
1

Optimal and Robust Category-level Perception: Object Pose
and Shape Estimation from 2D and 3D Semantic Keypoints

Jingnan Shi, Heng Yang, Luca Carlone

Fig. 1. We develop algorithms for 3D-3D and 2D-3D category-level perception, which estimate 3D pose and shape of an object from 3D and 2D sensor data,
respectively. (a) PACE3D# performs 3D-3D category-level perception and works on RGB-D inputs. We pass the sensor data through a neural network front-end
to obtain 3D keypoint detections. We then use ROBIN with 3D-3D compatibility (hyper)graphs (Section V) to prune outliers (outliers are shown as red dots,
while inliers are yellow). We finally pass the resulting measurements to our optimal solver (PACE3D?, Section VI-A) wrapped in a graduated non-convexity
(GNC) scheme (Section VII), which estimates the object pose and shape coefficients. (b) PACE2D# performs 2D-3D category-level perception and works on
RGB inputs. The images are passed through a neural network to obtain 2D keypoints. We then use ROBIN with 2D-3D compatibility hypergraphs (Section V)
to prune outliers. We finally pass the resulting measurements to our optimal solver (PACE2D?, Section VI-B) with GNC to obtain a pose and shape estimate.

Abstract—We consider a category-level perception problem,
where one is given 2D or 3D sensor data picturing an object of a
given category (e.g., a car), and has to reconstruct the 3D pose and
shape of the object despite intra-class variability (i.e., different
car models have different shapes). We consider an active shape
model, where —for an object category— we are given a library
of potential CAD models describing objects in that category,
and we adopt a standard formulation where pose and shape are
estimated from 2D or 3D keypoints via non-convex optimization.
Our first contribution is to develop PACE3D? and PACE2D?, the
first certifiably optimal solvers for pose and shape estimation
using 3D and 2D keypoints, respectively. Both solvers rely on the
design of tight (i.e., exact) semidefinite relaxations. Our second
contribution is to develop outlier-robust versions of both solvers,
named PACE3D# and PACE2D#. Towards this goal, we propose
ROBIN, a general graph-theoretic framework to prune outliers,
which uses compatibility hypergraphs to model measurements’
compatibility. We show that in category-level perception problems
these hypergraphs can be built from winding orders of the
keypoints (in 2D) or their convex hulls (in 3D), and many outliers
can be pruned via maximum hyperclique computation. The last
contribution is an extensive experimental evaluation. Besides
providing an ablation study on simulated datasets and on the
PASCAL3D+ dataset, we combine our solver with a deep keypoint
detector, and show that PACE3D# improves over the state of the
art in vehicle pose estimation in the ApolloScape datasets, and its
runtime is compatible with practical applications.

Index Terms—category-level perception, outliers-robust esti-
mation, certifiable algorithms.

I. INTRODUCTION

Robotics applications, from self-driving cars to domestic
robotics, demand robots to be able to identify and estimate the
pose and shape of nearby objects. In self-driving applications,

J. Shi, H. Yang, and L. Carlone are with the Laboratory for Information &
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA 02139, USA, Email: {jnshi,hankyang,lcarlone}@mit.edu

the perception system needs to estimate the poses of other
vehicles, identify traffic lights and signs, and detect pedes-
trians. Similarly, domestic applications require estimating the
location and shape of objects to support effective interaction
and manipulation [60], [32], [73]. Object pose estimation
is made harder by the large intra-class shape variability of
common objects: for instance, the shape of a car largely varies
depending on the model (e.g., take a van versus a sedan).

Despite the fast-paced progress, reliable 3D object pose
estimation remains a challenge, as witnessed by recent self-
driving car accidents caused by misdetections [63]. Deep
learning has been making great strides in enabling robots
to detect objects; popular tools such as YOLO [78] and
Mask-RCNN [36] have made object detection possible on
commodity hardware and with reasonable performance for
in-distribution test data. However, detections are typically
at the level of categories (e.g., car) rather than at the level
of instances (e.g., a specific car model). In turn, category-
level perception renders the use of standard tools for pose
estimation (from point cloud registration [121], [37], [70] to
the Perspective-n-Point problem [123], [42], [87]) ineffective,
since they rely on the knowledge of the shape of the object.

These limitations have triggered robotics and computer
vision research on category-level 3D object pose and shape
estimation (see Section IX for an in-depth review). Traditional
methods include the popular active shape model [19], [125],
[117], where one attempts to estimate the pose and shape of
an object given a large database of 3D CAD models. Despite
its popularity (e.g., the model is also used in human shape
estimation and face detection [125]), estimation with active
shape models leads to a non-convex optimization problem and
local solvers get stuck in poor solutions, and are sensitive
to outliers [125], [117]. More recently, research effort has

2

been devoted to end-to-end learning-based 3D pose estimation
with encouraging results in human pose estimation [44] and
vehicle pose estimation [15], [41], [57], [46], [97]; these
approaches still require a large amount of 3D labeled data,
which is (or expensive) to obtain in the wild.

Contribution. We address the shortcomings of existing
approaches for pose and shape estimation based on the active
shape model and propose the first approaches that can compute
optimal estimates and are robust to a large number of outliers.
We consider a category-level perception problem, where one
is given keypoint detections of an object belonging to a given
category (e.g., detections of the wheels, rear-view mirrors, and
other interest points of a car), and has to reconstruct the pose
and shape of the object. We assume the availability of a library
of CAD models of objects in that category; such a library is
typically available, since CAD models are extensively used in
the design, manufacturing, and simulation of 3D objects.

Our first contribution is to develop the first certifiably
optimal solvers for pose and shape estimation using 3D and
2D keypoints. In the 3D case, we show that —despite the
non-convexity of the problem— rotation estimation can be
decoupled from the estimation of object translation and shape,
and we demonstrate that (i) the optimal object rotation can be
computed via a tight (small-size) semidefinite relaxation, and
(ii) the translation and shape parameters can be computed in
closed form given the rotation. We call the resulting solver
PACE3D? (Pose and shApe estimation for 3D-3D Category-
level pErception). In the 2D case, we formulate pose and
shape estimation using an algebraic point-to-line cost, and
leverage Lasserre’s hierarchy of semidefinite relaxations [49]
to solve the problem to certifiable global optimality. We call
the resulting solver PACE2D? (Pose and shApe estimation for
2D-3D Category-level pErception). Contrarily to PACE3D?,
PACE2D? leads to semidefinite relaxations whose size increases
with the number of CAD models in the active shape model.

Our second contribution is to develop an outlier rejection
scheme applicable to both PACE3D? and PACE2D?. Towards this
goal, we introduce a general framework for graph-theoretic
outlier pruning, named ROBIN, which generalizes our previous
work [121], [90] to use hypergraphs. ROBIN models compat-
ibility between subset of measurements using a compatibility
hypergraph. We show that the compatibility hypergraph can
be efficiently constructed by inspecting the winding orders of
the keypoints in 2D, or the convex hulls of the keypoints
in 3D. We then prove that all the inliers are contained in a
single hyperclique of the compatibility hypergraph and can
be typically found within the maximum hyperclique. ROBIN
is able to remove a large fraction of outliers. The resulting
measurements are then passed to our optimal solvers (PACE3D?

and PACE2D?), that we also wrap in a standard graduated non-
convexity [115] scheme to mitigate the impact of outliers that
survived ROBIN. The resulting outlier-robust approaches are
named PACE3D# and PACE2D# and are illustrated in Fig. 1.

Our last contribution is an extensive experimental evaluation
in both synthetic experiments and real datasets [110]. We
provide an ablation study on simulated datasets and on the
PASCAL3D+ dataset, and show that (i) PACE3D? is more accurate
than state-of-the-art iterative solvers, (ii) PACE2D? is more
accurate than baseline local solvers and convex relaxations
based on the weak perspective projection model [125], [117],

(iii) PACE3D# dominates other robust solvers and is robust
to 70 � 90% outliers, and (iv) PACE2D# is robust to 20%

outliers. Finally, we integrate our solvers in a realistic system
—including a deep keypoint detector— and apply it to vehicle
pose and shape estimation in the ApolloScape [110] driving
datasets. While PACE2D# is currently slow and suffers from
the low quality of the deep keypoint detections, PACE3D#
largely outperforms the state of the art and a non-optimized
implementation runs in a fraction of a second. We also show
that ROBIN is even able to detect mislabeled keypoints used to
train the keypoint detector in the ApolloScape dataset [110].

Novelty with Respect to [90], [89]. In our previous works,
we introduced ROBIN [90], a graph theoretic outlier rejection
framework, and two solvers [89] (PACE3D? and PACE3D#) for
pose and shape estimation from 3D keypoints. The present
paper (i) generalizing ROBIN to handle combinatorial compat-
ibility tests, and (ii) extends the concept of inlier selection
to maximum hypercliques on compatibility hypergraphs. This
paper also develops PACE2D? and PACE2D#, which estimate
pose and shape from only 2D (instead of 3D) keypoints.
In addition, we report a more comprehensive experimental
evaluation in simulation and on the ApolloScape dataset.

Paper Structure. Section II formulates the category-level
perception problem. Section III provides a brief overview
of the proposed approaches (also summarized in Fig. 1).
Sections IV and V present our graph-theoretic outlier pruning
(ROBIN) and its application to category-level perception. Sec-
tion VI introduces our certifiably optimal solvers for category-
level perception and Section VII recalls how to wrap the
solvers in a graduated non-convexity scheme. Section VIII
discusses experimental results. Section IX provides an in-depth
review of related work. Section X concludes the paper.

