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Contextual AI models for single-cell  
protein biology
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Alberto Valdeolivas    2, Ashwin N. Ananthakrishnan1,3, Katherine Liao1,4, 
Daniel Marbach    2 & Marinka Zitnik    1,5,6,7 

Understanding protein function and developing molecular therapies 
require deciphering the cell types in which proteins act as well as the 
interactions between proteins. However, modeling protein interactions 
across biological contexts remains challenging for existing algorithms. Here 
we introduce PINNACLE, a geometric deep learning approach that generates 
context-aware protein representations. Leveraging a multiorgan single-cell 
atlas, PINNACLE learns on contextualized protein interaction networks 
to produce 394,760 protein representations from 156 cell type contexts 
across 24 tissues. PINNACLE’s embedding space reflects cellular and tissue 
organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained 
protein representations can be adapted for downstream tasks: enhancing 3D 
structure-based representations for resolving immuno-oncological protein 
interactions, and investigating drugs’ effects across cell types. PINNACLE 
outperforms state-of-the-art models in nominating therapeutic targets for 
rheumatoid arthritis and inflammatory bowel diseases and pinpoints cell 
type contexts with higher predictive capability than context-free models. 
PINNACLE’s ability to adjust its outputs on the basis of the context in which it 
operates paves the way for large-scale context-specific predictions  
in biology.

Proteins are the functional units of cells, and their interactions enable 
different biological functions. The development of high-throughput 
methods has facilitated the characterization of large maps of protein 
interactions. Leveraging these protein interaction networks, computa-
tional methods1,2 have been developed to improve the understanding 
of protein structure3, accurately predict functional annotations4,5 and 
inform the design of therapeutic targets6,7. Among them, representa-
tion learning methods have emerged as a leading strategy to model 
proteins8–10. These approaches can resolve protein interaction networks 
across tissues11–13 and cell types by integrating molecular cell atlases14 
and extending our understanding of the relationship between protein 

and function15. Protein representation learning methods can predict 
multicellular functions across human tissues12, design target-binding 
proteins16 and novel protein interactions17, and predict interactions 
between transcription factors and genes15.

Proteins can have distinct roles in different biological contexts18,19. 
While nearly every cell contains the same genome, the expression of 
genes and the function of proteins encoded by these genes depend 
on cellular and tissue contexts11,20,21. Gene expression and the function 
of proteins can also differ significantly between healthy and disease 
states21,22. Methods incorporating biological contexts can improve 
the characterization of proteins and provide precise, context-specific 
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maximally similar to the global reference protein interaction network 
and still highly cell type specific (Extended Data Figs. 1 and 2). Our 
context-aware protein interaction networks from 156 cell type contexts 
span 62 tissues of varying biological scales.

Further, we constructed a network of cell types and tissues 
(metagraph) to model cellular interactions and the tissue hierarchy 
(‘Construction of multiscale networks’ section in Methods). Given the 
cell type annotations designated by the multiorgan transcriptomic 
atlas20, the network consists of 156 cell type nodes. We incorporated 
edges between pairs of cell types based on the existence of significant 
ligand–receptor (LR) interactions and validated that the proteins cor-
relating to these interactions are enriched in the context-aware protein 
interaction networks in comparison to a null distribution (‘Construc-
tion of multiscale networks’ section in Methods and Extended Data 
Fig. 1c,d). Leveraging information on tissues in which the cell types 
were measured, we began with 24 tissue nodes and established edges 
between cell type nodes and tissue nodes if the cell type was derived 
from the corresponding tissue. We then identified all ancestor nodes, 
including the root, of the 24 tissue nodes within the tissue hierarchy 
(‘Construction of multiscale networks’ section in Methods) to feature 
62 tissue nodes interconnected by parent–child relationships. Our 
dataset thus comprises 156 context-aware protein interaction networks 
and a metagraph reflecting cell type and tissue organization.

Overview of PINNACLE model
PINNACLE is a geometric deep learning model capable of generat-
ing protein representations predicated on protein interactions 
within a spectrum of cell type contexts. Trained on an integrated set 
of context-aware protein interaction networks, complemented by a 
network capturing cellular interactions and tissue hierarchy (Fig. 1b,c), 
PINNACLE generates contextualized protein representations that are 
tailored to cell types in which protein-coding genes are activated 
(Fig. 1d). Unlike context-free models, PINNACLE produces multiple 
representations for every protein, each contingent on its specific cell 
type context. Additionally, PINNACLE produces representations of the 
cell type contexts and representations of the tissue hierarchy (Fig. 1d,e). 
This approach ensures a multifaceted understanding of protein inter-
action networks, taking into account the myriad of contexts in which 
proteins act.

Given multiscale model inputs, PINNACLE learns the topology 
of proteins, cell types and tissues by optimizing a unified latent rep-
resentation space. PINNACLE integrates different context-specific 
data into one context-aware model (Fig. 1f) and transfers knowledge 
between protein-, cell type- and tissue-level data to contextualize 
representations (Fig. 1g). To infuse cellular and tissue organization 
into this embedding space, PINNACLE employs protein-, cell type- 
and tissue-level attention along with respective objective functions 
(Fig. 1b,c and ‘Multiscale graph neural network’ section in Methods). 
Conceptually, pairs of proteins that physically interact (that is, are con-
nected by edges in input networks) are closely embedded. Similarly, 
proteins are embedded near their respective cell type contexts while 
maintaining a substantial distance from unrelated ones. This ensures 
that interacting proteins within the same cell type context are situated 
proximally within the embedding space yet are separated from proteins 
from other cell type contexts. This approach yields an embedding space 
that accurately represents the intricacies of relationships between 
proteins, cell types and tissues.

PINNACLE disseminates graph neural network messages between 
proteins, cell types and tissues using a series of attention mechanisms 
tailored to each specific node and edge type (‘Multiscale graph neural 
network’ section in Methods). The protein-level pretraining tasks 
consider self-supervised link prediction on protein interactions and 
cell type classification on protein nodes. These tasks enable PINNACLE 
to sculpt an embedding space that encapsulates the topology of the 
context-aware protein interaction networks and the cell type identity 

insights. However, deep learning methods produce protein representa-
tions (or embeddings) that are context-free: each protein has only one 
representation learned from either a single context or an integrated 
view across many contexts15,23. These methods generate one representa-
tion for each protein, providing an integrated summary. Context-free 
protein representations are not tailored to specific biological contexts, 
such as cell types and disease states. These representations cannot 
identify protein functions that vary across different cell types, which 
in turn hamper the prediction of pleiotropy and protein roles in a cell 
type-specific manner.

Sequencing technologies that measure gene expression with 
single-cell resolution pave the way toward addressing this challenge. 
Single-cell transcriptomic atlases20,24–27 measure activated genes across 
many cellular contexts. Through attention-based deep learning28,29, 
which specifies models that can pay attention to large inputs and learn 
the most important elements to focus on in each context, single-cell 
atlases can be leveraged to boost the mapping of gene regulatory net-
works that drive disease progression and reveal treatment targets30. 
However, incorporating the expression of protein-coding genes into 
protein interaction networks remains a challenge. Existing algorithms, 
including protein representation learning, cannot contextualize pro-
tein representations.

We introduce PINNACLE (Protein Network-based Algorithm for 
Contextual Learning), a context-specific model for comprehensive 
protein understanding. PINNACLE is a geometric deep learning model 
adept at generating protein representations through the analysis 
of protein interactions within various cellular contexts. Leveraging 
single-cell transcriptomics combined with networks of protein–pro-
tein interactions (PPIs), cell type-to-cell type interactions and a tissue 
hierarchy, PINNACLE generates high-resolution protein representa-
tions tailored to each cell type. In contrast to existing methods that 
provide a single representation for each protein, PINNACLE generates 
a distinct representation for each cell type in which a protein-coding 
gene is activated. With 394,760 contextualized protein representations 
produced by PINNACLE, where each protein representation is imbued 
with cell type specificity, we demonstrate PINNACLE’s capability to 
integrate protein interactions with the underlying protein-coding 
gene transcriptomes of 156 cell type contexts. PINNACLE models sup-
port a broad array of tasks; they can enhance three-dimensional (3D) 
structural protein representations, analyze the effects of drugs across 
cell type contexts, nominate therapeutic targets in a cell type-specific 
manner, retrieve tissue hierarchy in a zero-shot manner and perform 
context-specific transfer learning. PINNACLE models dynamically 
adjust their outputs on the basis of the context in which they operate 
and can pave the way for the broad use of foundation models tailored 
to diverse biological contexts.

Results
Constructing context-specific networks
Generating protein representations embedded with cell type context 
calls for protein interaction networks that consider the same context. 
We assembled a dataset of context-sensitive protein interactomes, 
beginning with a multiorgan single-cell transcriptomic atlas20 that 
encompasses 24 tissue and organ samples sourced from 15 human 
donors (Fig. 1a). We compile activated genes for every expert-annotated 
cell type in this dataset by evaluating the average gene expression in 
cells from that cell type relative to a designated reference set of cells 
(Fig. 1a and ‘Construction of multiscale networks’ section in Methods). 
Here, ‘activated genes’ are defined as those demonstrating a higher 
average expression in cells annotated as a particular type than the 
remaining cells documented in the dataset. Based on these activated 
gene lists, we extracted the corresponding proteins from the compre-
hensive reference protein interaction network and retained the largest 
connected component (Fig. 1a). As a result, we have 156 context-aware 
protein interaction networks, each with 2,530 ± 677 proteins, that are 
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of the proteins. PINNACLE’s cell type- and tissue-specific pretraining 
tasks rely exclusively on self-supervised link prediction, facilitating the 
learning of cellular and tissue organization. The topology of cell types 
and tissues is imparted to the protein representations through an atten-
tion bridge mechanism, effectively enforcing tissue and cellular organi-
zation onto the protein representations. PINNACLE’s contextualized 
protein representations capture the structure of context-aware protein 
interaction networks. The regional arrangement of these contextual-
ized protein representations in the latent space reflects the cellular 
and tissue organization represented by the metagraph. This leads to a 
comprehensive and context-specific representation of proteins within 
a unified cell type- and tissue-specific framework.

PINNACLE captures cellular and tissue organization
PINNACLE generates protein representations for each of the 156 cell 
type contexts spanning 62 tissues of varying hierarchical scales. In total, 
PINNACLE’s unified multiscale embedding space comprises 394,760 
protein representations, 156 cell type representations and 62 tissue 

representations (Fig. 1a). We show that PINNACLE learns an embedding 
space where proteins are positioned based on cell type context. We first 
quantify the spatial enrichment of PINNACLE’s protein embedding 
regions using a systematic method, SAFE31 (‘Spatial enrichment analysis 
of PINNACLE’s protein embeddings’ section in Methods). PINNACLE’s 
contextualized protein representations self-organize in PINNACLE’s 
embedding space as evidenced by the enrichment of spatial embed-
ding regions for protein representations that originate from the same 
cell type context (significance cutoff α = 0.05; Fig. 2 and Extended Data 
Figs. 3 and 4).

