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Understanding protein function and developing molecular therapies

require deciphering the cell types in which proteins act as well as the
interactions between proteins. However, modeling proteininteractions

across biological contexts remains challenging for existing algorithms. Here
weintroduce PINNACLE, ageometric deep learning approach that generates
context-aware protein representations. Leveraging a multiorgan single-cell
atlas, PINNACLE learns on contextualized proteininteraction networks

to produce 394,760 protein representations from 156 cell type contexts
across 24 tissues. PINNACLE’s embedding space reflects cellular and tissue
organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained
proteinrepresentations can be adapted for downstream tasks: enhancing 3D
structure-based representations for resolving immuno-oncological protein

interactions, and investigating drugs’ effects across cell types. PINNACLE
outperforms state-of-the-art models in nominating therapeutic targets for
rheumatoid arthritis and inflammatory bowel diseases and pinpoints cell
type contexts with higher predictive capability than context-free models.
PINNACLE’s ability to adjust its outputs on the basis of the context in which it
operates paves the way for large-scale context-specific predictions

inbiology.

Proteins are the functional units of cells, and their interactions enable
different biological functions. The development of high-throughput
methods has facilitated the characterization of large maps of protein
interactions. Leveraging these protein interaction networks, computa-
tional methods'*have been developed toimprove the understanding
of protein structure?, accurately predict functional annotations*’ and
inform the design of therapeutic targets®’. Among them, representa-
tion learning methods have emerged as a leading strategy to model
proteins®'°. These approaches canresolve protein interaction networks
across tissues' * and cell types by integrating molecular cell atlases'
and extending our understanding of the relationship between protein

and function®. Protein representation learning methods can predict
multicellular functions across human tissues”, design target-binding
proteins' and novel protein interactions”, and predict interactions
between transcription factors and genes®.

Proteins can have distinct roles in different biological contexts
While nearly every cell contains the same genome, the expression of
genes and the function of proteins encoded by these genes depend
on cellular andtissue contexts™***, Gene expression and the function
of proteins can also differ significantly between healthy and disease
states??2. Methods incorporating biological contexts can improve
the characterization of proteins and provide precise, context-specific
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insights. However, deep learning methods produce protein representa-
tions (or embeddings) that are context-free: each protein has only one
representation learned from either a single context or an integrated
view across many contexts”?>. These methods generate one representa-
tion for each protein, providing anintegrated summary. Context-free
proteinrepresentations are not tailored to specific biological contexts,
such as cell types and disease states. These representations cannot
identify protein functions that vary across different cell types, which
inturn hamper the prediction of pleiotropy and protein rolesin a cell
type-specific manner.

Sequencing technologies that measure gene expression with
single-cell resolution pave the way toward addressing this challenge.
Single-cell transcriptomic atlases?>**** measure activated genes across
many cellular contexts. Through attention-based deep learning?*,
which specifies models that can pay attention tolarge inputs and learn
the most important elements to focus on in each context, single-cell
atlases canbe leveraged to boost the mapping of gene regulatory net-
works that drive disease progression and reveal treatment targets™.
However, incorporating the expression of protein-coding genes into
proteininteraction networks remains achallenge. Existing algorithms,
including protein representation learning, cannot contextualize pro-
teinrepresentations.

We introduce PINNACLE (Protein Network-based Algorithm for
Contextual Learning), a context-specific model for comprehensive
proteinunderstanding. PINNACLE is a geometric deep learning model
adept at generating protein representations through the analysis
of protein interactions within various cellular contexts. Leveraging
single-cell transcriptomics combined with networks of protein-pro-
teininteractions (PPIs), cell type-to-cell type interactions and a tissue
hierarchy, PINNACLE generates high-resolution protein representa-
tions tailored to each cell type. In contrast to existing methods that
provide asingle representation for each protein, PINNACLE generates
adistinct representation for each cell type in which a protein-coding
geneisactivated. With 394,760 contextualized protein representations
produced by PINNACLE, where each protein representationisimbued
with cell type specificity, we demonstrate PINNACLE’s capability to
integrate protein interactions with the underlying protein-coding
genetranscriptomes of 156 cell type contexts. PINNACLE models sup-
port abroad array of tasks; they can enhance three-dimensional (3D)
structural protein representations, analyze the effects of drugs across
cell type contexts, nominate therapeutic targetsin a cell type-specific
manner, retrieve tissue hierarchy in a zero-shot manner and perform
context-specific transfer learning. PINNACLE models dynamically
adjust their outputs on the basis of the context in which they operate
and can pave the way for the broad use of foundation models tailored
to diverse biological contexts.

Results

Constructing context-specific networks

Generating protein representations embedded with cell type context
callsfor proteininteraction networks that consider the same context.
We assembled a dataset of context-sensitive protein interactomes,
beginning with a multiorgan single-cell transcriptomic atlas® that
encompasses 24 tissue and organ samples sourced from 15 human
donors (Fig.1a). We compile activated genes for every expert-annotated
cell type in this dataset by evaluating the average gene expressionin
cells from that cell type relative to a designated reference set of cells
(Fig.1aand ‘Construction of multiscale networks’ sectionin Methods).
Here, ‘activated genes’ are defined as those demonstrating a higher
average expression in cells annotated as a particular type than the
remaining cells documented in the dataset. Based on these activated
genelists, we extracted the corresponding proteins from the compre-
hensive reference proteininteraction network and retained the largest
connected component (Fig.1a). As aresult, we have 156 context-aware
proteininteraction networks, eachwith 2,530 + 677 proteins, that are

maximally similar to the global reference proteininteraction network
and still highly cell type specific (Extended Data Figs. 1and 2). Our
context-aware proteininteraction networks from156 cell type contexts
span 62 tissues of varying biological scales.

Further, we constructed a network of cell types and tissues
(metagraph) to model cellular interactions and the tissue hierarchy
(‘Construction of multiscale networks’ sectionin Methods). Given the
cell type annotations designated by the multiorgan transcriptomic
atlas®, the network consists of 156 cell type nodes. We incorporated
edges between pairs of cell types based on the existence of significant
ligand-receptor (LR) interactions and validated that the proteins cor-
relatingto these interactions are enriched in the context-aware protein
interaction networks in comparison to a null distribution (‘Construc-
tion of multiscale networks’ section in Methods and Extended Data
Fig. 1c,d). Leveraging information on tissues in which the cell types
were measured, we began with 24 tissue nodes and established edges
between cell type nodes and tissue nodes if the cell type was derived
fromthe correspondingtissue. We thenidentified all ancestor nodes,
including the root, of the 24 tissue nodes within the tissue hierarchy
(‘Construction of multiscale networks’sectionin Methods) to feature
62 tissue nodes interconnected by parent-child relationships. Our
dataset thus comprises 156 context-aware proteininteraction networks
and ametagraphreflecting cell type and tissue organization.

Overview of PINNACLE model

PINNACLE is a geometric deep learning model capable of generat-
ing protein representations predicated on protein interactions
within a spectrum of cell type contexts. Trained on an integrated set
of context-aware protein interaction networks, complemented by a
network capturing cellular interactions and tissue hierarchy (Fig. 1b,c),
PINNACLE generates contextualized protein representations thatare
tailored to cell types in which protein-coding genes are activated
(Fig. 1d). Unlike context-free models, PINNACLE produces multiple
representations for every protein, each contingent onits specific cell
type context. Additionally, PINNACLE produces representations of the
celltype contexts and representations of the tissue hierarchy (Fig. 1d,e).
Thisapproach ensures amultifaceted understanding of proteininter-
action networks, taking into account the myriad of contexts in which
proteinsact.

Given multiscale model inputs, PINNACLE learns the topology
of proteins, cell types and tissues by optimizing a unified latent rep-
resentation space. PINNACLE integrates different context-specific
data into one context-aware model (Fig. 1f) and transfers knowledge
between protein-, cell type- and tissue-level data to contextualize
representations (Fig. 1g). To infuse cellular and tissue organization
into this embedding space, PINNACLE employs protein-, cell type-
and tissue-level attention along with respective objective functions
(Fig. 1b,c and ‘Multiscale graph neural network’ section in Methods).
Conceptually, pairs of proteins that physically interact (that s, are con-
nected by edges in input networks) are closely embedded. Similarly,
proteins are embedded near their respective cell type contexts while
maintaining a substantial distance from unrelated ones. This ensures
thatinteracting proteins within the same cell type context are situated
proximally within theembedding space yet are separated from proteins
fromother cell type contexts. This approachyields anembedding space
that accurately represents the intricacies of relationships between
proteins, cell types and tissues.

PINNACLE disseminates graph neural network messages between
proteins, cell types and tissues using a series of attention mechanisms
tailored to each specificnode and edge type (‘Multiscale graph neural
network’ section in Methods). The protein-level pretraining tasks
consider self-supervised link prediction on protein interactions and
celltype classification on protein nodes. These tasks enable PINNACLE
to sculpt an embedding space that encapsulates the topology of the
context-aware proteininteraction networks and the cell type identity
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Fig.1| Overview of PINNACLE. a, Cell type-specific protein interaction networks
and metagraph of cell type and tissue organization are constructed from a
multiorgan single-cell transcriptomic atlas of humans, a human reference
proteininteraction network and a tissue ontology. b, PINNACLE has protein-,
cell type- and tissue-level attention mechanisms that enable the algorithm to
generate contextualized representations of proteins, cell types and tissuesin a
single unified embedding space. ¢, PINNACLE is designed such that the nodes
(thatis, proteins, cell types and tissues) that share an edge are embedded closer
(decreased embedding distance) to each other than nodes that do not share an
edge (increased embedding distance); proteins activated in the same cell type
are embedded more closely (decreased embedding distance) than proteins
activated in different cell types (increased embedding distance), and cell types

model

are embedded closer to their activated proteins (decreased embedding distance)
than other proteins (increased embedding distance). d, As a result, PINNACLE
generates protein representations injected with cell type and tissue context;
aunique representation is produced for each protein activated in each cell

type. PINNACLE simultaneously generates representations for cell types and
tissues. e, Existing methods, however, are context-free. They generate asingle
embedding per protein, representing only one condition or context for each
protein, without any notion of cell type or tissue context. f~-h, The PINNACLE
algorithm and its outputs enable multimodal deep learning (for example, single-
cell transcriptomic data with interactomes) (f), context-specific transfer learning
(forexample, between proteins, cell types and tissues) (g) and contextualized
predictions (for example, efficacy and safety of therapeutics) (h).

of the proteins. PINNACLE’s cell type- and tissue-specific pretraining
tasksrely exclusively on self-supervised link prediction, facilitating the
learning of cellular and tissue organization. The topology of cell types
andtissuesisimpartedtothe proteinrepresentations through an atten-
tion bridge mechanism, effectively enforcing tissue and cellular organi-
zation onto the protein representations. PINNACLE’s contextualized
proteinrepresentations capture the structure of context-aware protein
interaction networks. The regional arrangement of these contextual-
ized protein representations in the latent space reflects the cellular
andtissue organization represented by the metagraph. Thisleadstoa
comprehensive and context-specific representation of proteins within
aunified cell type- and tissue-specific framework.

PINNACLE captures cellular and tissue organization

PINNACLE generates protein representations for each of the 156 cell
type contexts spanning 62 tissues of varying hierarchical scales. In total,
PINNACLE’s unified multiscale embedding space comprises 394,760
protein representations, 156 cell type representations and 62 tissue

representations (Fig.1a). We show that PINNACLE learns an embedding
space where proteins are positioned based on cell type context. We first
quantify the spatial enrichment of PINNACLE’s protein embedding
regions using a systematic method, SAFE® (‘Spatial enrichment analysis
of PINNACLE’s protein embeddings’ sectionin Methods). PINNACLE’s
contextualized protein representations self-organize in PINNACLE’s
embedding space as evidenced by the enrichment of spatial embed-
dingregions for protein representations that originate from the same
celltype context (significance cutoff a = 0.05; Fig. 2 and Extended Data
Figs.3and 4).

