complexes given the protein sequence and ligand molecular graph.
However, these models do not facilitate the de novo generation of
protein pockets—the interfaces that bind with the ligand molecule for
targeted ligand binding (criticalin enzyme and biosensor engineering).
We developed PocketGen, a deep generative method capable of
generating residue sequence and full-atom structure of the protein
pocket region to maximize binding with the target ligand molecule.
PocketGenincludes two modules: abilevel graph transformer for struc-
tural encoding, and asequence refinement module that uses pLMs for
sequence prediction. For structure prediction, the bilevel graph trans-
former directly updates coordinates of all atoms in the pocket region
instead of separately predicting the backbone frame orientation and
side-chain torsion angles. To achieve sequence-structure consistency
and leverage evolutionary information encoded in pLMs, PocketGen
integrates a structural adapter into a pLM for sequence updates. This
adapter employs cross-attention between sequence and structure
features to promote information flow and sequence-structure con-
sistency. Experiments across benchmarks and case studies involving
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therapeuticligand moleculesillustrate PocketGen’s ability to generate
high-fidelity pocket structures with high binding affinity and favourable
interactions with target ligands. Analysis of PocketGen’s performance
across various settings reveals its proficiency inbalancing diversity and
affinity as well as generalizing across pocket sizes. Additionally, Pock-
etGen offers computational efficiency, substantially reducing runtime
compared with traditional physics-based methods, making it feasible
to sample large quantities of pocket candidates. PocketGen surpasses
existing methodsin efficiently generating high-affinity protein pockets
for target ligand molecules, finding important interactions between
atoms on protein and ligand molecules, and attaining consistency in
sequence and structure domains.

PocketGen creates several fruitful directions for future work. Pock-
etGen could be expanded to design larger areas of the protein beyond
pocketregions. Although PocketGen hasbeenevaluated onlarger pocket
designs, modifications willbe required to enhance scalability and robust-
ness necessary to generate larger protein areas. Another fruitful future
directioninvolvesincorporating biochemical priors, subpockets®* and
interaction templates” toimprove model generalizability. For instance,
despite overall dissimilarity, two protein pockets might still bind the
same fragmentif they share similar subpockets®. Moreover, evaluation
of new designs through wet laboratory experiments could further vali-
date PocketGen'’s effectiveness. Approaches such as PocketGen have the
potential to advance areas of machine learning and bioengineering and
help with the design of small-molecule binders and enzymes.

Methods

Overview of PocketGen

Unlike previous methods focusing on protein sequence or structure
generation, we aim to co-design both residue types (sequences) and
three-dimensional (3D) structures of the protein pocket that can fit
and bind with the target ligand molecules. Inspired by previous works
on structure-based drug design®"** and protein generation®**, we
formulate pocket generationin PocketGen as a conditional generation
problem that generates the sequences and structures of pocket con-
ditioned onthe proteinscaffold (other parts of the protein except the
pocket region) and the binding ligand. To be specific, let 4 = a, ... ay,
denote the whole protein sequence of residues, where N is the length
ofthesequence. The 3D structure of the protein canbe described asa

point cloud of protein atoms @} cen 1<j<n, and let x(a;;) € R*denote

the 3D coordinate of protein atoms. n;is the number of atomsin aresi-
due determined by the residue types. The first four atomsinany residue
correspond to its backbone atoms (C,, N, C, 0), and the rest are the
side-chain atoms. The ligand molecule canalso be represented asa3D
point cloud M = {vk}'kv‘zl, where v, denotes the atom feature. Let x(v,)
denote the 3D coordinates of atom v,. Our work defines the protein
pocket as a set of residues in the protein closest to the binding ligand
molecule: 3 = b, ...b,,. The pocket 3 can, thus, be represented as an
amino acid subsequence of a protein: 8 = a,, ...a, , wheree={e,...e,}
istheindex of the pocket residuesin the whole protein. Theindex e can

beformally givenase ={i| min | x@;;)—x(vol, < 6}, Where ||,
1<j<n;, 1<k<N, >

is the L2 distance norm and ¢ is the distance threshold. According to
the distance range of pocket-ligand interactions®, we set §=3.5Ain
the default setting. With the above-defined notations, PocketGen aims

tolearn a conditional generative model formally defined as
P(BIA\ B, M), ()

where 4 \ B denotes the other parts of the protein except the pocket
region. We also adjust the structure ligand molecule 2 in PocketGen
to encourage protein-ligand interactions and reduce steric clashes.
To effectively generate the structure and sequence of the protein
pocket 3, the equivariant bilevel graph transformer and the sequence
refinement module with pretrained pLMs and adapters are proposed,
whicharediscussed below. Theillustrative workflowis depicted in Fig. 1.