Next, we evaluate embedding regions to confirm that they are 
separated by cell type and tissue identity by calculating the similarities 
between protein representations across cell type contexts. Protein 
representations from the same cell type are more similar than those 
from different cell types (Fig. 3a). In contrast, a model without cellular 
or tissue context fails to capture any differences between protein rep-
resentations across cell type contexts (Fig. 3b). Further, we expect the 
representations of proteins that act on multiple cell types to be highly 
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Fig. 1 | Overview of PINNACLE. a, Cell type-specific protein interaction networks 
and metagraph of cell type and tissue organization are constructed from a 
multiorgan single-cell transcriptomic atlas of humans, a human reference 
protein interaction network and a tissue ontology. b, PINNACLE has protein-, 
cell type- and tissue-level attention mechanisms that enable the algorithm to 
generate contextualized representations of proteins, cell types and tissues in a 
single unified embedding space. c, PINNACLE is designed such that the nodes 
(that is, proteins, cell types and tissues) that share an edge are embedded closer 
(decreased embedding distance) to each other than nodes that do not share an 
edge (increased embedding distance); proteins activated in the same cell type 
are embedded more closely (decreased embedding distance) than proteins 
activated in different cell types (increased embedding distance), and cell types 

are embedded closer to their activated proteins (decreased embedding distance) 
than other proteins (increased embedding distance). d, As a result, PINNACLE 
generates protein representations injected with cell type and tissue context; 
a unique representation is produced for each protein activated in each cell 
type. PINNACLE simultaneously generates representations for cell types and 
tissues. e, Existing methods, however, are context-free. They generate a single 
embedding per protein, representing only one condition or context for each 
protein, without any notion of cell type or tissue context. f–h, The PINNACLE 
algorithm and its outputs enable multimodal deep learning (for example, single-
cell transcriptomic data with interactomes) (f), context-specific transfer learning 
(for example, between proteins, cell types and tissues) (g) and contextualized 
predictions (for example, efficacy and safety of therapeutics) (h).
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dissimilar, reflecting specialized cell type-specific protein functions 
(Supplementary Note 1). We calculate the similarities of protein rep-
resentations (that is, cosine similarities of a protein’s representations 
across cell type contexts) based on the number of cell types in which the 
protein is active (Extended Data Fig. 5a,b). Representational similarities 
of proteins negatively correlate with the number of cell types in which 
they act (Spearman’s ρ = −0.9798; P < 0.001), and the correlation is 
weaker in the ablated model with cellular and tissue metagraph turned 
off (Spearman’s ρ = − 0.6334; P < 0.001).

We additionally examine whether protein embedding regions 
are organized by the tissue hierarchy. We leverage PINNACLE’s tissue 
representations to perform zero-shot retrieval of the tissue hierarchy 
and then compare tissue ontology distance to tissue embedding dis-
tance. Tissue ontology distance is defined as the sum of the shortest 
path lengths from two tissue nodes to the lowest common ancestor 
node in the tissue hierarchy, and tissue embedding distance is the 
cosine distance between the corresponding tissue representations. We 
expect a positive correlation: the farther apart the nodes are according 
to the tissue hierarchy, the more dissimilar the tissue representations 
are. As hypothesized, embedding distances in the latent space and the 
corresponding distances in the tissue ontology of the same tissues are 
positively correlated (Spearman’s ρ = 0.36; P = 1.85 × 10−119; Fig. 3c), and 
the distribution of tissue embedding distances cannot be attributed to 
random effects (Kolmogorov–Smirnov two-sided test 0.50; P < 0.001). 
When the tissue ontology is randomly shuffled, the correlation with 

distances in the embedding space diminishes significantly (Spearman’s 
ρ = 0.005; P = 0.349; Fig. 3c). Since PINNACLE uses the metagraph to 
systematically integrate tissue organization into both cell type and pro-
tein representations, it follows that all of PINNACLE’s representations 
inherently reflect this tissue organization (‘Multiscale graph neural 
network’ section in Methods and Extended Data Fig. 6).

PINNACLE enhances 3D structural representations of PPIs
Protein–protein interactions (PPIs) depend on both 3D structure con-
formations of the proteins32,33 and cell type contexts within which the 
proteins act34. However, protein representations produced by existing 
artificial intelligence (AI) models based on 3D molecular structures 
lack cell type context information. We hypothesize that incorporat-
ing cellular context information can better differentiate binding 
from nonbinding proteins (Fig. 3d). Because 3D structures of mol-
ecules (containing precise atom or residue level contact information) 
provide complementary knowledge to PPI networks (summarizing 
binary interactions between proteins), we expect that context-aware 
protein interaction networks can improve the ability to differenti-
ate between binding and nonbinding proteins across different cell 
types35. As no large-scale dataset with matched structural biology 
and genomic readouts currently exists to perform systematic analy-
ses, we focus on PD-1/PD-L1 and B7-1/CTLA-4 interacting proteins, 
important immune checkpoint protein interactors involved in cancer  
immunotherapies36.
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Fig. 2 | Enrichment of PINNACLE’s protein embedding regions. a–f, Two-
dimensional UMAP plots of contextualized protein representations generated 
by PINNACLE from six different cell type contexts: medullary thymic epithelial 
cell (a), bronchial vessel endothelial cell (b), mesenchymal stem cell (c), lung 
microvascular endothelial cell (d), kidney epithelial cell (e) and fibroblast of 
breast (f). Each dot is a protein representation. Colored dots indicate cell type 
context regions, and gray dots represent proteins from other cell types. Each 
protein embedding region is expected to be enriched neighborhoods that are 
spatially localized according to cell type context. To quantify this, we compute 
spatial enrichment of each protein embedding region using SAFE31 and provide 

the mean and max neighborhood enrichment scores (NES) and the number of 
enriched neighborhoods output by the tool (‘Metrics and statistical analyses’ 
section in Methods and Extended Data Figs. 3 and 4). g,h, Distribution of the 
maximum SAFE NES (g) and the number of enriched neighborhoods (h) for 
156 cell type contexts (each context has a P value <0.05; hypergeometric test, 
adjusted using the Benjamini–Hochberg false discovery rate correction with 
significance cutoff α = 0.05). Ten randomly sampled cell type contexts are 
annotated, with their maximum SAFE NES or number of enriched neighborhoods 
in parentheses.
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We compare contextualized and context-free protein represen-
tations for binding proteins (that is, PD-1/PD-L1 and B7-1/CTLA-4) 
and nonbinding proteins (that is, one of the four binding proteins 
paired with RalB, RalBP1, EPO, EPOR, C3 or CFH). Cell type context 
is incorporated into 3D structure-based protein representations3,17 
by concatenating them with PINNACLE’s protein representation 
(Fig. 3e and ‘Generating contextualized 3D protein representations’ 
section in Methods). Context-free protein representations are gener-
ated by concatenating 3D structure-based representations3,17 with an 
average of PINNACLE’s protein representations across all cell type 

contexts (‘Generating contextualized 3D protein representations’ 
section in Methods). Contextualized representations, resulting from 
a combination of protein representations based on 3D structure and 
context-aware PPI networks, give scores (via cosine similarity) for bind-
ing and nonbinding proteins of 0.9690 ± 0.0049 and 0.9571 ± 0.0127, 
respectively. Using PINNACLE’s context-specific protein represen-
tations, which have no 3D structure information, binding and non-
binding proteins are scored 0.0385 ± 0.1531 and 0.0218 ± 0.1081, 
respectively. In contrast, using context-free representations, bind-
ing and nonbinding proteins are scored at 0.9789 ± 0.0004 and 
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Fig. 3 | Evaluation of PINNACLE’s contextual representations. a,b, Gap 
between embedding similarities using PINNACLE’s protein representations (a) 
and a noncontextualized model’s protein representations (b) on n = 394,760 
samples (that is, cell type-specific protein representations). Similarities are 
calculated between pairs of proteins in the same cell type (dark shade of color) or 
different cell types (light shade of color), and stratified by the compartment from 
which the cell types are derived. We use the two-sided two-sample Kolmogorov–
Smirnov test for goodness of fit. Annotations indicate median values. The 
noncontextualized model is an ablated version of PINNACLE without any notion 
of tissue or cell type organization (that is, remove cell type and tissue network 
and all cell type- and tissue-related components of PINNACLE’s architecture 
and objective function). The bounds of the box show the quartiles of the data, 
the center indicates the median value of the data and the whiskers represent the 
farthest data point within 1.5 × interquartile range. c, Embedding distance of 
PINNACLE’s 62 tissue representations as a function of tissue ontology distance. 
The gray bars indicate a null distribution (refer to ‘Metrics and statistical 
analyses’ section in Methods for more details). Both the Spearman correlation 
(P = 1.85 × 10−119) and Kolmogorov–Smirnov (P < 0.001) statistical tests are 
two-sided. The data are represented as mean values with error bars indicating 
a 95% confidence interval. d, Prediction task in which protein representations 

are optimized to maximize the gap between binding and nonbinding proteins. 
e, Cell type context (provided by PINNACLE) is injected into context-free 
structure-based protein representations (provided by MaSIF3, which learns a 
protein representation from the protein’s 3D structure) via concatenation to 
generate contextualized protein representations. Lack of cell type context is 
defined by an average of PINNACLE’s protein representations. f, Comparison 
of context-free and contextualized representations in differentiating between 
binding and nonbinding proteins. The scores are computed using cosine 
similarity on n = 22 unique protein pairs (2 binding and 20 nonbinding); since 
PINNACLE generates multiple representations per protein based on context, 
there are n = 7,956 pairwise computations (180 binding and 7,776 nonbinding) 
for the contextualized representations. The binding proteins evaluated are PD-1/
PD-L1 and B7-1/CTLA-4. Pairwise scores also are calculated for each of these four 
proteins and proteins that they do not bind with (that is, RalB, RalBP1, EPO, EPOR, 
C3 and CFH). The gap between the average scores of binding and nonbinding 
proteins is annotated for context-free and contextualized representations. 
The significance of the score gaps between binding and nonbinding proteins 
is measured using a one-sided nonparametric permutation test. The data are 
represented as mean values with error bars indicating a 95% confidence interval.
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0.9742 ± 0.0078, respectively. Further, comparative analysis of the 
gap in scores between interacting versus noninteracting proteins 
yields gaps of 0.011 (PD-1/PD-L1) and 0.015 (B7-1/CTLA-4) for PIN-
NACLE’s contextualized representations (P = 0.0299; Extended 
Data Fig. 7), yet only 0.003 (PD-1/PD-L1) and 0.006 (B7-1/CTLA-4) 
for context-free representations (Fig. 3f and Extended Data Fig. 7). 
Incorporating information about biological contexts can help bet-
ter distinguish protein interactions from noninteracting proteins in 

specific cell types, suggesting that PINNACLE’s contextualized rep-
resentations can enhance protein representations derived from 3D 
protein structure modality. Modeling context-dependent interac-
tions involving immune checkpoint proteins can deepen our under-
standing of how these proteins are used in cancer immunotherapies. 
Our benchmarking results further suggest that incorporating con-
text can improve 3D structure prediction of protein interactions  
(Supplementary Note 2).
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Fig. 4 | Fine-tuning contextualized protein representations for therapeutic 
target prioritization. a, Workflow to curate positive training examples for RA 
(left) and IBD (right) therapeutic areas. b, We construct positive examples by 
selecting proteins from our protein–protein interaction network (PPIN) that 
are targeted by compounds that have at least completed phase 2 for treating 
the therapeutic area of interest. These proteins are deemed safe and potentially 
efficacious for humans with the disease. We construct negative examples 
by selecting proteins from our PPIN that do not have associations with the 
therapeutic area yet have been targeted by at least one existing drug/compound. 
c, Cell type-specific protein interaction networks are embedded by PINNACLE, 

and fine-tuned for a downstream task. Here, the predictor module (that is, MLP) 
fine-tunes the (pretrained) contextualized protein representations for predicting 
whether a given protein is a strong candidate for the therapeutic area of interest. 
Additional insights of our setup include hypothesizing highly predictive cell 
types for examining candidate therapeutic targets. d,e, Benchmarking of 
context-aware and context-free approaches for RA (d) and IBD (e) therapeutic 
areas. Each dot is the performance (averaged across ten random seeds) of protein 
representations from a given context (that is, cell type context for PINNACLE, 
context-free global reference protein interaction network for GAT and random 
walk, and context-free multimodal protein interaction network for BIONIC).
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Contextual models outperform context-free target prediction
With the representations from PINNACLE infused with cellular and 
tissue context, we can fine-tune them for downstream tasks (Fig. 1f–h).  
We hypothesize that PINNACLE’s contextualized latent space can 
better differentiate between therapeutic targets and proteins with 
no therapeutic potential than a context-free latent space. Here, we 
focus on modeling the therapeutic potential of proteins across cell 
types for therapeutic areas with cell type-specific mechanisms of 
action (MoA) (Fig. 4). Certain cell types are known to play crucial and 
distinct roles in the disease pathogenesis of rheumatoid arthritis 

