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Efficient generation of protein pockets  
with PocketGen

Zaixi Zhang1,2,3, Wan Xiang Shen    3, Qi Liu1,2   & Marinka Zitnik    3,4,5,6 

Designing protein-binding proteins is critical for drug discovery. However, 
artificial-intelligence-based design of such proteins is challenging 
due to the complexity of protein–ligand interactions, the flexibility of 
ligand molecules and amino acid side chains, and sequence–structure 
dependencies. We introduce PocketGen, a deep generative model that 
produces residue sequence and atomic structure of the protein regions 
in which ligand interactions occur. PocketGen promotes consistency 
between protein sequence and structure by using a graph transformer for 
structural encoding and a sequence refinement module based on a protein 
language model. The graph transformer captures interactions at multiple 
scales, including atom, residue and ligand levels. For sequence refinement, 
PocketGen integrates a structural adapter into the protein language model, 
ensuring that structure-based predictions align with sequence-based 
predictions. PocketGen can generate high-fidelity protein pockets with 
enhanced binding affinity and structural validity. It operates ten times faster 
than physics-based methods and achieves a 97% success rate, defined as the 
percentage of generated pockets with higher binding affinity than reference 
pockets. Additionally, it attains an amino acid recovery rate exceeding 63%.

Modulation of protein functions often involves modelling the interac-
tions between proteins and small-molecule ligands1–4. These interac-
tions are central to biological processes such as enzymatic catalysis, 
signal transduction and cellular regulation. Binding small molecules 
to specific protein sites can induce conformational changes, modulate 
protein activity and alter existing or produce new functional proper-
ties. This mechanism is invaluable for designing proteins with tailored 
small-molecule binders. Applications range from engineering enzymes 
and catalyse reactions in the absence of natural catalysts5–8 to creating 
biosensors for detecting environmental compounds. Such biosensors 
are critical for environmental monitoring, clinical diagnostics, patho-
gen detection, drug delivery systems and food industry applications9–12. 
Typically, designs involve modifying existing ligand-binding pockets 
to enable more specific interactions with target ligands13–15. Neverthe-
less, challenges persist in computationally generating high-validity 

ligand-binding protein pockets due to the complexity of protein–ligand 
interactions, the flexibility of ligands and amino acid side chains, and 
the dependencies between sequence and structure3,15,16.

Methods for pocket design have traditionally relied on physics- 
based modelling or template matching10,11,13,17,18. For example, Pock-
etOptimizer18–20 uses a pipeline that predicts mutations in protein 
pockets to enhance binding affinity, based on physics-based energy 
functions and search algorithms. Starting with a bound protein–ligand 
complex, PocketOptimizer explores possible side-chain structures and 
residue types, evaluating these mutations with energy functions and 
ranking them using integer linear programming techniques. Another 
widely used approach involves template matching and enumeration 
methods11,13,14,17,21. For instance, a two-step strategy13 has been used for 
pocket design. First, they identify and assemble disconnected protein 
motifs (van der Mer structural units) around the target molecule to 
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post-processing using ProteinMPNN29 or LigandMPNN30, which can 
result in inconsistencies between the sequence and structure modali-
ties. In contrast, full-atom iterative refinement (FAIR)24 simultaneously 
designs the atomic pocket structure and the corresponding sequence 
using a two-stage refinement approach. FAIR employs a coarse-to-fine 
method, initially refining the backbone protein structure and subse-
quently refining the atomic structure, including the side chains. This 
iterative process continues until convergence is reached. However, 
the gap between these two refinement stages can introduce instability 
and limit performance, underscoring the need for an end-to-end gen-
erative approach to pocket design. Related research has explored the 
co-design of sequence and structure in complementarity-determining 
regions of antibodies31–35. Although these methods are effective for 
antibody design, they encounter difficulties when applied to pocket 
designs conditioned on the target ligand molecules.

Hybrid approaches that combine deep learning models with tra-
ditional methods are also being actively explored3,8. For example, 
a luciferase8 was developed by integrating protein hallucination36, 
trRosetta structure prediction neural network37, hydrogen-bonding 
networks and RifDock38. This combination generated a range of ideal-
ized protein structures with diverse pocket shapes for subsequent 

form protein–ligand hydrogen bonds. Then, they graft these residues 
onto a protein scaffold and select the optimal protein–ligand pairs 
using scoring functions. This template-matching strategy enabled 
the de novo design of proteins binding the drug apixaban (APX)22. 
However, physics-based and template-matching methods can be 
time-consuming, often requiring several hours to design a single pro-
tein pocket. Furthermore, the focus on specific fold types, such as 
four-helix bundles13 or NTF2 folds14, can limit the broader applicability 
of these methods.

Recent advances in protein pocket design have been propelled 
by deep-learning-based approaches3,8,16,23–25. For instance, RFdiffu-
sion26 leverages denoising diffusion probabilistic models27 alongside 
RoseTTAFold28 for de novo protein structure generation. Although it 
can design pockets for specific ligands, RFdiffusion lacks precision 
in modelling protein–ligand interactions due to its auxiliary guiding 
potentials. To address this limitation, RFdiffusion All-Atom (RFAA)16 
extends the approach by enabling the direct generation of binding 
proteins around small molecules through iterative denoising. This 
is achieved through architectural modifications that simultaneously 
consider both protein structures and ligand molecules. However, 
in both RFdiffusion and RFAA, residue sequences are derived in 
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Fig. 1 | Overview of PocketGen generative model for the design of full-atom 
ligand-binding protein pockets. a, Conditioned on the binding ligand molecule 
and the remaining part of the protein except the pocket region (that is, scaffold), 
PocketGen aims to generate the full-atom pocket structure (backbone and 
side-chain atoms) and the residue-type sequence with iterative equivariant 
refinement. The ligand structure is also adjusted during protein pocket 
refinement. b, Bilevel graph transformer is leveraged in PocketGen for all-atom 

structural encoding and update. Bilevel attention captures both residue/ligand 
and atom-level interactions. Both protein pocket structure and ligand molecule 
structure are updated in the refinement. c, Sequence refinement module adds 
lightweight structural adapter layers into pLMs for sequence prediction. Only 
the adapter’s parameters are fine-tuned during training, and the other layers are 
fixed. In the adapter, cross-attention between sequence and structure features is 
performed to achieve sequence–structure consistency.
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filtering. Although successful, this approach applies only to specific 
protein scaffolds and substrates and lacks a generalized solution. 
Similarly, deep learning was merged with physics-based methods3 to 
design proteins featuring diverse and customizable pocket geometries. 
Their method utilizes backbone generation via trRosetta hallucina-
tion, sequence design through ProteinMPNN29 and LigandMPNN30, 
and filtering with AlphaFold39. Despite the advances made, pocket 
generation models continue to face challenges, such as achieving 
sequence–structure consistency and accurately modelling complex 
protein–ligand interactions.

Here we introduce PocketGen, a deep generative method designed 
for the efficient generation of protein pockets. PocketGen employs a 
co-design scheme (Fig. 1a) in which the model predicts both sequence 
and structure of the protein pocket based on the ligand molecule and 
the surrounding protein scaffold (excluding the pocket itself). The 
architecture of PocketGen is composed of two key modules: the bilevel 
graph transformer (Fig. 1b) and the sequence refinement module 
(Fig. 1c). PocketGen represents the protein–ligand complex as a geo-
metric graph of blocks, allowing it to handle varying numbers of atoms 
across residues and ligands. Initialized pocket residues are assigned 
the maximum possible number of atoms (14 atoms) to accommodate 
this variability, and these atoms are mapped back to specific residue 
types during the generation process.

The graph transformer module uses a bilevel attention mechanism 
to capture interactions at multiple granularities—both at the atom and 
residue/ligand levels—and across various aspects, including intrapro-
tein and protein–ligand interactions. To account for the redesigned 
pocket’s influence on the ligand, the ligand structure is updated during 
the refinement process to reflect potential changes in the binding pose. 
To ensure consistency between the protein sequence and structure 
domains and to incorporate evolutionary information encoded in 
protein language models (pLMs)40,41, PocketGen integrates a struc-
tural adapter into the sequence update process. This adapter enables 
cross-attention between the sequence and structure features, ensuring 
sequence–structure alignment. Only the adapter is fine-tuned during 
training, whereas the remaining layers of the pLM remain unchanged. 
PocketGen outperforms methods for protein pocket generation on 
two benchmarks. It achieves an average amino acid recovery rate (AAR) 
of 63.40% and a Vina score of –9.655 for the top-1-ranked generated 
protein pockets on the CrossDocked dataset. Comprehensive analyses 
show that PocketGen can generate diverse, high-affinity protein pock-
ets for functional molecules, highlighting its potential for informing 
the design of small-molecule binders.