Next, we evaluate embedding regions to confirm that they are
separated by cell type and tissue identity by calculating the similarities
between protein representations across cell type contexts. Protein
representations from the same cell type are more similar than those
fromdifferent cell types (Fig. 3a).In contrast,amodel without cellular
or tissue context fails to capture any differences between protein rep-
resentations across cell type contexts (Fig. 3b). Further, we expect the
representations of proteins that act on multiple cell types to be highly
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Fig.2|Enrichment of PINNACLE’s protein embedding regions. a-f, Two-
dimensional UMAP plots of contextualized protein representations generated
by PINNACLE from six different cell type contexts: medullary thymic epithelial
cell (a), bronchial vessel endothelial cell (b), mesenchymal stem cell (c), lung
microvascular endothelial cell (d), kidney epithelial cell (e) and fibroblast of
breast (f). Each dotis a protein representation. Colored dots indicate cell type
context regions, and gray dots represent proteins from other cell types. Each
protein embedding regionis expected to be enriched neighborhoods that are
spatially localized according to cell type context. To quantify this, we compute
spatial enrichment of each protein embedding region using SAFE* and provide

Mean SAFE NES = 49.67 + 4.12
Max SAFE NES = 65.83
SAFE enriched neighborhoods = 235

. CD4" helper T cell (136),
T follicular helper cell

(119)

Fibroblast (312),
endothelial cell of
hepatic sinusoid (304)

35+

30+

254

Type | natural
killer T cell (71)

|

204 Intestinal crypt stem cell

of large intestine (383)

Tongue muscle cell (446),
natural killer cell (446)

Capillary endothelial cell (493)

Number of biological contexts (cell types)

57 Epithelial cell
of uterus
(184)
o T T T T T T T T T 1

(0] 100 200 300 400 500 600 700 800 900 1,000
Number of SAFE enriched neighborhoods

the mean and max neighborhood enrichment scores (NES) and the number of
enriched neighborhoods output by the tool (‘Metrics and statistical analyses’
section in Methods and Extended Data Figs. 3 and 4). g,h, Distribution of the
maximum SAFE NES (g) and the number of enriched neighborhoods (h) for

156 cell type contexts (each context has a Pvalue <0.05; hypergeometric test,
adjusted using the Benjamini-Hochberg false discovery rate correction with
significance cutoff a = 0.05). Ten randomly sampled cell type contexts are
annotated, with their maximum SAFE NES or number of enriched neighborhoods
in parentheses.

dissimilar, reflecting specialized cell type-specific protein functions
(Supplementary Note 1). We calculate the similarities of protein rep-
resentations (thatis, cosine similarities of a protein’s representations
across cell type contexts) based on the number of cell typesin which the
proteinisactive (Extended DataFig. 5a,b). Representational similarities
of proteins negatively correlate with the number of cell types in which
they act (Spearman’s p =-0.9798; P< 0.001), and the correlation is
weaker in the ablated model with cellular and tissue metagraph turned
off (Spearman’s p = - 0.6334; P< 0.001).

We additionally examine whether protein embedding regions
are organized by the tissue hierarchy. We leverage PINNACLE's tissue
representations to performzero-shot retrieval of the tissue hierarchy
and then compare tissue ontology distance to tissue embedding dis-
tance. Tissue ontology distance is defined as the sum of the shortest
path lengths from two tissue nodes to the lowest common ancestor
node in the tissue hierarchy, and tissue embedding distance is the
cosine distance between the correspondingtissue representations. We
expectapositive correlation: the farther apart the nodes are according
to the tissue hierarchy, the more dissimilar the tissue representations
are.Ashypothesized, embedding distances inthe latent space and the
corresponding distancesin the tissue ontology of the same tissues are
positively correlated (Spearman’s p = 0.36; P=1.85 x 10™; Fig.3c), and
the distribution of tissue embedding distances cannotbe attributed to
random effects (Kolmogorov-Smirnov two-sided test 0.50; P < 0.001).
When the tissue ontology is randomly shuffled, the correlation with

distances inthe embedding space diminishes significantly (Spearman’s
p=0.005; P=0.349; Fig. 3c). Since PINNACLE uses the metagraph to
systematically integrate tissue organization into both cell type and pro-
teinrepresentations, it follows that all of PINNACLE’s representations
inherently reflect this tissue organization (‘Multiscale graph neural
network’ section in Methods and Extended Data Fig. 6).

PINNACLE enhances 3D structural representations of PPIs
Protein-proteininteractions (PPIs) depend onboth 3D structure con-
formations of the proteins®** and cell type contexts within which the
proteins act**. However, protein representations produced by existing
artificial intelligence (Al) models based on 3D molecular structures
lack cell type context information. We hypothesize that incorporat-
ing cellular context information can better differentiate binding
from nonbinding proteins (Fig. 3d). Because 3D structures of mol-
ecules (containing precise atom or residue level contact information)
provide complementary knowledge to PPl networks (summarizing
binary interactions between proteins), we expect that context-aware
protein interaction networks can improve the ability to differenti-
ate between binding and nonbinding proteins across different cell
types®. As no large-scale dataset with matched structural biology
and genomic readouts currently exists to perform systematic analy-
ses, we focus on PD-1/PD-L1 and B7-1/CTLA-4 interacting proteins,
importantimmune checkpoint proteininteractorsinvolvedin cancer
immunotherapies®.
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Fig.3|Evaluation of PINNACLE’s contextual representations. a,b, Gap
between embedding similarities using PINNACLE’s protein representations (a)
and anoncontextualized model’s protein representations (b) on n = 394,760
samples (that is, cell type-specific protein representations). Similarities are
calculated between pairs of proteins in the same cell type (dark shade of color) or
different cell types (light shade of color), and stratified by the compartment from
which the cell types are derived. We use the two-sided two-sample Kolmogorov-
Smirnov test for goodness of fit. Annotations indicate median values. The
noncontextualized model is an ablated version of PINNACLE without any notion
of tissue or cell type organization (that is, remove cell type and tissue network
and all cell type- and tissue-related components of PINNACLE’s architecture

and objective function). The bounds of the box show the quartiles of the data,
the center indicates the median value of the data and the whiskers represent the
farthest data point within 1.5 x interquartile range. ¢, Embedding distance of
PINNACLE’s 62 tissue representations as a function of tissue ontology distance.
The gray bars indicate a null distribution (refer to ‘Metrics and statistical
analyses’ section in Methods for more details). Both the Spearman correlation
(P=1.85x10"°) and Kolmogorov-Smirnov (P < 0.001) statistical tests are
two-sided. The data are represented as mean values with error bars indicating
a95% confidenceinterval.d, Prediction task in which protein representations

representations representations

are optimized to maximize the gap between binding and nonbinding proteins.

e, Cell type context (provided by PINNACLE) is injected into context-free
structure-based protein representations (provided by MaSIF?, which learns a
protein representation from the protein’s 3D structure) via concatenation to
generate contextualized protein representations. Lack of cell type context is
defined by an average of PINNACLE'’s protein representations. f, Comparison

of context-free and contextualized representations in differentiating between
binding and nonbinding proteins. The scores are computed using cosine
similarity on n =22 unique protein pairs (2 binding and 20 nonbinding); since
PINNACLE generates multiple representations per protein based on context,
there are n = 7,956 pairwise computations (180 binding and 7,776 nonbinding)
for the contextualized representations. The binding proteins evaluated are PD-1/
PD-L1and B7-1/CTLA-4. Pairwise scores also are calculated for each of these four
proteins and proteins that they do not bind with (that is, RalB, RalBP1, EPO, EPOR,
C3and CFH). The gap between the average scores of binding and nonbinding
proteins is annotated for context-free and contextualized representations.

The significance of the score gaps between binding and nonbinding proteins

is measured using a one-sided nonparametric permutation test. The dataare
represented as mean values with error bars indicating a 95% confidence interval.

We compare contextualized and context-free protein represen-
tations for binding proteins (that is, PD-1/PD-L1 and B7-1/CTLA-4)
and nonbinding proteins (that is, one of the four binding proteins
paired with RalB, RalBP1, EPO, EPOR, C3 or CFH). Cell type context
is incorporated into 3D structure-based protein representations™"”
by concatenating them with PINNACLE’s protein representation
(Fig. 3e and ‘Generating contextualized 3D protein representations’
sectionin Methods). Context-free protein representations are gener-
ated by concatenating 3D structure-based representations>” with an
average of PINNACLE’s protein representations across all cell type

contexts (‘Generating contextualized 3D protein representations’
section in Methods). Contextualized representations, resulting from
a combination of protein representations based on 3D structure and
context-aware PPInetworks, give scores (via cosine similarity) for bind-
ing and nonbinding proteins of 0.9690 + 0.0049 and 0.9571 + 0.0127,
respectively. Using PINNACLE’s context-specific protein represen-
tations, which have no 3D structure information, binding and non-
binding proteins are scored 0.0385 + 0.1531 and 0.0218 + 0.1081,
respectively. In contrast, using context-free representations, bind-
ing and nonbinding proteins are scored at 0.9789 + 0.0004 and
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Fig. 4 |Fine-tuning contextualized protein representations for therapeutic
target prioritization. a, Workflow to curate positive training examples for RA
(left) and IBD (right) therapeutic areas. b, We construct positive examples by
selecting proteins from our protein-protein interaction network (PPIN) that

are targeted by compounds that have at least completed phase 2 for treating

the therapeutic area of interest. These proteins are deemed safe and potentially
efficacious for humans with the disease. We construct negative examples

by selecting proteins from our PPIN that do not have associations with the
therapeutic area yet have been targeted by at least one existing drug/compound.
¢, Celltype-specific protein interaction networks are embedded by PINNACLE,

APR@5

and fine-tuned for adownstream task. Here, the predictor module (that is, MLP)
fine-tunes the (pretrained) contextualized protein representations for predicting
whether agiven proteinis a strong candidate for the therapeutic area of interest.
Additionalinsights of our setup include hypothesizing highly predictive cell
types for examining candidate therapeutic targets. d,e, Benchmarking of
context-aware and context-free approaches for RA (d) and IBD (e) therapeutic
areas. Each dotis the performance (averaged across ten random seeds) of protein
representations froma given context (that is, cell type context for PINNACLE,
context-free global reference proteininteraction network for GAT and random
walk, and context-free multimodal protein interaction network for BIONIC).

0.9742 + 0.0078, respectively. Further, comparative analysis of the
gap in scores between interacting versus noninteracting proteins
yields gaps of 0.011 (PD-1/PD-L1) and 0.015 (B7-1/CTLA-4) for PIN-
NACLE’s contextualized representations (P=0.0299; Extended
Data Fig. 7), yet only 0.003 (PD-1/PD-L1) and 0.006 (B7-1/CTLA-4)
for context-free representations (Fig. 3f and Extended Data Fig. 7).
Incorporating information about biological contexts can help bet-
ter distinguish protein interactions from noninteracting proteins in

specific cell types, suggesting that PINNACLE’s contextualized rep-
resentations can enhance protein representations derived from 3D
protein structure modality. Modeling context-dependent interac-
tions involving immune checkpoint proteins can deepen our under-
standing of how these proteins are used in cancer immunotherapies.
Our benchmarking results further suggest that incorporating con-
text can improve 3D structure prediction of protein interactions
(Supplementary Note 2).
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Fig. 5| Performance of contextualized target prioritization for RA and IBD
therapeuticareas. a,d, Model performance (measured by APR@5) for RA (a)
and IBD (d) therapeutic areas, respectively. APR@K (or Average Precision and
Recall atK) isacombination of Precision@K and Recall@K (refer to ‘Metrics
and statistical analyses’ section in Methods for more details). Each dot is the
performance (averaged across ten random seeds) of PINNACLE’s protein
representations froma specific cell type context. The gray and dark-orange
lines are the performance of the GAT and BIONIC models, respectively. For each
therapeutic area, 22 cell types are annotated and colored by their compartment

Immune-stromal context
Stromal-epithelial context

Percentile of PPARG

--- GAT on global PPI network
--- BIONIC

Germ line context

category. Extended Data Fig. 8 contains model performance measured by
APR@10, APR@15 and APR@20 for RA and IBD therapeutic areas.

b,c.e.f, Selected proteins for RA and IBD therapeutic areas, where the horizontal
solid line separates the top and bottom five cell types: two selected proteins,
JAK3 (b) and IL6R (c), that are targeted by drugs that have completed phase IV
of clinical trials for treating RA therapeutic area; two selected proteins, ITGA4
(e) and PPARG (f), that are targeted by drugs that have completed phase IV for
treating IBD therapeutic area.