(RA) and inflammatory bowel disease (IBD) therapeutic areas24,37–40. 
There is currently no cure for either type of condition, and the medi-
cations prescribed to mitigate the symptoms can lead to undesired 
side effects41. The new generation of therapeutics in development 
for RA and IBD conditions is designed to target specific cell types 
so that the drugs maximize efficacy and minimize adverse events 
(for example, by directly impacting the affected/responsible cells 
and avoiding off-target effects on other cells)41,42. We adopt PINNA-
CLE models to predict the therapeutic potential of proteins in a cell  
type-specific manner.
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Fig. 5 | Performance of contextualized target prioritization for RA and IBD 
therapeutic areas. a,d, Model performance (measured by APR@5) for RA (a) 
and IBD (d) therapeutic areas, respectively. APR@K (or Average Precision and 
Recall at K) is a combination of Precision@K and Recall@K (refer to ‘Metrics 
and statistical analyses’ section in Methods for more details). Each dot is the 
performance (averaged across ten random seeds) of PINNACLE’s protein 
representations from a specific cell type context. The gray and dark-orange 
lines are the performance of the GAT and BIONIC models, respectively. For each 
therapeutic area, 22 cell types are annotated and colored by their compartment 

category. Extended Data Fig. 8 contains model performance measured by 
APR@10, APR@15 and APR@20 for RA and IBD therapeutic areas.  
b,c,e,f, Selected proteins for RA and IBD therapeutic areas, where the horizontal 
solid line separates the top and bottom five cell types: two selected proteins, 
JAK3 (b) and IL6R (c), that are targeted by drugs that have completed phase IV 
of clinical trials for treating RA therapeutic area; two selected proteins, ITGA4 
(e) and PPARG (f), that are targeted by drugs that have completed phase IV for 
treating IBD therapeutic area.
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We fine-tune PINNACLE to predict therapeutic targets for RA and 
IBD diseases. Specifically, we perform binary classification on each 
contextualized protein representation, where y = 1 indicates that the 
protein is a therapeutic candidate for the given therapeutic area and 
y = 0 otherwise. The ground truth positive examples (where y = 1) are 
proteins targeted by drugs that have at least completed one clinical 
trial of phase 2 or higher for indications under the therapeutic area of 
interest, indicating that the drugs are safe and potentially efficacious 
in an initial cohort of humans (Fig. 4a,b). The negative examples (where 
y = 0) are druggable proteins that have not been studied for the thera-
peutic area (Fig. 4b and ‘Fine-tuning PINNACLE for context-specific 
target prioritization’ section in Methods). The binary classification 
model can be of any architecture; our results for nominating RA and 
IBD therapeutic targets are generated by a multilayer perceptron (MLP) 
trained for each therapeutic area (Fig. 4c).

To evaluate PINNACLE’s contextualized protein representations, 
we compare PINNACLE’s fine-tuned models against three context-free 
models. We apply a random walk algorithm43 and a graph attention 
network (GAT)44 on the context-free reference protein interaction 
network. The BIONIC model is a graph convolutional neural network 
designed for (context-free) multimodal network integration15.

We find that PINNACLE’s protein representations for all cell type 
contexts outperform the random walk model for both RA (Fig. 4d) and 
IBD (Fig. 4e) diseases. Protein representations from 44.9% (70 out of 
156) and 37.5% (57 out of 152) cell types outperform the GAT model for 
RA (Fig. 4d) and IBD (Fig. 4e) diseases, respectively. Although both 
PINNACLE and BIONIC can integrate the 156 cell type-specific protein 
interaction networks, PINNACLE’s protein representations outperform 
BIONIC15 in 18.6% of cell types (29 out of 156) and 8.6% of cell types (13 
out of 152) for RA (Fig. 4d) and IBD diseases (Fig. 4e), respectively, 
highlighting the utility of contextualizing protein representations. 
PINNACLE outperforms these three context-free models via other 
metrics for both RA and IBD therapeutic areas (Extended Data Fig. 8). 
We have confirmed no significant correlation between the node degree 
of proteins in cell type-specific PPI networks and performance in RA 
and IBD models (Extended Data Fig. 9a). Additionally, there is only 
a moderate correlation between PINNACLE’s performance and the 
enrichment of positive targets in these cell type-specific PPI networks 
(Extended Data Fig. 9b,c). These findings underscore that PINNACLE’s 
predictions cannot be solely ascribed to the characteristics of the cell 
type-specific PPI networks. Benchmarking results indicate combining 
global reference networks with advanced deep graph representation 
learning techniques, such as GAT, can yield better predictors than 
network-based random walk methods alone. Integrative approaches, 
exemplified by methods such as BIONIC, enhance performance, a 
finding consistent with the established benefits of data integration. 
Contextualized learning approaches, such as PINNACLE, have the 
potential to enhance model performance and enable predictions tai-
lored to specific contexts.

PINNACLE can nominate targets across cell type contexts
There is existing evidence that drug effects vary with cell type depend-
ing on where therapeutic targets are expressed and where proteins 
act45–49. For instance, CD19-targeting chimeric antigen receptor T cell 
therapy has been highly effective in treating B cell malignancies yet 
causes a high incidence of neurotoxicity47. A recent study shows that 
chimeric antigen receptor T cells induce off-target effects by targeting 
the CD19 expressed in brain mural cells, probably causing the brain 
barrier leakiness responsible for neurotoxicity47. We hypothesize 
that the predicted protein druggability varies across cell types, and 
such variations can provide insights into the cell types’ relevance for 
a therapeutic area.

Among the 156 biological contexts modeled by PINNACLE’s protein 
representations, we examine the most predictive cell type contexts for 
nominating therapeutic targets of RA. We find that the most predictive 

contexts consist of CD4+ helper T cells, CD4+ αβ memory T cells, CD1c+ 
myeloid dendritic cells, gut endothelial cells and pancreatic acinar cells 
(Fig. 5a). Immune cells play a significant role in the disease pathogenesis 
of RA37,38. Since CD4+ helper T cells (PINNACLE-predicted rank 1), CD4+ 
αβ memory T cells (PINNACLE-predicted rank 2) and CD1c+ myeloid 
dendritic cells (PINNACLE-predicted rank 3) are immune cells, it is 
expected that PINNACLE’s protein representations in these contexts 
achieve high performance in our prediction task. Also, patients with RA 
often have gastrointestinal (GI) manifestations, whether concomitant 
GI autoimmune diseases or GI side effects of RA treatment50. Pancreatic 
acinar cells (PINNACLE-predicted rank 5) can behave like inflammatory 
cells during acute pancreatitis51, one of the accompanying GI manifesta-
tions of RA50. In addition to GI manifestations, endothelial dysfunction 
is commonly detected in patients with RA52. While rare, rheumatoid 
vasculitis, which affects endothelial cells and is a serious complica-
tion of RA, has been found to manifest in the large and small intes-
tines (gut endothelial cell context has PINNACLE-predicted rank 4),  
liver and gallbladder50,53. Further, many of the implicated cell types 
for patients with RA (for example, T cells, B cells, natural killer cells, 
monocytes, myeloid cells and dendritic cells) are highly ranked by PIN-
NACLE24,25,39 (Supplementary Table 1). Our results suggest that injecting 
cell type context to protein representations can significantly improve 
performance in nominating therapeutic targets for RA diseases while 
potentially revealing the cell types underlying disease processes.

The most predictive cell type contexts for nominating therapeutic 
targets of IBD are CD4+ αβ memory T cells, enterocytes of epithelium 
of large intestine, T follicular helper cells, plasmablasts and myeloid 
dendritic cells (Fig. 5d). The intestinal barrier comprises a thick mucus 
layer with antimicrobial products, a layer of intestinal epithelial cells 
and a layer of mesenchymal cells, dendritic cells, lymphocytes and 
macrophages54. As such, these five cell types are expected to yield 
high predictive ability. Moreover, many of the implicated cell types 
for IBD (for example, T cells, fibroblasts, goblet cells, enterocytes, 
monocytes, natural killer cells, B cells and glial cells) are highly ranked 
by PINNACLE26,27,55 (Supplementary Table 2). For example, CD4+ T cells 
are known to be the main drivers of IBD56. They have been found in the 
peripheral blood and intestinal mucosa of adult and pediatric patients 
with IBD57. Patients with IBD tend to develop uncontrolled inflamma-
tory CD4+ T cell responses, resulting in tissue damage and chronic 
intestinal inflammation58,59. Due to the heterogeneity of CD4+ T cells 
in patients, treatment efficacy can depend on the patient’s subtype of 
CD4+ T cells58,59. Thus, the highly predictive cell type contexts according 
to PINNACLE should be further investigated to design safe and effica-
cious therapies for RA and IBD diseases.

Conversely, we hypothesize that the cell type contexts of pro-
tein representations that yield worse performance than the cell 
type-agnostic protein representations may not have the predictive 
power (given the current list of targets from drugs that have at least 
completed phase 2 of clinical trials) for studying the therapeutic effects 
of candidate targets for RA and IBD therapeutic areas.

In the context-aware model trained to nominate therapeutic 
targets for RA diseases, the protein representations of duodenum 
glandular cells, endothelial cells of hepatic sinusoid, myometrial cells 
and hepatocytes perform worse than the cell type-agnostic protein 
representations (Fig. 5a). The RA therapeutic area is a group of inflam-
matory diseases in which immune cells attack the synovial lining cells 
of joints37. Since duodenum glandular cells (PINNACLE-predicted rank 
153), endothelial cells of hepatic sinusoid (PINNACLE-predicted rank 
126), myometrial cells (PINNACLE-predicted rank 119) and hepatocytes 
(PINNACLE-predicted rank 116) are neither immune cells nor found in 
the synovium, these cell type contexts’ protein representations expect-
edly perform poorly. For IBD diseases, the protein representations of 
the limbal stem cells, melanocytes, fibroblasts of cardiac tissue, and 
radial glial cells have worse performance than the cell type-agnostic 
protein representations (Fig. 5d). The IBD therapeutic area is a group 

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | August 2024 | 1546–1557 1554

Article https://doi.org/10.1038/s41592-024-02341-3

of inflammatory diseases in which immune cells attack tissues in 
the digestive tract40. As limbal stem cells (PINNACLE-predicted rank 
152), melanocytes (PINNACLE-predicted rank 147), fibroblasts of 
cardiac tissue (PINNACLE-predicted rank 135) and radial glial cells 
(PINNACLE-predicted rank 107) are neither immune cells nor found 
in the digestive tract, these cell type contexts’ protein representations 
should also perform worse than context-free representations.

The least predictive cellular contexts in PINNACLE’s models for 
RA and IBD have no known role in disease, indicating that protein rep-
resentations from these cell type contexts are poor predictors of RA 
and IBD therapeutic targets. PINNACLE’s overall improved predictive 
ability compared to context-free models indicates the importance 
of understanding cell type contexts where therapeutic targets are 
expressed and act.