II. PROBLEM STATEMENT:
3D-3D AND 2D-3D CATEGORY-LEVEL PERCEPTION

In this section, we formulate the 3D-3D and 2D-3D
category-level perception problems. The goal is to compute
the 3D pose and shape of an object, given 3D or 2D sensor
data. We focus on a multi-stage setup where a front-end is
used to extract 2D or 3D semantic keypoints from the sensor
data, which are then used by a back-end solver to estimate
the object’s 3D pose (R, t) and shape, where R 2 SO(3)

and t 2 R3 are 3D rotation and translation, respectively.
The front-end is typically implemented using standard deep
networks [73], [86], while our goal here is to design more
accurate and robust back-ends.

In the following, we first introduce a standard parametriza-
tion of the object shape (Section II-A), and then formalize the
3D-3D category-level perception problem (Section II-B) and
its 2D-3D counterpart (Section II-C).

A. Active Shape Model
We assume the object shape to be partially specified: we

are given a library of 3D CAD models Bk, k = 1, . . . ,K,
and assume that the unknown object shape S (modeled as a
collection of 3D points) can be written as a combination of the
points on the given CAD models. More formally, each point
si of the shape S can be written as:

si =
PK

k=1
ckbki (1)

3

Fig. 3. Illustration of a simple active shape model with two CAD models: a Hyundai Sonata (with shape coefficient c1) and an Audi Q7 (with shape
coefficient c2). From left to right, we show four convex combinations of the CAD models, with c1 increasing and c2 decreasing while keeping c1 + c2 = 1.
The shape variations between the four combinations show the expressivity of the active shape model and its capability to interpolate between shapes.

where b
k
i is a given point on the surface of the CAD model

Bk; the shape parameters c , [c1 . . . cK]
T are unknown, and

the entries of c are assumed to be non-negative and sum up
to 1, i.e., c belongs to the K-dimensional probability simplex
�K := {c 2 RK | c � 0,

PK
k=1

ck = 1}. For instance, if —
upon estimation— the vector c has the l-th entry equal to 1 and
the remaining entries equal to zero in (1), then the estimated
shape matches the l-th CAD model in the library; therefore,
the estimation of the shape parameters c can be understood as
a fine-grained classification of the object among the instances
in the library. However, the model is even more expressive,
since it allows the object shape to be a convex combination
of CAD models, which enables the active shape model (1) to
interpolate between different shapes in the library; see Fig. 3.

B. 3D-3D Category-Level Perception
In the 3D-3D category-level perception problem, the goal

is to estimate an object’s pose and shape, given a set of
N 3D keypoint detections typically obtained using learning-
based keypoint detectors. Such detectors are trained to detect
semantic features of the 3D object (e.g., wheels of a car), and
can be applied to RGB-D or RGB+Lidar data (e.g., [73]).

We assume each 3D measurement p3D,i (i = 1, . . . , N) is
a noisy measurement of a keypoint si of our target object, in
the coordinate frame of the sensor. More formally, each p3D,i

is described by the following generative model:

p3D,i = R
PK

k=1
ckbki + t+ ✏3D,i i = 1, . . . , N (2)

where the measurement p3D,i pictures a 3D point on the object
(written as a linear combination

PK
k=1

ckbki of the shapes in
the library as in (1)), after the point is rotated and translated
according to the 3D pose (R, t) of the object, and where ✏3D,i

represents measurement noise. Intuitively, each measurement
corresponds to a noisy measurement of a semantic feature of
the object (e.g., wheel center or rear-view mirrors of a car)
and each b

k
i corresponds to the corresponding feature (e.g.,

wheel or mirror) location for a specific CAD model.

Problem 1 (Robust 3D-3D Category-Level Perception).
Compute the 3D pose (R, t) and shape (c) of an object
given N 3D keypoint measurements in the form (2), possibly
corrupted by outliers, i.e., measurements with large error ✏3D,i.

C. 2D-3D Category-Level Perception
In the 2D-3D category-level perception problem, we want

to estimate an object’s 3D pose and shape, given only 2D
projections of keypoints. In this case, we describe each 2D
measurement using the following generative model:

p2D,i = ⇡
⇣
R
PK

k=1
ckbki + t

⌘
+ ✏2D,i i = 1, . . . , N (3)

where p2D,i represents a 2D (pixel) measurement, ⇡(·) is the
canonical perspective projection,1 and ✏2D,i is the measure-
ment noise. Intuitively, the measurements in (3) correspond to
pixel projections of the object keypoints onto an image.

Problem 2 (Robust 2D-3D Category-Level Perception).
Compute the 3D pose (R, t) and shape (c) of an object
given N 2D keypoint measurements in the form (3), possibly
corrupted by outliers, i.e., measurements with large error ✏2D,i.

III. OVERVIEW OF PACE#: POSE AND SHAPE ESTIMATION
FOR ROBUST CATEGORY-LEVEL PERCEPTION

Our approach, named PACE#, is summarized in Fig. 1,
for both the 3D-3D case (PACE3D#, Fig. 1a) and the 2D-3D
case (PACE2D#, Fig. 1b). We assume access to a perception
front-end that detects semantic keypoints given sensor data.
Our work forms the back-end, and consists of two stages.
In the first stage, we employ a graph-theoretic framework,
named ROBIN, to pre-process the keypoints and prune gross
outliers without explicitly solving the underlying estimation
problem. We then pass the filtered measurements to the second
stage, where an optimal solver (wrapped in a graduated non-
convexity scheme) computes a pose and shape estimate.2

In the following we introduce Stage 1 by first presenting
ROBIN, a general framework for outlier pruning (Section IV)
and then discussing its application to category-level perception
(Section V); we then discuss Stage 2 by presenting our
optimal solvers for 3D-3D (PACE3D?, Section VI-A) and 2D-
3D (PACE2D?, Section VI-B) category-level perception, and a
brief review of graduated non-convexity [115] (Section VII).

IV. STAGE 1: GRAPH-THEORETIC OUTLIER PRUNING
WITH ROBIN

This section develops a general framework to prune gross
outliers from a set of measurements without explicitly com-
puting an estimate for the variables of interest. In particular,
we introduce the notion of n-invariants to check if a subset
of measurements contains outliers. We then use these checks
to construct compatibility hypergraphs that describe mutually
compatible measurements, and show how to reject outliers by

1For a 3D vector p=

"
px
py
pz

#
, the canonical projection is ⇡(p)=


px/pz
py/pz

�
.

2We use a two-stage approach (i.e.,ROBIN followed by graduated non-
convexity) for two reasons. While our solver with graduated non-convexity is
robust against 10% of outliers in 2D-3D problems and 50�60% of outliers in
3D-3D problems, our goal is to further increase its robustness. Indeed we show
that ROBIN boosts robustness to 20% in 2D-3D problems and 70�90% in 3D-
3D problems. In addition, since the first stage prunes outliers independently
from the solver, ROBIN can be used in a plug-and-play manner with other
existing solvers to boost their robustness.

4

computing maximum hypercliques of these graphs. Combining
these insights, we obtain ROBIN (Reject Outliers Based on
INvariants), our graph-theoretic algorithm for pruning outliers.

This section presents our framework in full generality and
then we tailor it to category-level perception in Section V.
In particular, here we consider a more general measurement
model that relates measurements yi to the to-be-estimated
variable x 2 X (where X is the domain of x, e.g., the set
of 3D poses) and a given model ✓i (e.g., our CAD models):

yi = h(x,✓i, ✏i), i = 1, . . . , N (4)

where ✏i denotes the measurement noise. Clearly, eqs. (2)
and (3) can be understood as special instances of (4), where
x includes the unknown pose and shape of the object, and the
(given) model ✓ corresponds to the CAD models.

A. From Measurements to Invariants
This section formalizes the concepts of n-invariant and

generalized n-invariant, which are the building blocks of our
outlier pruning framework. The main motivation is to use
invariance to establish checks on the (inlier) measurements
that hold true regardless of the state under estimation; we are
later going to use these checks to detect outliers.

Let us consider the measurements in eq. (4) and denote the
indices of the measurements as Y .

= {1, . . . , N}. For a given
integer n  N , let M ⇢ Y be a subset of n indices in Y ,
and denote with Mj the j-th element of this subset (with
j = 1, . . . , n). Then, we use the following notation:

yM =

2

6664

yM1

yM2

...
yMn

3

7775
, ✓M =

2

6664

✓M1

✓M2

...
✓Mn

3

7775
, ✏M =

2

6664

✏M1

✏M2

...
✏Mn

3

7775

(5)
which is simply stacking together measurements yi, parame-
ters ✓i, and noise ✏i for the subset of measurements i 2M.

Let us now formalize the notion of noiseless invariance.

Definition 1 (Noiseless n-Invariant). Consider the generative
model (4) and assume there is no measurement noise (i.e.,
yi = h(x,✓i)). Then a function f is called a noiseless n-
invariant if for any arbitrary M⇢Y of size n, the following
relation holds, regardless of the choice of x:

f(yM) = f(✓M) (6)

Intuitively, an n-invariant function f takes a subset of
models ✓M and computes a quantity f(✓M) that remains
constant when the models are transformed by the measurement
model h to generate the measurements yM.