Equivariant bilevel graph transformer

Itis critical to model the complex interactions in the protein pocket-
ligand complexes for pocket generation. However, the multi-granularity
(forexample, atomlevel and residue level) and multi-aspect (intrapro-
tein and protein-ligand) nature of interactions brings a lot of chal-
lenges. Inspired by recent works on hierarchical graph transformer®
and generalist equivariant transformer®, we propose an equivariant
bilevel graph transformer to effectively model the multi-granularity
and multi-aspectinteractions. Eachresidue or ligandis represented as
ablock (that is, a set of atoms) for the conciseness of representation
and ease of computation. Then, the protein-ligand complex can be
abstracted as a geometric graph of sets g=(v,&), where
v ={H; X;]1 <i < B} denotes the blocks and ¢ = {e;|1 < i,j < B} includes
allthe edges betweenblocks (Bis the total number of blocks). We added
self-loops to the edges to capture interactions within the block (for
example, theinteractions between ligand atoms). Our model adaptively
assigns different numbers of channels to H;and X; to accommodate
different numbers of atoms in residues and ligands. For example,
given a block with n; atoms, the corresponding block has H; € R%*%
indicating the atom features (d, is the feature dimension size) and
X; € R%*3 denoting the atom coordinates. Specifically, the pth row of
H;and X;correspondsto the pthatom’s trainable feature (thatis, H[p])
and coordinates (thatis, X;[p]), respectively. The trainable feature H,[p]
is first initialized with the concatenation of atom-type embedding,
residue/ligand embeddings and the atom positional embeddings. To
build &, we connect the knearest-neighbouring residues according to
the pairwise C,distances. Toreflect the interactions between the pro-
tein pocket and ligand, we add edges between all the pocket residues
and ligand blocks. We describe the modules in PocketGen’s equivariant
bilevel graph transformer, bilevel attention module and equivariant
feed-forward networks (FFNs).

Bilevel attention module. Our model captures both atom-level
and residue-/ligand-level interactions with the bilevel attention
modaule. First, given two blocks i and j connected by an edge e;, we
obtain the query, the key and the value matrices with the following
transformations:

Q; = HW,, Kj = H;Wy, Vi =HWy, @

where W, Wy and W, € R%x¢ are trainable parameters.

To calculate the atom-level attention across the ith and jth blocks,
we denote X; € R**%*3and D; € R"*" as the relative coordinates and
distances betweenatom pairsinblockiandj, namely, X;[p, g1 = X/[p] -
Xlql,Dilp, q1=1X;Ip, qlll,, respectively. Then, we have

R; = \/LF (QKT) + 0p (RBF(Dy)). 3
a; = Softmax (Ry), )

where g;,(-) isamultilayer perceptron (MLP) that adds distance bias to
the attention calculation. RBF embeds the distance with radial basis
functions. a; € R"*% is the atom-level attention matrix obtained by
applying row-wise Softmax on R; € R"*". To encourage sparsity in the
attention matrix, we keep the top-k’ elements of each row in a;and set
the others as zeros.

The residue-/ligand-level attention from the jth block to the ith
block s calculated as

1R;1
f,_-,' = nn;’ (5)
in;
exp(ry)
M- ©)
by e EXPry)

where 1refers to the column vector with all the elements set as ones
and ~(i) denotes the neighbouring blocks of i. r;sums up all the values
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inR;torepresent the overall correlation between blocks iandj. Subse-
quently, B;denotes the attention across blocks at the block level.

We can update the representations and coordinates using the
above atom-level and residue-/ligand-level attentions. PocketGen
only updates the coordinates of the residues in the pocket and ligand
molecule. The other protein residues are fixed. Specifically, for the
pthatominblocki,

my,, = By (a(p] © $x(Q;[P]IIK;|IRBF(Dy[p1)). @

H[plHip] + Z Bydn(aylp] - V), (8)

JeN()

Xilp] = Xilp]
ZienMip - XilP),

0, if i belongs to other protein residues

©

if i belongs to ligand or pocket residues

where ¢, and ¢, are MLPs with concatenated representations as the
input (concatenation along the second dimensionand Q,[p]is repeated
along rows). © computes the element-wise multiplication. H;and X;
denote the updated representation and coordinate matrices, respec-
tively, and we can verify that the dimension size of H;and X; remains
the sameregardless of the neighbouring block size n;. Furthermore, as
theattention coefficients a;and B;areinvariantunder E(3) transforma-
tions, the modification of X;adheres to E(3) equivariance. Additionally,
the permutation of atoms within each block does not affect this update
process.

Equivariant FFN. We adapted the FFN module in the transformer
model® to update H;and X.. Specifically, the representation and coor-
dinates of atoms are updated to consider the block’s feature/geometric
centroids (means). The centroids are denoted as

h. = centroid(H,), Xx. = centroid(X;). (10)

Then, we obtain the relative coordinate Ax, and the relative dis-
tancerepresentation r,based on the L2 norm of Ax,,:

AXp = Xi[p] - x., I, = RBE(|| Axp”z)‘ 1n)

The representation and coordinates of atoms are updated with
MLPs g, and g, respectively. The centroids are integrated to inform
of the context of the block:

H'[p]

= Hp] + 0,(H,[p], he, 1p), 12)

Xi[p] = Xilp] + Axp0x(Hi[p], A, 1) (13)

To stabilize and accelerate training, layer normalization® is
appended at each layer of the equivariant bilevel graph transformer
tonormalize H. Theequivariant FFN satisfies E(3) equivariance. Owing
toeachmodule’s E(3) equivariance, the whole proposed bilevel graph
transformer has the desirable property of E(3) equivariance (Supple-
mentary Theorem1provides the details). In PocketGen, we use an E(3)
equivariant model for its simplicity similar to previous works®**?, which
is capable enough to achieve strong performance. We are aware that
an SE(3) equivariant model architecture would be better for learning
the chirality-related properties of the protein, which we left for future
exploration.