Predictive cell type contexts reflect MoAs in RA therapies
Recognizing and leveraging the most predictive cell type context for 
examining a therapeutic area can be beneficial for predicting candidate 
therapeutic targets45–49. We find that considering only the most predic-
tive cell type contexts can yield significant performance improvements 
compared to context-free models (Extended Data Fig. 10). We examine 
cell type contexts selected by PINNACLE as the most predictive for JAK3 
and IL6R, two protein targets of RA drugs.

Disease-modifying antirheumatic drugs, such as Janus kinase 
( JAK) inhibitors (that is, tofacitinib, upadacitinib and baricitinib), are 
commonly prescribed to patients with RA60,61. For JAK3, PINNACLE’s five 
most predictive cell type contexts are T follicular helper cells, micro-
glial cells, DN3 thymocytes, CD4+ αβ memory T cells and hematopoietic 
stem cells (Fig. 5b). Since the expression of JAK3 is limited to hemat-
opoietic cells, mutations or deletions in JAK3 tend to cause defects in 
T cells, B cells and natural killer cells62–65. For instance, patients with 
JAK3 mutations tend to be depleted of T cells63, and the abundance of 
T follicular helper cells is highly correlated with RA severity and pro-
gression66. JAK3 is also highly expressed in double negative (DN) T cells 
(early stage of thymocyte differentiation)67, and the levels of DN T cells 
are higher in synovial fluid than peripheral blood, suggesting a possible 
role of DN T cell subsets in RA pathogenesis68. Lastly, dysregulation of 
the JAK/STAT pathway, which JAK3 participates in, has pathological 
implications for neuroinflammatory diseases, a significant component 
of disease pathophysiology in RA69,70.

Tocilizumab and sarilumab are approved by the Food and Drug 
Administration for treating RA, and target the interleukin six recep-
tor, IL6R61. For IL6R, PINNACLE’s five most predictive cellular contexts 
are classical monocytes, NAMPT neutrophils, intermediate mono-
cytes, mesenchymal stem cells and regulatory T cells (Fig. 5c). IL6R is 
predominantly expressed on neutrophils, monocytes, hepatocytes, 
macrophages and some lymphocytes71. IL6R simulates the movement 
of T cells and other immune cells to the site of infection or inflamma-
tion72 and affects T cell and B cell differentiation71,73. IL6 acts directly on 
neutrophils, essential mediators of inflammation and joint destruction 
in RA, through membrane-bound IL6R71. Experiments on fibroblasts 
isolated from the synovium of patients with RA show that anti-IL6 
antibodies prevented neutrophil adhesion, indicating a promising 
therapeutic direction for IL6R on neutrophils71. Lastly, mice studies 
have shown that pretreatment of mesenchymal stem/stromal cells 
with soluble IL6R can enhance the therapeutic effects of mesenchymal 
stem/stromal cells in arthritis inflammation74.

PINNACLE’s hypotheses to examine JAK3 and IL6R in the highly 
predictive cell type contexts, according to PINNACLE, to maximize thera-
peutic efficacy seem to be consistent with their roles in the cell types. It 
seems that targeting these proteins may directly impact the pathways 
contributing to the pathophysiology of RA therapeutic areas. Further, 
our results for IL6R suggest that PINNACLE’s contextualized representa-
tions could be leveraged to evaluate potential enhancement in efficacy 
(for example, targeting multiple points in a pathway of interest).

Predictive cell type contexts elucidate MoAs in IBD therapies
Like RA, we must understand the cells in which therapeutic targets are 
expressed and act to maximize the efficacy of targeted IBD therapies75. 
To support our hypothesis, we evaluate PINNACLE’s predictions for two 
protein targets of commonly prescribed treatments for IBD diseases: 
ITGA4 and PPARG.

Vedolizumab and natalizumab target the integrin subunit alpha 
4, ITGA4, to treat the symptoms of IBD therapeutic area61. PINNACLE’s 
five most predictive cell type contexts for ITGA4 are regulatory T cells, 
dendritic cells, myeloid dendritic cells, granulocytes and CD8+ αβ cyto-
toxic T cells (Fig. 5e). Integrins mediate the trafficking and retention 
of immune cells to the GI tract; immune activation of integrin genes 
increases the risk of IBD76. For instance, ITGA4 is involved in homing 
memory and effector T cells to inflamed tissues, including intestinal 
and nonintestinal tissues, and imbalances in regulatory and effector 
T cells may lead to inflammation77. Circulating dendritic cells express 
the gut homing marker encoded by ITGA4; the migration of blood 
dendritic cells to the intestine allows these dendritic cells to become 
mature, which leads to gut inflammation and tissue damage, indicating 
that future studies are warranted to elucidate the functional properties 
of blood dendritic cells in IBD78.

Balsalazide and mesalamine are aminosalicylate drugs 
(disease-modifying antirheumatic drugs) commonly used to treat 
ulcerative colitis by targeting peroxisome proliferator-activated recep-
tor gamma (PPARG)61,79. PINNACLE’s five most predictive cell types for 
PPARG are paneth cells of the epithelium of large intestines, endothe-
lial cells of the vascular tree, classic monocytes, goblet cells of small 
intestines and serous cells of epithelium of bronchus (Fig. 5f). PPARG is 
highly expressed in the GI tract, higher in the large intestine (for exam-
ple, colonic epithelial cells) than the small intestine80–82. In patients 
with ulcerative colitis, PPARG is often substantially downregulated in 
their colonic epithelial cells82. PPARG promotes enterocyte develop-
ment83 and intestinal mucus integrity by increasing the abundance 
of goblet cells82. Further, PPARG activation can inhibit endothelial 
inflammation in vascular endothelial cells84,85, which is significant 
due to the importance of vascular involvement in IBD86. Addition-
ally, PPARG agonists have been shown to act as negative regulators 
of monocytes and macrophages, which can inhibit the production of 
proinflammatory cytokines87. Intestinal mononuclear phagocytes, 
such as monocytes, play a major role in maintaining epithelial barrier 
integrity and fine-tuning mucosal immune system responsiveness88. 
Studies show that newly recruited monocytes in inflamed intestinal 
mucosa drive the immunopathogenesis of IBD, suggesting that block-
ing monocyte recruitment to the intestine could be one avenue for 
therapeutic development88. Lastly, PPARG is found to regulate mucin 
and inflammatory factors in bronchial epithelial cells89. Given the pul-
monary complications of IBD, PPARG could be a promising target to 
investigate for treating IBD and pulmonary symptoms90. The predictive 
power of cell type contexts to examine ITGA4 and PPARG, according to 
PINNACLE, for IBD therapeutic development is thus well supported.

Discussion
PINNACLE is a flexible geometric deep learning approach for contex-
tualized prediction in user-defined biological contexts. Integrating 
single-cell transcriptomic atlases with the protein interactome, cell type 
interactions, and tissue hierarchy, PINNACLE produces latent protein 
representations specialized to biological contexts. PINNACLE’s protein 
representations capture cellular and tissue organization spanning 156 
cell types and 62 tissues of varying hierarchical scales. In addition to 
multimodal data integration, a pretrained PINNACLE model generates 
protein representations that can be used for downstream prediction 
on tasks where cell type dependencies and cell type-specific mecha-
nisms are relevant.

One limitation of the study is the use of the human protein 
interactome, which is not measured in a cell type-specific manner91.  
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No systematic measurements of protein interactions across cell types 
exist. We create cell type-specific protein interaction networks by over-
laying single-cell measurements on the protein interaction network, 
leveraging previously validated techniques for the reconstruction of 
cell type-specific interactomes at single-cell resolution14 and conduct-
ing sensitivity network analyses to confirm the validity of the networks 
used to train PINNACLE models (Extended Data Figs. 2 and 3). This 
approach enriches networks for cell type-relevant proteins (Extended 
Data Fig. 2). The resulting networks may contain false-positive pro-
tein interactions (for example, proteins that interact in the reference 
protein interaction network but do not interact in a specific cell type) 
and false-negative protein interactions (for example, proteins that 
interact only within a particular cell type context that has not yet been 
measured). PINNACLE does not currently model proteins that may 
play a role in the cell type yet are unaffected by cell type specificity. 
Nevertheless, strong performance gains of PINNACLE over context-free 
models indicate the importance of contextualized prediction and sug-
gest a direction to enhance existing analyses on protein interaction  
networks4,6,7.

We can leverage and extend PINNACLE in many ways. PINNA-
CLE can accommodate and supplement diverse data modalities. We 
developed PINNACLE models using Tabula Sapiens20, a molecular 
reference atlas comprising almost 500,000 cells from 24 distinct 
tissues and organs. However, since the tissues and cell types associ-
ated with specific diseases may not be entirely represented in the 
atlas of healthy human subjects, we anticipate that our predictive 
power may be limited. Tabula Sapiens does not include synovial tissues 
associated with RA disease progression25,39, but these can be found 
in synovial RA atlases92 and stromal cells obtained from individuals 
with chronic inflammatory diseases93. To enhance the predictive abil-
ity of PINNACLE models, they can be trained on disease-specific or 
perturbation-specific networks. In this study, PINNACLE representa-
tions capture physical interactions between proteins at the cell type 
level (Supplementary Note 3); PINNACLE can also be applied to cell 
type-specific protein networks created from other modalities, such 
as cell type-specific gene expression networks94. We show that PIN-
NACLE’s representations can supplement protein representations 
generated from other data modalities, including protein 3D structure 
surfaces3,17. While this study focuses on protein-coding genes, informa-
tion on protein isoforms and differential information, such as alterna-
tive splicing or allosteric changes, can be used with PINNACLE when 
such data are broadly available. In addition to prioritizing candidate 
therapeutic targets, PINNACLE’s representations can be fine-tuned 
to identify populations of cells with specific characteristics, such 
as drug resistance95, adverse drug events96 or disease progression 
biomarkers97. Lastly, to move toward a ‘lab-in-the-loop’ framework, 
where computational and experimental scientists can iteratively 
refine the machine learning model and validate hypotheses via experi-
ments, recent techniques on conformal prediction98 and evidential 
layers can be integrated with PINNACLE to quantify the uncertainty  
of model outputs.

Protein representation learning models are context-free and are 
limited in analyzing protein phenotypes that are resolved by contexts 
and vary with cell types and tissues. To address this limitation, we intro-
duce PINNACLE that produces protein representations tailored to cell 
type contexts. We demonstrate that contextual learning can provide a 
more comprehensive understanding of protein roles across cell type 
contexts99. As experimental technologies advance, it is becoming 
feasible to generate adaptive protein representations across cell type 
contexts and leverage contextualized representations to predict cell 
type-specific protein functions and nominate therapeutic candidates 
at the cell type level. Looking to the future, understanding protein func-
tions and developing molecular therapies will require a comprehensive 
understanding of the roles that proteins have in different cell types and 
the interactions between proteins across diverse cell type contexts100. 

Approaches like PINNACLE can help realize this potential by generat-
ing contextualized protein representations, which can then be used to 
predict cell type-specific protein functions and identify therapeutic 
targets at the cellular level.
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Methods
The Methods describe (1) the curation of datasets, (2) the construction 
and representation of multiscale single-cell networks, (3) PINNACLE 
multiscale graph neural network, (4) the fine-tuning of PINNACLE for 
target prioritization and (5) the metrics and statistical analyses used.