Example. To concretely understand invariance, consider a
simpler instance of (2) where there is a single shape:

yi = R✓i + t+ ✏i i = 1, . . . , N (7)

Eq. (7) is also known as the point cloud registration prob-
lem [2], [37] and consists in finding a rigid body transforma-
tion (R, t) (where R 2 SO(3) and t 2 R3) that aligns two
sets of 3D points yi 2 R3 and ✓i 2 R3, with i = 1, . . . , N .
The corresponding measurement model can again be seen to
be an instance of the general model (4).

In the noiseless case (✏i = 0), it follows from (7) that

kyj � yik = k(R✓j + t)� (R✓i + t)k= (8)
= kR(✓j � ✓i)k= k✓j � ✓ik

for any pair of measurements i, j, where k·k is the 2-norm and
we used the fact that the 2-norm is invariant under rotation.
This is an example of noiseless 2-invariant, f(yi,yj)

.
=

kyj�yik= f(✓i,✓j), which relates measurements and model
regardless of the choice of x, and formalizes the intuition
that the distance between pairs of points in a point cloud is
invariant under rigid transformations.

While Definition 1 provides a general definition of noiseless
invariance, practical problems always involve noise. Therefore
we need to generalize the notion of invariance as follows.

Definition 2 (Generalized n-Invariant). Given eq. (4) and
assuming the measurement noise is bounded k✏ik � (i =

1, . . . , N), a pair of functions (f ,F) is called a generalized
n-invariant if for any arbitrary M⇢Y of size n, the following
relation holds, regardless of the choice of x:

f(yM) 2 F (✓M,�) (9)

where F (✓M,�) is a set-valued function (independent on x).

Intuitively, because of the noise, now the measurements can
produce a number of different invariants f(yM), but we can
still define a set F (✓M,�) that contains all potential invariants
produced by the measurements. An example is in order.

Example. Going back to the example of point cloud regis-
tration in eq. (7), with k✏ik � and k✏jk �, we have

kyj�yik = kR(✓j � ✓i) + ✏j � ✏ik (10)

If we apply the triangle inequality to the right-hand-side
of (13) we obtain:

k✓j � ✓ik�k✏j � ✏ik 

=kyj�yik per eq. (13)
z }| {
kR(✓j � ✓i) + ✏j � ✏i)k (11)

 k✓j � ✓ik+k✏j � ✏ik
Now k✏ik� and k✏jk� imply k✏j�✏ik 2�. Substituting
in (11) we obtain:

k✓j � ✓ik�2�  kyj�yik k✓j � ✓ik+2� (12)

or, in other words:

f(yM)

z }| {
kyj�yik 2

F (✓M,�)
z }| {h
k✓j � ✓ik�2�, k✓j � ✓ik+2�

i
(13)

which corresponds to our definition of generalized n-invariant
(with n = 2). Geometrically, eq. (13) states the distances
between pairs of measured points (yj and yi) must match
corresponding distances between points in our model (✓j and
✓i) up to noise. Note that when � = 0 (noiseless case),
eq. (13) reduces back to eq. (8), as the set F (✓M,�)

.
= [k✓j�

✓ik�2�, k✓j � ✓ik+2�] reduced to the singleton k✓j � ✓ik.
Definition 2 generalizes Definition 1 to account for the

presence of noise. Moreover, as we will see in Section V,
we can develop generalized n-invariants for category-level
perception even when noiseless invariants are difficult to
find. In other words, while it may be difficult to pinpoint a
noiseless invariant function, it is often easier to find a set of
values that a suitable function f(yM) must belong to. In the
following sections unless otherwise specified, we use the term
n-invariants to refer to generalized n-invariants.

5

B. From Invariants to Compatibility Tests for Outlier Pruning

While the previous section developed invariants without
distinguishing inliers from outliers, this section shows that the
resulting invariants can be directly used to check if a subset
of measurements contains an outlier. Towards this goal, we
formalize the notion of inlier and outlier.

Definition 3 (Inliers and Outliers). Given measurements (4)
and a threshold ��0, a measurement i is an inlier if the cor-
responding noise satisfies k✏ik� and is an outlier otherwise.

The notion of invariants introduced in the previous section
allowed us to obtain relations that depend on the measurements
and a noise bound, but are independent on x, see eq. (9).
Therefore, we can directly use these relations to check if
a subset of n measurements contains outliers: if eq. (9)
is not satisfied by a subset of measurements yM then the
corresponding subset of measurements must contain an outlier.
We call the corresponding check a compatibility test. In the
following, we provide an example of compatibility test for
point cloud registration. The reader can find more examples
of compatibility tests for other applications in [90].

Example of Compatibility Test. For our point cloud regis-
tration example, eq. (13) states that any pair of measurements
yi and yj with noise k✏ik� and k✏jk� must satify:

kyj�yik2
h
k✓j � ✓ik�2�, k✓j � ✓ik+2�

i
(14)

If the relation is satisfied, we say that yi and yj are compatible
with each other (i.e., they can potentially be both inliers);
however, if the relation is not satisfied, then one of the
measurements must be an outlier. Generalizing this example,
we obtain the following general definition of compatibility test.

Definition 4 (Compatibility Test). Given a subset of n mea-
surements and the corresponding n-invariant, a compatibility
test is a binary condition (computed using the invariant), such
that if the condition fails, then the set of measurements must
contain at least one outlier.

Note that we require the test to be sound (i.e., it does not
detect outliers when testing a set of inliers), but may not be
complete (i.e., the test might pass even in the presence of
outliers). This property is important since our goal is to prune
as many outliers as we can, while preserving the inliers. Also
note that the test detects if the set contains outliers, but does
not provide information on which measurements are outliers.
We are going to fill in this gap below.

C. From Compatibility Tests to Compatibility Hypergraph

For a problem with an n-invariant, we describe the results
of the compatibility tests for all subsets of n measurements
using a compatibility hypergraph.

Definition 5 (Compatibility Hypergraph). Given a com-
patibility test with n measurements, define the compatibility
hypergraph G(V, E) as an n-uniform undirected hypergraph,3
where each node v in the node set V is associated to a
measurement in (4), and an hyperedge e (connecting a subset

3In an n-uniform hypergraph, each hyperedge involves exactly n nodes.

Algorithm 1: ROBIN
1 Input: set of measurements Y and model (4); n-invariant functions

(f ,F) (for some n); inlier noise bound �;
2 Output: subset Y? ⇢ Y ;
3 % Initialize compatibility graph
4 V = Y ; % each node is a measurement
5 E = ;; % start with empty hyperedge set
6 % Perform compatibility tests
7 for all subsets M ⇢ Y of size n do
8 if testCompatibility(M,f ,F) = pass then
9 add a hyperedge e = M to E ;

10 end
11 end
12 % Find compatible measurements
13 Y? = max_hyperclique(V, E);
14 return: Y?.

of n measurements) belongs to the edge set E if and only if
its subset of measurements passes the compatibility tests.

Note that in the case where n = 2, the above definition re-
duces to a regular undirected graph. Building the compatibility
graph requires looping over all subsets of n measurements and,
whenever the subset passes the compatibility test, adding a hy-
peredge between the corresponding n nodes in the graph. Note
that these checks are very fast and easy to parallelize since they
only involve checking boolean conditions (e.g., (12)) without
computing an estimate (as opposed to RANSAC).

Inlier Structures in Compatibility Hypergraphs. Here
we show that the inliers in the set of measurements (4)
are contained in a single hyperclique of the compatibility
hypergraph. Let us start with some definitions.

Definition 6 (Hypercliques and Maximum Hyperclique in
Hypergraphs). A hyperclique of an n-uniform hypergraph G
is a set of vertices such that any subsets of n vertices is
connected by an hyperedge in G. The maximum hyperclique
of G is the hyperclique with the largest number of vertices.

Again, in the case where n = 2, the above definition reduces
to the usual clique and maximum clique definition. Given a
compatibility hypergraph G, the following result relates the set
of inliers in (4) with hypercliques in G (proof in Appendix A).

Theorem 7 (Inliers and Hypercliques). Assume we are given
measurements (4) (with inlier noise bound �) and the corre-
sponding n-invariants; call G the corresponding compatibility
hypergraph. Then, assuming there are at least n inliers, all
inliers belong to a single hyperclique in G.

Theorem 7 implies that we can look for inliers by computing
hypercliques in the compatibility graph. Since we expect to
have more compatible inliers than outliers, here we propose
to compute the maximum hyperclique; this approach is shown
to work extremely well in practice in Section VIII. Appendix B
provides a longer discussion on how this approach compares
with our original proposal in [90]. Appendix C describes an
algorithm to find the maximum hyperclique.