Contextual models outperform context-free target prediction
With the representations from PINNACLE infused with cellular and
tissue context, we can fine-tune them for downstream tasks (Fig. 1f-h).
We hypothesize that PINNACLE'’s contextualized latent space can
better differentiate between therapeutic targets and proteins with
no therapeutic potential than a context-free latent space. Here, we
focus on modeling the therapeutic potential of proteins across cell
types for therapeutic areas with cell type-specific mechanisms of
action (MoA) (Fig. 4). Certain cell types are known to play crucial and
distinct roles in the disease pathogenesis of rheumatoid arthritis

(RA) and inflammatory bowel disease (IBD) therapeutic areas***,

There s currently no cure for either type of condition, and the medi-
cations prescribed to mitigate the symptoms can lead to undesired
side effects*. The new generation of therapeutics in development
for RA and IBD conditions is designed to target specific cell types
so that the drugs maximize efficacy and minimize adverse events
(for example, by directly impacting the affected/responsible cells
and avoiding off-target effects on other cells)**>. We adopt PINNA-
CLE models to predict the therapeutic potential of proteins in a cell
type-specific manner.
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We fine-tune PINNACLE to predict therapeutic targets for RAand
IBD diseases. Specifically, we perform binary classification on each
contextualized protein representation, where y =1indicates that the
protein is a therapeutic candidate for the given therapeutic area and
y =0 otherwise. The ground truth positive examples (where y =1) are
proteins targeted by drugs that have at least completed one clinical
trial of phase 2 or higher for indications under the therapeutic area of
interest, indicating that the drugs are safe and potentially efficacious
inaninitial cohort of humans (Fig. 4a,b). The negative examples (where
y=0)aredruggable proteins that have not been studied for the thera-
peutic area (Fig. 4b and ‘Fine-tuning PINNACLE for context-specific
target prioritization’ section in Methods). The binary classification
model can be of any architecture; our results for nominating RA and
IBD therapeutictargets are generated by amultilayer perceptron (MLP)
trained for each therapeutic area (Fig. 4c).

To evaluate PINNACLE’s contextualized protein representations,
we compare PINNACLE's fine-tuned models against three context-free
models. We apply a random walk algorithm* and a graph attention
network (GAT)** on the context-free reference protein interaction
network. The BIONIC model is a graph convolutional neural network
designed for (context-free) multimodal network integration®.

We find that PINNACLE’s protein representations for all cell type
contexts outperform the randomwalk model for both RA (Fig. 4d) and
IBD (Fig. 4e) diseases. Protein representations from 44.9% (70 out of
156) and 37.5% (57 out 0of 152) cell types outperform the GAT model for
RA (Fig. 4d) and IBD (Fig. 4e) diseases, respectively. Although both
PINNACLE and BIONIC canintegrate the 156 cell type-specific protein
interaction networks, PINNACLE's protein representations outperform
BIONIC”in18.6% of cell types (29 out 0f156) and 8.6% of cell types (13
out of 152) for RA (Fig. 4d) and IBD diseases (Fig. 4e), respectively,
highlighting the utility of contextualizing protein representations.
PINNACLE outperforms these three context-free models via other
metrics for both RA and IBD therapeutic areas (Extended Data Fig. 8).
We have confirmed no significant correlation between the node degree
of proteins in cell type-specific PPl networks and performance in RA
and IBD models (Extended Data Fig. 9a). Additionally, there is only
amoderate correlation between PINNACLE’s performance and the
enrichment of positive targetsin these cell type-specific PPl networks
(Extended DataFig.9b,c). These findings underscore that PINNACLE'’s
predictions cannot be solely ascribed to the characteristics of the cell
type-specific PPl networks. Benchmarking results indicate combining
global reference networks with advanced deep graph representation
learning techniques, such as GAT, can yield better predictors than
network-based random walk methods alone. Integrative approaches,
exemplified by methods such as BIONIC, enhance performance, a
finding consistent with the established benefits of data integration.
Contextualized learning approaches, such as PINNACLE, have the
potential to enhance model performance and enable predictions tai-
lored to specific contexts.

PINNACLE can nominate targets across cell type contexts
Thereis existing evidence that drug effects vary with cell type depend-
ing on where therapeutic targets are expressed and where proteins
act™ . For instance, CD19-targeting chimeric antigen receptor T cell
therapy has been highly effective in treating B cell malignancies yet
causes a high incidence of neurotoxicity”. A recent study shows that
chimericantigenreceptor T cellsinduce off-target effects by targeting
the CD19 expressed in brain mural cells, probably causing the brain
barrier leakiness responsible for neurotoxicity*. We hypothesize
that the predicted protein druggability varies across cell types, and
such variations can provide insights into the cell types’ relevance for
atherapeuticarea.

Amongthe 156 biological contexts modeled by PINNACLE's protein
representations, we examine the most predictive cell type contexts for
nominating therapeutic targets of RA. We find that the most predictive

contexts consist of CD4" helper T cells, CD4" o memory T cells, CD1c+
myeloid dendritic cells, gut endothelial cells and pancreatic acinar cells
(Fig.5a). Immune cells play asignificant rolein the disease pathogenesis
of RA*"*, Since CD4" helper T cells (PINNACLE-predicted rank 1), CD4"
of memory T cells (PINNACLE-predicted rank 2) and CD1c" myeloid
dendritic cells (PINNACLE-predicted rank 3) are immune cells, it is
expected that PINNACLE'’s protein representations in these contexts
achieve high performancein our predictiontask. Also, patients with RA
often have gastrointestinal (GI) manifestations, whether concomitant
Glautoimmune diseases or Gl side effects of RA treatment™. Pancreatic
acinar cells (PINNACLE-predicted rank 5) can behave like inflammatory
cells during acute pancreatitis®, one of the accompanying Gl manifesta-
tions of RA*°. In addition to Gl manifestations, endothelial dysfunction
is commonly detected in patients with RA*2. While rare, rheumatoid
vasculitis, which affects endothelial cells and is a serious complica-
tion of RA, has been found to manifest in the large and small intes-
tines (gut endothelial cell context has PINNACLE-predicted rank 4),
liver and gallbladder®®%, Further, many of the implicated cell types
for patients with RA (for example, T cells, B cells, natural killer cells,
monocytes, myeloid cells and dendritic cells) are highly ranked by PIN-
NACLE****’ (Supplementary Table1). Our results suggest that injecting
celltype context to protein representations can significantly improve
performancein nominating therapeutic targets for RA diseases while
potentially revealing the cell types underlying disease processes.

The most predictive cell type contexts for nominating therapeutic
targets of IBD are CD4"* oy memory T cells, enterocytes of epithelium
of large intestine, T follicular helper cells, plasmablasts and myeloid
dendriticcells (Fig. 5d). Theintestinal barrier comprises a thick mucus
layer with antimicrobial products, a layer of intestinal epithelial cells
and a layer of mesenchymal cells, dendritic cells, lymphocytes and
macrophages®*. As such, these five cell types are expected to yield
high predictive ability. Moreover, many of the implicated cell types
for IBD (for example, T cells, fibroblasts, goblet cells, enterocytes,
monocytes, naturalkiller cells, B cells and glial cells) are highly ranked
by PINNACLE***"* (Supplementary Table 2). For example, CD4" T cells
areknown tobe the maindrivers of IBD**. They have been foundin the
peripheralblood and intestinal mucosa of adult and pediatric patients
with IBD. Patients with IBD tend to develop uncontrolled inflamma-
tory CD4" T cell responses, resulting in tissue damage and chronic
intestinal inflammation®®*’. Due to the heterogeneity of CD4* T cells
in patients, treatment efficacy can depend on the patient’s subtype of
CD4* T cells®®**°, Thus, the highly predictive cell type contexts according
to PINNACLE should be further investigated to design safe and effica-
cious therapies for RA and IBD diseases.

Conversely, we hypothesize that the cell type contexts of pro-
tein representations that yield worse performance than the cell
type-agnostic protein representations may not have the predictive
power (given the current list of targets from drugs that have at least
completed phase 2 of clinical trials) for studying the therapeutic effects
of candidate targets for RA and IBD therapeutic areas.

In the context-aware model trained to nominate therapeutic
targets for RA diseases, the protein representations of duodenum
glandular cells, endothelial cells of hepatic sinusoid, myometrial cells
and hepatocytes perform worse than the cell type-agnostic protein
representations (Fig. 5a). The RA therapeuticareaisagroup of inflam-
matory diseases in whichimmune cells attack the synovial lining cells
of joints”. Since duodenum glandular cells (PINNACLE-predicted rank
153), endothelial cells of hepatic sinusoid (PINNACLE-predicted rank
126), myometrial cells (PINNACLE-predicted rank 119) and hepatocytes
(PINNACLE-predicted rank 116) are neitherimmune cells nor foundin
the synovium, these cell type contexts’ protein representations expect-
edly perform poorly. For IBD diseases, the protein representations of
the limbal stem cells, melanocytes, fibroblasts of cardiac tissue, and
radial glial cells have worse performance than the cell type-agnostic
protein representations (Fig. 5d). The IBD therapeutic areais a group
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of inflammatory diseases in which immune cells attack tissues in
the digestive tract*’. As limbal stem cells (PINNACLE-predicted rank
152), melanocytes (PINNACLE-predicted rank 147), fibroblasts of
cardiac tissue (PINNACLE-predicted rank 135) and radial glial cells
(PINNACLE-predicted rank 107) are neither immune cells nor found
inthe digestive tract, these cell type contexts’ protein representations
should also perform worse than context-free representations.

The least predictive cellular contexts in PINNACLE’s models for
RA andIBD have no knownrolein disease, indicating that protein rep-
resentations from these cell type contexts are poor predictors of RA
and IBD therapeutic targets. PINNACLE’s overall improved predictive
ability compared to context-free models indicates the importance
of understanding cell type contexts where therapeutic targets are
expressed and act.

Predictive cell type contexts reflect MoAs in RA therapies
Recognizing and leveraging the most predictive cell type context for
examiningatherapeutic areacanbe beneficial for predicting candidate
therapeutic targets”*°, We find that considering only the most predic-
tive cell type contexts canyield significant performance improvements
compared to context-free models (Extended Data Fig.10). We examine
celltype contexts selected by PINNACLE as the most predictive forJAK3
and IL6R, two protein targets of RA drugs.

Disease-modifying antirheumatic drugs, such as Janus kinase
(JAK) inhibitors (that is, tofacitinib, upadacitinib and baricitinib), are
commonly prescribed to patients with RA®*“!, For JAK3, PINNACLE’s five
most predictive cell type contexts are T follicular helper cells, micro-
glial cells, DN3 thymocytes, CD4* o memory T cells and hematopoietic
stem cells (Fig. 5b). Since the expression of JAK3 is limited to hemat-
opoietic cells, mutations or deletions inJAK3 tend to cause defects in
T cells, B cells and natural killer cells®*®, For instance, patients with
JAK3 mutations tend to be depleted of T cells®®, and the abundance of
T follicular helper cells is highly correlated with RA severity and pro-
gression®. JAK3is also highly expressed in double negative (DN) T cells
(early stage of thymocyte differentiation)”’, and the levels of DN T cells
are higherinsynovial fluid than peripheral blood, suggesting a possible
role of DN T cell subsets in RA pathogenesis®®. Lastly, dysregulation of
the JAK/STAT pathway, which JAK3 participates in, has pathological
implications for neuroinflammatory diseases, a significant component
of disease pathophysiology in RA®*7°,

Tocilizumab and sarilumab are approved by the Food and Drug
Administration for treating RA, and target the interleukin six recep-
tor, IL6R®". For IL6R, PINNACLE’s five most predictive cellular contexts
are classical monocytes, NAMPT neutrophils, intermediate mono-
cytes, mesenchymal stem cells and regulatory T cells (Fig. 5c). IL6R is
predominantly expressed on neutrophils, monocytes, hepatocytes,
macrophages and some lymphocytes’. IL6R simulates the movement
of T cells and other immune cells to the site of infection or inflamma-
tion”*and affects T cell and B cell differentiation””>.IL6 acts directly on
neutrophils, essential mediators of inflammation and joint destruction
in RA, through membrane-bound IL6R". Experiments on fibroblasts
isolated from the synovium of patients with RA show that anti-IL6
antibodies prevented neutrophil adhesion, indicating a promising
therapeutic direction for IL6R on neutrophils”. Lastly, mice studies
have shown that pretreatment of mesenchymal stem/stromal cells
with solubleIL6R can enhance the therapeutic effects of mesenchymal
stem/stromal cells inarthritis inflammation™.