Results
Benchmarking generated protein pockets
We benchmark PocketGen on two datasets. The CrossDocked dataset42 
consists of protein–molecule pairs generated through cross-docking 
and is divided into training, validation and test sets based on a 30% 
sequence identity threshold. The Binding MOAD dataset43 contains 
experimentally determined protein–ligand complexes, which are 
split into training, validation and test sets according to the proteins’ 
enzyme commission numbers44. In line with intermolecular distance 
scales relevant to protein–ligand interactions45, our default experi-
mental setup includes all the residues with atoms within 3.5 Å of any 
ligand-binding atoms, averaging about eight residues per pocket. We 
also explore PocketGen’s ability to design larger pockets with a radius 
of 5.5 Å, incorporating more residues (Fig. 3c).

We use three groups of metrics to evaluate the quality of protein 
pockets generated by PocketGen. First, we assess the affinity between 
the generated pocket and the target ligand molecule using the Auto-
Dock Vina score46, MM-GBSA47 and min-in-place GlideSP score48. Sec-
ond, we evaluate the structural validity of the generated pockets using 
self-consistent root mean squared deviation (scRMSD), self-consistent 
template modelling score (scTM) and predicted local-distance 

difference test (pLDDT). The amino acid sequence for the protein 
pocket structure is derived using ProteinMPNN29, and the pocket struc-
ture is predicted using ESMFold49 or AlphaFold 2 (ref. 39). The scRMSD 
is calculated between the generated structure’s backbone atoms and 
the predicted structure. Following an established strategy50,51, eight 
sequences are predicted for each generated protein structure, and the 
sequence with the lowest scRMSD is used for reporting. Similarly, scTM 
is calculated by comparing the template modelling score52 between 
the predicted and generated structures. Scores range from 0 to 1, 
with higher values indicating greater designability. We also report 
the ΔscTM score to assess whether the generated pocket improves 
or degrades the scTM score of the initial protein. The pLDDT score39 
reflects the confidence in structural predictions on a scale from 0 to 
100, with higher scores indicating greater confidence. The average 
pLDDT score across pocket residues is reported. A generated protein 
pocket is defined as designable if the overall structure’s scRMSD is 
less than 2 Å and the pocket’s scRMSD is less than 1 Å (refs. 26,53,54). 
Supplementary Table 1 presents the percentage of designable gener-
ated pockets, and Supplementary Fig. 1 describes how these metrics 
are calculated. Finally, we report the AAR as the percentage of cor-
rectly predicted pocket residue types, which reflects the accuracy of 
the designed sequence. A higher AAR indicates better modelling of 
sequence–structure dependencies.

We compare PocketGen against six methods, including deep- 
learning-based approaches such as RFdiffusion26, RFAA16, FAIR24 and 
dynamic multichannel equivariant graph network (dyMEAN)25, as 
well as a template-matching method called Design Pocket as a Clus-
ter based on Templates (DEPACT)17 and a physics-based modelling 
method called PocketOpt18 (Methods). In Fig. 2 and Supplementary 
Table 1, PocketGen and the other methods are tasked with generating 
100 sequences and structures for each protein–ligand complex in the 
test sets of the CrossDocked and Binding MOAD datasets. PocketOpt 
is excluded from this comparison due to its focus on mutating existing 
pockets for optimization, making it too time-consuming to generate 
many protein pockets. Supplementary Table 1 presents the mean and 
standard deviation of the results across three independent runs with 
different random seeds. In Fig. 2, we apply bootstrapping to the gener-
ated results, illustrating the distributions to demonstrate the sensitivity 
of the results to the dataset composition55. As shown in Supplementary 
Table 1 and Supplementary Fig. 2, PocketGen outperforms all the base-
lines, including RFdiffusion and RFAA, in terms of designability (by 
3% and 2% on CrossDocked, respectively) and Vina scores (by 0.199 
and 0.123 on CrossDocked, respectively). This performance indicates 
PocketGen’s effectiveness in generating structurally valid pockets 
with high binding affinities, a result attributed to PocketGen’s ability 
to capture interactions at multiple granularities—both atom level and 
residue/ligand level—and across various aspects including intraprotein 
and protein–ligand interactions.

PocketGen substantially outperforms the best-performing alter-
native method, RFAA, with an average improvement of 13.95% in AAR, 
largely due to the inclusion of the pLM that captures evolutionary 
sequence information. In contrast, RFdiffusion and RFAA rely on 
post-processing to determine the amino acid types, which can lead 
to inconsistencies between sequence and structure and lower per-
formance in AAR. In protein engineering, the common practice is to 
mutate several key residues to optimize properties and keeping most 
residues unchanged to preserve protein-folding stability56,57. The high 
AAR achieved by the generated protein pockets with PocketGen aligns 
well with this practice, supporting its utility for stable and effective 
protein design.

In Table 1, the top 1, 3, 5 and 10 protein pockets generated by Pock-
etGen (ranked by Vina score) consistently show the lowest Vina scores, 
achieving an average reduction of 0.476 compared with RFAA. In addi-
tion to Vina scores, two other affinity metrics—MM-GBSA and GlideSP 
scores—further validate PocketGen’s ability to generate higher-affinity 
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pockets, with reductions of 4.287 in MM-GBSA and 0.376 in GlideSP 
scores. PocketGen demonstrates competitive performance in pLDDT, 
scRMSD and ΔscTM scores, underscoring its capability to produce 
high-affinity pockets and maintain structural validity and sequence–
structure consistency. With a 97% success rate in generating pockets 
with higher affinity than the reference cases (compared with a 93% 
success rate for the strongest baseline, RFAA) on the CrossDocked 
dataset, PocketGen proves its effectiveness and applicability across 
diverse ligand molecules.

To assess substructure validity and consistency with the reference 
datasets, we conduct a qualitative substructure analysis (Supplemen-
tary Table 4 and Supplementary Fig. 2). This analysis focuses on three 
covalent bonds in the residue backbone (C–N, C=O and C–C), three 
dihedral angles in the backbone (ϕ, ψ and ω) (ref. 58) and four dihe-
dral angles in the side chains (χ1, χ2, χ3 and χ4) (http://www.mlb.co.jp/
linux/science/garlic/doc/commands/dihedrals.html). Following prior 
research59,60, we collect bond length and angle distributions from both 
generated pockets and test dataset and compute the Kullback–Leibler 
divergence to quantify the distance between these distributions. Lower 
Kullback–Leibler divergence scores for PocketGen indicate its effec-
tiveness in accurately replicating the geometric features observed in 
the reference data.

Probing generative capabilities of PocketGen
Next, we explore PocketGen’s generative capabilities. Beyond designing 
high-quality protein pockets, generative models need to be efficient 
and maximize the yield of biochemical experiments—rapidly producing 
high-fidelity pocket candidates with only a small number of designs 
necessary to find a hit. Figure 3a compares the average generation 
time across various methods. Physics-based modelling (PocketOpt) 
and template matching (DEPACT) can take over 1,000 s to generate 100 

pockets. Advanced protein backbone generation models RFdiffusion 
and RFAA are computationally expensive due to their diffusion-based 
architectures, requiring 1,633.5 s and 2,210.1 s to design 100 pockets. 
Iterative refinement methods like PocketGen can substantially reduce 
generation time, with PocketGen taking just 44.2 s to generate 100 
pockets.