D. ROBIN: Graph-theoretic Outlier Rejection
This section summarizes all the findings above into a single

algorithm for graph-theoretic outlier pruning, named ROBIN
(Reject Outliers Based on INvariants). ROBIN’s pseudocode
is given in Algorithm 1. The algorithm takes a set of mea-
surements Y in input, and outputs a subset Y? ⇢ Y from

6

Fig. 4. Example of compatibility test with 3 CAD models of cars (red,
dark green, blue, indexed from 1 to 3). (Noiseless) inliers (e.g., the detection
of the back wheel p3D,i in the figure) must fall in the convex hull of
the corresponding points on the CAD models (e.g., triangle b1i � b2i � b3i
encompassing the back wheel positions across CAD models). This restricts
the relative distance between two inliers and allows filtering out outliers. For
instance, the dashed black line shows a distance that is compatible with the
location of the convex hulls, while the solid black line is too short compared
to the relative position of the wheels (for any car model) and allows pointing
out that there is an outlier (i.e., p3D,j in the figure).

which many outliers have been pruned. If the problem admits
an n-measurement invariant, ROBIN first performs compati-
bility tests on all subsets of n measurements and builds the
corresponding compatibility hypergraph (lines 3-11). Then, it
uses a maximum hyperclique solver to compute and return the
subset of measurements surviving outlier pruning (lines 12-
14). We have implemented ROBIN in C++ and Python, using
CVXPY [22] to solve (MILP); in the special case where
n = 2, i.e., the compatibility graph is an ordinary graph,
we use the parallel maximum clique solver from [82]. We
remark that ROBIN is not guaranteed to reject all outliers,
i.e., some outliers may still pass the compatibility tests and
end up in the maximum hyperclique. Indeed, as mentioned
in the introduction, ROBIN is designed to be a preprocessing
step to prune gross outliers and enhance the robustness of
existing robust estimators. Note that Algorithm 1 can be
applied to various estimation problems, as long as suitable
compatibility tests are defined (i.e., testCompatibility
function). In [90], we report applications to many geometric
perception problems, including point cloud registration, point-
with-normal registration, and camera pose estimation. In the
following section, we develop compatibility tests for 3D-3D
and 2D-3D category-level perception problems.

V. STAGE 1 (CONTINUED): APPLICATION TO
CATEGORY-LEVEL PERCEPTION

This section tailors ROBIN to category-level perception.
Specifically, we develop compatibility tests for Problem 1
(Section V-A) and Problem 2 (Section V-B).

A. 3D-3D Category-level Compatibility Test
We develop a 3D-3D category-level compatibility test to

check if a pair of 3D keypoint measurements are mutually
compatible; our test generalizes results on instance-level per-
ception, where the object shape is known [121], [27], [90].

We derive a pairwise invariant (i.e., a 2-invariant) according
to Definition 2. The challenge is to develop a set-valued
function F that does not depend on the pose and shape

parameters, which are unknown. Towards this goal, we show
how to manipulate (2) to obtain a function F that does
not depend on R, t, and c. Taking the difference between
measurement i and j in (2) leads to:

p3D,j � p3D,i = R
PK

k=1
ck(bkj � b

k
i) + (✏3D,j � ✏3D,i)

where the translation cancels out in the subtraction. Now
taking the `2 norm of both members we obtain:

kp3D,j � p3D,ik= kR
PK

k=1
ck(bkj � b

k
i) + (✏3D,j � ✏3D,i)k

Using the triangle inequality, we have

�k✏3D,j � ✏3D,ik  kp3D,j � p3D,ik�
����R

PK
k=1

ck(bkj � b
k
i)

����
 k✏3D,j � ✏3D,ik (15)

Now observing that the `2 norm is invariant to rotation and
rearranging the terms:
����
PK

k=1
ck(bkj � b

k
i)

����� k✏3D,j � ✏3D,ik kp3D,j � p3D,ik


����
PK

k=1
ck(bkj � b

k
i)

����+ k✏3D,j � ✏3D,ik (16)

Taking the extreme cases over the possible shape coefficients:
bmin
ijz }| {

min
c�0,1Tc=1

����
PK

k=1
ck(bkj � b

k
i)

�����k✏3D,j � ✏3D,ik (17)

 kp3D,j � p3D,ik

 max
c�0,1Tc=1

����
PK

k=1
ck(bkj � b

k
i)

����
| {z }

bmax
ij

+k✏3D,j � ✏3D,ik

Since
PK

k=1
ckbkj is a convex combinations of the points b

k
j

(k = 1 . . . ,K) and hence lies in the convex hull of such points,
the term k

PK
k=1

ck(bkj �b
k
i)k represents the distance between

two (unknown) points in the two convex hulls defined by the
set of points bkj and b

k
i (k = 1 . . . ,K) (Fig. 4). The minimum

bmin

ij and the maximum bmax

ij over the convex hulls can be
easily computed, either in closed form or via small convex
programs (see details in Appendix D). Accordingly,

kp3D,j � p3D,ik (18)
2
⇥
bmin

ij � k✏3D,j � ✏3D,ik, bmax

ij + k✏3D,j � ✏3D,ik
⇤

Note that bmin

ij and bmax

ij only depend on the given library,
and are independent on (R, t, c). Therefore, they can be
pre-computed. We can now define the pairwise invariant for
Problem 1 with generative model defined in eq. (2):

Proposition 8 (3D-3D Category-level Pairwise Invariant
and Compatibility Test). Assume bounded noise k✏3D,ik
�3D for i = 1, . . . , N . The function f3D(p3D,i,p3D,j)

.
=

kp3D,j � p3D,ik is a pairwise invariant for eq. (2), with

F3D(✓i,✓j ,�3D) =
⇥
bmin

ij � 2�3D, bmax

ij + 2�3D

⇤

where ✓i={bki |k = 1, . . . ,K} and ✓j={bkj |k = 1, . . . ,K}.
Therefore, two measurements p3D,i and p3D,j are compatible
if f3D(p3D,i,p3D,j) 2 F3D(✓i,✓j ,�3D).

7

The proof of the proposition trivially follows from eq. (18)
and from the observation that k✏3D,ik�3D and k✏3D,jk�3D

imply k✏3D,j � ✏3D,ik 2�3D.
Proposition 8 provides a compatibility test according to

Definition 4. In words, a pair of measurements is mutually
compatible if their distance kp3D,j � p3D,ik matches the
corresponding distances in the CAD models (lower-bounded
by bmin

ij and upper-bounded by bmax

ij) up to measurement noise
�3D. If a pair of measurements fails the compatibility test, then
one of them must be an outlier. A geometric interpretation of
the compatibility test (for �3D = 0) is given in Fig. 4.

B. 2D-3D Category-level Compatibility Test

The pairwise invariant presented in the previous section
was inspired by the fact that the distance between pairs of
points is (a noiseless) invariant to rigid transformations. When
it comes to 2D-3D problems, it is known that there is no
(noiseless) invariant for 3D points in generic configurations
under perspective projection [65]. One option would be to
use invariants for special configurations of points, such as
cross ratios for collinear points [90]; however, this would not
be generally applicable to our problem, where 3D keypoints
are arbitrarily distributed on the CAD models. Here, we take
an alternative route and we directly design a generalized 3-
invariant for generic 3D point projections.

Our 2D-3D category-level compatibility test draws inspira-
tion from back-face culling in computer graphics [24]. The key
idea is that when observing an object, the winding order of
triplet of keypoints seen in the image (roughly speaking: if the
points are arranged in clockwise or counterclockwise order)
must be consistent with the arrangement of the corresponding
triplet of keypoints in the CAD models. Therefore, we for-
mulate a test by checking whether the observed winding order
matches our expectation from the CAD models. In this section,
we first define the notion of 2D and 3D winding orders, as
well as the visibility and covisibility regions (camera locations
where triplets of points are covisible); then we introduce
a 3-invariant involving winding orders; finally, we combine
winding orders and covisibility regions to develop a 2D-3D
category-level compatibility test.

2D Winding Orders.
Winding orders refer to whether an ordered triplet of pro-

jected points are arranged in a clockwise or counterclockwise
order. For example, if we enumerate the points in Fig. 5 in
ascending order of their indices (i.e., 1, 2, 3), camera 1 sees
points in counterclockwise order, while camera 2 sees them
in clockwise order.

Definition 9 (2D Winding Order). Given three 2D image
points p2D,i, p2D,j , and p2D,m where i < j < m, their winding
order is the orientation {clockwise, counterclockwise} of points
when enumerating them in the order i! j ! m.

The following proposition allows computing the 2D winding
order algebraically (proof in Appendix E).

Proposition 10 (2D Winding Order Computation). Assume
three non-collinear 2D image points p2D,i, p2D,j , and p2D,m,

Fig. 5. Illustration of the concept of winding orders on a cube with three
keypoints (in yellow) on its surface. The cube is opaque, but shown as semi-
transparent for visualization. The plane cutting through all three keypoints
(blue) has its normal n pointing outwards from the cube, following eq. (20).
Camera 1 is in front of the plane, and the observed 2D winding order (Camera
1 View) is counterclockwise (enumerating in the order 1 ! 2 ! 3), following
the right-hand rule with thumb pointing towards the viewer. Camera 2 is
behind the plane, and would observe a clockwise winding order. The only
feasible winding order is counterclockwise as observed by Camera 1, since
the keypoints would be occluded by the cube in Camera 2.

then the winding order W can be computed as:

W =

(
clockwise if V > 0

counterclockwise otherwise
(19)

where V = det
�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
and det(·)

denotes the matrix determinant.

In words, Proposition 10 states that the 2D winding order
can be calculated from the signed area of the parallelogram
formed by p2D,j � p2D,i and p2D,m � p2D,i.

Half-spaces and 3D Winding Orders. While Proposi-
tion 10 provides a simple way to compute the winding order
for a triplet of 2D image points, towards our 2D-3D category-
level invariant, we need to establish a notion of winding order
also for the 3D shape keypoints on a CAD model. In the
following we show that the winding order for a triplet of 3D
points can be uniquely determined given the location of the
camera. To develop some intuition, consider Fig. 5, where we
have three 3D keypoints on the faces of a cube. The plane
passing across the triplet of 3D keypoints divides the space
into two half-spaces. Theorem 11 below shows that, whenever
the camera lies within one of the half-spaces, only one winding
order is possible. Therefore, if the keypoints are only covisible
by camera locations in one of the half-spaces, their winding
order is uniquely determined.