Sequence refinement with pLMs and adapters
pLMs, such as the ESM family of models*®*, have learned extensive evo-
lutionary knowledge from the vast array of natural protein sequences,

demonstrating a strong ability to design protein sequences. In Pocket-
Gen, we propose to leverage pLMs to help refine the designed protein
pocket sequences. Toinfuse the pLMs with structuralinformation, we
implant lightweight structural adapters inspired by previous works’”",
Different from LM-Design®, which focuses on protein sequence design
givenafixed backbonestructure, PocketGen co-designs both theamino
acid sequence and the full-atom structure of the protein pocket. In our
default setting, only one structural adapter was placed after the last
layer of pLM. Only the adapter layers are fine-tuned during training,
and the other layers of PLMs are frozen to save on computation costs.
The structural adapter mainly has the following two parts.

Sequence-structure cross-attention. The structural representation
of the ith residue 43" is obtained by the mean pooling of H;from the
bilevel graph transformer.Intheinputto the pLMs, the pocket residue
types to be designed are assigned with the mask, and we denote
the ith residue representation from pLMs as 4. In the structural
adapter, we perform cross-attention between the structural represen-
tations HPUCt = {RITUCE pEtruct hs"u“} and sequence representations
Hed = Ry RS R The respective query, key and value matrices
are obtalned as follows

Q = Hseq WQ? K = HS[YUCt WK7 V = HS[fuCt WV! (14)

where Wy, W and W, e R%*% are trainable weight matrices. Rotary
positional encoding® is applied to the representations, and we omit it
in the equations for simplicity. The output of the cross-attention is
obtained as

15)

. QKT
CrossAttention(Q, K, V) = Softmax V.

r

Bottleneck FFN. Abottleneck FFNisappended after the cross-attention
toimpose nonlinearity and abstract representations, inspired by pre-
vious works®®. The intermediate dimension of the bottleneck FFN
is set to be half of the default representation dimension. Finally, the
predicted pocket residue type p; is obtained by using an MLP on the
outputresidue representation.

Training protocol

Inspired by AlphaFold 2 (ref. 39), we use arecycling strategy for model
training. Recycling facilitates the training of deeper networks without
incurring extra memory costs by executing multiple forward passes
and computing gradients solely for the final pass. The training loss of
PocketGen is the weighted sum of the following three losses:

1 N
Lseq = TZZIC@ (p,-,pﬁ),
L

16)

e

Lcoord =

2| Sioae (8

i

i)+ Z’huber ). f(";))] (17)

-

struct -

Z [ Z [huber(b bt )+ Z lhuber(cose Cos 9[)] (18)
t

beB

L= Lseq + Acoord Lcoord + Astruct Lstructv (19)

where Tis the total refinement rounds. g, X;,%(v;), 5 and cos § are the
ground-truth residue types, residue coordinates and ligand coordi-
nates; bond lengths; and bond/dihedral angles, respectively.
P}, X;, x'(v;), b* and cos 6" are the corresponding predicted ones at the
tth round by PocketGen. The sequence loss £, is the cross-entropy
loss for pocket-residue-type prediction. The coordinate 10ss £ yorgUSES
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Huber loss® for the training stability. The structure 10ss £ isadded
tosupervised bond lengths and bond/dihedral angles for realistic local
geometry. 3and O denote allthebonds and anglesinthe protein pocket
(including side chains).A.,.q and Ay, are hyperparameters balancing
the three losses. We perform a grid search over {0.5,1.0, 2.0, 3.0} and
choose these hyperparameters based on the validation performance
to select the specific parameter values. In the default setting, we set
Acoora t0 1.0 and Ay, t0 2.0.

Generation protocol

Inthe generation procedure, PocketGen initializes the sequence with
uniform distributions over 20 amino acid types and the coordinates
based on linear interpolations and extrapolations. Specifically, we
initialize the residue coordinates with linearinterpolations and extrap-
olations based on the nearest residues with known structures in the
protein. Denote the sequence of residues as A = a, ---ay,, where N s
thelength of the sequence. Let x(a;;) € R>denote the C, coordinate of
the ith residue. We take the following strategies to determine the C,
coordinate of the ithresidue. (1) We use linear interpolationif there are
residues with known coordinates at both sides of the ith residue. Spe-
cifically, assume p and g are the indexes of the nearest residues with
known coordinates at each side of the ith residue (p <i < g), we have
x(a;;) = - p)x(ag:) + (g — Dx(ap)]. (2) We conductlinear extrapola-
tionifthe ithresidueis at the ends of the chain, that s, no residues with
known structures at one side of the ith residue. Specifically, let p and
g denote the index of the nearest and second-nearest residue with
known coordinates. The position of the ith residue can be initialized
as x(a;;) = x(a;) + "‘—”(x(a,,,l) - X(a,;)). Inspired by previous works***,
we initialize the other backbone atom coordinates according to their
ideallocal coordinates relative to the C,coordinates. We initialize the
side-chain atoms’ coordinates with the coordinate of their correspond-
ing C,value, added with Gaussian noise. We initialize the ligand molecu-
lar structure with the reference ligand structure from the dataset. The
ligand structure isupdated during pocket generation and the updated
ligand is used for Vina score calculation.