Although recent methods for pocket generation focus on maxi-
mizing the binding affinity with target molecules, this strategy may 
not always align with practical needs for which pocket diversity is 
equally important. Examining a batch of designed pockets, rather 
than a single design, improves the success rate of pocket design. 
Therefore, we investigate the relationship between binding affinity 
and the diversity of the generated protein pockets (Fig. 3b). Diver-
sity is quantified as (1 – average pairwise pocket residue sequence 
similarity) and can be adjusted by altering the sampling temperature 
τ (higher τ results in greater diversity). Figure 3b compares Pocket-
Gen with the most competitive baseline, RFAA16 + LigandMPNN30 
and the latest version of ProteinMPNN29. We observe that there is 
a trade-off between binding affinity and diversity. PocketGen can 
generate protein pockets with higher affinity than RFAA at the same 
level of diversity.

Figure 3c explores the effect of redesigned pocket size on Pock-
etGen’s performance. The redesign process targets all the residues 
with atoms within 3.5 Å, 4.5 Å and 5.5 Å of any binding ligand atoms. 
We observe a slight decline in the average AAR, root mean squared 
deviation (RMSD) and Vina scores as the size of the redesigned pocket 
increases. This trend is probably due to the increased complexity and 
reduced contextual information in the case of larger redesigned pocket 
areas. Larger pockets tend to enable the exploration of structures 
with potentially higher affinity, as indicated by the lowest Vina scores, 
which reach –17.5 kcal mol–1 for designs with a 5.5 Å radius. This can be 
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attributed to the enhanced structural complementarity in larger pocket 
designs. Extended Data Fig. 1a,b shows that PocketGen can generate full 
protein binders for two ligand molecules, with the generated protein 
binders achieving high scTM scores of 0.900 and 0.976.

A key feature that sets PocketGen apart from other pocket genera-
tion models is its integration of pLMs. In addition to using ESM (evolu-
tionary scale modeling)-2 650M (ref. 49) throughout our experiments, 
we evaluated a broader family of ESM models, ranging in model size 
from 8M to 15B trainable parameters. As shown in Fig. 3d, PocketGen’s 
performance improves with the scaling of pLMs. Specifically, the per-
formance increases from 54.58% to 66.61% when transitioning from the 
ESM-2 35M to ESM-2 15B models. This follows a logarithmic scaling law, 
consistent with trends observed in large language models61. PocketGen 
efficiently trains large pLMs by fine-tuning only the adapter layers and 
maintains most pLM layers fixed. As a result, PocketGen requires sub-
stantially fewer trainable parameters than RFAA16 (7.9M versus 82.9M 
trainable parameters).

The characteristics of the ligand molecule can affect the perfor-
mance of PocketGen in generating binding pockets. Figure 3e shows 
the relationship between the average Vina score of the generated 
pockets and the number of ligand atoms, revealing that PocketGen 
tends to create pockets with higher affinity for larger ligand molecules. 
This trend may result from the increased surface area for interac-
tion, the presence of additional functional groups and greater flex-
ibility in the conformations of larger molecules62,63. Key functional 
groups in ligand molecules that contribute to high binding affinity 
were identified using IFG (identifying functional groups)64. Figure 3f 
highlights the top-10-ranked molecular functional groups, which 
include hydrogen-bond donors and acceptors (carbonyl groups), 

aromatic rings, sulfhydryl groups and halogens. These groups facili-
tate favourable interactions with protein pockets, thereby enhancing 
the binding affinity.

Since PocketGen also updates the ligand structures during pocket 
generation, we use PoseBusters65 to evaluate the structural validity of 
the updated ligands. A detailed validity check (Extended Data Fig. 1e) 
shows that PocketGen achieves over 95% across all tests in PoseBusters. 
This is expected, as PocketGen makes only minor updates to ligand 
structures during pocket generation, successfully maintaining ligand 
structural integrity. In Extended Data Fig. 1c, we explore the relation-
ship between binding affinity and RMSD to the crystal structure in 
PDBBind. Using a geometric interaction graph neural network66–68 
to predict affinity (log[K], where K is the equilibrium dissociation 
constant), we observe that generally, lower RMSD corresponds to 
higher affinity. Extended Data Fig. 1d demonstrates that PocketGen 
improves most protein–ligand complexes in PDBBind by redesigning 
the binding pockets.

We conducted ablation studies (Supplementary Table 5) and 
hyperparameter analysis (Supplementary Fig. 3) to assess the contri-
bution of each module in PocketGen and the impact of hyperparameter 
choices on model performance. For comparison, we replaced the 
bilevel graph transformer in PocketGen with other popular encoders 
in structural biology, such as EGNN (E(n) equivariant graph neural 
network)69, GVP (geometric vector perceptron)70 and GMN (graph 
mechanics network)71. The results indicate that the bilevel graph 
transformer and the integration of pLM into PocketGen substantially 
enhance the performance. Furthermore, PocketGen demonstrates 
robustness to hyperparameter variations, consistently yielding com-
petitive results.

a
Ru

nt
im

es
 (s

)

103

104

102

PocketOpt
RFAA
RFdiffusion
DEPACT

CrossDocked MOAD 0.1 0.2 0.3 0.4 0.5

Diversity

–6.25

–6.50

–6.75

–7.00

–7.25

–7.50

–7.75

Vi
na

 s
co

re
 (k

ca
l m

ol
–1

)

PocketGen
RFAA + LigandMPNN

b
1.0

0.8

0.6

0.4

0.2

0

3.5 4.5 5.5

Design pocket size (Å)

AA
R

2.0

1.8

1.6

1.4

1.2

1.0
3.5 4.5 5.5

Design pocket size (Å)

RM
SD

0

–5

–10

–15

3.5 4.5 5.5

Design pocket size (Å)

Vi
na

 s
co

re
 (k

ca
l m

ol
–1

)

c

…

Proportion
to  trainable 
parameters

1%

100%

PocketGen

65

60

55

50

45

40

Re
co

ve
ry

 (%
)

FAIR
dyMEAN

RFAA

ESM-2 35M

ESM-2 150M
ESM-1b 650M

ESM-2 650M ESM-2 3B
ESM-2 15B

Numbers of total parameters (millions)
106 107 108 109 1010

d
–4

–6

–8

–10

–12

–14

10 20 30 40 50

Number of ligand atoms

Vi
na

 s
co

re
 (k

ca
l m

ol
–1

)

ρ = –0.61

–4

–6

–8

–10

–12

–14

–16
1 2 3 4 5 6 7 8 9 10

Top molecular functional groups leading to high affinity

Vi
na

 s
co

re
 (k

ca
l m

ol
–1

)

e f

dyMEAN
FAIR
PocketGen

Fig. 3 | Exploring capabilities of PocketGen. a, Average runtime of different 
methods for generating 100 protein pockets for a ligand molecule on the two 
benchmarks. Data are presented as mean ± standard deviation. The sample size 
for each method is 100. b, Trade-off between quality (measured by Vina score) 
and diversity (1 – average pairwise sequence similarity) of PocketGen. We can 
balance the trade-off by tuning the temperature hyperparameter τ. We show the 
mean values with the standard deviations marked as shadows. c, Influence of the 
design pocket size on the metrics. We draw box plots and the sample size is 100. 
In the box plots, the minimum is the smallest value, excluding outliers, marked at 
the end of the lower whisker. The first quartile (Q1), or the 25th percentile, forms 
the lower edge of the box, whereas the median (50th percentile) is represented 
by a line within the box. The third quartile (Q3), or the 75th percentile, forms the 

upper edge of the box. The maximum is the largest value, excluding the outliers, 
marked at the end of the upper whisker. The whiskers extend to data points 
within 1.5 times the IQR, and any values beyond the whiskers are considered 
outliers. d, Performance with respect to model scales of pLMs using the ESM 
series on the CrossDocked dataset. The green dots represent the PocketGen 
models with different ESMs. The bubble size is proportional to the number of 
trainable parameters. e, PocketGen tends to generate pockets with higher affinity 
for larger ligand molecules (Pearson correlation, ρ = –0.61; bands indicate the 
95% confidence interval). f, Top molecular functional groups leading to high 
affinity. The sample size is 100 and data are presented as mean ± standard 
deviation.
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Generating protein pockets for small molecule therapeutics
We demonstrate PocketGen’s ability to redesign the pockets of anti-
bodies, enzymes and biosensors for specific target ligands, building 
on previous research3,10,16. Specifically, we consider the following mol-
ecules. Cortisol (HCY)72 is a primary stress hormone that raises glucose 
levels in the bloodstream and serves as a biomarker for stress and other 
conditions. We redesign the pocket of a cortisol-specific antibody 
(Protein Data Bank (PDB) ID: 8CBY), potentially aiding the development 
of immunoassays. APX73 is an oral anticoagulant approved by the FDA 
in 2012 for patients with non-valvular atrial fibrillation to reduce the 
risk of stroke and blood clots74. APX target factor Xa (PDB ID: 2P16) 
is an enzyme in blood coagulation that converts prothrombin into 
thrombin to facilitate clot formation. Redesigning the pocket of factor 

Xa has therapeutic implications. Fentanyl (7V7)75 is a widely abused 
opioid contributing to the opioid crisis. Computationally designing 
fentanyl-binding proteins (biosensors) can support detection and 
neutralization efforts10. In Fig. 4, a protein–ligand interaction profiler76 
illustrates the interactions between the redesigned protein pockets 
and ligands, comparing these predicted interactions with the original 
binding patterns.