Let us formally define the half-spaces induced by the triplet
plane. Let b

k
i , b

k
j , and b

k
m (i < j < m) be three model

keypoints on the k-th CAD model. Define the triplet normal

8

vector in the model’s frame as follows (cf. n in Fig. 5):

n
k
i,j,m = (b

k
j � b

k
i)⇥ (b

k
m � b

k
i) (20)

So the triplet plane equation is: (o� b
k
i) ·nk

i,j,m = 0 for any
o 2 R3. If (o�b

k
i) ·nk

i,j,m > 0 (resp. (o�b
k
i) ·nk

i,j,m < 0), o
lies in the positive (resp. negative) half-space. In this section,
one can think about o as the optical center of the camera in
the CAD model’s frame, hence the inequalities above capture
which half-space the camera is located in.

The following theorem connects winding order with the two
half-spaces created by the triplet plane (proof in Appendix F).

Theorem 11 (Half-spaces and 3D Winding Orders). Under
perspective projection per eq. (3) with zero noise (✏2D,i =

✏2D,j = ✏2D,m = 0), the following equality holds:

sgn ((o� b
k
i) · nk

i,j,m)

=� sgn
�
det
⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
(21)

where sgn(·) is the signum function.

The theorem states that the half-space the camera is lo-
cated in (sgn ((o� b

k
i) · nk

i,j,m)) uniquely determines the 2D
winding order of the projection of the 3D points. This is
not informative if the camera can be anywhere, since both
winding orders are possible. In the following, we use the
idea of covisibility regions to restrict potential locations of the
camera, such that we can associate a possibly unique winding
order to triplets of 3D keypoints.

Visibility and Covisibility Regions. Visibility and cov-
isibility regions describe the set of camera locations from
which keypoints are visible. The 3D object observed by the
camera is assumed to be opaque, hence a keypoint visible
from one viewpoint, might not be visible from another, due
to self-occlusions. Fig. 5 demonstrates this concept: due to
self-occlusions, the three keypoints on the cube are visible to
Camera 1, but occluded (i.e., not visible) in Camera 2.

We now define the visibility region of keypoints on a shape,
following the standard definition [39].

Definition 12 (Visibility Region). The visibility region of a
keypoint bki is the set of 3D points {o} such that line segments
connecting o and b

k
i do not intersect the k-th shape model.

We also define covisibility regions for keypoints triplets,
which are the 3D space in which all three keypoints are visible.

Definition 13 (Covisibility Region). The covisibility region of
a triplet of keypoints b

k
i , bkj , and b

k
m is the intersection of the

visibility region of each keypoint.

Fig. 6(b) shows visibility and covisibility regions surround-
ing the Q7-SUV model from the ApolloScape dataset for
selected triplets of keypoints. For the triplet (0, 1, 8), their
covisibility regions are to the front of the car, whereas for
(12, 14, 17), their covisibility regions are to the left of the car.
Notice how the relative positions between triplet half-spaces
and covisibility regions affect the visible winding orders; see
Fig. 6(c). The plane formed by (0, 1, 8) cuts through their
covisibility regions, hence both winding orders are visible.
For (12, 14, 17), their covisibility regions are on one side
of the keypoints plane, so the only visible winding order is
clockwise. This observation is formalized below.

Corollary 14 (Covisibility-constrained 3D Winding Or-
ders). The projection of a triplet of 3D keypoints b

k
i , bkj , and

b
k
m is arranged in counterclockwise winding order (following

Definition 9) if and only if

{o 2 R3 | (o� b
k
i) · nk

i,j,m > 0,o 2 C} 6= ? (22)

where C is the covisibility region of b
k
i , bkj , and b

k
m on the

k-th shape. Similarly, they can be viewed in clockwise winding
order if and only if

{o 2 R3 | (o� b
k
i) · nk

i,j,m < 0,o 2 C} 6= ? (23)

This corollary follows directly from Proposition 10, Theo-
rem 11, and Definition 13. Remarkably, the two feasibility
problems in eqs. (22) and (23) and can be solved a priori,
since they only depend on the triplets of 3D keypoints and their
normal. For polyhedral shapes, the constraint o 2 C can be
expressed via linear constraints; in addition, if we replace the
strict inequalities in eqs. (22) and (23) with non-strict ones and
replace zeros with a small positive constant, the problems can
be solved via linear programming. For complex shapes, we can
check the conditions in eqs. (22) and (23) by splitting the space
around the CAD models into voxels (i.e., we discretize the set
of possible o) and ray tracing the keypoint to check visibility
(see Appendix H). In summary, given a CAD model and for
each triplet of 3D keypoints, using eqs. (22) and (23) we are
able to predict if a covisible triplet will produce clockwise or
counterclockwise keypoint projections.

Definition 15 (Feasible Winding Orders Dictionary). For
shape k, its feasible winding orders dictionary Wk :

{1, . . . , N}3 ! P({�1,+1}) (where P(·) denotes the power
set, i.e., {+1,�1,±1, ;}) is defined as

Wk(i, j,m) = {sgn ((o� b
k
i) · nk

i,j,m) | 8o 2 C} (24)

where {sgn ((o�bki)·nk
i,j,m) |8o 2C} is empty if both eq. (22)

and eq. (23) are false (i.e., when the triplet is never covisible);
it contains +1 if (22) is true; it contains �1 if (23) is true;
it contains both +1 and �1 if both (22) and (23) are true.

We are now ready to define our generalized 3-invariant and
the corresponding compatibility test.

2D-3D Invariant and Compatibility Test. We solve the
two feasibility problems (22) and (23) for all triplets and CAD
models and obtain a dictionary of feasible winding orders. In
essence, each dictionary serves as a compatibility check for a
single shape: for observed keypoints p2D,i, p2D,j , and p2D,m,
if the observed winding orders are not in Wk(i, j,m), then the
triplets are not compatible. However, this dictionary is only for
a single shape. To formulate a 2D-3D category-level invariant,
we need to create a dictionary of feasible winding orders for
all K shapes. We address this in Proposition 16 below.

Proposition 16 (2D-3D Category-level Invariant and Com-
patibility Test). Assume the keypoints in eq. (3) are generated
by one of the shapes {1, . . . ,K}, that the reprojection noise
is bounded by � (i.e., k✏2D,ik�, k✏2D,jk �, k✏2D,mk �),
and that � is small enough for Theorem 11 to hold true; then

9

Fig. 6. Visualization of 3D winding orders of three triplets of keypoints on the model Q7-SUV from the ApolloScape dataset. (a) CAD model with keypoints.
Red points represent the selected keypoint triplets, while yellow planes indicate the planes formed by the triplets. Arrows point towards the half-space in
which the triplets are covisible. Triplet (0, 1, 8) can be viewed in both clockwise and counterclockwise winding order in their covisibility region. Triplet (12,
14, 17) can be only viewed in counterclockwise winding order. Triplet (9, 39, 44) cannot be viewed in either winding order, as their covisibility region is
empty. (b-c) Winding orders and visibility of the triplets in a volume surrounding the car. The top row (b) shows visibility of the keypoints on a slice along
the xz-plane. Color-coded values represent how many keypoints are visible in the triplet; covisibility regions are shaded in yellow. The bottom row (c) shows
winding orders of the triplets in the covisibility region, with beige denoting counterclockwise, blue clockwise, and gray corresponding to cases where the
covisibility region is empty. The visibility region and winding order plots are generated following the ray tracing method described in Appendix H.

the functions (f2D,F2D) is a 3-invariant for eq. (3), with

f2D(p2D,i,p2D,j ,p2D,m)

.
= det

�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
(25)

F2D(✓i,✓j ,✓m) =

K[

k=1

Wk(i, j,m) (26)

where ✓· = {bk· | k = 1, . . . ,K} and Wk is the winding
order dictionary for shape k, as per Definition 15. Therefore,
a triplet of measurements p2D,i,p2D,j and p2D,m is compatible
if f2D(p2D,i,p2D,j ,p2D,m) 2 F2D(✓i,✓j ,✓m).

Intuitively, the proposition states that the observed winding
order must match at least one of the winding orders contained
in the feasible winding orders dictionary of all shapes. The
non-compatible triplets from Proposition 16 are points with
noise so large that the measured winding orders become
inconsistent with the models. Under technical conditions (dis-
cussed in Appendix G), Proposition 16 holds true even when
keypoints are generated by convex combinations of bki .

VI. STAGE II: CERTIFIABLY OPTIMAL SOLVERS FOR
CATEGORY-LEVEL PERCEPTION

While Stage 1 serves the purpose of filtering out a large
fraction of gross outliers (without even computing an esti-
mate), Stage 2 aims to use the remaining measurements to
estimate the pose and shape parameters. In this section, we
develop certifiably optimal solvers for Problem 1 and 2 in
the outlier-free case (i.e., assuming that ROBIN removed all
the outliers). In Section VII, we further improve robustness
by incorporating a graduated non-convexity scheme to handle
potential left-over outliers in the measurements after ROBIN.