Since the number of pocket residue types and the number of
side-chain atoms are unknown at the beginning of generation, each
pocketresidueisassigned 14 atoms, the maximum number of atoms for
residues. After rounds of refinement by PocketGen, the pocket residue
typesare predicted, and the full-atom coordinates are determined by
mapping the coordinates to the predicted residue types (taking the
first n coordinates according to the residue type). In PocketGen, we
directly predict the absolute atom coordinates, which reduces the
model complexity and flexibly captures atom interactions. We also
notice that PocketGen aligns with the recent trend of directly predict-
ing full-atom coordinates. For example, the recent AlphaFold 3 (ref. 94)
directly predicts the full-atom coordinates, replacing the AlphaFold
2 structure module that operated on amino-acid-specific frames and
side-chaintorsionangles, and achieves better performance on protein
structure prediction. For generation efficiency, we set the number of
refinement rounds to 3.

Experimental setting

Datasets. We consider two widely used datasets for benchmark evalu-
ation. The CrossDocked dataset*’ contains 22.5M protein-molecule
pairsgenerated through cross-docking. Following previous works* %%,
we filter out data points with binding pose RMSD greater than1 A, lead-
ingtoarefined subset with around 180k data points. For datasplitting,
we use MMseqs2 (ref. 96) to cluster data at 30% sequence identity,
and randomly draw 100k protein-ligand structure pairs for training
and 100 pairs from the remaining clusters for testing and validation,
respectively. The Binding MOAD dataset* contains around 41k experi-
mentally determined protein-ligand complexes. Following previous
work®”, we keep pockets with valid and moderately ‘drug-like’ ligands
with a QED (quantitative estimate of drug-likeness) score of >0.3. We

further filter the dataset to discard molecules containing atom types ¢
{C,N,0,S,B,Br,Cl,P,1,F}aswell asbinding pockets with non-standard
amino acids. Then, we randomly sample and split the filtered dataset
based on the Enzyme Commission number** to ensure different sets
donot contain proteins from the same main class of the Enzyme Com-
mission number. Finally, we have 40k protein-ligand pairs for training,
100 pairs for validation and 100 pairs for testing. For all the benchmark
tasks in this paper, PocketGen and all the other baseline methods are
trained with the same data split for a fair comparison. In real-world
pocket generation and optimization case studies, the protein struc-
tures were downloaded from the PDB%.

Implementation. Our PocketGen model is trained with the Adam®’
optimizer for Sk iterations, for which the learning rate is 0.0001 and
thebatchsizeis 64. Wereport theresults corresponding to the check-
pointwiththebest validation loss. It takes around 48 h to finish training
on one Tesla A100 GPU from scratch. In PocketGen, the number of
attention headsissetas 4, the hidden dimensiondis set as 128, kis set
to 8 to connect the k nearest-neighbouring residues to build € and K’
is set as 3 to encourage sparsity in the attention matrix. For all the
benchmark tasks of pocket generation and optimization, PocketGen
and allthe other baseline methods are trained with the same data split
for a fair comparison. We follow the implementation codes provided
by the authors to obtain the results of the baseline methods. Supple-
mentary Algorithms1and 2 show the pseudo-codes of the training and
generation process of PocketGen.

Baseline methods. PocketGen is compared with five state-of-the-art
representative baseline methods. PocketOptimizer'®is a physics-based
method that optimizes energies such as packing-and binding-related
energies for ligand-binding protein design. Following the sugges-
tion of the paper, we fixed the backbone structures. DEPACT" is a
template-matching method that follows a two-step strategy'*® for
pocket design. It first searches the protein-ligand complexes in the
database with similar ligand fragments. It then grafts the associated
residues into the protein scaffold to output the complete protein
structure with PACMatch". Both backbone and side-chain structures
are changed in DEPACT. RFdiffusion®, RFAA'®, FAIR? and dyMEAN® are
deep-learning-based models for protein generation. RFdiffusion does
not explicitly model protein-ligand interactions and is not directly
applicable to small-molecule binding protein generation. Following
the suggestions in RFdiffusion? and RFAA', we use a heuristic attrac-
tive-repulsive potential to encourage the formation of pockets with
shape complementarity to a target molecule. The residue sequence
for the generated protein by RFdiffusion is derived with ProteinMPNN,
and the side-chain conformationis decided with Rosetta'” side-chain
packing. RFAA is the latest version of RFdiffusion, which can directly
generate proteinstructures surrounding small molecules by combining
the residue-based representation of amino acids with the atomic rep-
resentation of small molecules. For RFdiffusionand RFAA, we let them
paint the pocket areato obtain aconsistent setting with other methods
for comparison. We also note that RFdiffusion and RFAA do not pro-
vide the training/fine-tuning scripts; therefore, we use the provided
pretrained checkpoints for all the related experiments in our paper.
FAIR* was specially designed for full-atom protein pocket design via
iterative refinement. dyMEAN® was originally proposed for full-atom
antibody design, and we adapted it to our pocket design task with
proper modifications. Detailed information on baselines is included
inSupplementary Notes 1-4. The setting of the key hyperparametersis
summarizedinSupplementary Table 6. Allthe baselinesarerunonthe
same Tesla A100 GPU for a fair comparison with our PocketGen data.

Data availability
This study’s training and test data are available via Zenodo at https://
doi.org/10.5281/zenodo0.10125312 (ref. 102). The project website for

Nature Machine Intelligence | Volume 6 | November 2024 | 1382-1395

1392


http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.10125312
https://doi.org/10.5281/zenodo.10125312

Article

https://doi.org/10.1038/s42256-024-00920-9

PocketGenis https://zitniklab.hms.harvard.edu/projects/PocketGen.
Source data are provided with this paper.