To generate pockets for the aforementioned small molecules, 
we pretrained PocketGen on the Binding MOAD dataset, excluding 
protein–ligand complexes considered in this analysis. The pockets pro-
duced by PocketGen successfully replicate most non-bonded interac-
tions observed in experimentally measured protein–ligand complexes 
(achieving a 13/15 match for HCY) and introduce additional physically 

Table 1 | The top 1/3/5/10 generated protein pockets (ranked by Vina score) on the CrossDocked dataset

PocketOpt DEPACT dyMEAN FAIR RFdiffusion RFAA PocketGen

Top-1-ranked generated protein pocket

Vina score (↓) –9.216 ± 0.154 –8.527 ± 0.061 –8.540 ± 0.107 –8.792 ± 0.122 –9.037 ± 0.080 –9.216 ± 0.091 –9.655 ± 0.094

MM-GBSA (↓) –58.754 ± 1.220 –47.130 ± 1.372 –48.248 ± 0.816 –51.923 ± 0.588 –54.817 ± 1.091 –59.255 ± 1.260 –63.542 ± 0.717

GlideSP (↓) –8.612 ± 0.127 –7.495 ± 0.053 –7.472 ± 0.088 –7.584 ± 0.094 –8.485 ± 0.069 –8.540 ± 0.065 –8.916 ± 0.047

Success Rate (↑) 0.923 ± 0.034 0.750 ± 0.016 0.762 ± 0.029 0.796 ± 0.035 0.891 ± 0.020 0.930 ± 0.027 0.974 ± 0.012

pLDDT (AF2) (↑) – 82.164 ± 0.241 83.053 ± 0.397 83.285 ± 0.240 84.432 ± 0.152 86.571 ± 0.178 86.830 ± 0.145

scRMSD (AF2) (↓) – 0.714 ± 0.025 0.708 ± 0.022 0.693 ± 0.018 0.675 ± 0.015 0.654 ± 0.012 0.645 ± 0.009

ΔscTM (AF2) (↑) – –0.008 ± 0.003 –0.005 ± 0.002 –0.011 ± 0.005 0.022 ± 0.006 0.020 ± 0.003 0.028 ± 0.002

ΔscTM (AF2+co) (↑) – –0.012 ± 0.003 –0.025 ± 0.004 –0.032 ± 0.007 – – 0.008 ± 0.002

Top-3-ranked generated protein pockets

Vina score (↓) –8.878 ± 0.112 –8.131 ± 0.064 –8.196 ± 0.090 –8.321 ± 0.045 –8.876 ± 0.107 –8.980 ± 0.057 –9.353 ± 0.063

MM-GBSA (↓) –53.372 ± 1.164 –43.790 ± 1.029 –44.151 ± 0.534 –46.050 ± 0.809 –52.423 ± 0.847 –53.593 ± 0.722 –60.770 ± 0.589

GlideSP (↓) –8.360 ± 0.094 –7.377 ± 0.039 –7.325 ± 0.078 –7.348 ± 0.052 –8.219 ± 0.049 –8.233 ± 0.060 –8.670 ± 0.056

pLDDT (AF2) (↑) – 82.049 ± 0.456 82.918 ± 0.237 83.025 ± 0.334 84.260 ± 0.210 86.289 ± 0.214 86.280 ± 0.135

scRMSD (AF2) (↓) – 0.713 ± 0.017 0.722 ± 0.011 0.692 ± 0.016 0.685 ± 0.007 0.659 ± 0.014 0.660 ± 0.012

ΔscTM (AF2) (↑) – –0.011 ± 0.004 –0.006 ± 0.002 –0.008 ± 0.003 0.021 ± 0.003 0.022 ± 0.002 0.026 ± 0.003

ΔscTM (AF2+co) (↑) – –0.016 ± 0.005 –0.026 ± 0.004 –0.034 ± 0.003 – – 0.005 ± 0.001

Top-5-ranked generated protein pockets

Vina score (↓) –8.702 ± 0.090 –7.786 ± 0.052 –7.974 ± 0.049 –7.943 ± 0.035 –8.510 ± 0.073 –8.689 ± 0.044 –9.239 ± 0.076

MM-GBSA (↓) –52.080 ± 1.071 –35.250 ± 0.823 –37.924 ± 0.340 –37.816 ± 0.402 –46.847 ± 0.700 –51.651 ± 0.809 –58.083 ± 0.561

GlideSP (↓) –8.173 ± 0.089 –7.126 ± 0.035 –7.294 ± 0.042 –7.289 ± 0.041 –8.022 ± 0.030 –8.093 ± 0.048 –8.417 ± 0.040

pLDDT (AF2) (↑) – 82.445 ± 0.307 82.763 ± 0.102 83.748 ± 0.271 84.505 ± 0.288 85.617 ± 0.105 85.969 ± 0.080

scRMSD (AF2) (↓) – 0.716 ± 0.014 0.726 ± 0.011 0.698 ± 0.015 0.680 ± 0.009 0.657 ± 0.006 0.655 ± 0.004

ΔscTM (AF2) (↑) – –0.009 ± 0.003 –0.007 ± 0.002 –0.012 ± 0.004 0.019 ± 0.003 0.020 ± 0.001 0.025 ± 0.001

ΔscTM (AF2+co) (↑) – –0.017 ± 0.002 –0.025 ± 0.006 –0.035 ± 0.005 – – 0.006 ± 0.002

Top-10-ranked generated protein pockets

Vina score (↓) –8.556 ± 0.104 –7.681 ± 0.040 –7.690 ± 0.054 –7.785 ± 0.028 –8.352 ± 0.061 –8.524 ± 0.038 –9.065 ± 0.057

MM-GBSA (↓) –49.257 ± 0.821 –32.534 ± 0.680 –33.118 ± 0.269 –33.670 ± 0.440 –45.726 ± 0.830 –47.325 ± 0.540 –54.800 ± 0.406

GlideSP (↓) –7.935 ± 0.082 –6.954 ± 0.042 –7.022 ± 0.034 –7.131 ± 0.025 –7.806 ± 0.022 –7.840 ± 0.026 –8.196 ± 0.027

pLDDT (AF2) (↑) – 81.520 ± 0.317 82.467 ± 0.255 83.271 ± 0.228 84.080 ± 0.190 85.442 ± 0.145 85.945 ± 0.139

scRMSD (AF2) (↓) – 0.712 ± 0.013 0.733 ± 0.014 0.706 ± 0.013 0.688 ± 0.009 0.680 ± 0.010 0.659 ± 0.007

ΔscTM (AF2) (↑) – –0.014 ± 0.002 –0.006 ± 0.001 –0.010 ± 0.003 0.016 ± 0.002 0.019 ± 0.001 0.023 ± 0.002

ΔscTM (AF2+co) (↑) – –0.018 ± 0.004 –0.030 ± 0.002 –0.033 ± 0.002 – – 0.004 ± 0.002