A. Certifiably Optimal Solver for Outlier-free
3D-3D Category-Level Perception

We show how to solve Problem 1 in the outlier-free case,
where the noise ✏3D,i is assumed to follow a zero-mean
Gaussian distribution. In the outlier-free case, a standard

formulation for the pose and shape estimation problem leads
to a regularized non-linear least squares problem:

min
R2SO(3),

t2R3,1Tc=1

NX

i=1

wi

�����p3D,i �R

KX

k=1

ckb
k
i � t

�����

2

+� kck2 (3D-3D)

where the first summand in the objective minimizes the
residual error w.r.t. the generative model (2) (wi � 0, i =

1, . . . , N are given weights), and the second term provides
an `2 regularization (a.k.a. Tikhonov regularization [101])
of the shape coefficients c (controlled by the user-specified
parameter � � 0). Note that for mathematical convenience we
replaced the constraint c 2 �K with the constraint 1T

c = 1,
where 1 is a vector with all entries equal to 1; in other
words, we force the shape coefficients to sum-up to 1 but
allow them to be negative. Numerically, the regularization term
ensures the problem is well-posed regardless of the number of
shapes in the library (otherwise, the problem would be under-
constrained when K is large). From the probabilistic stand-
point, problem (3D-3D) is a maximum a posteriori estimator
assuming that the keypoints measurement noise follows a zero-
mean Gaussian with covariance 1

wi
I3 (where I3 is the 3-by-3

identity matrix) and we have a zero-mean Gaussian prior with
covariance 1

� over the shape parameters c (see Appendix I).
Problem (3D-3D) is non-convex due to the product between
rotation R and shape parameters c in the objective, and due
to the nonconvexity of the constraint set SO(3) the rotation
R is required to belong to, see e.g., [81]. Therefore, existing
approaches based on local search [56], [34], [77] are prone to
converge to local minima corresponding to incorrect estimates.

3D-3D solver overview. We develop the first certifiably op-
timal algorithm to solve (3D-3D). Towards this goal we show
that (i) the translation t in (3D-3D) can be solved in closed
form given the rotation and shape parameters (Section VI-A1),
(ii) the shape parameters c can be solved in closed form given
the rotation (Section VI-A2), and (iii) the rotation can be
estimated (independently on shape and translation) using a
tight semidefinite relaxation (Section VI-A3).

10

1) Closed-form Translation Estimation: By inspection
of (3D-3D), we observe the vector t is unconstrained and
appears quadratically in the cost function. Therefore, for any
choice of R and c, the optimal translation can be computed
in closed-form as:

t
?
(R, c) = yw �R

PK
k=1

ckbk,w (27)

where

yw, 1

(
PN

i=1
wi)

PN
i=1

wip3D,i, bk,w, 1

(
PN

i=1wi)

PN
i=1

wib
k
i ,

are the weighted centroids of p3D,i and b
k
i ’s. This manipulation

is common in related work, e.g., [125], [117].
2) Closed-form Shape Estimation: Substituting the optimal

translation (27) (as a function of R and c) back into (3D-3D),
we obtain an optimization that only depends on R and c:

min
R2SO(3)

1Tc=1

PN
i=1

���ȳi �R
PK

k=1
ckb̄ki

���
2

+ � kck2 (28)

where

ȳi ,
p
wi(p3D,i � yw), b̄

k
i , pwi(b

k
i � bk,w), (29)

are the (weighted) relative positions of p3D,i and b
k
i w.r.t. their

corresponding weighted centroids. Using the fact that the `2
norm is invariant to rotation, problem (28) is equivalent to:

min
R2SO(3)

1Tc=1

PN
i=1

���RT
ȳi �

PK
k=1

ckb̄ki

���
2

+ � kck2 (30)

We can further simplify the problem by adopting the fol-
lowing matrix notations:

ȳ =
�
ȳ
T
1
, . . . , ȳT

N

�T 2 R3N (31)

B̄ =

2

64
b̄
1
1

· · · b̄
K
1

...
. . .

...
b̄
1

N · · · b̄
K
N

3

75 2 R3N⇥K (32)

which allows rewriting (30) in the following compact form:

min
R2SO(3)

1Tc=1

��B̄c� (IN ⌦R
T
)ȳ
��2 + � kck2 (33)

Now the reader can again recognize that —for any choice of
R— problem (33) is a linearly-constrained linear least squares
problem in c, which admits a closed-form solution.

Proposition 17 (Optimal Shape). For any choice of rotation
R, the optimal shape parameters that solve (33) can be
computed in closed form as:

c
?
(R) = 2GB̄

T
(IN ⌦R

T
)ȳ + g (34)

where we defined the following constant matrices and vectors:

H̄ , 2(B̄
T
B̄ + �IK) (35)

G , H̄
�1 � H̄

�111T
H̄

�1

1TH̄�11
, g , H̄

�11

1TH̄�11
(36)

3) Certifiably Optimal Rotation Estimation: Substituting
the optimal shape parameters (34) (as a function of R) back
into (33), we obtain an optimization that only depends on R:

min
R2SO(3)

��M(IN ⌦R
T
)ȳ + h

��2 (37)

where the matrix M 2 R(3N+K)⇥3N and vector h 2 R3N+K

are defined as:

M ,


2B̄GB̄
T � I3N

2
p
�GB̄

T

�
h ,


B̄g

g

�
(38)

Problem (37) is a quadratic optimization over the non-convex
set SO(3). It is known that SO(3) can be described as a set
of quadratic equality constraints, see e.g., [106], [81] or [117,
Lemma 5]. Therefore, we can succinctly rewrite (37) as a
quadratically constrained quadratic program (QCQP).

Proposition 18 (Optimal Rotation). The category-level rota-
tion estimation problem (37) can be equivalently written as a
quadratically constrained quadratic program (QCQP):

min
r̃2R10

r̃
T
Qr̃ (39)

s.t. r̃
T
Air̃ = 0, 8i = 1, . . . , 15

where r̃ , [1, vec (R)
T
]
T 2 R10 is a vector stacking all the

entries of the unknown rotation R in (37) (with an additional
unit element), Q 2 S10 is a symmetric constant matrix
(expression given in Appendix J), and Ai 2 S10, i = 1, . . . , 15
are the constant matrices that define the quadratic constraints
describing the set SO(3) [117, Lemma 5].

While a QCQP is still a non-convex problem, it admits a
standard semidefinite relaxation, described below.

Corollary 19 (Shor’s Semidefinite Relaxation). The follow-
ing semidefinite program (SDP) is a convex relaxation of (39):

min
X2S10

tr (QX) (40)

s.t. tr (A0X) = 1,

tr (AiX) = 0, 8i = 1, . . . , 15

X ⌫ 0

Moreover, when the optimal solution X
? of (40) has rank 1, it

can be factorized as X
?
=


1

vec (R
?
)

�
[1 vec (R

?
)] where

R
? is the optimal rotation minimizing (37).

The relaxation entails solving a small SDP (10⇥ 10 matrix
size, and 16 linear equality constraints), hence it can be
solved in milliseconds using standard interior-point methods
(e.g., MOSEK [64]). Similar to related quadratic problems
over SO(3) [81], [121], [116], [11], [28], the relaxation (40)
empirically produces rank-1 —and hence optimal— solutions
in common problems. Even when the relaxation is not tight,
the relaxation allows computing an estimate and a bound on its
suboptimality (see Appendix L). The proposed solution falls
in the class of certifiable algorithms (see [6] and Appendix A
in [121]), since it allows solving a hard (non-convex) problem
efficiently and with provable a posteriori guarantees.

11

4) Summary: The results in this section suggest a simple
algorithm to compute a certifiably optimal solution to the pose
and shape estimation problem (3D-3D): (i) we first estimate
the rotation R

? using the semidefinite relaxation (40); (ii) we
retrieve the optimal shape c

?
(R

?
) given the optimal rotation

using (34); (iii) we retrieve the optimal translation t
?
(R

?, c?)
using (27). We call the resulting algorithm PACE3D? (Pose and
shApe estimation for 3D-3D Category-level pErception).

B. Certifiably Optimal Solver for Outlier-free
2D-3D Category-Level Perception

We now show how to solve Problem 2 in the outlier-free
case, where the noise ✏2D,i in the generative model (3) follows
a zero-mean isotropic Gaussian distribution. In such a case, the
maximum a posteriori estimator for Problem 2 becomes:

min
R2SO(3)

t2R3,c2�K

NX

i=1

wi

�����p2D,i�⇡

R

KX

k=1

ckb
k
i + t

!�����

2

+ � kck2

(41)
where � kck2 with � � 0 is an `2 regularization on the
shape parameters, and wi are given non-negative weights. Eq.
(41) minimizes the geometric reprojection error and belongs
to a class of optimization problems known as fractional
programming because the objective in (41) is a sum of rational
functions. Unfortunately, it is generally intractable to obtain a
globally optimal solution for fractional programming [85]. In
fact, even if c is known in (41), searching for the optimal
(R, t) typically resorts to branch-and-bound [35], [68], which
runs in worst-case exponential time.

To circumvent the difficulty of fractional programming
caused by the geometric reprojection error, we adopt an
algebraic reprojection error that minimizes the point-to-line
distance between each 3D keypoint (i.e., R

PK
k=1

ckbki + t)
and the bearing vector emanating from the camera center to
the 2D keypoint (i.e., the bearing vector vi = p̃2D,i/kp̃2D,ik,
where p̃2D,i

.
= [p

T
2D,i, 1]

T is the homogenization of p2D,i):

min
R2SO(3)

t2R3,c2�K

NX

i=1

wi

�����R
KX

k=1

ckb
k
i + t

�����

2

Wi

+ � kck2 (2D-3D)

where Wi := I3�viv
T
i and kpk2Wi

:= p
T
Wip computes the

distance from a given 3D point p to a bearing vector vi. The
point-to-line objective in (2D-3D) has been adopted in other
works, including [87], [120]. Below, we omit the weights wi,
since they can be directly included in the matrix Wi.