Code availability

The source code for this study is freely available via GitHub at
https://github.com/zaixizhang/PocketGen and via Zenodo at
https://doi.org/10.5281/zenodo0.13762085 (ref.103).

References

1.

10.

mn.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Tinberg, C. E. et al. Computational design of ligand-binding proteins
with high affinity and selectivity. Nature 501, 212-216 (2013).

Kroll, A., Ranjan, S., Engqvist, M. K. & Lercher, M. J. A general
model to predict small molecule substrates of enzymes based on
machine and deep learning. Nat. Commun. 14, 2787 (2023).

Lee, G. R. et al. Small-molecule binding and sensing with a
designed protein family. Preprint at bioRxiv https://doi.org/
10.1101/2023.11.01.565201 (2023).

Qiao, Z., Nie, W., Vahdat, A., Miller Ill, T. F. & Anandkumar, A. State-
specific protein-ligand complex structure prediction with a
multiscale deep generative model. Nat. Mach. Intell. 6, 195-208
(2024).

Jiang, L. et al. De novo computational design of retro-aldol
enzymes. Science 319, 1387-1391(2008).

Rothlisberger, D. et al. Kemp elimination catalysts by
computational enzyme design. Nature 453, 190-195 (2008).

Dou, J. et al. De novo design of a fluorescence-activating 3-barrel.
Nature 561, 485-491(2018).

Yeh, A. H.-W. et al. De novo design of luciferases using deep
learning. Nature 614, 774-780 (2023).

Beltran, J. et al. Rapid biosensor development using plant
hormone receptors as reprogrammable scaffolds. Nat.
Biotechnol. 40, 1855-1861(2022).

Bick, M. J. et al. Computational design of environmental sensors
for the potent opioid fentanyl. eLife 6, 28909 (2017).

Glasgow, A. A. et al. Computational design of a modular protein
sense-response system. Science 366, 1024-1028 (2019).
Herud-Sikimi¢, O. et al. A biosensor for the direct visualization of
auxin. Nature 592, 768-772 (2021).

Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables

de novo design of small-molecule-binding proteins. Science 369,
1227-1233 (2020).

Basanta, B. et al. An enumerative algorithm for de novo design of
proteins with diverse pocket structures. Proc. Natl Acad. Sci. USA
117, 22135-22145 (2020).

Dou, J. et al. Sampling and energy evaluation challenges in ligand
binding protein design. Protein Sci. 26, 2426-2437 (2017).
Krishna, R. et al. Generalized biomolecular modeling and design
with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

Chen, Y., Chen, Q. &Liu, H. DEPACT and PACMatch: a workflow

of designing de novo protein pockets to bind small molecules.

J. Chem. Inf. Model. 62, 971-985 (2022).

Noske, J., Kynast, J. P., Lemm, D., Schmidt, S. & Hocker, B.
PocketOptimizer 2.0: a modular framework for computer-aided
ligand-binding design. Protein Sci. 32, e4516 (2023).

Malisi, C. et al. Binding pocket optimization by computational
protein design. PLoS ONE 7, e52505 (2012).

Stiel, A. C., Nellen, M. & Hocker, B. PocketOptimizer and the
design of ligand binding sites. In Computational Design of Ligand
Binding Proteins. Methods in Molecular Biology Vol. 1414 (Humana
Press, 2016).

Lu, L. et al. De novo design of drug-binding proteins with predictable
binding energy and specificity. Science 384, 106-112 (2024).

Byon, W., Garonzik, S., Boyd, R. A. & Frost, C. E. Apixaban: a
clinical pharmacokinetic and pharmacodynamic review. Clin.
Pharmacokinet. 58, 1265-1279 (2019).

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

Stark, H., Jing, B., Barzilay, R. & Jaakkola, T. Harmonic prior
self-conditioned flow matching for multi-ligand docking and
binding site design. In NeurlPS 2023 Al for Science Workshop
(Curran Associates, 2023).

Zhang, Z., Lu, Z., Hao, Z., Zitnik, M. & Liu, Q. Full-atom protein
pocket design via iterative refinement. In Thirty-Seventh
Conference on Neural Information Processing Systems (Curran
Associates, 2023).

Kong, X., Huang, W. & Liu, Y. End-to-end full-atom antibody
design. In Proc. 40th International Conference on Machine
Learning 718 (JMLR.org, 2023).

Watson, J. L. et al. De novo design of protein structure and
function with RFdiffusion. Nature 620, 1089-1100 (2023).

Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic
models. Adv. Neural Inf. Process. Syst. 33, 6840-6851(2020).
Baek, M. et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science 373,
871-876 (2021).

Dauparas, J. et al. Robust deep learning-based protein sequence
design using ProteinMPNN. Science 378, 49-56 (2022).
Dauparas, J. et al. Atomic context-conditioned protein sequence
design using LigandMPNN. Preprint at bioRxiv https://doi.org/
10.1101/2023.12.22.573103 (2023).

Jin, W., Wohlwend, J., Barzilay, R. & Jaakkola, T. Iterative refinement
graph neural network for antibody sequence-structure co-design. In
International Conference on Learning Representations (ICLR, 2022).
Jin, W,, Barzilay, R. & Jaakkola, T. Antibody-antigen docking and design
via hierarchical structure refinement. In Proc. 39th International
Conference on Machine Learning 10217-10227 (PMLR, 2022).