Datasets
Reference human physical protein interaction network. Our refer-
ence PPI network is the union of physical multivalidated interactions 
from BioGRID101,102, the Human Reference Interactome (HuRI)91 and 
Menche et al.103 with 15,461 nodes and 207,641 edges. Different sources 
of PPI have their own methods of curating and validating physical 
interactions between proteins. BioGRID, HuRI and Menche et al. are PPI 
networks from three well-cited publications and databases regarding 
human protein interactions. By joining the three networks, we con-
struct a comprehensive global PPI network for our analysis.

Multiorgan, single-cell transcriptomic atlas of humans. We lev-
erage Tabula Sapiens20 data source as our multiorgan, single-cell 
transcriptomic atlas of humans. The data consists of 15 donors, with 
59 specimens total. There are 483,152 cells after quality control, of 
which 264,824 are immune cells, 104,148 are epithelial cells, 31,691 are 
endothelial cells and 82,478 are stromal cells. The cells correspond to 
177 unique cell ontology classes.

Construction of multiscale networks
Our multiscale networks comprises protein–protein physical interac-
tions, cell type-to-cell type communication, cell type-to-tissue relation-
ships and tissue–tissue hierarchy.

Cell type-specific protein interaction networks. For each cell type, 
we create a cell type-specific network that represents the physical 
interactions between proteins (or genes) that are probably expressed 
in the cell type. Intuitively, our approach identifies genes significantly 
expressed in a given cell type with respect to the rest of the cells in 
the dataset. Concretely, we use the processed Tabula Sapiens count 
matrix to calculate the average expression of each gene in a cell type 
of interest and the average expression of the corresponding gene in all 
other cells. Then, we use the Wilcoxon rank-sum test on the two sets of 
average gene expression. From the resulting ranked list of genes based 
on activation, we filter for the top K most activated genes. We repeat 
these two steps N times and filter for genes that appear in at least 90% 
of iterations. Finally, we extract these genes’ corresponding proteins 
from the global protein interaction network and take only the largest 
connected component. To ensure high-quality representations of cell 
types in our networks, we keep networks with at least 1,000 proteins. 
We do not perform subsampling of cells (that is, sample the same num-
ber of cells per cell type) to minimize information loss for constructing 
protein interaction networks (Extended Data Fig. 2). Limitations are 
described in Discussion.

Cell type and tissue relationships in the metagraph. We identify 
interactions between cell types based on LR expression using the Cell-
PhoneDB104 tool and database. An edge between a pair of cell types 
indicates that CellphoneDB predicts at least one significantly expressed 
LR pair (with a P value less than 0.001) between them. As recommended 
by CellPhoneDB, cells are subsampled before running the algorithm, 
which uses geometric sketching105 to efficiently sample a small rep-
resentative subset of cells from massive datasets while preserving 
biological complexity. We choose to subsample 25% of cells and run 
CellPhoneDB for 100 iterations. We determine cell type–tissue rela-
tionships and extract tissue–tissue relationships using Tabula Sapiens 
meta-data. For relationships between cell types and tissues, we draw 
edges between cell types and the tissue that the cells were taken from. 
For tissue–tissue relationships, we select the nodes corresponding to 

the tissues where samples were taken from and all parent nodes up to 
the root of the BRENDA tissue ontology106. We perform sensitivity and 
ablation analyses on different components of the metagraph (Sup-
plementary Tables 3–5).

Final dataset. We have 156 cell type-specific protein interaction 
networks, which have, on average, 2,530 ± 677 proteins per net-
work. The number of unique proteins across all cell type-specific 
protein interaction networks is 13,643 of the 15,461 proteins in the 
global reference protein interaction network. In the metagraph, we 
have 62 tissues (nodes), and 24 are directly connected to cell types. 
There are 3,567 cell–cell interactions, 372 cell–tissue edges and  
79 tissue–tissue edges.

Multiscale graph neural network
Overview. PINNACLE performs biologically informed message passing 
through proteins, cell types and tissues to learn cell type-specific pro-
tein representations, cell type representations and tissue representa-
tions in a unified multiscale embedding space. Specifically, PINNACLE 
traverses through protein–protein physical interactions in each cell 
type-specific PPI network, cell type–cell type communication, cell 
type–tissue relationships and tissue–tissue hierarchy with an atten-
tion mechanism over individual nodes and edge types. Its objective 
function is designed and optimized for learning the topology across 
biological scales, from proteins to cell types to tissues. The resulting 
embeddings from PINNACLE can be visualized and manipulated for 
hypothesis-driven interrogation and fine-tuned for diverse down-
stream biomedical prediction tasks.

Problem formulation. Let 𝒢𝒢 𝒢 𝒢G1,… ,G|𝒞𝒞𝒞} be a set of cell type-specific 
PPI networks, where 𝒞𝒞 is a set of unique cell types. Each Gci 𝒢 (Vci , Eci ) 
consists of a set of nodes Vci and edges Eci  for a given cell type ci ∈ 𝒞𝒞 
specific PPI network. Their nodes u, v ∈ Vci  are proteins, and edges 
ePPu,v ∈ Eci are physical PPIs (denoted with PP in superscript). Cell types 
and tissues form a network, referred to as a metagraph. The meta-
graph’s set of nodes comprises cell types ci ∈ 𝒞𝒞 and tissues ti ∈ 𝒯𝒯 . The 
types of edges are cell type-cell type interactions (denoted with CC in 
superscript) eCCci ,cj between any pair of cell types ci, cj ∈ 𝒞𝒞; cell type-tissue 
associations (denoted with CT in superscript) eCTci ,ti between any pair of 
cell type ci ∈ 𝒞𝒞  and tissue ti ∈ 𝒯𝒯 ; and tissue–tissue relationships 
(denoted with TT in superscript) eTTti ,tj  between any pair of tissues 
ti, tj ∈ 𝒯𝒯 .

Protein-level attention with cell type specificity. For each cell 
type-specific PPI network 𝒢𝒢ci, we leverage protein-level attention to 
learn cell type-specific embeddings of proteins. Intuitively, 
protein-level attention learns which neighboring nodes are probably 
most important for characterizing a particular cell type’s protein. As 
such, each cell type-specific protein interaction network has its own 
cell type-specific set of learnable parameters. Concretely, at each 
layer-wise update of layer l, the node-level attention learns the impor-
tance αu,v of protein u to its neighboring protein v in a given cell  
type ci ∈ 𝒞𝒞:

hPP
u ← AGG(σ( ∑

v∈𝒩𝒩u

αu,vWPPhPP
v )) (1)

where AGG is an aggregation function (that is, concatenation across K 
attention heads), σ is the nonlinear activation function (that is, ReLU), 
𝒩𝒩u is the set of neighbors for u (including itself via self-attention), αu,v 

is an attention mechanism defined as αu,v 𝒢
exp(σ(aT⋅[hu∥hv]))

∑v∈𝒩𝒩u
exp(σ(aT⋅[hu∥hv]))

 between 

a pair of interacting proteins from a specific cell type, WPP is a PP-specific 
transformation matrix to project the features of protein u in its cell 
type-specific protein interaction network, and hPP

v  is the previous layer’s 
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cell type-specific embedding for protein v. Practically, we leverage the 
attention function in graph attention neural networks (that is, GATv2)44. 
Proteins of the same identity are initialized with the same random 
Gaussian vector to maintain their identity during training.

Metagraph-level attention on cellular interactions and tissue hier-
archy. For the metagraph, we use node-level and edge-level attention 
to learn which neighboring nodes and edge types are probably most 
important for characterizing the target node (that is, the node of inter-
est). Intuitively, to learn an embedding for a specific cell type or tissue, 
we evaluate the informativeness of each direct cell type or tissue neigh-
bor, as well as the relationship type between the cell type or tissue and 
their neighbors (for example, parent–child tissue relationship, tissue 
from which a cell type is found, and cell type with which the cell type 
of interest communicates with).

Concretely, at each layer l of PINNACLE, the embeddings of a cell 
type ci ∈ 𝒞𝒞 are the result of aggregating (via function AGG) the embed-
dings (hCC

c  and hCT
t ) of its direct cell type neighbor c and tissue neighbor 

t that are projected via edge-type-specific transformation matrices 
(WCC and WCT) and weighted by learned attention weights (αci ,c and αci ,t  
respectively):

hCC
ci ← AGG(σ( ∑

c∈𝒩𝒩ci

αci ,cWCChCC
c )) (2)

hCT
ci ← AGG(σ( ∑

t∈𝒩𝒩ci

αci ,tWCThCT
t )) (3)

The embeddings generated from separately propagating messages 
through cell type–cell type edges or cell type–tissue edges are com-
bined using learned attention weights βCC and βCT, respectively.

hci 𝒢 βCChCC
ci + βCThCT

ci (4)

Similarly, the embeddings of a tissue ti ∈ 𝒯𝒯  are the result of aggre-
gating (via function AGG) the embeddings (hTT

t  and hTC
c ) of its direct 

tissue neighbor t and cell type neighbor c that are projected via 
edge-type-specific transformation matrices (WTT and WTC) and 
weighted by learned attention weights (αti ,t  and αti ,c respectively).

hTT
ti ← AGG(σ( ∑

t∈𝒩𝒩ti

αti ,tWTThTT
t )) (5)

hTC
ti ← AGG(σ( ∑

c∈𝒩𝒩ti

αti ,cWTChTC
c )) (6)

The embeddings generated from separately propagating messages 
through tissue–tissue edges or tissue–cell type edges are combined 
using learned attention weights βTT and βTC, respectively.

hti 𝒢 βTThTT
ti + βTChTC

ti (7)

For the node-level attention mechanisms (equations (2), (3), (5) and 
(6)), AGG is an aggregation function (that is, concatenation across K 
attention heads), σ is the nonlinear activation function (that is, ReLU), 
𝒩𝒩ci and 𝒩𝒩ti are the sets of neighbors for ci and ti respectively (includes 
itself via self-attention), WCC, WCT, WTC and WTT are edge-type-specific 
transformation matrices to project the features of a given target node, 
hCC
c , hCT

t , hTT
t  and hTC

c  are the previous layer’s embedding for c given the 
edge type CC, t given the edge type CT, t given the edge type TT, and c 
given the edge type TC, respectively. Practically, we leverage the atten-
tion function in graph attention neural networks (that is, GATv2)44. 
Finally, the node-level attention mechanism for a given source node u 

and edge type r is αr
u,v 𝒢

exp(σ(aTr ⋅[hu∥hv]))
∑v∈𝒩𝒩u

exp(σ(aTr ⋅[hu∥hv]))
. For the attention mecha-

nisms over edge types (equations (4) and (7)), βr 𝒢 exp(mr)
∑r∈R exp(mr)

 such that 

mr 𝒢 ∑u∈Vq
sT ⋅ tanh(M ⋅ hr

u + b) where Vq is the set of nodes in the meta-

graph, s is the attention vector, M is the weight matrix and b is the bias 
vector. These parameters are shared for all edge types in the 
metagraph.

Bridge between protein and cell type embeddings. Using a pooling 
mechanism, we bridge cell type-specific protein embeddings with their 
corresponding cell type embeddings. We initialize cell type embed-
dings by taking the average of their proteins’ embeddings: 

hci 𝒢
1

|Vci |
∑u∈Vci

hu, where hu is the embedding of protein node u ∈ Vci in 

the PPI subnetwork for cell type ci. Similarly, we initialize tissue  
embeddings by taking the average of their neighbors: hti 𝒢

1
|𝒩𝒩ti |

(∑t∈𝒩𝒩ti
ht +∑c∈𝒩𝒩ti

hc), where ht and hc are the embeddings of tissue 

node t and cell type node c, respectively, in the immediate neighbor-
hood of source tissue node ti. At each layer l > 0, we learn the impor-
tance γci ,u of node u ∈ Vci to cell type ci such that

hci ← hci + AGG(σ( ∑
u∈Vci

γci ,uhu)) . (8)

After propagating cell type and tissue information in the metagraph 
(namely equations (2)–(6)), we apply γci ,u to the cell type embedding 
of ci such that

hu ← hu + γci ,uhci . (9)

Intuitively, we are imposing the structure of the metagraph onto the 
PPI subnetworks based on a protein’s importance to its corresponding 
cell type’s identity.