2D-3D solver overview. We develop the first certifiably
optimal algorithm to solve problem (2D-3D). We show that
(i) the translation t in (2D-3D) can be solved in closed form
given the rotation and shape parameters (Section VI-B1), and
(ii) the shape parameters c and the rotation R can be estimated
using a tight semidefinite relaxation (Section VI-B2).

1) Closed-form Translation Estimation: Similar to Section
VI-A1, our first step is to algebraically eliminate the transla-
tion t in (2D-3D). By deriving the gradient of the objective
of (2D-3D) and setting it to zero, we obtain that

t
?
= �

NX

i=1

fWiR

KX

k=1

ckb
k
i

!
(42)

where W
.
=
PN

i=1
Wi and fWi

.
=W

�1
Wi. Inserting (42) back

into (2D-3D), we get the following translation-free problem

min
R2SO(3)

c2�K

NX

i=1

������
Rsi(c)�

NX

j=1

fWjRsj(c)

������

2

Wi

+ � kck2 (43)

where we compactly wrote si(c) =
PK

k=1
ckbki .

2) Certifiably Optimal Shape and Rotation Estimation:
In this case, it is not easy to decouple rotation and shape
parameters as we did in Section VI-A2. Therefore, we adopt
a more advanced machinery to globally optimize R and c

together. Towards this goal, we observe that problem (43) is
in the form of a polynomial optimization problem (POP), i.e.,
an optimization problem where both objective and constraints
can be written using polynomials:

min
x2Rd

p(x) (44)

s.t. hi(x) = 0, i = 1, . . . , lh
gj(x) � 0, j = 1, . . . , lg

where x = [vec (R)
T , cT]T 2 Rd, d = K + 9, denotes the

vector of unknowns, p(x) is a degree-4 objective polynomial
corresponding to the objective in (43), hi(x), i = 1, . . . , lh =

16 are polynomial equality constraints (including R 2 SO(3)

and 1T
c = 1), and gj(x), j = 1, . . . , lg = K + 1 are

polynomial inequality constraints (e.g., ck � 0 for all k).
p(x) in (44) has degree four, which prevents us from applying
Shor’s semidefinite relaxation as in Corollary 19. However,
writing (43) in the form (44) allows us to leverage a more
general semidefinite relaxation technique called Lasserre’s
hierarchy of moment and sum-of-squares relaxations [49], [72]
to solve (43) to certifiable global optimality.

Corollary 20 (Order-2 Lasserre’s Moment Relaxation). The
following multi-block SDP is a convex relaxation of (39):

min
X=(X0,X1,...,XK+1)

2Sn0⇥Sn1⇥...⇥SnK+1

hC,Xi (45)

s.t. A(X) = b, X ⌫ 0

where X0 is the moment matrix of size n0 =
�
K+11

2

�
,

X1, . . . ,XK+1 are the so called localizing matrices (of size
ni < n0 for i � 1) arising from the inequality constraints
gj in (44) and the additional constraint c

T
c  1, X ⌫ 0

indicates each element of X , i.e., Xi, i = 0, . . . ,K + 1, is
positive semidefinite, C = (C0,C1, . . . ,CK+1) are known
matrices with Ci = 0 for i � 1, and A(X) = b collects
all linear equality constraints on X (each scalar constraint is
written as

PK+1

i=0
hAij ,Xii = bj for j = 1, . . . ,m).

Moreover, when the optimal solution X
? of (45) is such

that X
?
0

has rank 1, then X
?
0

can be factorized as X
?
0

=

[x
?
]2[x

?
]
T
2

, where x
?

= [vec (R
?
)
T , (c?)T]T is a globally

optimal for (43), and [x
?
]2 denotes the vector of monomials

in the entries of x? of degree up to 2.

We refer the interested reader to [119, Section 2] for details
about how to generate (A, b,C) from the POP formulation
(44). In practice, there exists an efficient Matlab implemen-
tation4 that automatically generates the SDP relaxation (45)

4https://github.com/MIT-SPARK/CertifiablyRobustPerception

https://github.com/MIT-SPARK/CertifiablyRobustPerception

12

given a POP (44). The reader can observe that the SDP (45)
is conceptually the same as the SDP (40) except that (45) has
more than one positive semidefinite matrix decision variable.
Appendix N contains more details about Lasserre’s hierarchy
optimality certificates and the rounding procedure to extract
an estimate from the solution of the SDP (45).

3) Summary: We solve problem (2D-3D) by (i) solving the
SDP (45) using MOSEK [64] and obtaining an estimate (bR, bc)
and the corresponding suboptimality gap ⌘, using the rounding
procedure in Appendix N; then (ii) we compute t̂ from (42). If
⌘ = 0, we certify that (bR, t̂, bc) is a globally optimal solution
to (2D-3D). We call this approach PACE2D? (Pose and shApe
estimation for 2D-3D Category-level pErception).

VII. STAGE II (CONTINUED): FURTHER ROBUSTNESS
THROUGH GRADUATED NON-CONVEXITY

While in principle we can use our optimal solvers (PACE3D?

and PACE2D?) directly after Stage 1, the measurements pro-
duced by ROBIN are potentially still contaminated by a few
outliers. These outliers could still hinder the quality of the pose
and shape estimates. Thus, the challenge lies in computing
accurate estimates in the face of those remaining outliers.

Towards this goal, we add a robust loss function —in
particular, a truncated least square loss— to problems (3D-3D)
and (2D-3D), and solve the resulting optimization using a
standard graduated non-convexity (GNC) [9], [115] approach.
At each iteration, GNC alternates between solving a weighted
least squares problem in the form (3D-3D) and (2D-3D) (these
can be solved to certifiable optimality using PACE3D? and
PACE2D?) and updating the weights for each measurement
(which can be computed in closed form [115]). The interested
reader can find more details in Appendix P.

VIII. EXPERIMENTS

This section presents a comprehensive evaluations on our
solvers. First, we showcase the optimality of PACE3D? and
robustness of PACE3D# through experiments on synthetic data
and the PASCAL3D+ dataset [114] (Section VIII-A). Then,
we demonstrate the optimality of PACE2D? and robustness
of PACE2D# through experiments on synthetic datasets (Sec-
tion VIII-B). Finally, we test both PACE3D# and PACE2D# on
ApolloScape, a self-driving dataset [110], [94]. Experiments
with ApolloScape with PACE2D# are run on an AWS EC2
instance with 48 CPUs. All other experiments are run on a
Linux computer with an Intel i9-9920X CPU at 3.5 GHz.

A. Optimality and Robustness of PACE3D? and PACE3D#

Optimality of PACE3D?. To evaluate the performance of
PACE3D? in solving the outlier-free problem (3D-3D), we
randomly simulate K shape models Bk whose points b

k
i ’s

are drawn from an i.i.d. Gaussian distribution N (0, I3). We
sample shape parameters c uniformly at random in [0, 1]K ,
and normalize c such that 1T

c = 1. Then we draw random
poses (R, t) as in [121] and generate the measurements
p3D,i according to the model (2), where the noise ✏3D,i

follows N (0,�2I3) with standard deviation � = 0.01. We
fix N = 100, increase K from 10 up to 2000 and set the
regularization factor � =

p
K/N so that larger regularization

is imposed when K increases and the problem becomes more
ill-posed. We compare PACE3D? with a baseline approach
based on alternating minimization [56], [34], [77] (details
in Appendix M) that offers no optimality guarantees (label:
Altern).

Fig. 7(a) plots the statistics of rotation error (angular dis-
tance between estimated and ground-truth rotations), trans-
lation error, shape parameters error (`2 distance between
estimated and ground-truth translation/shape parameters), as
well as average runtime and relative duality gap (see also
Appendix K for a formal definition). We make the following
observations: (i) PACE3D? returns accurate pose and shape
estimates up to K = 2000, while Altern starts failing at
K = 500. (ii) Although Altern is faster than PACE3D? for small
K (e.g., K < 200), PACE3D? is orders of magnitude faster
than Altern for large K. In fact, PACE3D? solves a fixed-size
SDP regardless of K and the slight runtime increase is due to
inversion of the dense matrix in (35)). (iii) The relaxation (40)
is empirically tight (duality gap < 10

�4), certifying global
optimality of the solution returned by PACE3D?.

Robustness of PACE3D#. To test the robustness of PACE3D#
on outlier-contaminated data, we follow the same data gen-
eration protocol as before, except that (i) when generating
the CAD models, we follow a more realistic active shape
model [19] where we first generate a mean shape B whose
points bi’s are i.i.d. Gaussian N (0, I3), and then each CAD
model is generated from the mean shape by: b

k
i = bi + vi,

where vi follows N (0, r2I3) and represents the intra-class
variation of semantic keypoints with variation radius r; (ii)
we replace a fraction of the measurements p3D,i with arbitrary
3D points sampled according to N (0, I3) and violating the
generative model (2). We compare PACE3D# with two variants:
Clique-PACE3D? (where, after pruning outliers using maximum
clique, PACE3D? is applied without GNC) and GNC-PACE3D?