The success rate measures the percentage of proteins for which the model generates binding pockets with higher affinity than those in the reference datasets. Besides the Vina score, we 
use MM-GBSA and min-in-space GlideSP scores to calculate the binding affinity. We report the average pLDDT of the predicted pocket, the scRMSD of the pocket backbone coordinates and 
the change in scTM scores of the whole protein. AF2 means the scores are calculated with AlphaFold 2 as the folding tool (Supplementary Table 2 lists the ESMFold results). Co indicates 
co-design, where co-design methods use the designed sequence for consistency calculation. The pLDDT, scRMSD and ΔscTM values for PocketOpt are not reported, as PocketOpt keeps 
protein backbone structures fixed. The results of affinity-related metrics, pocket-structure-related metrics and whole-protein-structure metrics are marked. We report the mean and standard 
deviation over three independent runs. Best-performing results are indicated in bold.
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plausible interaction patterns not present in the original complexes. 
For example, the generated pockets for HCY, APX and 7V7 molecules 
form 2, 3 and 4 extra interactions, respectively. Specifically for HCY, 
PocketGen preserves key interaction patterns such as hydrophobic 
interactions (TRP47, PHE50, TYR59 and TYR104) and hydrogen bonds 
(TYR59), as two new hydrogen-bond-mediated interactions are intro-
duced within the pocket. For protein pockets designed to bind APX 
and 7V7 ligands, PocketGen maintains important interactions like 
hydrophobic contacts, hydrogen bonds and π–π stacking, as well as 
establishes additional interactions, for example, a π–cation interaction 

with LYS192 for APX and hydrogen bonds with ASN35 for 7V7, thereby 
enhancing the binding affinity with the target ligands. PocketGen effec-
tively captures non-covalent interactions derived from protein–ligand 
structure data and introducing new, plausible interaction patterns to 
optimize the binding affinity.

With its ability to establish favourable protein–ligand interactions, 
PocketGen generates high-affinity pockets for these drug ligands. In 
Fig. 4d–f, we present the affinity distributions of pockets generated 
by PocketGen compared with alternative methods. The percentage of 
generated pockets with higher affinity than the reference is 11%, 40% 
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Fig. 4 | Using PocketGen to design protein pockets for binding with important 
ligands. a–c, Illustrations of protein–ligand interaction analysis for three target 
molecules (HCY (a), APX (b) and 7V7 (c)). PocketGen refers to the protein pocket 
designed by PocketGen, and Original denotes the original protein–ligand 
structure. HP indicates hydrophobic interactions, HB signifies hydrogen bonds 
and π denotes the π–π stacking/π–cation interactions. In the residue sequences, 
the red ones denote the designed residues that differ from the original pocket. 
d–f, Pocket binding affinity distributions of PocketGen and baseline methods 

for the three target molecules (HCY (d), APX (e) and 7V7 (f)). We mark the Vina 
Score of the original pocket with the vertical dotted lines. For each method, we 
sample 100 pockets for each target ligand. The ratio of the generated pockets by 
PocketGen with higher affinity than the corresponding reference pocket are 11%, 
40% and 45%, respectively. g,h, Protein–ligand interaction analysis for unseen 
proteins in the training dataset (PiB21 and luxsit8). The target molecules are 
rucaparib (g) and DTZ (h). i,j, Pocket binding affinity distributions of PocketGen 
and baselines for rucaparib (i) and DTZ (j).
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and 45% for PocketGen. In contrast, the best runner-up method, RFAA, 
achieves only 0%, 10% and 18% across the same cases.

Protein stability is a critical factor in protein design, ensuring that 
the designed protein can fold into and maintain its three-dimensional 
structure77. Stability is quantified by the difference in Gibbs free energy 
(ΔΔG) between the redesigned protein and the wild-type (original) 
protein, where ΔΔG = ΔGorig − ΔGredesign. A positive ΔΔG value indicates 
increased stability, whereas a negative value suggests decreased stabil-
ity. We used DDMut78 to predict the change in stability for the pockets 
generated in Fig. 4, with ΔΔG values of 0.09 (HCY), 0.92 (APX), 0.13 (7V7),  
0.27 (rucaparib) and 0.02 (DTZ). These results suggest that PocketGen 
can generate protein structures likely to remain sufficiently stable to 
bind the ligand molecules.

To demonstrate the generalization capability of PocketGen, we 
tested it on unseen proteins from the training set, including PiB21 and 
luxsit8, with the binding ligands rucaparib and DTZ, respectively. 
Figure 4g,h shows the interaction analysis, whereas Fig. 4i,j presents 
the distribution of Vina scores. PocketGen consistently outperforms 
other methods in generating higher-affinity pockets. Generating 
pockets with higher affinity for DTZ proved more challenging, as the 
original pocket was designed using site-saturation mutagenesis8 to 
achieve optimal design. In Extended Data Fig. 1f, we present case stud-
ies involving a pair of activity cliff ligand molecules (C19 and C52)79 to 
further explore PocketGen’s adaptability. The generated interactions 
vary across molecular fragments: for one fragment, hydrogen bonds 
and hydrophobic interactions are generated, whereas for another 
fragment, halogen bonds are produced. This suggests that PocketGen 
has learned key protein–ligand interaction rules, allowing it to design 
high-affinity binding pockets.

Interpreting PocketGen's protein–ligand interactions
We analyse attention maps learned by PocketGen using the gener-
ated pocket for the APX ligand. Figure 5a presents a two-dimensional 
interaction plot drawn with the Schrödinger Maestro tool (v.2018-1). To 
evaluate PocketGen’s recognition of key protein–ligand interactions, 
we plot the heat map of attention weights produced by the final layer of 
its neural architecture. In Fig. 5b, two attention heads are shown, with 
each row and column representing a protein residue or a ligand atom, 

respectively. The attention heat maps are sparse, reflecting PocketGen’s 
use of sparse attention (Methods). The attention heads exhibit diverse 
patterns, focusing on different aspects of the interactions. For exam-
ple, the first attention head emphasizes hydrogen bonds, assigning 
high weights to interactions between residues THR146 and ASP220 
and ligand atom 7. The second attention head captures π–π stacking 
and π–cation interactions, specifically between residue TYR99 and 
ligand atoms 15, 21, 23, 25, 29 and 33; and residue LYS192 and ligand 
atoms 1, 14, 17, 19 and 20. These findings suggest that, despite being 
data-driven, PocketGen has learned to recognize biochemical inter-
molecular interactions.

Discussion
Understanding how proteins bind to ligand molecules is critical for 
enzyme catalysis, immune recognition, cellular signal transduction, 
gene expression control and other biological processes. Recent devel-
opments include deep generative models designed to study protein–
ligand binding, such as Lingo3DMol80, ResGen81 and PocketFlow82, 
which generate de novo drug-like ligand molecules for fixed protein 
targets. NeuralPLexer4 can create the structure of protein–ligand 
complexes given the protein sequence and ligand molecular graph. 
However, these models do not facilitate the de novo generation of 
protein pockets—the interfaces that bind with the ligand molecule for 
targeted ligand binding (critical in enzyme and biosensor engineering).

We developed PocketGen, a deep generative method capable of 
generating residue sequence and full-atom structure of the protein 
pocket region to maximize binding with the target ligand molecule. 
PocketGen includes two modules: a bilevel graph transformer for struc-
tural encoding, and a sequence refinement module that uses pLMs for 
sequence prediction. For structure prediction, the bilevel graph trans-
former directly updates coordinates of all atoms in the pocket region 
instead of separately predicting the backbone frame orientation and 
side-chain torsion angles. To achieve sequence–structure consistency 
and leverage evolutionary information encoded in pLMs, PocketGen 
integrates a structural adapter into a pLM for sequence updates. This 
adapter employs cross-attention between sequence and structure 
features to promote information flow and sequence–structure con-
sistency. Experiments across benchmarks and case studies involving 
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Fig. 5 | Attention maps in PocketGen capture interactions between atoms in 
protein and ligand molecules. a, Two-dimensional interaction plot of the 
designed pocket by PocketGen for APX. b, Heat map of attention matrices 
between residues and ligand atoms from the last layer of PocketGen. We show two 
selected attention heads with notable attention patterns marked with red 
rectangles. We notice that each head emphasizes different interactions. For 

example, PocketGen recognizes the hydrogen-bond interaction and assigns a 
strong attention weight between residues (1) THR146 and (2) ASP220 and ligand 
atom 7 in the first head. The π–π stacking and π–cation interactions of (3) TYR99 
and (4) LYS192 are well captured in the second head. The values are normalized by 
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therapeutic ligand molecules illustrate PocketGen’s ability to generate 
high-fidelity pocket structures with high binding affinity and favourable 
interactions with target ligands. Analysis of PocketGen’s performance 
across various settings reveals its proficiency in balancing diversity and 
affinity as well as generalizing across pocket sizes. Additionally, Pock-
etGen offers computational efficiency, substantially reducing runtime 
compared with traditional physics-based methods, making it feasible 
to sample large quantities of pocket candidates. PocketGen surpasses 
existing methods in efficiently generating high-affinity protein pockets 
for target ligand molecules, finding important interactions between 
atoms on protein and ligand molecules, and attaining consistency in 
sequence and structure domains.