PINNACLE’s hypotheses to examine JAK3 and IL6R in the highly
predictive cell type contexts, according to PINNACLE, to maximize thera-
peuticefficacy seemto be consistent with their roles inthe cell types. It
seems that targeting these proteins may directly impact the pathways
contributing to the pathophysiology of RA therapeutic areas. Further,
our results for IL6R suggest that PINNACLE’s contextualized representa-
tions could be leveraged to evaluate potential enhancementin efficacy
(for example, targeting multiple pointsin a pathway of interest).

Predictive cell type contexts elucidate MoAs in IBD therapies
Like RA, we must understand the cells in which therapeutic targets are
expressed and act to maximize the efficacy of targeted IBD therapies™.
Tosupportour hypothesis, we evaluate PINNACLE’s predictions for two
protein targets of commonly prescribed treatments for IBD diseases:
ITGA4 and PPARG.

Vedolizumab and natalizumab target the integrin subunit alpha
4,1TGA4, to treat the symptoms of IBD therapeutic area®. PINNACLE’s
five most predictive cell type contexts for ITGA4 areregulatory T cells,
dendritic cells, myeloid dendritic cells, granulocytes and CD8" af3 cyto-
toxic T cells (Fig. Se). Integrins mediate the trafficking and retention
of immune cells to the Gl tract; immune activation of integrin genes
increases the risk of IBD’. For instance, ITGA4 is involved in homing
memory and effector T cells to inflamed tissues, including intestinal
and nonintestinal tissues, and imbalances in regulatory and effector
T cells may lead to inflammation”. Circulating dendritic cells express
the gut homing marker encoded by ITGA4; the migration of blood
dendritic cells to the intestine allows these dendritic cells to become
mature, whichleads to gutinflammation and tissue damage, indicating
that future studies are warranted to elucidate the functional properties
of blood dendritic cells in IBD’®.

Balsalazide and mesalamine are aminosalicylate drugs
(disease-modifying antirheumatic drugs) commonly used to treat
ulcerative colitis by targeting peroxisome proliferator-activated recep-
tor gamma (PPARG)"”°. PINNACLE's five most predictive cell types for
PPARG are paneth cells of the epithelium of large intestines, endothe-
lial cells of the vascular tree, classic monocytes, goblet cells of small
intestines and serous cells of epithelium of bronchus (Fig. 5f). PPARG is
highly expressedinthe Gltract, higherin thelarge intestine (for exam-
ple, colonic epithelial cells) than the small intestine® . In patients
with ulcerative colitis, PPARG is often substantially downregulated in
their colonic epithelial cells®>. PPARG promotes enterocyte develop-
ment®® and intestinal mucus integrity by increasing the abundance
of goblet cells®. Further, PPARG activation can inhibit endothelial
inflammation in vascular endothelial cells®*®, which is significant
due to the importance of vascular involvement in IBD®*¢. Addition-
ally, PPARG agonists have been shown to act as negative regulators
of monocytes and macrophages, which can inhibit the production of
proinflammatory cytokines®. Intestinal mononuclear phagocytes,
such as monocytes, play amajor role in maintaining epithelial barrier
integrity and fine-tuning mucosal immune system responsiveness®®.
Studies show that newly recruited monocytes in inflamed intestinal
mucosadrive theimmunopathogenesis of IBD, suggesting that block-
ing monocyte recruitment to the intestine could be one avenue for
therapeutic development®®, Lastly, PPARG is found to regulate mucin
and inflammatory factors in bronchial epithelial cells®. Given the pul-
monary complications of IBD, PPARG could be a promising target to
investigate for treating IBD and pulmonary symptoms’®. The predictive
power of cell type contexts to examine ITGA4 and PPARG, according to
PINNACLE, for IBD therapeutic development is thus well supported.

Discussion
PINNACLE is a flexible geometric deep learning approach for contex-
tualized prediction in user-defined biological contexts. Integrating
single-cell transcriptomic atlases with the proteininteractome, cell type
interactions, and tissue hierarchy, PINNACLE produces latent protein
representations specialized to biological contexts. PINNACLE’s protein
representations capture cellular and tissue organization spanning 156
cell types and 62 tissues of varying hierarchical scales. In addition to
multimodal dataintegration, a pretrained PINNACLE model generates
protein representations that can be used for downstream prediction
on tasks where cell type dependencies and cell type-specific mecha-
nisms are relevant.

One limitation of the study is the use of the human protein
interactome, which is not measured in a cell type-specific manner”.
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No systematic measurements of proteininteractions across cell types
exist. We create cell type-specific protein interaction networks by over-
laying single-cell measurements on the protein interaction network,
leveraging previously validated techniques for the reconstruction of
cell type-specific interactomes at single-cell resolution' and conduct-
ing sensitivity network analyses to confirm the validity of the networks
used to train PINNACLE models (Extended Data Figs. 2 and 3). This
approach enriches networks for cell type-relevant proteins (Extended
Data Fig. 2). The resulting networks may contain false-positive pro-
tein interactions (for example, proteins that interact in the reference
proteininteraction network but do notinteractin aspecific cell type)
and false-negative protein interactions (for example, proteins that
interactonly within a particular cell type context that has not yet been
measured). PINNACLE does not currently model proteins that may
play arole in the cell type yet are unaffected by cell type specificity.
Nevertheless, strong performance gains of PINNACLE over context-free
modelsindicate theimportance of contextualized prediction and sug-
gest a direction to enhance existing analyses on protein interaction
networks*®”,

We can leverage and extend PINNACLE in many ways. PINNA-
CLE can accommodate and supplement diverse data modalities. We
developed PINNACLE models using Tabula Sapiens®°, a molecular
reference atlas comprising almost 500,000 cells from 24 distinct
tissues and organs. However, since the tissues and cell types associ-
ated with specific diseases may not be entirely represented in the
atlas of healthy human subjects, we anticipate that our predictive
power may be limited. TabulaSapiens does not include synovial tissues
associated with RA disease progression®*, but these can be found
in synovial RA atlases® and stromal cells obtained from individuals
with chronicinflammatory diseases®”. To enhance the predictive abil-
ity of PINNACLE models, they can be trained on disease-specific or
perturbation-specific networks. In this study, PINNACLE representa-
tions capture physical interactions between proteins at the cell type
level (Supplementary Note 3); PINNACLE can also be applied to cell
type-specific protein networks created from other modalities, such
as cell type-specific gene expression networks’. We show that PIN-
NACLE’s representations can supplement protein representations
generated from other data modalities, including protein 3D structure
surfaces®”. While this study focuses on protein-coding genes, informa-
tion on proteinisoforms and differential information, such as alterna-
tive splicing or allosteric changes, can be used with PINNACLE when
such data are broadly available. In addition to prioritizing candidate
therapeutic targets, PINNACLE’s representations can be fine-tuned
to identify populations of cells with specific characteristics, such
as drug resistance®, adverse drug events’® or disease progression
biomarkers”. Lastly, to move toward a ‘lab-in-the-loop’ framework,
where computational and experimental scientists can iteratively
refine the machine learning model and validate hypotheses via experi-
ments, recent techniques on conformal prediction® and evidential
layers can be integrated with PINNACLE to quantify the uncertainty
of model outputs.

Protein representation learning models are context-free and are
limited in analyzing protein phenotypes that are resolved by contexts
and vary with cell types and tissues. To address this limitation, we intro-
duce PINNACLE that produces protein representations tailored to cell
type contexts. We demonstrate that contextual learning can provide a
more comprehensive understanding of protein roles across cell type
contexts’. As experimental technologies advance, it is becoming
feasible to generate adaptive protein representations across cell type
contexts and leverage contextualized representations to predict cell
type-specific protein functions and nominate therapeutic candidates
atthecelltypelevel. Lookingto the future, understanding protein func-
tions and developing molecular therapies will require acomprehensive
understanding of theroles that proteins have in different cell types and

theinteractions between proteins across diverse cell type contexts'°.

Approaches like PINNACLE can help realize this potential by generat-
ing contextualized protein representations, which canthenbe used to
predict cell type-specific protein functions and identify therapeutic
targets at the cellular level.
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Methods

The Methods describe (1) the curation of datasets, (2) the construction
and representation of multiscale single-cell networks, (3) PINNACLE
multiscale graph neural network, (4) the fine-tuning of PINNACLE for
target prioritization and (5) the metrics and statistical analyses used.

Datasets

Reference human physical protein interaction network. Our refer-
ence PPl network is the union of physical multivalidated interactions
from BioGRID'*"'?, the Human Reference Interactome (HuRI)** and
Mencheetal.””with15,461 nodes and 207,641 edges. Different sources
of PPl have their own methods of curating and validating physical
interactions between proteins. BioGRID, HuRland Menche et al. are PPI
networks from three well-cited publications and databases regarding
human protein interactions. By joining the three networks, we con-
struct a comprehensive global PPI network for our analysis.

Multiorgan, single-cell transcriptomic atlas of humans. We lev-
erage Tabula Sapiens?® data source as our multiorgan, single-cell
transcriptomic atlas of humans. The data consists of 15 donors, with
59 specimens total. There are 483,152 cells after quality control, of
which 264,824 areimmune cells, 104,148 are epithelial cells, 31,691 are
endothelial cells and 82,478 are stromal cells. The cells correspond to
177 unique cell ontology classes.

Construction of multiscale networks

Our multiscale networks comprises protein-protein physical interac-
tions, cell type-to-cell type communication, cell type-to-tissue relation-
ships and tissue-tissue hierarchy.

Cell type-specific protein interaction networks. For each cell type,
we create a cell type-specific network that represents the physical
interactions between proteins (or genes) that are probably expressed
inthe cell type. Intuitively, our approachidentifies genes significantly
expressed in a given cell type with respect to the rest of the cells in
the dataset. Concretely, we use the processed Tabula Sapiens count
matrix to calculate the average expression of each gene in a cell type
ofinterestand the average expression of the corresponding genein all
other cells. Then, we use the Wilcoxon rank-sum test on the two sets of
average gene expression. From the resulting ranked list of genes based
on activation, we filter for the top K most activated genes. We repeat
these two steps Ntimes and filter for genes that appearin atleast 90%
of iterations. Finally, we extract these genes’ corresponding proteins
from the global protein interaction network and take only the largest
connected component. To ensure high-quality representations of cell
typesin our networks, we keep networks with at least 1,000 proteins.
We do not perform subsampling of cells (that is, sample the same num-
ber of cells per cell type) to minimize information loss for constructing
protein interaction networks (Extended Data Fig. 2). Limitations are
described in Discussion.

Cell type and tissue relationships in the metagraph. We identify
interactions between cell types based on LR expression using the Cell-
PhoneDB'* tool and database. An edge between a pair of cell types
indicates that CellphoneDB predicts at least one significantly expressed
LR pair (with a Pvalueless than 0.001) between them. As recommended
by CellPhoneDB, cells are subsampled before running the algorithm,
which uses geometric sketching'® to efficiently sample a small rep-
resentative subset of cells from massive datasets while preserving
biological complexity. We choose to subsample 25% of cells and run
CellPhoneDB for 100 iterations. We determine cell type-tissue rela-
tionships and extract tissue-tissue relationships using Tabula Sapiens
meta-data. For relationships between cell types and tissues, we draw
edges between cell types and the tissue that the cells were taken from.
For tissue-tissue relationships, we select the nodes corresponding to

the tissues where samples were taken from and all parent nodes up to
theroot of the BRENDA tissue ontology'’°. We perform sensitivity and
ablation analyses on different components of the metagraph (Sup-
plementary Tables 3-5).

Final dataset. We have 156 cell type-specific protein interaction
networks, which have, on average, 2,530 + 677 proteins per net-
work. The number of unique proteins across all cell type-specific
protein interaction networks is 13,643 of the 15,461 proteins in the
global reference protein interaction network. In the metagraph, we
have 62 tissues (nodes), and 24 are directly connected to cell types.
There are 3,567 cell-cell interactions, 372 cell-tissue edges and
79 tissue-tissue edges.