Overall objective function of PINNACLE. PINNACLE is optimized for 
three biological scales: protein, cell type and tissue level. Concretely, 
the loss function ℒ has three components corresponding to each bio-
logical scale:

ℒ 𝒢 ℒprotein + (1 − θ)(ℒcelltype + ℒtissue), (10)

where ℒprotein, ℒcelltype and ℒtissue minimize the loss from protein-level 
predictions, cell type-level predictions and tissue-level predictions, 
respectively. θ is a tunable parameter with a range of 0 and 1 that scales 
the contribution of the link prediction loss of the metagraph relative 
to that of the PPIs. At the protein level, we consider two aspects: predic-
tion of PPIs at each cell type-specific PPI network (ℒppi) and prediction 
of cell type identity of each protein (ℒcelltypeid). The contribution of  
the latter is scaled by λ, which is a tunable parameter with a range  
of 0 and 1.

ℒprotein 𝒢 θℒppi + λℒcelltypeid (11)

Intuitively, we aim to simultaneously learn the topology of each cell 
type-specific PPI network (that is, ℒppi) and the nuanced differences 
between proteins activated in different cell types. Specifically, we use 
binary cross-entropy to minimize the error of predicting positive and 
negative PPIs in each cell type-specific PPI network

ℒppi 𝒢 ∑
ci∈𝒞𝒞

∑
u,v∈Vci

yu,v log( ̂yu,v) + (1 − yu,v) log(1 − ̂yu,v) (12)

and center loss107 for discriminating between protein embeddings zu 
from different cell types, represented by embeddings denoted as zci.
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ℒcelltypeid 𝒢 ∑
ci∈𝒞𝒞

∑
u∈Vci

||zu − zci ||22 (13)

At the cell type level, we use binary cross-entropy to minimize the 
error of predicting cell type–cell type interactions and cell type–tis-
sue relationships:

ℒcelltype 𝒢 ℒCC
celltype + ℒCT

celltype (14)

such that

ℒCC
celltype 𝒢 ∑

ci ,cj∈𝒞𝒞
yci ,cj log( ̂yci ,cj ) + (1 − yci ,cj ) log(1 − ̂yci ,cj ) (15)

ℒCT
celltype 𝒢 ∑

ci∈𝒞𝒞
∑
tk∈𝒯𝒯

yci ,tk log( ̂yci ,tk ) + (1 − yci ,tk ) log(1 − ̂yci ,tk ). (16)

Similarly, at the tissue level, we use binary cross-entropy to minimize 
the error of predicting tissue–tissue and tissue–cell type relationships:

ℒtissue 𝒢 ℒTT
tissue + ℒTC

tissue (17)

such that

ℒTT
tissue 𝒢 ∑

tk ,tq∈𝒯𝒯
ytk ,tq log( ̂ytk ,tq ) + (1 − ytk ,tq ) log(1 − ̂ytk ,tq ) (18)

ℒTC
tissue 𝒢 ∑

tk∈𝒯𝒯
∑
ci∈𝒞𝒞

ytk ,ci log( ̂ytk ,ci ) + (1 − ytk ,ci ) log(1 − ̂ytk ,ci ). (19)

The probability of an edge of type i between nodes u and v is calculated 
using a bilinear decoder:

yu,v 𝒢 zu ⋅ ri ⋅ zv, (20)

where zu and zv are embeddings of nodes u and v, and ri is the embedding 
for edge type i. Note that any decoder can be used for link prediction 
in PINNACLE.

Training details for PINNACLE. Overview. PINNACLE is trained using 
the cell type identity of the protein interaction networks and the graph 
connectivity of the cell type-specific protein interaction networks 
and metagraph. To learn cell type identity, PINNACLE predicts the cell 
type(s) that the node(s) corresponding to each protein are activated in. 
For capturing graph connectivity, PINNACLE performs self-supervised 
link prediction; it predicts whether an edge (and its type) exists between 
a pair of nodes. For link prediction, a randomly selected subset of edges 
is masked (or hidden) from the model, and the model must be able to 
predict that such edges exist (and that the randomly generated false 
edges do not exist). Practically, this means that the graphs being fed 
as input into PINNACLE during train, validation, or test do not contain 
the masked edges.

Data split. Protein–protein edges are randomly split into train  
(80%), validation (10%) and test (10%) sets. The metagraph edges are 
not split into train, validation and test sets because there are relatively 
few of them, and they are all critical for injecting cell type and tissue 
organization to the model. The proteins involved in the train edges  
are considered in the cell type identification term of the loss  
function (ℒcelltypeid).

Sampling negative edges. For link prediction, false (or negative) edges 
have the label of 0 and are randomly generated (via structured_nega-
tive_sampling function in Pytorch Geometric). The ratio of positive to 
negative edges is 1:1.

Hyperparameter tuning. We leverage Weights and Biases108 to select 
optimal hyperparameters via a random search over the hyperparam-
eter space. The best-performing hyperparameters for PINNACLE are 
selected by optimizing the ROC and Calinski–Harabasz score109 on 
the validation set. The hyperparameter space on which we perform a 
random search to choose the optimal set of hyperparameters is: the 
dimension of the nodes’ feature matrix ∈ [1,024, 2,048], dimension 
of the output layer ∈ [4, 8, 16, 32], lambda ∈ [0.1, 0.01, 0.001], learning 
rate for link prediction task ∈ [0.01, 0.001], learning rate for protein’s 
cell type classification task ∈ [0.1, 0.01, 0.001], number of attention 
heads ∈ [4, 8], weight decay rate ∈ [0.0001, 0.00001], dropout rate 
∈ [0.3, 0.4, 0.5, 0.6, 0.7] and normalization layer ∈ [layernorm, batch-
norm, graphnorm, none]. The best hyperparameters are as follows: the 
dimension of the nodes’ feature matrix = 1,024, dimension of the output 
layer = 16, lambda = 0.1, learning rate for link prediction task = 0.01, 
learning rate for protein’s cell type classification task = 0.1, number of 
attention heads = 8, weight decay rate = 0.00001, dropout rate = 0.6, 
and normalization layers are layernorm and batchnorm. Further, PIN-
NACLE consists of two custom graph attention neural network layers 
(‘Protein-level attention with cell type specificity’ and ‘Metagraph-level 
attention on cellular interactions and tissue hierarchy’ sections in 
Methods) per cell type-specific PPI network and metagraph and is 
trained for 250 epochs.

Implementation. We implement PINNACLE using Pytorch (Version 
1.12.1)110 and Pytorch Geometric (Version 2.1.0)111. We leverage Weights 
and Biases108 for hyperparameter tuning and model training visualiza-
tion, and we create interactive demos of the model using Gradio112. 
Models are trained on a single NVIDIA Tesla V100-SXM2-16GB GPU.

Generating contextualized 3D protein representations
After pretraining PINNACLE, we can leverage the output protein repre-
sentations for diverse downstream tasks. Here, we demonstrate PIN-
NACLE’s ability to improve the prediction of PPIs by injecting context 
into 3D molecular structures of proteins.

Overview. Given a protein of interest, we generate both the context-free 
structure-based representation via MaSIF3,17 and a contextualized PPI 
network-based representation via PINNACLE. We calculate the binding 
score of a pair of proteins based on either context-free representations 
or contextualized representations of the proteins. To quantify the 
added value, if any, provided by contextualizing protein representa-
tions with cell type context, we compare the size of the gap between 
the average binding scores of binding and nonbinding proteins in the 
two approaches.

Dataset. The proteins being compared are PD-1, PD-L1, B7-1, CTLA-4, 
RalB, RalBP1, EPO, EPOR, C3 and CFH. The pairs of binding proteins 
are PD-1/PD-L1 (PDB ID: 4ZQK) and B7-1/CTLA-4 (PDB ID: 1I8L). The 
nonbinding proteins are any of the four proteins paired with any of 
the remaining six proteins (for example, PD-1/RalB, PD-1/RalBP1 and 
PD-L1/RalBP1). The PDB IDs for the other six proteins are 2KWI for RalB/
RalBP1, 1CN4 for EPO/EPOR, and 3OXU for C3/CFH.

Structure-based protein representation learning. We directly apply 
the pretrained model for MaSIF3,17 to generate the 3D structure-based 
protein representations. We use the model pretrained for MaSIF-site 
task, named all_feat_3l_seed_benchmark. The output of the pretrained 
model for a given protein is P × d, where P is the number of patches 
(precomputed by the authors of MaSIF3,17) and d = 4 is the dimension 
of the pretrained model’s output layer. As proteins vary in size (that is, 
the number of patches to cover the surface of the protein), we select a 
fixed k number of patches that are most likely to be part of the binding 
site (according to the pretrained MaSIF model). For each protein, we 
select k = 200 patches, which is the average number of patches for PD-1, 
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PD-L1, B7-1 and CTLA-4, resulting in a matrix of size 200 × 4. Finally, we 
take the element-wise median on the 200 × 4 matrix to transform it 
into a vector of length 200. This vector becomes the structure-based 
protein representation for a given protein.

Experimental setup. For each cell type context of a given protein, 
we concatenate the 3D structure-based protein representation (from 
MaSIF) with the cell type-specific protein representation (from PIN-
NACLE) to generate a contextualized structure-based protein rep-
resentation. To create the context-free protein representation, we 
concatenate the structure-based protein representation with an 
element-wise average of PINNACLE’s protein representations. This 
is to maintain consistent dimensionality and latent space between 
context-free and contextualized protein representations. Given a 
pair of proteins, we calculate a score via cosine similarity (a function 
provided by sklearn113) using the context-free or contextualized pro-
tein representations. Lastly, we quantify the gap between the scores 
of binding and nonbinding proteins using context-free or contextu-
alized protein representations to evaluate the added value (if any)  
of contextual AI.

Fine-tuning PINNACLE for context-specific target 
prioritization
After pretraining PINNACLE, we can fine-tune the output protein rep-
resentations for diverse biomedical downstream tasks. Here, we dem-
onstrate PINNACLE’s ability to enhance the performance of predicting 
a protein’s therapeutic potential for a specific therapeutic area.

For each protein of interest, we feed its PINNACLE-generated 
embedding into an MLP. The model outputs a score between 0 and 1, 
where 1 indicates strong candidacy to target (that is, by a compound/
drug) for treating the therapeutic area and 0 otherwise. Since a pro-
tein has multiple representations corresponding to the cell types it is 
activated in, the MLP model generates a score for each of the protein’s 
cell type-specific representations (Fig. 4a). For example, Protein 1’s 
representation from Cell type 1 is scored independently of its rep-
resentation from Cell type 2. The output scores can be examined to 
identify the most predictive cell types and the strongest candidates 
for therapeutic targets in any specific cell type.

Therapeutic targets dataset. We obtain labels for therapeutic targets 
from the Open Targets Platform61.