PocketGen creates several fruitful directions for future work. Pock-
etGen could be expanded to design larger areas of the protein beyond 
pocket regions. Although PocketGen has been evaluated on larger pocket 
designs, modifications will be required to enhance scalability and robust-
ness necessary to generate larger protein areas. Another fruitful future 
direction involves incorporating biochemical priors, subpockets83 and 
interaction templates17 to improve model generalizability. For instance, 
despite overall dissimilarity, two protein pockets might still bind the 
same fragment if they share similar subpockets84. Moreover, evaluation 
of new designs through wet laboratory experiments could further vali-
date PocketGen’s effectiveness. Approaches such as PocketGen have the 
potential to advance areas of machine learning and bioengineering and 
help with the design of small-molecule binders and enzymes.

Methods
Overview of PocketGen
Unlike previous methods focusing on protein sequence or structure 
generation, we aim to co-design both residue types (sequences) and 
three-dimensional (3D) structures of the protein pocket that can fit 
and bind with the target ligand molecules. Inspired by previous works 
on structure-based drug design81,83 and protein generation34,35, we 
formulate pocket generation in PocketGen as a conditional generation 
problem that generates the sequences and structures of pocket con-
ditioned on the protein scaffold (other parts of the protein except the 
pocket region) and the binding ligand. To be specific, let 𝒜𝒜 𝒜 a1…aNs 
denote the whole protein sequence of residues, where Ns is the length 
of the sequence. The 3D structure of the protein can be described as a 
point cloud of protein atoms {ai, j}1≤i≤Ns ,1≤ j≤ni and let x(ai,j) ∈ ℝ3 denote 

the 3D coordinate of protein atoms. ni is the number of atoms in a resi-
due determined by the residue types. The first four atoms in any residue 
correspond to its backbone atoms (Cα, N, C, O), and the rest are the 
side-chain atoms. The ligand molecule can also be represented as a 3D 
point cloud ℳ 𝒜 {vk}

Nl
k=1, where vk denotes the atom feature. Let x(vk) 

denote the 3D coordinates of atom vk. Our work defines the protein 
pocket as a set of residues in the protein closest to the binding ligand 
molecule: ℬ 𝒜 b1…bm. The pocket ℬ can, thus, be represented as an 
amino acid subsequence of a protein: ℬ 𝒜 ae1 …aem, where e = {e1…em} 
is the index of the pocket residues in the whole protein. The index e can 
be formally given as e 𝒜 {i | min

1≤ j≤ni ,1≤k≤Nl
∥ x(ai, j) − x(vk)∥2 ≤ δ}, where ∥⋅∥2 

is the L2 distance norm and δ is the distance threshold. According to 
the distance range of pocket–ligand interactions45, we set δ = 3.5 Å in 
the default setting. With the above-defined notations, PocketGen aims 
to learn a conditional generative model formally defined as

P(ℬ|𝒜𝒜 𝒜 𝒜𝒜ℳ)𝒜 (1)

where 𝒜𝒜 𝒜 ℬ denotes the other parts of the protein except the pocket 
region. We also adjust the structure ligand molecule ℳ  in PocketGen 
to encourage protein–ligand interactions and reduce steric clashes.

To effectively generate the structure and sequence of the protein 
pocket ℬ, the equivariant bilevel graph transformer and the sequence 
refinement module with pretrained pLMs and adapters are proposed, 
which are discussed below. The illustrative workflow is depicted in Fig. 1.

Equivariant bilevel graph transformer
It is critical to model the complex interactions in the protein pocket–
ligand complexes for pocket generation. However, the multi-granularity 
(for example, atom level and residue level) and multi-aspect (intrapro-
tein and protein–ligand) nature of interactions brings a lot of chal-
lenges. Inspired by recent works on hierarchical graph transformer83 
and generalist equivariant transformer85, we propose an equivariant 
bilevel graph transformer to effectively model the multi-granularity 
and multi-aspect interactions. Each residue or ligand is represented as 
a block (that is, a set of atoms) for the conciseness of representation 
and ease of computation. Then, the protein–ligand complex can be 
abstracted as a geometric graph of sets 𝒢𝒢 𝒜 (𝒢𝒢𝒜 𝒢) , where 
𝒢𝒢 𝒜 {Hi𝒜Xi|1 ≤ i ≤ B} denotes the blocks and 𝒢 𝒜 {eij|1 ≤ i𝒜 j ≤ B} includes 
all the edges between blocks (B is the total number of blocks). We added 
self-loops to the edges to capture interactions within the block (for 
example, the interactions between ligand atoms). Our model adaptively 
assigns different numbers of channels to Hi and Xi to accommodate 
different numbers of atoms in residues and ligands. For example,  
given a block with ni atoms, the corresponding block has Hi ∈ ℝni×dh  
indicating the atom features (dh is the feature dimension size) and 
Xi ∈ ℝni×3 denoting the atom coordinates. Specifically, the pth row of 
Hi and Xi corresponds to the pth atom’s trainable feature (that is, Hi[p]) 
and coordinates (that is, Xi[p]), respectively. The trainable feature Hi[p] 
is first initialized with the concatenation of atom-type embedding, 
residue/ligand embeddings and the atom positional embeddings. To 
build 𝒢, we connect the k nearest-neighbouring residues according to 
the pairwise Cα distances. To reflect the interactions between the pro-
tein pocket and ligand, we add edges between all the pocket residues 
and ligand blocks. We describe the modules in PocketGen’s equivariant 
bilevel graph transformer, bilevel attention module and equivariant 
feed-forward networks (FFNs).

Bilevel attention module. Our model captures both atom-level 
and residue-/ligand-level interactions with the bilevel attention 
module. First, given two blocks i and j connected by an edge eij, we 
obtain the query, the key and the value matrices with the following 
transformations:

Qi 𝒜 HiWQ𝒜 Kj 𝒜 HjWK𝒜 Vj 𝒜 HjWV𝒜 (2)

where WQ𝒜WK andWV ∈ ℝdh×dr  are trainable parameters.
To calculate the atom-level attention across the ith and jth blocks, 

we denote Xij ∈ ℝni×nj×3 and Dij ∈ ℝni×nj as the relative coordinates and 
distances between atom pairs in block i and j, namely, Xij[p, q] = Xi[p] − 
Xj[q], Dij[p, q] = ∥Xij[p, q]∥2, respectively. Then, we have

Rij 𝒜
1

√dr
(QiK⊤j ) + σD (RBF(Dij)) 𝒜 (3)

αij 𝒜 Softmax (Rij) 𝒜 (4)

where σD(⋅) is a multilayer perceptron (MLP) that adds distance bias to 
the attention calculation. RBF embeds the distance with radial basis 
functions. αij ∈ ℝni×nj  is the atom-level attention matrix obtained by 
applying row-wise Softmax on Rij ∈ ℝni×nj. To encourage sparsity in the 
attention matrix, we keep the top-k′ elements of each row in αij and set 
the others as zeros.

The residue-/ligand-level attention from the jth block to the ith 
block is calculated as

rij 𝒜
1⊤Rij1

nin j
𝒜 (5)

βij 𝒜
exp(rij)

∑j∈𝒩𝒩𝒩i) exp(rij)
𝒜 (6)

where 1 refers to the column vector with all the elements set as ones 
and 𝒩𝒩(i) denotes the neighbouring blocks of i. rij sums up all the values 
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in Rij to represent the overall correlation between blocks i and j. Subse-
quently, βij denotes the attention across blocks at the block level.