Multiscale graph neural network

Overview. PINNACLE performs biologically informed message passing
through proteins, cell types and tissues to learn cell type-specific pro-
teinrepresentations, celltype representations and tissue representa-
tionsinaunified multiscale embedding space. Specifically, PINNACLE
traverses through protein-protein physical interactions in each cell
type-specific PPl network, cell type-cell type communication, cell
type-tissue relationships and tissue-tissue hierarchy with an atten-
tion mechanism over individual nodes and edge types. Its objective
function is designed and optimized for learning the topology across
biological scales, from proteins to cell types to tissues. The resulting
embeddings from PINNACLE can be visualized and manipulated for
hypothesis-driven interrogation and fine-tuned for diverse down-
stream biomedical prediction tasks.

Problem formulation. Let § = {G,. ..., G|} be aset of cell type-specific
PPI networks, where ¢ is a set of unique cell types. Each G, = (V,,,E,)
consists of a set of nodes v, and edges £, for agiven celltype ¢; e ¢
specific PPI network. Their nodes u,v € V,, are proteins, and edges
eff, € E, are physical PPIs (denoted with PP in superscript). Cell types
and tissues form a network, referred to as a metagraph. The meta-
graph’s set of nodes comprises cell types ¢; € ¢andtissues ¢; € 7. The
types of edges are cell type-cell type interactions (denoted with CCin
superscript) egfcj between any pair of cell types c;,¢; € ¢; celltype-tissue
associations (denoted with CT in superscript) eg}i between any pair of
cell type ¢; € ¢ and tissue ¢; € 7; and tissue-tissue relationships
(denoted with TT in superscript) ezT,-,th between any pair of tissues
tteT.

Protein-level attention with cell type specificity. For each cell
type-specific PPl network g, we leverage protein-level attention to
learn cell type-specific embeddings of proteins. Intuitively,
protein-level attention learns which neighboring nodes are probably
most important for characterizing a particular cell type’s protein. As
such, each cell type-specific protein interaction network has its own
cell type-specific set of learnable parameters. Concretely, at each
layer-wise update of layer /, the node-level attention learns the impor-
tance a,, of protein u to its neighboring protein v in a given cell
typec; € ¢:

h’? — AGG (a( >y w"m';")) 4))

VEN,

where AGGis an aggregation function (thatis, concatenation across K
attention heads), ois the nonlinear activation function (thatis, ReLU),
N is the set of neighbors for u (including itself via self-attention), a,,,
exp(o(a’-[hy]lh,]))
T e, EXP(@(@[hylIh, 1)
apair ofinteracting proteins fromaspecific cell type, W is a PP-specific
transformation matrix to project the features of protein u in its cell
type-specific proteininteraction network, and hffis the previous layer’s

isanattention mechanismdefinedasa,, = between
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celltype-specificembedding for protein v. Practically, we leverage the
attention function in graph attention neural networks (that is, GATv2)**.
Proteins of the same identity are initialized with the same random
Gaussian vector to maintain their identity during training.

Metagraph-level attention on cellular interactions and tissue hier-
archy. For the metagraph, we use node-level and edge-level attention
to learn which neighboring nodes and edge types are probably most
important for characterizing the target node (that is, the node of inter-
est). Intuitively, tolearn anembedding for a specific cell type or tissue,
we evaluate the informativeness of each direct cell type or tissue neigh-
bor,aswellastherelationship type between the cell type or tissue and
their neighbors (for example, parent-child tissue relationship, tissue
from which a cell type is found, and cell type with which the cell type
of interest communicates with).

Concretely, at each layer [ of PINNACLE, the embeddings of a cell
type ¢; € caretheresult of aggregating (viafunction AGG) the embed-
dings (h¢®and h{") of its direct cell type neighbor cand tissue neighbor
t that are projected via edge-type-specific transformation matrices
(W¢and W°T) and weighted by learned attention weights (a, . and a,, ,
respectively):

hiC « AGG (a( > acl_,CWCChEC)) )

CEN, <

hT — AGG (0( > aci,,WCThtCT)> ©)

=

The embeddings generated from separately propagating messages
through cell type-cell type edges or cell type-tissue edges are com-
bined using learned attention weights 8¢ and ", respectively.

hc,~ — ﬁCCth +ﬂCThgT 4)

Similarly, theembeddings of atissue ¢; € 7 are theresult of aggre-
gating (via function AGG) the embeddings (h™ and h{°) of its direct
tissue neighbor ¢ and cell type neighbor c that are projected via
edge-type-specific transformation matrices (W' and W') and
weighted by learned attention weights (a,, . and a,, . respectively).

h}l_T «~ AGG (0( > ath,WTTh]T)) (5)

ten,,

hi < AGG (a( D e WTChIC» (6)

CEN,,

The embeddings generated from separately propagating messages
through tissue-tissue edges or tissue-cell type edges are combined
using learned attention weights 8" and ™, respectively.

h[i — ,BTThZT +ABTChtT,-C (7)

For the node-level attention mechanisms (equations (2), (3), (5) and
(6)), AGG is an aggregation function (that is, concatenation across K
attention heads), gisthe nonlinear activation function (thatis, ReLU),
N and n; are the sets of neighbors for c; and ¢; respectively (includes
itself via self-attention), W, W<, W™ and W' are edge-type-specific
transformation matrices to project the features of agiventarget node,
h¢, hCT, h/Tand hl¢are the previous layer’sembedding for cgiventhe
edgetype CC, tgiventhe edge type CT, tgiven the edge type TT,and ¢
giventhe edge type TC, respectively. Practically, we leverage the atten-
tion function in graph attention neural networks (that is, GATv2)**.
Finally, the node-level attention mechanism for agiven source node u

exp(a(a; -[hy]lh, 1))

e v For the attention mecha-
Yen, exp(o(@] - [hy[h,])

and edgetyperisaf,, =

exp(m,)
Y rer €XP(M;)
m, = Zuevqu -tanh(M - h{, + b) where V, is the set of nodes in the meta-

nisms over edge types (equations (4) and (7)), g = suchthat

graph, sisthe attention vector, Mis the weight matrix and bis the bias
vector. These parameters are shared for all edge types in the
metagraph.

Bridge between protein and cell type embeddings. Using a pooling
mechanism, we bridge cell type-specific protein embeddings with their
corresponding cell type embeddings. We initialize cell type embed-

dings by taking the average of their proteins’ embeddings:
1

h, = WE”E"Q h,, where h, is the embedding of proteinnode u € V,,in
the PPl subnetwork for cell type c,. Similarly, we initialize tissue
embeddings by taking the average of their neighbors: h, =

ﬁ (ZEM_ he+ 3y hc), where h,and h_are the embeddings of tissue

node t and cell type node c, respectively, in the immediate neighbor-
hood of source tissue node ¢,. At each layer /> 0, we learn the impor-
tancey,,, of node u € V., tocell type ¢;such that

h., < h, +AGG (0( > Vc,,uhu))- (8)

ue Vfi

After propagating cell type and tissue information in the metagraph
(namely equations (2)-(6)), we apply ., to the cell type embedding
of ¢;such that

h, < h, +y.h. 9)

Intuitively, we are imposing the structure of the metagraph onto the
PPIsubnetworks based onaprotein’simportancetoits corresponding
cell type’sidentity.

Overall objective function of PINNACLE. PINNACLE is optimized for
three biological scales: protein, cell type and tissue level. Concretely,
theloss function £ has three components corresponding to each bio-
logical scale:

L= [/protein + (1 - 6)([/ce]ltype + Ltissue)f (10)

where £poceins Leelieype aNd Lyissue Minimize the loss from protein-level
predictions, cell type-level predictions and tissue-level predictions,
respectively. @isatunable parameter with arange of 0 and 1that scales
the contribution of the link prediction loss of the metagraph relative
tothat ofthe PPIs. At the proteinlevel, we consider two aspects: predic-
tion of PPIs at each cell type-specific PPl network (£,,,;) and prediction
of cell type identity of each protein (£ ejypeia)- The contribution of
the latter is scaled by A, which is a tunable parameter with a range
of0andl.

‘Cpmtein = 9‘Cppi + A‘Ccel]typeid (1

Intuitively, we aim to simultaneously learn the topology of each cell
type-specific PPl network (that is, £,,;) and the nuanced differences
between proteins activated in different cell types. Specifically, we use
binary cross-entropy to minimize the error of predicting positive and
negative PPIsin each cell type-specific PP network

Lppi = Z Z Yuw lOg( )?u,,/) + (1 _yu,u) lOg(l _)?u,y) (12)

CEC uVeEV,,

and center loss'” for discriminating between protein embeddings z,,
from different cell types, represented by embeddings denoted as z..
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Lcelltypeid = Z Z ”Zu _Zc;”% 13)

¢ €C uev,,

At the cell type level, we use binary cross-entropy to minimize the
error of predicting cell type-cell type interactions and cell type-tis-
sue relationships:

[‘celltype = ﬁggl[ype + Lgt;liltype (14)
such that
Ldigpe = 2 Vaug 108(Ve, o) + A= Yo ) log Y, o) as)
¢,G;EC
Ligpe = 20 2 Yo 108V ) + L=V e ) logd =Y, ). (16)

C;EC HEeT

Similarly, at the tissue level, we use binary cross-entropy to minimize
theerror of predicting tissue-tissue and tissue-cell type relationships:

Liissue = ‘Cg-srsue + ‘C:-igsue a
such that
Litsue = 20 Vit 108y ) + A=Yy e ) logA =Y, ) (18)
bty €T
‘C;I;gsue = Z Z ytk,ti Iog(ylk»Ci) +( _ytk,c,-) IOg(l _yfk-fz)' (19)

eI c;eC

The probability of an edge of type ibetween nodes uand vis calculated
using abilinear decoder:

Yup =Zy ¥ Zy, (20)

wherez,and z,are embeddings of nodes uand v, and r;is the embedding
for edge type i. Note that any decoder can be used for link prediction
in PINNACLE.

Training details for PINNACLE. Overview. PINNACLE is trained using
the cell type identity of the proteininteraction networks and the graph
connectivity of the cell type-specific protein interaction networks
and metagraph. Tolearn cell type identity, PINNACLE predicts the cell
type(s) thatthe node(s) corresponding to each proteinare activatedin.
For capturing graph connectivity, INNACLE performs self-supervised
link prediction; it predicts whether an edge (and its type) exists between
apairofnodes. For link prediction, arandomly selected subset of edges
ismasked (or hidden) from the model, and the model must be able to
predict that such edges exist (and that the randomly generated false
edges do not exist). Practically, this means that the graphs being fed
asinputinto PINNACLE duringtrain, validation, or test do not contain
the masked edges.

Data split. Protein—protein edges are randomly split into train
(80%), validation (10%) and test (10%) sets. The metagraph edges are
notsplitintotrain, validation and test sets because there arerelatively
few of them, and they are all critical for injecting cell type and tissue
organization to the model. The proteins involved in the train edges
are considered in the cell type identification term of the loss
function (Lcelltypeid)-

Sampling negative edges. For link prediction, false (or negative) edges
have the label of 0 and are randomly generated (via structured_nega-
tive_sampling functionin Pytorch Geometric). The ratio of positive to
negative edgesis1:1.

Hyperparameter tuning. We leverage Weights and Biases'® to select
optimal hyperparameters via arandom search over the hyperparam-
eter space. The best-performing hyperparameters for PINNACLE are
selected by optimizing the ROC and Calinski-Harabasz score'”’ on
the validation set. The hyperparameter space on which we perform a
random search to choose the optimal set of hyperparameters is: the
dimension of the nodes’ feature matrix € [1,024, 2,048], dimension
ofthe outputlayer €[4, 8,16, 32],lambda €[0.1, 0.01, 0.001], learning
rate for link prediction task € [0.01, 0.001], learning rate for protein’s
cell type classification task € [0.1, 0.01, 0.001], number of attention
heads €[4, 8], weight decay rate € [0.0001, 0.00001], dropout rate
€[0.3,0.4,0.5,0.6,0.7] and normalization layer € [layernorm, batch-
norm, graphnorm, none]. The best hyperparameters are as follows: the
dimensionofthenodes’ feature matrix =1,024, dimension of the output
layer =16, lambda = 0.1, learning rate for link prediction task = 0.01,
learning rate for protein’s cell type classification task = 0.1, number of
attention heads = 8, weight decay rate = 0.00001, dropout rate = 0.6,
and normalization layers are layernorm and batchnorm. Further, PIN-
NACLE consists of two custom graph attention neural network layers
(‘Protein-level attention with cell type specificity’ and ‘Metagraph-level
attention on cellular interactions and tissue hierarchy’ sections in
Methods) per cell type-specific PPl network and metagraph and is
trained for 250 epochs.