Therapeutic area selection. To curate target information for a thera-
peutic area, we examine the drugs indicated for the therapeutic area 
of interest and its descendants. The two therapeutic areas examined 
are RA and IBD. For RA, we collected therapeutic data (that is, tar-
gets of drugs indicated for the therapeutic area) from OpenTargets61 
for RA (EFO_0000685), ankylosing spondylitis (EFO_0003898) and 
psoriatic arthritis (EFO_0003778). For IBD, we collected therapeu-
tic data for ulcerative colitis (EFO_0000729), collagenous colitis 
(EFO_1001293), colitis (EFO_0003872), proctitis (EFO_0005628), 
Crohn’s colitis (EFO_0005622), lymphocytic colitis (EFO_1001294), 
Crohn’s disease (EFO_0000384), microscopic colitis (EFO_1001295), 
IBD (EFO_0003767), appendicitis (EFO_0007149), ulcerative proc-
tosigmoiditis (EFO_1001223) and small bowel Crohn’s disease 
(EFO_0005629).

Positive training examples. We define positive examples (that is, where 
the label y = 1) as proteins targeted by drugs that have at least com-
pleted phase 2 of clinical trials for treating a certain therapeutic area. 
As such, a protein is a promising candidate if a compound that targets 
the protein is safe for humans and effective for treating the disease. 
We retain positive training examples that are activated in at least one 
cell type-specific protein interaction network. The final number of 
positive training examples for RA and IBD is 152 and 114, respectively.

Negative training examples. We define negative examples (that is, 
where the label y = 0) as druggable proteins that do not have any 
known association with the therapeutic area of interest according to 
OpenTargets. A protein is deemed druggable if it is targeted by at least 
one existing drug114. We extract drugs and their nominal targets from 
DrugBank79. We retain negative training examples that are activated 
in at least one cell type-specific protein interaction network. The final 
number of negative training examples for RA and IBD is 1,465 and 1,377,  
respectively.

Data processing workflow. For a therapeutic area of interest, we iden-
tify its descendants. With the list of disease terms for the therapeutic 
area, we curate its positive and negative training examples. We split 
the dataset such that about 60%, 20% and 20% of the proteins are 
in the train, validation and test sets, respectively. We additionally 
apply two criteria to avoid data leakage and ensure that all cell types 
are represented during training/inference: Proteins are assigned to 
train (60%), validation (20%) and test (20%) datasets based on their 
identity; this is to prevent data leakage where cell type-specific rep-
resentations of a single protein are observed in multiple data splits. 
We also ensure that there are sufficient numbers of train, validation 
and test positive samples per cell type; proteins may be reassigned 
to a different data split so that each cell type is represented dur-
ing training, validating and testing stages. With these criteria, the 
train, validation and test dataset splits may not necessarily consist of 
approximately 60%, 20% and 20% of the total protein representations  
(Supplementary Table 6).

Fine-tuning model details. Model architecture. Our MLP comprises 
an input feedforward neural network, one hidden feedforward neural 
network layer and an output feedforward neural network layer. In 
between each layer, we have a nonlinear activation layer. In addition, 
we use dropout and normalization layers between the input and hid-
den layer (see ‘Implementation’ section for more information). Our 
objective function is binary cross-entropy loss.

Hyperparameter tuning. We leverage Weights and Biases108 to select 
optimal hyperparameters via a random search over the hyperparam-
eter space. The best-performing hyperparameters are selected by 
optimizing the AUPRC on the validation set. The hyperparameter 
space on which we perform a random search to choose the opti-
mal set of hyperparameters is the dimension of the first hidden 
layer ∈ [8, 16, 32], dimension of the second hidden layer ∈ [8, 16, 32], 
learning rate ∈ [0.01, 0.001, 0.0001], weight decay rate ∈ [0.001, 0.
0001, 0.00001, 0.000001], dropout rate ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.
7, 0.8], normalization layer ∈ [layernorm, batchnorm, none] and the 
ordering of dropout and normalization layer (that is, normalization 
before dropout or vice versa).

Implementation. We implement the MLP using Pytorch (Version 
1.12.1)110. In addition, we use Weights and Biases108 for hyperparameter 
tuning and model training visualization. Models are trained on a single 
NVIDIA Tesla M40 GPU.

Metrics and statistical analyses
Here, we describe metrics, visualization methods and statistical tests 
used in our analysis.

Visualization of embeddings. We visualize PINNACLE’s embeddings 
using a uniform manifold approximation and projection for dimension 
reduction (UMAP)115 and seaborn. Using the Python package, umap, we 
transform PINNACLE’s embeddings to two-dimensional vectors via the 
parameters: n_neighbors = 10, min_dist = 0.9, n_components = 2 and 
the euclidean distance metric. The plots are created using the seaborn 
package’s scatterplot function.
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Visualization of cell type embedding similarity. The pairwise simi-
larity of PINNACLE’s cell type embeddings is calculated using cosine 
similarity (a function provided by sklearn113). Then, these similarity 
scores are visualized using the seaborn package’s clustermap function. 
For visualization purposes, similarity scores are mapped to colors after 
being raised to the 20th power.

Spatial enrichment analysis of PINNACLE’s protein embeddings. 
To quantify the spatial enrichment for PINNACLE’s protein embedding 
regions, we apply a systematic approach, SAFE31, that identifies regions 
that are overrepresented for a feature of interest (Extended Data Figs. 3 
and 4). The required input data for SAFE are networks and annotations 
of each node. We first construct an unweighted similarity network on 
PINNACLE protein embeddings: (1) calculate pairwise cosine similarity, 
(2) apply a similarity threshold on the similarity matrix to generate an 
adjacency matrix and (3) extract the largest connected component. 
The protein nodes are labeled as 1 if they belong to a given cell type 
context and 0 otherwise. We then apply SAFE to each network using the 
recommended settings: neighborhoods are defined using the short-
path_weighted_layout metric for node distance and neighborhood 
radius of 0.15, and P values are computed using the hypergeometric 
test, adjusted using the Benjamini–Hochberg false discovery rate 
correction (significance cutoff α = 0.05).

Due to computation and memory constraints, we sample 50 pro-
tein embeddings from a cell type context of interest and 10 protein 
embeddings from each of the other 155 cell type contexts. We use a 
threshold of 0.3 in our evaluation of PINNACLE’s protein embedding 
regions (Fig. 2 and Extended Data Fig. 3). We also evaluate the spatial 
enrichment analysis on networks constructed from different thresh-
olds to ensure that the enrichment is not sensitive to our network con-
struction method: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (Extended 
Data Fig. 4). We use the Python implementation of SAFE (https://github.
com/baryshnikova-lab/safepy).

Statistical significance of tissue embedding distance. Tissue 
embedding distance between a given pair of tissue nodes is calcu-
lated using cosine distance (a function provided by sklearn113). Tissue 
ontology distance between a given pair of tissue nodes is calculated 
by taking the sum of the nodes’ shortest path lengths to the lowest 
common ancestor (functions provided by networkx116. We use the 
two-sample Kolmogorov–Smirnov test (a function provided by scipy117) 
to compare PINNACLE embedding distances against randomly gen-
erated vectors (via the randn function in numpy to sample an equal 
number of vectors from a standard normal distribution). We also use 
the Spearman correlation (a function provided by scipy117) to corre-
late PINNACLE embedding distance to tissue ontology distance. We 
additionally generate a null distribution of tissue ontology distance 
by calculating tissue ontology distance on a shuffled tissue hierar-
chy (repeated ten times). Concretely, we shuffle the node identities 
of the Brenda Tissue Ontology106 and compute the pairwise tissue  
ontology distances.

Statistical significance of binding and nonbinding proteins’ score 
gaps. We perform a one-sided nonparametric permutation test. First, 
we concatenate the scores for the N binding pairs and M nonbinding 
pairs. Next, for 100,000 iterations, we randomly sample N scores as 
the new set of binding protein scores and M scores as the new set of 
nonbinding protein scores, calculate the mean μN of the N binding 
protein scores and the mean μM of the M nonbinding protein scores, 
calculate the score gap by taking the difference of the means as μN  − μM, 
and keep track of the score gaps that are greater than or equal to the 
true score gap calculated from the real data. Lastly, we calculate the  
P value, defined as the fraction of 100,000 iterations in which the per-
muted score gap is greater than or equal to the true score gap (that is, 
one-sided nonparametric permutation test).

Performance metric for therapeutic target prioritization. For our 
downstream therapeutic target prioritization task (‘Fine-tuning PIN-
NACLE for context-specific target prioritization’ section in Methods), 
we use a metric called Average Precision and Recall at K (APR@K) to 
evaluate model performance. APR@K leverages a combination of 
Precision@K and Recall@K to measure the ability to rank the most 
relevant items (in our case, proteins) among the top K predictions. In 
essence, APR@K calculates Precision@K for each k ∈ [1, …, K], multiply-
ing each Precision@k by whether the kth item is relevant, and divides 
by the total number of relevant items r at K:

APR@K 𝒢 1
r

K
∑
k=1

Precision@k × rel(k),

where

rel(k) 𝒢 {
1, if itemat k is relevant

0, otherwise
.

Given the nature of our target prioritization task, some key advan-
tages of using APR@K include robustness to (1) varied numbers of 
protein targets activated across cell type-specific protein interaction 
networks and (2) varied sizes of cell type-specific protein interaction  
networks.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the paper, including the cell type-specific protein inter-
action networks, the metagraph of cell type and tissue relationships, 
PINNACLE’s contextualized representations, the therapeutic targets 
of RA and IBD diseases, and the final and intermediate results of the 
analyses, are shared via the project website at https://zitniklab.hms.
harvard.edu/projects/PINNACLE. Datasets are available via figshare 
at https://doi.org/10.6084/m9.figshare.22708126 (ref. 118).

Code availability
Python implementation of the methodology developed and used 
in the study is available via the project website at https://zitniklab.
hms.harvard.edu/projects/PINNACLE. The code to reproduce results, 
together with documentation and examples of usage, is available on 
GitHub at https://github.com/mims-harvard/PINNACLE. We provide an 
interactive demo via HuggingFace to explore PINNACLE’s contextual-
ized protein representations.
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Extended Data Fig. 1 | Network properties of the metagraph and cell type 
specific protein interaction networks. (a-b) Degree distributions of the 
metagraph and cell type specific protein interaction (PPI) networks. (a) Degree 
distributions of the metagraph (composed of cell type-cell type, cell type-
tissue, and tissue-tissue edges), tissue-tissue graph, and cell type-cell type 
graph. The median, maximum, and minimum degrees for the metagraph are 
24, 169, 1; for the tissue-tissue graph are 2, 15, 1; and for the cell type-cell type 
graph are 24, 157, 4. (b) Distribution of the median node degree of each cell type 
specific PPI network. The median, maximum, and minimum of median node 
degree across cell type specific PPI networks are 6, 11, and 3, respectively. (c-d) 
Enrichment analysis of ligand-receptor interactions in the cell type specific 
PPI networks. We utilize CellPhoneDB103 to predict interactions between cell 
types in our metagraph by identifying significantly expressed ligand-receptor 
(LR) interactions between pairs of cell types in our dataset. (c) Shown is a 
histogram of the number of significant LR interactions per cell type specific 
PPI network predicted by CellPhoneDB. (d) We hypothesize that the predicted 
LR interactions are enriched in our cell type specific PPI networks. To quantify 
the enrichment of LR interactions, we calculate the fraction of LR interactions 
where the corresponding ligand and receptor proteins are activated in the cell 

type pair (that is, for a LR interaction identified between cell types A and B, the 
ligand protein is activated in cell type A’s PPI network and the receptor protein is 
activated in cell type B’s PPI network). We compare the fraction of LR pairs that 
are activated in our cell type specific PPI networks against the fraction of LR pairs 
that are activated in null distribution PPI networks. For each cell type specific 
PPI network, we generate 100 null distribution PPI networks by sampling the 
same number of nodes with a similar degree distribution. Degree distribution 
is preserved by binning nodes such that there are at least 100 nodes in each bin, 
and nodes are then randomly sampled within the appropriate degree interval. We 
find that our cell type specific PPI networks have a significantly higher fraction 
of ligand-receptor pairs activated (0.47 +/- 0.12) than the null distribution PPI 
networks (0.04 +/- 0.04); n = 2,020 pairs of cell type specific PPI networks, of 
which 20 are pairs of real cell type specific PPI networks and 2,000 are pairs of 
null cell type specific PPI networks. Note that the ligand-receptor interactions 
considered in both analyses are those where the genes corresponding to 
the ligands and receptors are known. However, this does not factor into our 
construction of the edges/interactions between cell types (CCI). The bounds of 
the box show the quartiles of the data, the center indicates the median value of 
the data, and the whiskers represent the farthest data point within 1.5 x IQR.