We can update the representations and coordinates using the 
above atom-level and residue-/ligand-level attentions. PocketGen 
only updates the coordinates of the residues in the pocket and ligand 
molecule. The other protein residues are fixed. Specifically, for the 
pth atom in block i,

mij,p 𝒜 βij (αij[p] ⊙ ϕx(Qi[p]||Kj||RBF(Dij[p]))) 𝒜 (7)

H′
i
[p]Hi[p] + ∑

j∈𝒩𝒩𝒩i)
βijϕh(αij[p] ⋅ Vj)𝒜 (8)

X′
i
[p] 𝒜 Xi[p]

+ {
∑j∈𝒩𝒩𝒩i)mij,p ⋅ Xij[p]𝒜 if i belongs to ligandor pocket residues

0𝒜 if i belongs to other protein residues
(9)

where ϕh and ϕx are MLPs with concatenated representations as the 
input (concatenation along the second dimension and Qi[p] is repeated 
along rows). ⊙ computes the element-wise multiplication. H′

i
 and X′

i
 

denote the updated representation and coordinate matrices, respec-
tively, and we can verify that the dimension size of H′

i
 and X′

i
 remains 

the same regardless of the neighbouring block size nj. Furthermore, as 
the attention coefficients αij and βij are invariant under E(3) transforma-
tions, the modification of X′

i
 adheres to E(3) equivariance. Additionally, 

the permutation of atoms within each block does not affect this update 
process.

Equivariant FFN. We adapted the FFN module in the transformer 
model86 to update Hi and Xi. Specifically, the representation and coor-
dinates of atoms are updated to consider the block’s feature/geometric 
centroids (means). The centroids are denoted as

hc 𝒜 centroid(Hi)𝒜 xc 𝒜 centroid(Xi). (10)

Then, we obtain the relative coordinate Δxp and the relative dis-
tance representation rp based on the L2 norm of Δxp:

Δxp 𝒜 Xi[p] − xc𝒜 rp 𝒜 RBF(∥ Δxp∥2). (11)

The representation and coordinates of atoms are updated with 
MLPs σh and σx, respectively. The centroids are integrated to inform 
of the context of the block:

H′[p] 𝒜 H[p] + σh(Hi[p]𝒜hc𝒜 rp)𝒜 (12)

X′
i
[p] 𝒜 Xi[p] + Δxpσx(Hi[p]𝒜hc𝒜 rp). (13)

To stabilize and accelerate training, layer normalization87 is 
appended at each layer of the equivariant bilevel graph transformer 
to normalize H. The equivariant FFN satisfies E(3) equivariance. Owing 
to each module’s E(3) equivariance, the whole proposed bilevel graph 
transformer has the desirable property of E(3) equivariance (Supple-
mentary Theorem 1 provides the details). In PocketGen, we use an E(3) 
equivariant model for its simplicity similar to previous works88,89, which 
is capable enough to achieve strong performance. We are aware that 
an SE(3) equivariant model architecture would be better for learning 
the chirality-related properties of the protein, which we left for future 
exploration.

Sequence refinement with pLMs and adapters
pLMs, such as the ESM family of models40,41, have learned extensive evo-
lutionary knowledge from the vast array of natural protein sequences, 

demonstrating a strong ability to design protein sequences. In Pocket-
Gen, we propose to leverage pLMs to help refine the designed protein 
pocket sequences. To infuse the pLMs with structural information, we 
implant lightweight structural adapters inspired by previous works90,91. 
Different from LM-Design91, which focuses on protein sequence design 
given a fixed backbone structure, PocketGen co-designs both the amino 
acid sequence and the full-atom structure of the protein pocket. In our 
default setting, only one structural adapter was placed after the last 
layer of pLM. Only the adapter layers are fine-tuned during training, 
and the other layers of PLMs are frozen to save on computation costs. 
The structural adapter mainly has the following two parts.

Sequence–structure cross-attention. The structural representation 
of the ith residue hstruct

i
 is obtained by the mean pooling of Hi from the 

bilevel graph transformer. In the input to the pLMs, the pocket residue 
types to be designed are assigned with the mask, and we denote  
the ith residue representation from pLMs as hseq

i
. In the structural 

adapter, we perform cross-attention between the structural represen-
tations Hstruct 𝒜 {hstruct1 𝒜hstruct2 …hstruct

Ns
}  and sequence representations 

Hseq 𝒜 {hseq1 𝒜hseq2 …hseq
Ns
}. The respective query, key and value matrices 

are obtained as follows:

Q 𝒜 HseqWQ𝒜 K 𝒜 HstructWK𝒜 V 𝒜 HstructWV𝒜 (14)

where WQ𝒜WK andWV ∈ ℝdh×dr  are trainable weight matrices. Rotary 
positional encoding92 is applied to the representations, and we omit it 
in the equations for simplicity. The output of the cross-attention is 
obtained as

CrossAttention(Q𝒜K𝒜V) 𝒜 Softmax (QK
⊤

√dr
)V. (15)

Bottleneck FFN. A bottleneck FFN is appended after the cross-attention 
to impose nonlinearity and abstract representations, inspired by pre-
vious works90. The intermediate dimension of the bottleneck FFN 
is set to be half of the default representation dimension. Finally, the 
predicted pocket residue type pi is obtained by using an MLP on the 
output residue representation.

Training protocol
Inspired by AlphaFold 2 (ref. 39), we use a recycling strategy for model 
training. Recycling facilitates the training of deeper networks without 
incurring extra memory costs by executing multiple forward passes 
and computing gradients solely for the final pass. The training loss of 
PocketGen is the weighted sum of the following three losses:

ℒseq 𝒜
1
T
∑
t

∑
i

lce ( ̂pi𝒜pti) 𝒜 (16)

ℒcoord 𝒜
1
T
∑
t

[∑
i

lhuber ( ̂Xi𝒜Xti) +∑
j

lhuber ( ̂x (vj) 𝒜 xt (vj))] 𝒜 (17)

ℒstruct 𝒜
1
T
∑
t

[∑
b∈ℬ

lhuber( ̂b𝒜bt) + ∑
θ∈ϴ

lhuber(cos θ̂𝒜 cosθt)] 𝒜 (18)

ℒ 𝒜 ℒseq + λcoord ℒcoord + λstruct ℒstruct𝒜 (19)

where T is the total refinement rounds. ̂pi𝒜 ̂Xi𝒜 ̂x(vj)𝒜 ̂b and cos θ̂ are the 
ground-truth residue types, residue coordinates and ligand coordi-
nates; bond lengths; and bond/dihedral angles, respectively. 
pt
i
𝒜Xt

i
𝒜 xt(vj)𝒜bt  and cosθt  are the corresponding predicted ones at the 

tth round by PocketGen. The sequence loss ℒseq is the cross-entropy 
loss for pocket-residue-type prediction. The coordinate loss ℒcoord uses 
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Huber loss93 for the training stability. The structure loss ℒstruct is added 
to supervised bond lengths and bond/dihedral angles for realistic local 
geometry. ℬ and Θ denote all the bonds and angles in the protein pocket 
(including side chains). λcoord and λstruct are hyperparameters balancing 
the three losses. We perform a grid search over {0.5, 1.0, 2.0, 3.0} and 
choose these hyperparameters based on the validation performance 
to select the specific parameter values. In the default setting, we set 
λcoord to 1.0 and λstruct to 2.0.