Luo, S. et al. Antigen-specific antibody design and optimization
with diffusion-based generative models. In Advances in Neural
Information Processing Systems 9754-9767 (Curran Associates,
2022).

Kong, X., Huang, W. & Liu, Y. Conditional antibody design as

3D equivariant graph translation. In The Eleventh International
Conference on Learning Representations (ICLR, 2023).

Shi, C., Wang, C., Lu, J., Zhong, B. & Tang, J. Protein sequence and
structure co-design with equivariant translation. In The Eleventh
International Conference on Learning Representations (ICLR, 2023).
Anishchenko, I. et al. De novo protein design by deep network
hallucination. Nature 600, 547-552 (2021).

Yang, J. et al. Improved protein structure prediction using
predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117,
1496-1503 (2020).

Cao, L. et al. Design of protein-binding proteins from the target
structure alone. Nature 605, 551-560 (2022).

Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583-589 (2021).

Rives, A. et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences.
Proc. Natl Acad. Sci. USA 118, €2016239118 (2019).

Lin, Z. et al. Language models of protein sequences at the scale of
evolution enable accurate structure prediction. Preprint at bioRxiv
https://doi.org/10.1101/2022.07.20.500902 (2022).

Francoeur, P. G. et al. Three-dimensional convolutional neural
networks and a cross-docked data set for structure-based drug
design. J. Chem. Inf. Model. 60, 4200-4215 (2020).

Hu, L., Benson, M. L., Smith, R. D., Lerner, M. G. & Carlson, H. A.
Binding MOAD (mother of all databases). Proteins 60, 333-340
(2005).

Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res. 28,
304-305 (2000).

Marcou, G. & Rognan, D. Optimizing fragment and scaffold
docking by use of molecular interaction fingerprints. J. Chem. Inf.
Model. 47,195-207 (2007).

Nature Machine Intelligence | Volume 6 | November 2024 | 1382-1395

1393


http://www.nature.com/natmachintell
https://zitniklab.hms.harvard.edu/projects/PocketGen
https://github.com/zaixizhang/PocketGen
https://doi.org/10.5281/zenodo.13762085
https://doi.org/10.5281/zenodo.13762085
https://doi.org/10.1101/2023.11.01.565201
https://doi.org/10.1101/2023.11.01.565201
https://doi.org/10.1101/2023.12.22.573103
https://doi.org/10.1101/2023.12.22.573103
https://doi.org/10.1101/2022.07.20.500902

Article

https://doi.org/10.1038/s42256-024-00920-9

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

50.

60.

61.

62.
63.

64.

65.

66.

67.

68.

Trott, O. & Olson, A. J. AutoDock Vina: improving the speed

and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 31, 455-461
(2010).

Yang, M. et al. Uni-GBSA: an open-source and web-based
automatic workflow to perform MM/GB(PB)SA calculations for
virtual screening. Brief. Bioinform. 24, bbad218 (2023).

Friesner, R. A. et al. Glide: a new approach for rapid, accurate
docking and scoring. 1. Method and assessment of docking
accuracy. J. Med. Chem. 47,1739-1749 (2004).

Lin, Z. et al. Evolutionary-scale prediction of atomic-level

protein structure with a language model. Science 379,
1123-1130 (2023).

Trippe, B. L. et al. Diffusion probabilistic modeling of protein
backbones in 3D for the motif-scaffolding problem. In The
Eleventh International Conference on Learning Representations
(ICLR, 2023).

Lin, Y. & Alguraishi, M. Generating novel, designable, and diverse
protein structures by equivariantly diffusing oriented residue
clouds. In Proc. 40th International Conference on Machine
Learning 20978-21002 (PMLR, 2023).

Zhang, Y. & Skolnick, J. Scoring function for automated
assessment of protein structure template quality. Proteins 57,
702-710 (2004).

Yim, J. et al. Improved motif-scaffolding with SE(3) flow matching.
Transactions on Machine Learning Research (2024).

Yim, J. et al. SE(3) diffusion model with application to protein
backbone generation. In Proc. 40th International Conference on
Machine Learning 40001-40039 (PMLR, 2023).

Tibshirani, R. J. & Efron, B. An Introduction to the Bootstrap Vol. 57
(Chapman & Hall, 1993).

Yoo, Y. J., Feng, Y., Kim, Y.-H. & Yagonia, C. F. J. Fundamentals of
Enzyme Engineering (Springer, 2017).

Traut, T. W. Protein engineering: principles and practice. Am. Sci.
85, 571-573 (1997).

Spencer, R. K. et al. Stereochemistry of polypeptoid chain
configurations. Biopolymers 110, €23266 (2019).

Peng, X. et al. Pocket2Mol: efficient molecular sampling based
on 3D protein pockets. In Proc. 39th International Conference on
Machine Learning 17644-17655 (PMLR, 2022).

Zhang, Z., Liu, Q., Lee, C.-K., Hsieh, C.-Y. & Chen, E. An equivariant
generative framework for molecular graph-structure co-design.
Chem. Sci. 14, 8380-8392 (2023).

Kaplan, J. et al. Scaling laws for neural language models. Preprint
at https://arxiv.org/abs/2001.08361 (2020).