Implementation. We implement PINNACLE using Pytorch (Version
1.12.1)"°and Pytorch Geometric (Version 2.1.0)""". We leverage Weights
and Biases'*® for hyperparameter tuning and model training visualiza-
tion, and we create interactive demos of the model using Gradio™>.

Models are trained on a single NVIDIA Tesla V100-SXM2-16GB GPU.

Generating contextualized 3D protein representations

After pretraining PINNACLE, we can leverage the output protein repre-
sentations for diverse downstream tasks. Here, we demonstrate PIN-
NACLE’s ability to improve the prediction of PPIs by injecting context
into 3D molecular structures of proteins.

Overview. Givenaprotein ofinterest, we generate both the context-free
structure-based representation via MaSIF>"” and a contextualized PPI
network-based representation via PINNACLE. We calculate the binding
score of a pair of proteins based on either context-free representations
or contextualized representations of the proteins. To quantify the
added value, if any, provided by contextualizing protein representa-
tions with cell type context, we compare the size of the gap between
the average binding scores of binding and nonbinding proteinsin the
two approaches.

Dataset. The proteins being compared are PD-1, PD-L1, B7-1, CTLA-4,
RalB, RalBP1, EPO, EPOR, C3 and CFH. The pairs of binding proteins
are PD-1/PD-L1 (PDB ID: 4ZQK) and B7-1/CTLA-4 (PDB ID: 1I8L). The
nonbinding proteins are any of the four proteins paired with any of
the remaining six proteins (for example, PD-1/RalB, PD-1/RalBP1 and
PD-L1/RalBP1). The PDB IDs for the other six proteins are 2KWI for RalB/
RalBP1,1CN4 for EPO/EPOR, and 30XU for C3/CFH.

Structure-based protein representation learning. We directly apply
the pretrained model for MaSIF>" to generate the 3D structure-based
protein representations. We use the model pretrained for MaSIF-site
task, named all_feat_3l_seed_benchmark. The output of the pretrained
model for a given protein is P x d, where Pis the number of patches
(precomputed by the authors of MaSIF*") and d = 4 is the dimension
ofthe pretrained model’s output layer. As proteins vary insize (that s,
the number of patches to cover the surface of the protein), we selecta
fixed knumber of patches that are most likely tobe part of the binding
site (according to the pretrained MaSIF model). For each protein, we
select k=200 patches, whichis the average number of patches for PD-1,
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PD-L1,B7-1and CTLA-4, resulting in a matrix of size 200 x 4. Finally, we
take the element-wise median on the 200 x 4 matrix to transform it
into a vector of length 200. This vector becomes the structure-based
proteinrepresentation for a given protein.

Experimental setup. For each cell type context of a given protein,
we concatenate the 3D structure-based protein representation (from
MaSIF) with the cell type-specific protein representation (from PIN-
NACLE) to generate a contextualized structure-based protein rep-
resentation. To create the context-free protein representation, we
concatenate the structure-based protein representation with an
element-wise average of PINNACLE’s protein representations. This
is to maintain consistent dimensionality and latent space between
context-free and contextualized protein representations. Given a
pair of proteins, we calculate a score via cosine similarity (a function
provided by sklearn™) using the context-free or contextualized pro-
tein representations. Lastly, we quantify the gap between the scores
of binding and nonbinding proteins using context-free or contextu-
alized protein representations to evaluate the added value (if any)
of contextual Al.

Fine-tuning PINNACLE for context-specific target
prioritization

After pretraining PINNACLE, we can fine-tune the output protein rep-
resentations for diverse biomedical downstream tasks. Here, we dem-
onstrate PINNACLE’s ability to enhance the performance of predicting
aprotein’s therapeutic potential for a specific therapeutic area.

For each protein of interest, we feed its PINNACLE-generated
embedding into an MLP. The model outputs a score between O and 1,
where lindicates strong candidacy to target (thatis, by acompound/
drug) for treating the therapeutic area and O otherwise. Since a pro-
tein has multiple representations corresponding to the cell typesiitis
activatedin, the MLP model generates a score for each of the protein’s
cell type-specific representations (Fig. 4a). For example, Protein 1's
representation from Cell type 1is scored independently of its rep-
resentation from Cell type 2. The output scores can be examined to
identify the most predictive cell types and the strongest candidates
for therapeutic targetsin any specific cell type.

Therapeutic targets dataset. We obtain labels for therapeutic targets
from the Open Targets Platform®’.

Therapeutic area selection. To curate target information for a thera-
peutic area, we examine the drugs indicated for the therapeutic area
of interest and its descendants. The two therapeutic areas examined
are RA and IBD. For RA, we collected therapeutic data (that is, tar-
gets of drugs indicated for the therapeutic area) from OpenTargets®
for RA (EFO_0000685), ankylosing spondylitis (EFO_0003898) and
psoriatic arthritis (EFO_0003778). For IBD, we collected therapeu-
tic data for ulcerative colitis (EFO_0000729), collagenous colitis
(EFO_1001293), colitis (EFO_0003872), proctitis (EFO_0005628),
Crohn’s colitis (EFO_0005622), lymphocytic colitis (EFO_1001294),
Crohn’s disease (EFO_0000384), microscopic colitis (EFO_1001295),
IBD (EFO_0003767), appendicitis (EFO_0007149), ulcerative proc-
tosigmoiditis (EFO_1001223) and small bowel Crohn’s disease
(EFO_0005629).

Positivetraining examples. We define positive examples (thatis, where
the label y =1) as proteins targeted by drugs that have at least com-
pleted phase 2 of clinical trials for treating a certain therapeutic area.
Assuch, aproteinisapromising candidate ifacompound that targets
the protein is safe for humans and effective for treating the disease.
We retain positive training examples that are activated in at least one
cell type-specific protein interaction network. The final number of
positive training examples for RA and IBD is152 and 114, respectively.

Negative training examples. We define negative examples (that is,
where the label y = 0) as druggable proteins that do not have any
known association with the therapeutic area of interest according to
OpenTargets. A proteinis deemed druggableifitis targeted by at least
one existing drug™. We extract drugs and their nominal targets from
DrugBank’. We retain negative training examples that are activated
inatleast one cell type-specific protein interaction network. The final
number of negative training examples forRAand IBD is1,465and 1,377,
respectively.

Data processing workflow. For a therapeutic area of interest, we iden-
tify its descendants. With the list of disease terms for the therapeutic
area, we curate its positive and negative training examples. We split
the dataset such that about 60%, 20% and 20% of the proteins are
in the train, validation and test sets, respectively. We additionally
apply two criteria to avoid data leakage and ensure that all cell types
are represented during training/inference: Proteins are assigned to
train (60%), validation (20%) and test (20%) datasets based on their
identity; this is to prevent data leakage where cell type-specific rep-
resentations of a single protein are observed in multiple data splits.
We also ensure that there are sufficient numbers of train, validation
and test positive samples per cell type; proteins may be reassigned
to a different data split so that each cell type is represented dur-
ing training, validating and testing stages. With these criteria, the
train, validation and test dataset splits may not necessarily consist of
approximately 60%,20% and 20% of the total protein representations
(Supplementary Table 6).

Fine-tuning model details. Model architecture. Our MLP comprises
aninput feedforward neural network, one hidden feedforward neural
network layer and an output feedforward neural network layer. In
between each layer, we have a nonlinear activation layer. In addition,
we use dropout and normalization layers between the input and hid-
den layer (see ‘Implementation’ section for more information). Our
objective function is binary cross-entropy loss.

Hyperparameter tuning. We leverage Weights and Biases'*® to select
optimal hyperparameters via arandom search over the hyperparam-
eter space. The best-performing hyperparameters are selected by
optimizing the AUPRC on the validation set. The hyperparameter
space on which we perform a random search to choose the opti-
mal set of hyperparameters is the dimension of the first hidden
layer € [8, 16, 32], dimension of the second hidden layer € [8, 16, 32],
learning rate € [0.01, 0.001, 0.0001], weight decay rate € [0.001, O.
0001, 0.00001, 0.000001], dropout rate €[0.2, 0.3, 0.4, 0.5, 0.6, 0.
7,0.8], normalization layer € [layernorm, batchnorm, none] and the
ordering of dropout and normalization layer (that is, normalization
before dropout or vice versa).

Implementation. We implement the MLP using Pytorch (Version
1.12.1)"°, Inaddition, we use Weights and Biases'*® for hyperparameter
tuning and model training visualization. Models are trained on asingle
NVIDIA Tesla M40 GPU.

Metrics and statistical analyses
Here, we describe metrics, visualization methods and statistical tests
used inour analysis.

Visualization of embeddings. We visualize PINNACLE’s embeddings
using a uniform manifold approximation and projection for dimension
reduction (UMAP)"> and seaborn. Using the Python package, umap, we
transform PINNACLE’s embeddings to two-dimensional vectors viathe
parameters: n_neighbors =10, min_dist = 0.9, n_components =2 and
the euclidean distance metric. The plots are created using the seaborn
package’s scatterplot function.
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Visualization of cell type embedding similarity. The pairwise simi-
larity of PINNACLE’s cell type embeddings is calculated using cosine
similarity (a function provided by sklearn'®). Then, these similarity
scores are visualized using the seaborn package’s clustermap function.
For visualization purposes, similarity scores are mapped to colors after
being raised to the 20th power.

Spatial enrichment analysis of PINNACLE's protein embeddings.
To quantify the spatial enrichment for PINNACLE’s protein embedding
regions, we apply asystematic approach, SAFE”, thatidentifies regions
thatare overrepresented for afeature of interest (Extended DataFigs.3
and4). Therequired input datafor SAFE are networks and annotations
of each node. We first construct an unweighted similarity network on
PINNACLE protein embeddings: (1) calculate pairwise cosine similarity,
(2) apply asimilarity threshold on the similarity matrix to generate an
adjacency matrix and (3) extract the largest connected component.
The protein nodes are labeled as 1if they belong to a given cell type
contextand O otherwise. We then apply SAFE to each network using the
recommended settings: neighborhoods are defined using the short-
path_weighted_layout metric for node distance and neighborhood
radius of 0.15, and P values are computed using the hypergeometric
test, adjusted using the Benjamini-Hochberg false discovery rate
correction (significance cutoff a = 0.05).

Due to computation and memory constraints, we sample 50 pro-
tein embeddings from a cell type context of interest and 10 protein
embeddings from each of the other 155 cell type contexts. We use a
threshold of 0.3 in our evaluation of PINNACLE’s protein embedding
regions (Fig. 2 and Extended Data Fig. 3). We also evaluate the spatial
enrichment analysis on networks constructed from different thresh-
oldstoensure that the enrichment is not sensitive to our network con-
struction method:[0.1,0.2,0.3, 0.4, 0.5,0.6, 0.7, 0.8, 0.9] (Extended
DataFig.4). We use the Pythonimplementation of SAFE (https://github.
com/baryshnikova-lab/safepy).

Statistical significance of tissue embedding distance. Tissue
embedding distance between a given pair of tissue nodes is calcu-
lated using cosine distance (a function provided by sklearn'). Tissue
ontology distance between a given pair of tissue nodes is calculated
by taking the sum of the nodes’ shortest path lengths to the lowest
common ancestor (functions provided by networkx"®. We use the
two-sample Kolmogorov-Smirnov test (a function provided by scipy™’)
to compare PINNACLE embedding distances against randomly gen-
erated vectors (via the randn function in numpy to sample an equal
number of vectors from a standard normal distribution). We also use
the Spearman correlation (a function provided by scipy'”) to corre-
late PINNACLE embedding distance to tissue ontology distance. We
additionally generate a null distribution of tissue ontology distance
by calculating tissue ontology distance on a shuffled tissue hierar-
chy (repeated ten times). Concretely, we shuffle the node identities
of the Brenda Tissue Ontology'°® and compute the pairwise tissue
ontology distances.