Generation protocol
In the generation procedure, PocketGen initializes the sequence with 
uniform distributions over 20 amino acid types and the coordinates 
based on linear interpolations and extrapolations. Specifically, we 
initialize the residue coordinates with linear interpolations and extrap-
olations based on the nearest residues with known structures in the 
protein. Denote the sequence of residues as 𝒜𝒜 𝒜 a1⋯aNd, where Ns is 
the length of the sequence. Let x(ai,1) ∈ ℝ3 denote the Cα coordinate of 
the ith residue. We take the following strategies to determine the Cα 
coordinate of the ith residue. (1) We use linear interpolation if there are 
residues with known coordinates at both sides of the ith residue. Spe-
cifically, assume p and q are the indexes of the nearest residues with 
known coordinates at each side of the ith residue (p < i < q), we have 
x(ai,1) 𝒜

1
q−p

[(i − p)x(aq,1) + (q − i)x(ap,1)] . (2) We conduct linear extrapola-
tion if the ith residue is at the ends of the chain, that is, no residues with 
known structures at one side of the ith residue. Specifically, let p and 
q denote the index of the nearest and second-nearest residue with 
known coordinates. The position of the ith residue can be initialized 
as x(ai,1) 𝒜 x(ap,1) +

i−p
p−q

(x(ap,1) − x(aq,1)) . Inspired by previous works33,34, 
we initialize the other backbone atom coordinates according to their 
ideal local coordinates relative to the Cα coordinates. We initialize the 
side-chain atoms’ coordinates with the coordinate of their correspond-
ing Cα value, added with Gaussian noise. We initialize the ligand molecu-
lar structure with the reference ligand structure from the dataset. The 
ligand structure is updated during pocket generation and the updated 
ligand is used for Vina score calculation.

Since the number of pocket residue types and the number of 
side-chain atoms are unknown at the beginning of generation, each 
pocket residue is assigned 14 atoms, the maximum number of atoms for 
residues. After rounds of refinement by PocketGen, the pocket residue 
types are predicted, and the full-atom coordinates are determined by 
mapping the coordinates to the predicted residue types (taking the 
first n coordinates according to the residue type). In PocketGen, we 
directly predict the absolute atom coordinates, which reduces the 
model complexity and flexibly captures atom interactions. We also 
notice that PocketGen aligns with the recent trend of directly predict-
ing full-atom coordinates. For example, the recent AlphaFold 3 (ref. 94) 
directly predicts the full-atom coordinates, replacing the AlphaFold 
2 structure module that operated on amino-acid-specific frames and 
side-chain torsion angles, and achieves better performance on protein 
structure prediction. For generation efficiency, we set the number of 
refinement rounds to 3.

Experimental setting
Datasets. We consider two widely used datasets for benchmark evalu-
ation. The CrossDocked dataset42 contains 22.5M protein–molecule 
pairs generated through cross-docking. Following previous works24,59,95, 
we filter out data points with binding pose RMSD greater than 1 Å, lead-
ing to a refined subset with around 180k data points. For data splitting, 
we use MMseqs2 (ref. 96) to cluster data at 30% sequence identity, 
and randomly draw 100k protein–ligand structure pairs for training 
and 100 pairs from the remaining clusters for testing and validation, 
respectively. The Binding MOAD dataset43 contains around 41k experi-
mentally determined protein–ligand complexes. Following previous 
work97, we keep pockets with valid and moderately ‘drug-like’ ligands 
with a QED (quantitative estimate of drug-likeness) score of ≥0.3. We 

further filter the dataset to discard molecules containing atom types ∉ 
{C, N, O, S, B, Br, Cl, P, I, F} as well as binding pockets with non-standard 
amino acids. Then, we randomly sample and split the filtered dataset 
based on the Enzyme Commission number44 to ensure different sets 
do not contain proteins from the same main class of the Enzyme Com-
mission number. Finally, we have 40k protein–ligand pairs for training, 
100 pairs for validation and 100 pairs for testing. For all the benchmark 
tasks in this paper, PocketGen and all the other baseline methods are 
trained with the same data split for a fair comparison. In real-world 
pocket generation and optimization case studies, the protein struc-
tures were downloaded from the PDB98.

Implementation. Our PocketGen model is trained with the Adam99 
optimizer for 5k iterations, for which the learning rate is 0.0001 and 
the batch size is 64. We report the results corresponding to the check-
point with the best validation loss. It takes around 48 h to finish training 
on one Tesla A100 GPU from scratch. In PocketGen, the number of 
attention heads is set as 4, the hidden dimension d is set as 128, k is set 
to 8 to connect the k nearest-neighbouring residues to build 𝒢 and k′ 
is set as 3 to encourage sparsity in the attention matrix. For all the 
benchmark tasks of pocket generation and optimization, PocketGen 
and all the other baseline methods are trained with the same data split 
for a fair comparison. We follow the implementation codes provided 
by the authors to obtain the results of the baseline methods. Supple-
mentary Algorithms 1 and 2 show the pseudo-codes of the training and 
generation process of PocketGen.

Baseline methods. PocketGen is compared with five state-of-the-art 
representative baseline methods. PocketOptimizer18 is a physics-based 
method that optimizes energies such as packing- and binding-related 
energies for ligand-binding protein design. Following the sugges-
tion of the paper, we fixed the backbone structures. DEPACT17 is a 
template-matching method that follows a two-step strategy100 for 
pocket design. It first searches the protein–ligand complexes in the 
database with similar ligand fragments. It then grafts the associated 
residues into the protein scaffold to output the complete protein 
structure with PACMatch17. Both backbone and side-chain structures 
are changed in DEPACT. RFdiffusion26, RFAA16, FAIR24 and dyMEAN25 are 
deep-learning-based models for protein generation. RFdiffusion does 
not explicitly model protein–ligand interactions and is not directly 
applicable to small-molecule binding protein generation. Following 
the suggestions in RFdiffusion26 and RFAA16, we use a heuristic attrac-
tive–repulsive potential to encourage the formation of pockets with 
shape complementarity to a target molecule. The residue sequence 
for the generated protein by RFdiffusion is derived with ProteinMPNN, 
and the side-chain conformation is decided with Rosetta101 side-chain 
packing. RFAA is the latest version of RFdiffusion, which can directly 
generate protein structures surrounding small molecules by combining 
the residue-based representation of amino acids with the atomic rep-
resentation of small molecules. For RFdiffusion and RFAA, we let them 
paint the pocket area to obtain a consistent setting with other methods 
for comparison. We also note that RFdiffusion and RFAA do not pro-
vide the training/fine-tuning scripts; therefore, we use the provided 
pretrained checkpoints for all the related experiments in our paper. 
FAIR24 was specially designed for full-atom protein pocket design via 
iterative refinement. dyMEAN25 was originally proposed for full-atom 
antibody design, and we adapted it to our pocket design task with 
proper modifications. Detailed information on baselines is included 
in Supplementary Notes 1–4. The setting of the key hyperparameters is 
summarized in Supplementary Table 6. All the baselines are run on the 
same Tesla A100 GPU for a fair comparison with our PocketGen data.

Data availability
This study’s training and test data are available via Zenodo at https://
doi.org/10.5281/zenodo.10125312 (ref. 102). The project website for 
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PocketGen is https://zitniklab.hms.harvard.edu/projects/PocketGen. 
Source data are provided with this paper.

Code availability
The source code for this study is freely available via GitHub at  
https://github.com/zaixizhang/PocketGen and via Zenodo at  
https://doi.org/10.5281/zenodo.13762085 (ref. 103).
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Extended Data Fig. 1 | More case studies and evaluations of PocketGen. a, The 
originally designed protein binder for Rucaparib21(left panel) and the generated 
protein binder by PocketGen (right panel). b, The originally designed protein 
binder for DTZ8(left panel) and the generated protein binder by PocketGen 
(right panel). Note that PocketGen generates the whole protein instead of the 
pocket region in a&b. The generated protein binder has high scTM scores (0.900 
and 0.976). c, The predicted affinity (log K) by GIGN66 of the generated pockets 
by PocketGen with respect to RMSD. We randomly select two protein-ligand 
complexes from PDBBind (PDB id 2c3i and 3jya). d, The Vina score/binding 
affinity (log K) of the generated pockets by PocketGen and the original pockets 

from PDBBind. The black region/dots indicate the generated pockets have 
higher affinities than the original pockets while the red region/dots indicate 
lower affinities. f, The generated interactions by PocketGen with respect to a 
pair of activity cliff ligand molecules, that is, C19 and C5279. As marked with red 
rectangles, PocketGen adaptively generates different interactions for different 
molecular fragments (hydrogen bonds+hydrophobic interactions and halogen 
bonds respectively). ‘HP’ indicates hydrophobic interactions, ‘HB’ signifies 
hydrogen bonds, ‘π’ denotes the π-stacking/cation interactions, and ‘Halo’ 
indicates the Halogen bonds. e, Detailed validity check with PoseBusters on 
CrossDocked and Binding MOAD.
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