Alberts, B. Molecular Biology of the Cell (Garland Science, 2017).
Shoichet, B. K. Virtual screening of chemical libraries. Nature 432,
862-865 (2004).

Ertl, P. An algorithm to identify functional groups in organic
molecules. J. Cheminform. 9, 36 (2017).

Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters:
Al-based docking methods fail to generate physically valid poses
or generalise to novel sequences. Chem. Sci. 15, 3130-3139
(2024).

Yang, Z., Zhong, W., Lv, Q., Dong, T. & Yu-Chian Chen, C.
Geometric interaction graph neural network for predicting
protein-ligand binding affinities from 3D structures (GIGN).

J. Phys. Chem. Lett. 14, 2020-2033 (2023).

Maier, J. A. et al. ff14SB: improving the accuracy of protein side
chain and backbone parameters from ff99SB. J. Chem. Theory
Comput. 1, 3696-3713 (2015).

Shapovalov, M. V. & Dunbrack Jr, R. L. A smoothed
backbone-dependent rotamer library for proteins derived from
adaptive kernel density estimates and regressions. Structure 19,
844-858 (2011).

69.

70.

7.

72.

73.

74.

75.
76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, |. &

Welling, M. E(n) equivariant normalizing flows. In 35th Conference
on Neural Information Processing Systems (2021).

Jing, B., Eismann, S., Suriana, P., Townshend, R. J. &

Dror, R. Learning from protein structure with geometric

vector perceptrons. In International Conference on Learning
Representations (ICLR, 2021).

Huang, W. et al. Equivariant graph mechanics networks

with constraints. In International Conference on Learning
Representations (ICLR, 2022).

Eronen, V. et al. Structural insight to elucidate the binding
specificity of the anti-cortisol Fab fragment with glucocorticoids.
J. Struct. Biol. 215, 107966 (2023).

Pinto, D. J. et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-
(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1Hpyrazolo[3,4-c]
pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent,
selective, efficacious, and orally bioavailable inhibitor of blood
coagulation factor Xa. J. Med. Chem. 50, 5339-5356 (2007).
Hernandez, |., Zhang, Y. & Saba, S. Comparison of the
effectiveness and safety of apixaban, dabigatran, rivaroxaban,
and warfarin in newly diagnosed atrial fibrillation. Am. J. Cardiol.
120, 1813-1819 (2017).

Stanley, T. H. The fentanyl story. J. Pain 15, 1215-1226 (2014).
Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F. & Schroeder,
M. PLIP: fully automated protein-ligand interaction profiler.
Nucleic Acids Res. 43, WA43-W447 (2015).

Yang, J., Li, F.-Z. & Arnold, F. H. Opportunities and challenges for
machine learning-assisted enzyme engineering. ACS Cent. Sci.
10, 226-241(2024).

Zhou, Y., Pan, Q., Pires, D. E., Rodrigues, C. H. & Ascher, D. B.
DDMut: predicting effects of mutations on protein stability using
deep learning. Nucleic Acids Res. 51, W122-W128 (2023).

Hu, E. et al. Discovery of aryl aminoquinazoline pyridones as
potent, selective, and orally efficacious inhibitors of receptor
tyrosine kinase c-Kit. J. Med. Chem. 51, 3065-3068 (2008).

Feng, W. et al. Generation of 3D molecules in pockets via a
language model. Nat. Mach. Intell. 6, 62-73 (2024).

Zhang, O. et al. ResGen is a pocket-aware 3D molecular
generation model based on parallel multiscale modelling. Nat.
Mach. Intell. 5, 1020-1030 (2023).

Jiang, Y. et al. PocketFlow is a data-and-knowledge-driven
structure-based molecular generative model. Nat. Mach. Intell. 6,
326-337 (2024).

Zhang, Z. & Liu, Q. Learning subpocket prototypes for
generalizable structure-based drug design. In Proc. 40th
International Conference on Machine Learning 41382-41398
(PMLR, 2023).

Kalliokoski, T., Olsson, T. S. & Vulpetti, A. Subpocket analysis
method for fragment-based drug discovery. J. Chem. Inf. Model.
53, 131-141 (2013).

Kong, X. et al. Generalist equivariant transformer towards

3D molecular interaction learning. In Proc. 41st International
Conference on Machine Learning 25149-25175 (2024).

Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
Syst. 30 (2017).

Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at
https://arxiv.org/abs/1607.06450 (2016).

Igashoy, I. et al. Equivariant 3D-conditional diffusion model for
molecular linker design. Nat. Mach. Intell. 6, 417-427 (2024).
Batzner, S. et al. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nat. Commun.
13, 2453 (2022).

Houlsby, N. et al. Parameter-efficient transfer learning for NLP.

In Proc. 36th International Conference on Machine Learning
2790-2799 (PMLR, 2019).

Nature Machine Intelligence | Volume 6 | November 2024 | 1382-1395

1394


http://www.nature.com/natmachintell
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1607.06450

Article

https://doi.org/10.1038/s42256-024-00920-9

91. Zheng, Z. et al. Structure-informed language models are protein
designers. In International Conference on Machine Learning
42317-42338 (PMLR, 2023).

92. Su, J. et al. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing 568, 127063 (2024).

93. Huber, P. J. Robust estimation of a location parameter. in
Breakthroughs in Statistics: Methodology and Distribution 492-518
(Springer, 1992).