Statistical significance of binding and nonbinding proteins’ score
gaps. We perform aone-sided nonparametric permutation test. First,
we concatenate the scores for the N binding pairs and M nonbinding
pairs. Next, for 100,000 iterations, we randomly sample N scores as
the new set of binding protein scores and M scores as the new set of
nonbinding protein scores, calculate the mean p, of the N binding
protein scores and the mean y,, of the M nonbinding protein scores,
calculate the score gap by taking the difference of the means as u,, - ,,,
and keep track of the score gaps that are greater than or equal to the
true score gap calculated from the real data. Lastly, we calculate the
Pvalue, defined as the fraction of 100,000 iterations in which the per-
muted score gap is greater than or equal to the true score gap (that is,
one-sided nonparametric permutation test).

Performance metric for therapeutic target prioritization. For our
downstream therapeutic target prioritization task (‘Fine-tuning PIN-
NACLE for context-specific target prioritization’ sectionin Methods),
we use a metric called Average Precision and Recall at K (APR@K) to
evaluate model performance. APR@K leverages a combination of
Precision@K and Recall@K to measure the ability to rank the most
relevant items (in our case, proteins) among the top K predictions. In
essence, APR@K calculates Precision@K foreachk €1, ..., K], multiply-
ing each Precision@k by whether the kthitem s relevant, and divides
by the total number of relevantitems ratK:

K
APR@K = ; > Precision@k x rel(k),
=]

where

1, if item at k is relevant
rel(k) =
0, otherwise

Given the nature of our target prioritization task, some key advan-
tages of using APR@K include robustness to (1) varied numbers of
proteintargets activated across cell type-specific protein interaction
networks and (2) varied sizes of cell type-specific protein interaction
networks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatausedinthe paper, including the cell type-specific proteininter-
action networks, the metagraph of cell type and tissue relationships,
PINNACLE’s contextualized representations, the therapeutic targets
of RA and IBD diseases, and the final and intermediate results of the
analyses, are shared via the project website at https://zitniklab.hms.
harvard.edu/projects/PINNACLE. Datasets are available via figshare
at https://doi.org/10.6084/m9.figshare.22708126 (ref.118).

Code availability

Python implementation of the methodology developed and used
in the study is available via the project website at https://zitniklab.
hms.harvard.edu/projects/PINNACLE. The code to reproduce results,
together with documentation and examples of usage, is available on
GitHub at https://github.com/mims-harvard/PINNACLE. We provide an
interactive demo via HuggingFace to explore PINNACLE’s contextual-
ized protein representations.
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Extended Data Fig. 1| Network properties of the metagraph and cell type
specific proteininteraction networks. (a-b) Degree distributions of the
metagraph and cell type specific protein interaction (PPI) networks. (a) Degree
distributions of the metagraph (composed of cell type-cell type, cell type-
tissue, and tissue-tissue edges), tissue-tissue graph, and cell type-cell type
graph. The median, maximum, and minimum degrees for the metagraph are
24,169, 1; for the tissue-tissue graph are 2,15, 1; and for the cell type-cell type
graphare 24,157, 4. (b) Distribution of the median node degree of each cell type
specific PPI network. The median, maximum, and minimum of median node
degree across cell type specific PPl networks are 6,11, and 3, respectively. (c-d)
Enrichment analysis of ligand-receptor interactions in the cell type specific

PPI networks. We utilize CellPhoneDB!* to predict interactions between cell
types in our metagraph by identifying significantly expressed ligand-receptor
(LR) interactions between pairs of cell types in our dataset. (c) Shownisa
histogram of the number of significant LR interactions per cell type specific
PPInetwork predicted by CellPhoneDB. (d) We hypothesize that the predicted
LR interactions are enriched in our cell type specific PP networks. To quantify
the enrichment of LR interactions, we calculate the fraction of LR interactions
where the corresponding ligand and receptor proteins are activated in the cell
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type pair (thatis, for aLR interaction identified between cell types A and B, the
ligand proteinis activated in cell type A’s PPI network and the receptor protein s
activated in cell type B’s PPI network). We compare the fraction of LR pairs that
areactivated in our cell type specific PP networks against the fraction of LR pairs
thatare activated in null distribution PPI networks. For each cell type specific
PPInetwork, we generate 100 null distribution PPI networks by sampling the
same number of nodes with a similar degree distribution. Degree distribution

is preserved by binning nodes such that there are at least 100 nodes in each bin,
and nodes are then randomly sampled within the appropriate degree interval. We
find that our cell type specific PPl networks have a significantly higher fraction
ofligand-receptor pairs activated (0.47 +/- 0.12) than the null distribution PPI
networks (0.04 +/-0.04); n=2,020 pairs of cell type specific PP networks, of
which 20 are pairs of real cell type specific PP networks and 2,000 are pairs of
null cell type specific PPI networks. Note that the ligand-receptor interactions
considered in both analyses are those where the genes corresponding to

the ligands and receptors are known. However, this does not factor into our
construction of the edges/interactions between cell types (CCI). The bounds of
the box show the quartiles of the data, the center indicates the median value of
the data, and the whiskers represent the farthest data point within 1.5 x IQR.
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Extended Data Fig. 2| Sensitivity analysis of network construction. To
examine whether cell types with fewer cells are poorly represented in our
networks, we construct networks after subsampling equal numbers of cells per
celltype. We compare our finalized networks (no subsampling of cells) against
approaches that subsample 100,200, and 300 cells. We find that our approach
yields networks that are maximally similar to the global reference network yet

maintain specificity to cell type context. (a) Edge and (b) node Jaccard similarity
ofa cell type specific PPIN to the global reference PPIN. (c-j) Distribution of edge
Jaccard similarity between PPINs constructed by (c) our finalized approach

and subsampling (d) 100, (e) 200, and (f) 300 cells. (g-j) Distribution of node
Jaccard similarity between PPINs constructed by (g) our finalized approach and
subsampling (h) 100, (i) 200, and (j) 300 cells.

Nature Methods


http://www.nature.com/naturemethods

https://doi.org/10.1038/s41592-024-02341-3

Protein embedding region of cell type context: Bronchial vessel endothelial cell Protein embedding region of cell type context: Medullary thymic epithelial cell

Notwork wenin Networe wini Celtype Network witin Celitype

d Protein embedding region of cell type context: Kidney epithelial cell Protein embedding region of cell type context: Tongue muscle cell

g Protein embedding region of cell type context: Fibroblast of breast i Protein embedding region of cell type context: Mesenchymal stem cell

Network Wit Celitype Network winin Callype

Protein embedding region of cell type context: Fibroblast of cardiac tissue Protein embedding region of cell type context: Endothelial cell of artery Protein embedding region of cell type context: Macrophage

Extended Data Fig. 3| Spatial enrichment analysis of PINNACLE’s protein context is the network (left) and enrichment landscape (right). Dots represent
embedding regions. (a-1) For each cell type specific set of protein embeddings the neighborhood enrichment p-value; crosses indicate a significant p-value
generated by PINNACLE, we sample a subset to construct a similarity network <0.05; hypergeometric test, adjusted using the Benjamin-Hochberg false

and perform spatial enrichment analysis using SAFE*.. Shown for each cell type discovery rate correction with significance cutoff a = 0.05.
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a Threshold =0.1 b  Threshold . ¢ Threshold

d Threshold = 0.4 . f Threshold = 0.6

i Threshold = 0.9

Extended Data Fig. 4 | Spatial enrichment analysis of PINNACLE’s protein 0.4,0.5,0.6,0.7,0.8,0.9]. Shown for each threshold is the network (left) and
embedding regions across thresholds. (a-i) From the mesenchymal stem cell enrichmentlandscape (right). Dots represent the neighborhood enrichment
type specific protein embeddings generated by PINNACLE, we sample a subset p-value; crosses indicate a significant p-value < 0.05; hypergeometric test,

to construct a similarity network and perform spatial enrichment analysis using adjusted using the Benjamin-Hochberg false discovery rate correction with
SAFE®. Networks are constructed using a similarity threshold t € [0.1,0.2,0.3, significance cutoff a = 0.05.
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Extended Data Fig. 5| Embedding similarity based on proteins’ cell type
activation and function. (a-b) Each dot represents a protein that is activated
inatleast two cell types. Shown is the average cosine similarity of embeddings
for each protein as a function of the number of cell types that it is activated in
(a) with (p-value <0.001) and (b) without (p-value < 0.001) cellular and tissue

context. Both Spearman correlation statistical tests for (a) and (b) are two-sided.

(c) Comparison of embedding similarities of amarker (orange) or housekeeping
(gray) gene’s contextualized protein representation (from PINNACLE) across
different cell type contexts. The marker genes are specific to cell types in the

04 06 0.8 1.0
Embedding Similarity

Different
Contexts

Similar Different Similar
Contexts Contexts Contexts

Marker Genes Housekeeping Genes

family of Tlymphocytes (atotal of 10 T lymphocyte cell types). For each marker/
housekeeping gene, its cell type specific protein representations are compared in
similar contexts (that is, between different T lymphocyte cell types) or different
contexts (thatis, between a T lymphocyte cell type and a non-immune cell

type; atotal of 115 non-immune cell types). All comparisons between these four
groups shown are statistically significant. Cosine embedding similarity is used to
compare contextualized protein representations. Data are represented as mean
values with error bars indicating a 95% confidence interval.
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Cell Type Embeddings

Cell Type Embeddings

Extended Data Fig. 6 | Evaluation of PINNACLE'’s cell type and tissue
representations. (a) We quantify the quality of PINNACLE’s cell type
representations by calculating pairwise similarities of cell type representations.
Pairwise similarities are computed via cosine similarity. We expect several
major groups of cell type representations that are organized according to
cellular and tissue hierarchy and acting as anchors for our complete set of
celltype representations. This implies that the contextual information being
transferred between the representations of cell types and proteins reflects the
tissue hierarchy. Our results show that the local organization of PINNACLE’s
celltyperepresentations (that is, identity of cell types in each group) reflects
cellular communication, and the global organization of cell type representations
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(thatis, proximity of groups to each other) reflects tissue organization. Since
PINNACLE’s protein representations are embedded near their corresponding cell
type representation, such organization is enforced among the contextualized
protein representations as well. (b) Correlation between cosine distance of tissue
representations and the fraction of overlapping cell types neighbors between
the tissue pair. Spearman p = — 0.46 with p-value = 8.01 x 107°. (c) Correlation
between PINNACLE’s tissue embedding distance to tissue ontology distance for
leafnodes in the metagraph. Spearman p = 0.11 with p-value =0.01. All Spearman
correlation statistical tests are two-sided. Data are represented as mean values
witherror barsindicating a 95% confidence interval. Both panels show n =548
pairwise comparison calculations.
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Extended Data Fig. 7| Benchmarking context-free and contextualized

3D structure protein representations. Shown are binding and non-binding
scores (that s, cosine similarity) of proteins when using only 3D structure-based
protein representations (p-value = 0.2121; n =22 pairwise comparisons between
2 binding and 20 non-binding pairs), PINNACLE’s contextualized protein
representations (without 3D structural information; p-value = 0.0299; n=7,956
pairwise computations between 180 binding and 7,776 non-binding pairs),
contextualized structure-based protein representations (p-value <1075, n=
7,956 pairwise computations between 180 binding and 7,776 non-binding pairs),
and baseline models. The baseline models are random context only (that is,
randomly sampling pairs of PINNACLE’s protein representations from different
celltype contexts; p-value =1.0; n =7,956 pairwise computations between 180
‘binding’ and 7,776 ‘non-binding’ pairs), concatenating random context protein
representations with 3D structure-based protein representations (p-value =1.0;
n=7,956 pairwise computations between 180 ‘binding’ and 7,776 ‘non-binding’
pairs), GAT only (that is, context-free protein representations generated by a
graph attention neural network** on the global reference interactome; p-value

Representation Binding Non-binding Gap
Type Proteins Proteins (p-value)
3D Structure 0.9789 0.9742 0.0047
Only +0.0004 +0.0078 (0.2121)
PINNACLE Only 0.0385 0.0218 0.0167

+0.1531 +0.1081 (0.0299)
PINNACLE 0.9690 0.9571 0.0119
+ 3D Structure  + 0.0049 +0.0127 (<1075
Random Context 0.6691 0.7122 —0.0431
Only +0.1642 +0.0445 (1.0)
Random Context 0.9172 0.9529 —0.0356
+3D Structure 4+ 0.1732 +0.0277 (1.0)
GAT Only 0.1214 0.2533 —0.1319