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sensitivity analysis of network construction. To 
examine whether cell types with fewer cells are poorly represented in our 
networks, we construct networks after subsampling equal numbers of cells per 
cell type. We compare our finalized networks (no subsampling of cells) against 
approaches that subsample 100, 200, and 300 cells. We find that our approach 
yields networks that are maximally similar to the global reference network yet 

maintain specificity to cell type context. (a) Edge and (b) node Jaccard similarity 
of a cell type specific PPIN to the global reference PPIN. (c-j) Distribution of edge 
Jaccard similarity between PPINs constructed by (c) our finalized approach 
and subsampling (d) 100, (e) 200, and (f ) 300 cells. (g-j) Distribution of node 
Jaccard similarity between PPINs constructed by (g) our finalized approach and 
subsampling (h) 100, (i) 200, and ( j) 300 cells.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02341-3

Extended Data Fig. 3 | Spatial enrichment analysis of PINNACLE’s protein 
embedding regions. (a-l) For each cell type specific set of protein embeddings 
generated by PINNACLE, we sample a subset to construct a similarity network 
and perform spatial enrichment analysis using SAFE31. Shown for each cell type 

context is the network (left) and enrichment landscape (right). Dots represent 
the neighborhood enrichment p-value; crosses indicate a significant p-value 
< 0.05; hypergeometric test, adjusted using the Benjamin-Hochberg false 
discovery rate correction with significance cutoff α = 0.05.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Spatial enrichment analysis of PINNACLE’s protein 
embedding regions across thresholds. (a-i) From the mesenchymal stem cell 
type specific protein embeddings generated by PINNACLE, we sample a subset 
to construct a similarity network and perform spatial enrichment analysis using 
SAFE31. Networks are constructed using a similarity threshold t ∈ [0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. Shown for each threshold is the network (left) and 
enrichment landscape (right). Dots represent the neighborhood enrichment 
p-value; crosses indicate a significant p-value < 0.05; hypergeometric test, 
adjusted using the Benjamin-Hochberg false discovery rate correction with 
significance cutoff α = 0.05.
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Extended Data Fig. 5 | Embedding similarity based on proteins’ cell type 
activation and function. (a-b) Each dot represents a protein that is activated 
in at least two cell types. Shown is the average cosine similarity of embeddings 
for each protein as a function of the number of cell types that it is activated in 
(a) with (p-value < 0.001) and (b) without (p-value < 0.001) cellular and tissue 
context. Both Spearman correlation statistical tests for (a) and (b) are two-sided. 
(c) Comparison of embedding similarities of a marker (orange) or housekeeping 
(gray) gene’s contextualized protein representation (from PINNACLE) across 
different cell type contexts. The marker genes are specific to cell types in the 

family of T lymphocytes (a total of 10 T lymphocyte cell types). For each marker/
housekeeping gene, its cell type specific protein representations are compared in 
similar contexts (that is, between different T lymphocyte cell types) or different 
contexts (that is, between a T lymphocyte cell type and a non-immune cell 
type; a total of 115 non-immune cell types). All comparisons between these four 
groups shown are statistically significant. Cosine embedding similarity is used to 
compare contextualized protein representations. Data are represented as mean 
values with error bars indicating a 95% confidence interval.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Evaluation of PINNACLE’s cell type and tissue 
representations. (a) We quantify the quality of PINNACLE’s cell type 
representations by calculating pairwise similarities of cell type representations. 
Pairwise similarities are computed via cosine similarity. We expect several 
major groups of cell type representations that are organized according to 
cellular and tissue hierarchy and acting as anchors for our complete set of 
cell type representations. This implies that the contextual information being 
transferred between the representations of cell types and proteins reflects the 
tissue hierarchy. Our results show that the local organization of PINNACLE’s 
cell type representations (that is, identity of cell types in each group) reflects 
cellular communication, and the global organization of cell type representations 

(that is, proximity of groups to each other) reflects tissue organization. Since 
PINNACLE’s protein representations are embedded near their corresponding cell 
type representation, such organization is enforced among the contextualized 
protein representations as well. (b) Correlation between cosine distance of tissue 
representations and the fraction of overlapping cell types neighbors between 
the tissue pair. Spearman ρ = − 0.46 with p-value = 8.01 × 10−30. (c) Correlation 
between PINNACLE’s tissue embedding distance to tissue ontology distance for 
leaf nodes in the metagraph. Spearman ρ = 0.11 with p-value = 0.01. All Spearman 
correlation statistical tests are two-sided. Data are represented as mean values 
with error bars indicating a 95% confidence interval. Both panels show n = 548 
pairwise comparison calculations.
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Extended Data Fig. 7 | Benchmarking context-free and contextualized 
3D structure protein representations. Shown are binding and non-binding 
scores (that is, cosine similarity) of proteins when using only 3D structure-based 
protein representations (p-value = 0.2121; n = 22 pairwise comparisons between 
2 binding and 20 non-binding pairs), PINNACLE’s contextualized protein 
representations (without 3D structural information; p-value = 0.0299; n = 7,956 
pairwise computations between 180 binding and 7,776 non-binding pairs), 
contextualized structure-based protein representations (p-value < 10−5; n = 
7,956 pairwise computations between 180 binding and 7,776 non-binding pairs), 
and baseline models. The baseline models are random context only (that is, 
randomly sampling pairs of PINNACLE’s protein representations from different 
cell type contexts; p-value = 1.0; n = 7,956 pairwise computations between 180 
‘binding’ and 7,776 ‘non-binding’ pairs), concatenating random context protein 
representations with 3D structure-based protein representations (p-value = 1.0; 
n = 7,956 pairwise computations between 180 ‘binding’ and 7,776 ‘non-binding’ 
pairs), GAT only (that is, context-free protein representations generated by a 
graph attention neural network44 on the global reference interactome; p-value 

= 0.6939; n = 22 pairwise comparisons between 2 binding and 20 non-binding 
pairs), concatenating GAT protein representations with 3D structure-based 
protein representations (p-value = 0.5706; n = 22 pairwise comparisons between 
2 binding and 20 non-binding pairs), BIONIC only (that is, context-free protein 
representations generated by BIONIC15, a graph convolutional neural network 
designed for multi-modal network integration; p-value = 0.4556; n = 22 pairwise 
comparisons between 2 binding and 20 non-binding pairs), and concatenating 
BIONIC protein representations with 3D structure-based protein representations 
(p-value = 0.2797; n = 22 pairwise comparisons between 2 binding and 20 
non-binding pairs). Note that all protein representations have consistent 
dimensions (328 = 200 structure-based protein representation + 128 context-
aware/-free protein representation) to ensure that they are comparable. The 
protein representations without 3D structure are padded with 0’s (that is, null 
3D structure-based protein representation). The significance of the score gaps 
between binding and non-binding proteins is measured using a one-sided non-
parametric permutation test. Data are represented as mean values with error bars 
indicating a 95% confidence interval.
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Extended Data Fig. 8 | Performance of therapeutic target prioritization 
models for rheumatoid arthritis and inflammatory bowel diseases. 
Benchmarking of context-aware and context-free approaches for (a-c) RA and 
(d-f ) IBD therapeutic areas. Each dot is the performance (averaged across 10 
random seeds) of protein representations from a given context (that is, cell type 
context for PINNACLE, context-free global reference protein interaction network 
for random walk43 and GAT44, and context-free multi-modal protein interaction 
network for BIONIC15). In the model for the RA therapeutic area: (a) at APR@10, 
100% of cell types (156 out of 156) outperform the random walk model, 44.2% 
of cell types (69 out of 156) outperform GAT, and 11.5% of cell types (18 out of 
156) outperform BIONIC. (b) At APR@15, 58.3% (91 out of 156) outperform the 

random walk model, 38.5% of cell types (60 out of 156) outperform GAT, and 
9.0% of cell types (14 out of 156) outperform BIONIC. (c) At APR@20, 59.0 (92 
out of 156) outperform the random walk model, 34.6% of cell types (54 out of 
156) outperform GAT, and 5.1% of cell types (8 out of 156) outperform BIONIC. 
In the model for the IBD therapeutic area: (d) at APR@10, 39.5% (60 out of 
152) outperform the random walk model, 38.2% of cell types (58 out of 152) 
outperform GAT, and 10.5% of cell type (16 out of 152) outperform BIONIC. (e) At 
APR@15, 28.3% (43 out of 152) outperform the random walk model and GAT, and 
8.6% of cell types (13 out of 152) outperform BIONIC. (f ) At APR@20, 26.3% (40 
out of 152) outperform the random walk model and GAT, and 6.6% of cell types (10 
out of 152) outperform BIONIC.
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Extended Data Fig. 9 | Correlating downstream performance on rheumatoid 
arthritis and inflammatory bowel diseases with protein degree and network 
enrichment. (a) Correlation between the node degrees of proteins (in the cell 
type specific protein interaction networks) and the downstream performance 
of their learned representations. Combining the RA and IBD prediction results, 
the Spearman ρ = 0.087 with p-value = 0.223 (n = 36,229, consisting of 3,165 
positive protein examples with label y = 1 and 33,064 negative protein examples 
with label y = 0). For RA only, the Spearman ρ = 0.205 with p-value = 0.041 (n = 
26,773, consisting of 2,382 positive protein examples with label y = 1 and 24,391 
negative protein examples with label y = 0). For IBD only, the Spearman ρ = 0.024 
with p-value = 0.810 (n = 9,456, consisting of 783 positive protein examples 

with label y = 1 and 8,673 negative protein examples with label y = 0). Data are 
represented as mean values with error bars indicating a 95% confidence interval. 
(b-c) Correlation between PINNACLE’s performance and network enrichment. 
(b) Comparing PINNACLE’s predicted performance (APR@5) and the ratio of 
positive to negative proteins in each cell type for RA (Spearman ρ = 0.53 with 
p-value = 8.7 × 10−13; n = 26,773, consisting of 2,382 positive proteins with label 
y = 1 and 24,391 negative proteins with label y = 0). (c) Comparing PINNACLE’s 
predicted performance (APR@5) and the ratio of positive to negative proteins 
in each cell type for IBD (Spearman ρ = 0.54 with p-value = 8.5 × 10−13; n = 9,456, 
consisting of 783 positive proteins with label y = 1 and 8,673 negative proteins 
with label y = 0). All Spearman correlation statistical tests are two-sided.
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Extended Data Fig. 10 | Performance of therapeutic target prioritization 
models for rheumatoid arthritis and inflammatory bowel diseases stratified 
by clinical trials. Comparison of the percentiles of drug targets across cell types, 
in their best-performing cell types, and in the context-free global reference 

model, stratified by clinical phase of compounds for (a) RA and (b) IBD. The table 
shows the number of unique drugs in each clinical phase, as well as the numbers 
of unique proteins targeted by those drugs. Data are represented as mean values 
with error bars indicating a 95% confidence interval.

http://www.nature.com/naturemethods
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