94. Abramson, J. et al. Accurate structure prediction of biomolecular
interactions with AlphaFold 3. Nature 630, 493-500 (2024).

95. Luo, S., Guan, J., Ma, J. & Peng, J. A 3D generative model for
structure-based drug design. NeurlPS 34, 6229-6239 (2021).

96. Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat.
Biotechnol. 35, 1026-1028 (2017).

97. Schneuing, A. et al. Structure-based drug design with equivariant
diffusion models. Preprint at https://arxiv.org/abs/2210.13695 (2022).

98. Sussman, J. L. et al. Protein Data Bank (PDB): database of
three-dimensional structural information of biological
macromolecules. Acta Cryst. D54, 1078-1084 (1998).

99. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

100. Zanghellini, A. et al. New algorithms and an in silico benchmark
for computational enzyme design. Protein Sci. 15, 2785-2794
(2006).

101. Alford, R. F. et al. The Rosetta all-atom energy function for
macromolecular modeling and design. J. Chem. Theory Comput.
13, 3031-3048 (2017).

102. Zhang, Z. PocketGen datasets. Zenodo https://doi.org/10.5281/
zenodo.10125312 (2024).

1083. Zhang, Z. PocketGen. Zenodo https://doi.org/10.5281/
zenodo.13762085 (2024).

Acknowledgements

Z.Z. gratefully acknowledges grants from the National Natural
Science Foundation of China (no. 623B2095) and the Excellent PhD
Students Overseas Study Program of the University of Science and
Technology of China. Q.L. gratefully acknowledges grants from

the National Natural Science Foundation of China (no. 62337001)

and the Fundamental Research Funds for the Central Universities.
W.X.S. and M.Z. gratefully acknowledge support from NIH grant no.
RO1-HD108794, NSF CAREER grant no. 2339524, US DoD grant no.
FA8702-15-D-0001, and awards from Harvard Data Science Initiative,
Amazon Faculty Research, Google Research Scholar Program,
AstraZeneca Research, Roche Alliance with Distinguished Scientists,
Sanofi iDEA-ITECH Award, Pfizer Research, Chan Zuckerberg Initiative,
John and Virginia Kaneb Fellowship award at Harvard Medical School,
Biswas Computational Biology Initiative in partnership with the Milken
Institute, and Kempner Institute for the Study of Natural and Artificial

Intelligence at Harvard University. We thank E. Chen, Y. Chen and H.
Liu from the University of Science and Technology of China for their
constructive discussions on implementing and evaluating baseline
methods, which greatly helped this research.

Author contributions

Z.Z.,Q.L.and M.Z. designed the research. Z.Z. conducted the
experiments. Z.Z., W.X.S., Q.L. and M.Z. analysed the results. All
authors wrote and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-024-00920-9.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-024-00920-9.

Correspondence and requests for materials should be addressed to
Qi Liu or Marinka Zitnik.

Peer review information Nature Machine Intelligence thanks
Fergus Boyles, Shuiwang Ji and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nhature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

Nature Machine Intelligence | Volume 6 | November 2024 | 1382-1395

1395


http://www.nature.com/natmachintell
https://arxiv.org/abs/2210.13695
https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.10125312
https://doi.org/10.5281/zenodo.10125312
https://doi.org/10.5281/zenodo.13762085
https://doi.org/10.5281/zenodo.13762085
https://doi.org/10.1038/s42256-024-00920-9
https://doi.org/10.1038/s42256-024-00920-9
https://doi.org/10.1038/s42256-024-00920-9
https://doi.org/10.1038/s42256-024-00920-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1038/s42256-024-00920-9

PocketGen
Cc .
2c3i 3jya
—8.5F Spearman Correlation: .34 —=7.5F Spearman Correlation:'o..37

Predicted Affinity
Predicted Affinity

f ...VAKIVTCDF...

FR] #FE
) <Y

C52
(HP 7, HB 3, Tr 2, Halo 1)

c19
(HP 7, HB 4, Tr 2)

Extended Data Fig. 1| More case studies and evaluations of PocketGen. a, The
originally designed protein binder for Rucaparib® (left panel) and the generated
protein binder by PocketGen (right panel). b, The originally designed protein
binder for DTZ5(left panel) and the generated protein binder by PocketGen
(right panel). Note that PocketGen generates the whole protein instead of the
pocket regionina&b. The generated protein binder has high scTM scores (0.900
and 0.976). ¢, The predicted affinity (log K) by GIGN®® of the generated pockets
by PocketGen with respect to RMSD. We randomly select two protein-ligand
complexes from PDBBind (PDB id 2c3iand 3jya). d, The Vina score/binding
affinity (log K) of the generated pockets by PocketGen and the original pockets
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from PDBBind. The black region/dots indicate the generated pockets have
higher affinities than the original pockets while the red region/dots indicate
lower affinities. f, The generated interactions by PocketGen with respectto a
pair of activity cliff ligand molecules, that is, C19 and C527°. As marked with red
rectangles, PocketGen adaptively generates different interactions for different
molecular fragments (hydrogen bonds+hydrophobic interactions and halogen
bonds respectively). ‘HP’ indicates hydrophobicinteractions, ‘HB’ signifies
hydrogen bonds, ‘m’ denotes the rr-stacking/cation interactions, and ‘Halo’
indicates the Halogen bonds. e, Detailed validity check with PoseBusters on
CrossDocked and Binding MOAD.
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