+0.1056 +0.2898 (0.6939)
GAT 0.8360 0.8847 —0.0486
+3D Structure 4+ 0.1360 +0.1255 (0.5706)
BIONIC Only 0.2506 0.2460 0.0046

+ 0.0760 + 0.2536 (0.4556)
BIONIC 0.9769 0.9725 0.0043
+3D Structure 4+ 0.0018 + 0.0087 (0.2797)

=0.6939; n =22 pairwise comparisons between 2 binding and 20 non-binding
pairs), concatenating GAT protein representations with 3D structure-based
protein representations (p-value = 0.5706; n =22 pairwise comparisons between
2binding and 20 non-binding pairs), BIONIC only (that is, context-free protein
representations generated by BIONICY, a graph convolutional neural network
designed for multi-modal network integration; p-value = 0.4556; n = 22 pairwise
comparisons between 2 binding and 20 non-binding pairs), and concatenating
BIONIC protein representations with 3D structure-based protein representations
(p-value=0.2797; n =22 pairwise comparisons between 2 binding and 20
non-binding pairs). Note that all protein representations have consistent
dimensions (328 =200 structure-based protein representation +128 context-
aware/-free protein representation) to ensure that they are comparable. The
protein representations without 3D structure are padded with O’s (that is, null

3D structure-based protein representation). The significance of the score gaps
between binding and non-binding proteins is measured using a one-sided non-
parametric permutation test. Data are represented as mean values with error bars
indicating a 95% confidence interval.
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Extended Data Fig. 8 | Performance of therapeutic target prioritization
models for rheumatoid arthritis and inflammatory bowel diseases.
Benchmarking of context-aware and context-free approaches for (a-c) RA and
(d-f) IBD therapeutic areas. Each dot is the performance (averaged across 10
random seeds) of protein representations froma given context (that is, cell type
context for PINNACLE, context-free global reference protein interaction network
for random walk* and GAT*, and context-free multi-modal protein interaction
network for BIONIC"). In the model for the RA therapeutic area: (a) at APR@10,
100% of cell types (156 out 0of 156) outperform the random walk model, 44.2%

of cell types (69 out of 156) outperform GAT, and 11.5% of cell types (18 out of
156) outperform BIONIC. (b) At APR@15, 58.3% (91 out 0f 156) outperform the

Inflammatory bowel disease therapeutic area
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random walk model, 38.5% of cell types (60 out of 156) outperform GAT, and
9.0% of cell types (14 out 0f 156) outperform BIONIC. (c) At APR@20, 59.0 (92
out of 156) outperform the random walk model, 34.6% of cell types (54 out of

156) outperform GAT, and 5.1% of cell types (8 out 0f 156) outperform BIONIC.

Inthe model for the IBD therapeutic area: (d) at APR@10, 39.5% (60 out of
152) outperform the random walk model, 38.2% of cell types (58 out 0f 152)

outperform GAT, and 10.5% of cell type (16 out 0of 152) outperform BIONIC. (e) At
APR@15, 28.3% (43 out of 152) outperform the random walk model and GAT, and
8.6% of cell types (13 out 0f 152) outperform BIONIC. (f) At APR@20, 26.3% (40
out of 152) outperform the random walk model and GAT, and 6.6% of cell types (10

out of 152) outperform BIONIC.
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Extended Data Fig. 9 | Correlating downstream performance onrheumatoid
arthritis and inflammatory bowel diseases with protein degree and network
enrichment. (a) Correlation between the node degrees of proteins (in the cell
type specific protein interaction networks) and the downstream performance
oftheir learned representations. Combining the RA and IBD prediction results,
the Spearman p = 0.087 with p-value =0.223 (n =36,229, consisting of 3,165
positive protein examples with label y =1and 33,064 negative protein examples
withlabely=0). For RA only, the Spearman p = 0.205 with p-value =0.041(n=
26,773, consisting of 2,382 positive protein examples with label y =1and 24,391
negative protein examples with label y = 0). For IBD only, the Spearman p = 0.024
with p-value = 0.810 (n =9,456, consisting of 783 positive protein examples
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withlabely=1and 8,673 negative protein examples with label y = 0). Dataare
represented as mean values with error bars indicating a 95% confidence interval.
(b-¢) Correlation between PINNACLE’s performance and network enrichment.
(b) Comparing PINNACLE’s predicted performance (APR@5) and the ratio of
positive to negative proteins in each cell type for RA (Spearman p = 0.53 with
p-value =8.7 x107%;,n=26,773, consisting of 2,382 positive proteins with label
y=1and 24,391 negative proteins with label y = 0). (c) Comparing PINNACLE’s
predicted performance (APR@5) and the ratio of positive to negative proteins
in each cell type for IBD (Spearman p = 0.54 with p-value=8.5x107"%;n=9,456,
consisting of 783 positive proteins with label y =1and 8,673 negative proteins
withlabely=0). All Spearman correlation statistical tests are two-sided.
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Extended DataFig. 10 | Performance of therapeutic target prioritization
models for rheumatoid arthritis and inflammatory bowel diseases stratified
by clinical trials. Comparison of the percentiles of drug targets across cell types,
in their best-performing cell types, and in the context-free global reference
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Software and code

Policy information about availability of computer code

Data collection Python implementation of the methodology developed and used in the study is available via the project website at https://
zitniklab.hms.harvard.edu/projects/PINNACLE. The code to reproduce results, together with documentation and examples of usage, are
available on GitHub at https://github.com/mims-harvard/PINNACLE. We provide an interactive demo via HuggingFace to explore PINNACLE’s
contextualized protein representations

Data analysis Python implementation of the methodology developed and used in the study is available via the project website at https://
zitniklab.hms.harvard.edu/projects/PINNACLE. The code to reproduce results, together with documentation and examples of usage, are
available on GitHub at https://github.com/mims-harvard/PINNACLE. We provide an interactive demo via HuggingFace to explore PINNACLE’s
contextualized protein representations.

We visualize PINNACLE embeddings using a uniform manifold approximation and projection for dimension reduction (UMAP package version
0.5, https://umap-learn.readthedocs.io/en/latest/) and Seaborn (seaborn package version 0.13, https://seaborn.pydata.org/index.html).
Additionally, we use the Python implementation of SAFE version 1, https://github.com/baryshnikova-lab/safepy.

We implement PINNACLE using Pytorch (Version 1.12.1) (Paszke et al., 2019) and Pytorch Geometric (Version 2.1.0) (Fey et al., 2019). We
leverage Weights and Biases (Biewald 2020) for hyperparameter tuning and model training visualization, and we create interactive demos of
the model using Gradio (Abid et al. 2019).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used in the paper are shared via the project website at https://zitniklab.hms.harvard.edu/projects/PINNACLE.

Our global reference protein-protein interaction (PPI) network is the union of physical multi-validated interactions from BioGRID (Oughtred et al., 2019), the Human
Reference Interactome (HuRI) (Luck et al., 2020), and Menche et al., 2015 with 15,461 nodes and 207,641 edges. Different sources of PPl have their own methods
of curating and validating physical interactions between proteins. BioGRID, HuRI, and Menche et al. are PPI networks from three well-cited publications and
databases regarding human protein interactions. By joining the three networks, we construct a comprehensive global PPl network for our analysis.

We leverage Tabula Sapiens (Tabula Sapiens Consortium, 2022) data source as our multi-organ, single-cell transcriptomic atlas of humans. The data consists of 15
donors, with 59 specimens total. There are 483,152 cells after quality control, of which 264,824 are immune cells, 104,148 are epithelial cells, 31,691 are
endothelial cells, and 82,478 are stromal cells. The cells correspond to 177 unique cell ontology classes.

For 3D structural analyses, the proteins being compared are PD-1, PD-L1, B7-1, CTLA-4, RalB, RalBP1, EPO, EPOR, C3, and CFH. The pairs of binding proteins are
PD-1/PD-L1 (PDB ID: 4ZQK) and B7-1/CTLA-4 (PDB ID: 118L). The non-binding proteins are any of the four proteins paired with any of the remaining six proteins (e.g.,
PD-1/RalB, PD-1/RalBP1, PD-L1/RalBP1). The PDB IDs for the other six proteins are 2KWI for RalB/RalBP1, 1CN4 for EPO/EPOR, and 30XU for C3/CFH.

We obtain labels for therapeutic targets from the Open Targets Platform (Ochoa et al., 2020).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender This study did not involve human research participants.

Population characteristics This study did not involve human research participants.
Recruitment This study did not involve human research participants.
Ethics oversight This study did not involve human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to determine sample sizes. Small 95% confidence intervals or standard deviations indicate the chosen
sample sizes were sufficient.

1) Cell type-specific protein interaction network samples. To ensure high-quality representations of cell types in our networks, we keep
networks with at least 1,000 proteins. We do not perform subsampling of cells (i.e., sample the same number of cells per cell type) to
minimize information loss for constructing protein interaction networks (Supplementary Figure S2).

2) Cell type and tissue relationship samples in the metagraph. As recommended by CellPhoneDB, cells are subsampled prior to running the
algorithm, which uses geometric sketching [105] to efficiently sample a small representative subset of cells from massive datasets while
preserving biological complexity. We choose to subsample 25% of cells and run CellPhoneDB for 100 iterations. We determine cell type-tissue
relationships and extract tissue-tissue relationships using Tabula Sapiens meta-data. For relationships between cell types and tissues, we draw
edges between cell types and the tissue that the cells were taken from. For tissue-tissue relationships, we select the nodes corresponding to
the tissues where samples were taken from and all parent nodes up to the root of the BRENDA tissue ontology. We perform sensitivity and
ablation analyses on different components of the metagraph (Supplementary Table S3-S5).
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3) Therapeutic area selection. To curate target information for a therapeutic area, we examine the drugs indicated for the therapeutic area of
interest and its descendants. The two therapeutic areas examined are rheumatoid arthritis (RA) and inflammatory bowel disease. For
rheumatoid arthritis, we collected therapeutic data (i.e., targets of drugs indicated for the therapeutic area) from OpenTargets for rheumatoid
arthritis (EFO_0000685), ankylosing spondylitis (EFO_0003898), and psoriatic arthritis (EFO_0003778). For inflammatory bowel disease, we
collected therapeutic data for ulcerative colitis (EFO_0000729), collagenous colitis (EFO_1001293), colitis (EFO_0003872), proctitis
(EFO_0005628), Crohn’s colitis (EFO_0005622), lymphocytic colitis (EFO_1001294), Crohn’s disease (EFO_0000384), microscopic colitis
(EFO_1001295), inflammatory bowel disease (EFO_0003767), appendicitis (EFO_0007149), ulcerative proctosigmoiditis (EFO_1001223), and
small bowel Crohn’s disease (EFO_0005629).

We define positive examples (i.e., where the label y = 1$ as proteins targeted by drugs that have at least completed phase 2 of clinical trials
for treating a certain therapeutic area. As such, a protein is a promising candidate if a compound that targets the protein is safe for humans
and effective for treating the disease. We retain positive training examples that are activated in at least one cell type specific protein
interaction network. The final number of positive training examples for RA and IBD are 152 and 114, respectively.

We define negative examples (i.e., where the label y = 0) as druggable proteins that do not have any known association with the therapeutic
area of interest according to OpenTargets. A protein is deemed druggable if it is targeted by at least one existing drug. We extract drugs and
their nominal targets from DrugBank. We retain negative training examples that are activated in at least one cell type specific protein
interaction network. The final number of negative training examples for RA and IBD are 1,465 and 1,377, respectively.

Data exclusions | No data was excluded from the analysis.

Replication Data on biological replicates were subject to statistical tests to ensure effects were significant. All replication attempts were successful. For
the analyses of tissue hierarcy (Figure 3c), tissue ontology was shuffled 10 times to produce gray distribution. For analyses of RA/IBD models,
Il the experiments were performed independently 10 times using different randomly-selected seeds.

Randomization  Randomization was performed using unbiased, non-parametric, random sampling and perturbation-based null hypothesis testing.

Blinding Any group allocations were programmatically randomly generated and not assigned by the investigators, so blinding is not relevant to this
study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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