(where GNC is applied without any outlier pruning), as well as
two variants of the popular iterative reweighted least squares
method: IRLS-TLS and IRLS-GM, where TLS and GM denote the
truncated least squares cost function and the Geman-McClure
cost function [100]. For fair comparison, we use PACE3D?

inside PACE3D#, GNC-PACE3D?, IRLS-TLS, and IRLS-GM when
updating (R, t, c) given fixed weights. We set �3D = 0.05
for outlier pruning and GNC. Fig. 7(b) plots the results under
increasing outlier rates up to 93% when N = 100, K = 10,
and r = 0.1. We make the following observations: (i) IRLS-
TLS quickly fails (at 10% outlier rate) due to the highly non-
convex nature of the TLS cost, while IRLS-GM is robust to 40%

outliers. (ii) GNC-PACE3D? alone already outperforms IRLS-TLS
and IRLS-GM and is robust to 60% outliers. (iii) With our
maximum-clique outlier pruning, the robustness of PACE3D#
is boosted to 92%, a level that is comparable to cases when
the shapes are known (e.g., [121]). In addition, outlier pruning
speeds up the convergence of GNC-PACE3D? (cf. the runtime
plot for GNC and PACE3D# in Fig. 7(b)). (iv) Even without
GNC, the outlier pruning is so effective that PACE3D? alone is
able to succeed with up to 90% outliers, albeit the estimates
are typically less accurate than PACE3D#. In fact, looking at
the clique inlier rate plot (yellow lineplot in Fig. 7(b)), the
reader sees that the set of measurements after maximum clique
pruning is almost free of outliers, explaining the surprising
performance of Clique-PACE3D?. In Appendix Q-A, we show

13

(a) Performance of PACE3D? on outlier-free synthetic data: N = 100.

(b) Robustness of PACE3D# against increasing outliers on synthetic data: N = 100, K = 10, r = 0.1.

(c) Robustness of PACE3D# against increasing outliers on the car category in the PASCAL3D+ dataset [114]: N = 12, K = 9.

(d) Qualitative results of IRLS-GM, IRLS-TLS, GNC, and PACE3D# on a PASCAL3D+ instance with 70% outlier rate.

Fig. 7. Performance of PACE3D? and PACE3D# compared with baselines in simulated experiments. (a) PACE3D? compared with alternating minimization
(Altern) on synthetic outlier-free data with N = 100 and K increasing from 10 to 2000; (b) PACE3D# and variants (Clique-PACE3D? and GNC), compared
with two variants of iterative reweighted least squares (IRLS-GM and IRLS-TLS) [100] on synthetic outlier-contaminated data with N = 100, K = 10, and
outlier rates up to 93%; (c) same as (b) but using the car category CAD models from the PASCAL3D+ dataset [114], with N = 12, K = 9, and outlier
rates up to 80%. Each boxplot and lineplot summarizes 50 Monte Carlo random runs. (d) Qualitative results of IRLS-GM, IRLS-TLS, GNC, and PACE3D# on
a PASCAL3D+ instance with 70% outlier rate. Blue meshes represent the ground-truth shape, and yellow meshes represent the pose and shape estimated by
each model. Red points represent outliers. In this case, both GNC and PACE3D# succeed, while IRLS-GM and IRLS-TLS failed.

extra results for r = 0.2 and K = 50, which further confirm
PACE3D#’s robustness with up to 90% outliers.

Robustness on PASCAL3D+. For a simulation setup that is
closer to realistic scenarios, we use the CAD models from the
car category in the PASCAL3D+ dataset [114], which contains
K = 9 CAD models with N = 12 semantic keypoints.
We randomly sample (R, t, c) and add noise and outliers as
before, and compare the performance of PACE3D# with other
baselines, as shown in Fig. 7(c). The dominance of PACE3D#
over other baselines, and the effectiveness of outlier pruning is
clearly seen across the plots. PACE3D# is robust to 70% outliers
(see Fig. 7(d) for a qualitative example), while other baselines
break at a much lower outlier rate. Note that at 80% outlier
rate, there are only two inlier semantic keypoints, making it
pathological to estimate shape and pose.

B. Optimality and Robustness of PACE2D? and PACE2D#

Optimality of PACE2D?. To evaluate the performance of
PACE2D? in solving the outlier-free problem (41), we randomly
simulate K shapes Bk whose points b

k
i ’s are drawn from an

i.i.d. Gaussian distribution N (0, I3). For the shape parameters
c, we use two different sampling processes: one where we
sample c uniformly at random in the probability simplex �K ,
and the other where we sample c as a one-hot vector. We
draw random poses (R, t) such that the points lie in front of
the camera, and generate the measurements p2D,i according to
the model (3), where the noise ✏2D,i follows N (0,�2I2) with
standard deviation � = 0.01. We test both the proposed solver
PACE2D?, as well as a variant that forces the shape vector to be
a one-hot vector; the latter can be easily obtained by adding
extra constraints in the POP (44) as discussed in Appendix O

14

(a) Performance of PACE2D?(OH) and PACE2D? on outlier-free synthetic data: N = 8; c sampled from �K uniformly at random.

(b) Performance of PACE2D?(OH) and PACE2D? on outlier-free synthetic data: N = 8; c sampled as a random one-hot vector.

(c) Robustness of PACE2D# (OH) against increasing outliers on synthetic data: N = 10, K = 3; c sampled as a random one-hot vector.

(d) Qualitative results of MS-PnP, Zhou-Robust, GNC-PACE2D? and PACE2D# on a test instance with 30% outlier rate.

Fig. 8. Performance of PACE2D?(OH), PACE2D?, and PACE2D# compared with baselines in simulated experiments. (a) PACE2D?(OH) and PACE2D? compared
with MS-PnP, Zhou, and Shape? on synthetic outlier-free data with varying number of shapes, where c is sampled uniformly at random from �K . (b) same
as (a) but with c being a random one-hot vector. (c) PACE2D# (OH) and variants compared with MS-PnP, RANSAC-MS-PnP and Zhou-Robust on synthetic
outlier-contaminated data with varying outlier rates. (d) Qualitative results of MS-PnP, Zhou-Robust, GNC-PACE2D?, and PACE2D# on an instance with 30%
outlier rate. Blue meshes represent the ground-truth shape, and yellow meshes represent the pose and shape estimated by each model. Red rays indicate
outliers (bearing vectors originated from the camera center). In this case, PACE2D# succeeds while the other methods fail.

(label: PACE2D?(OH)). We compare both variants against (i) a
baseline approach based on a local solver optimizing (41),
starting from an initial guess obtained by running EPnP [52] on
the mean shape (label: MS-PnP), (ii) a solver based on a convex
relaxation using the weak perspective camera model [126]
(label: Zhou), and (iii) a solver based on a tighter relaxation
with the weak perspective model [117] (label: Shape?).

Fig. 8(a) and (b) respectively show the relevant statistics
for the case where c is sampled uniformly at random from
�K (Case 1) and the case where c is a one-hot vector
(Case 2). We report statistics for the rotation, translation,
and shape errors. We also show the average runtime and
relative duality gap. In Case 1 (Fig. 8(a)), we observe that

PACE2D? consistently outperforms all the other techniques. Not
surprisingly, PACE2D?(OH) fails when K � 2, as it returns a
one-hot c, while the ground truth shape is a generic point
in the probability simplex. While Zhou and Shape? perform
similarly at K = 1, Shape? has lower errors at higher shape
counts. Both Zhou and Shape? perform significantly worse
than PACE2D?, since the weak perspective projection model is
only an approximation of the actual (fully perspective) camera
geometry. In Case 2 (Fig. 8(b)), we observe that MS-PnP fails
for K � 2, while both PACE2D?(OH) and PACE2D? return
accurate estimates for all K values, consistently outperforming
all baselines. As expected, PACE2D?(OH) outperforms PACE2D?

in this case. Notably, PACE2D?(OH) returns the correct shape

15

estimate and achieves zero shape error at all K (see the
shape error plot of Fig. 8(b), where we use a linear scale
to better show zero errors). In both cases, the duality gap for
PACE2D?(OH) and PACE2D? stays below 10

�8, indicating that
the relaxation is empirically tight. Unfortunately, in terms of
runtime, both PACE2D?(OH) and PACE2D? scale poorly with the
number of shapes, leading to runtimes in the order of minutes
already for a handful of shapes.

Robustness of PACE2D#. To test the robustness of PACE2D#,
we use a different data generation procedure to enable the use
of ROBIN. We first generate K octahedra, center-aligned at the
origin, with vertices sampled component-wise in [0.5, 3] m.
The use of octahedra (convex shapes with known face planar
equations) allows us to solve for sets of feasible winding
orders —following Corollary 14— using linear programs (see
Appendix H). We sample shape parameters c as random one-
hot vectors. Then we draw random poses (R, t) such that the
resulting camera locations lie on a sphere centered at the origin
with radius of 5 m. For each camera location, we randomly
sample b

k
i , i = 1 . . . N from each octahedron such that br ·Nc

of them lie on the weighted octahedron’s visible faces where
r is the outlier ratio. For the remaining b

k
i , we sample them

from the nonvisible faces of the octahedron. We generate the
measurements p2D,i according to eq. (3), where the noise ✏2D,i

follows N (0,�2I2) with � = 0.01. For the p2D,i generated
by nonvisible b

k
i ’s, we replace their noise term ✏2D,i with

arbitrary 2D points violating the generative model (3). The
regularization factor � is set to 0.01.

Since the shape is generated as a one-hot vector, we use
PACE2D# (OH) and consider two variants: GNC-PACE2D? (OH)
(where GNC is applied to PACE2D?(OH) without ROBIN), and
Clique-PACE2D? (where PACE2D? is applied after ROBIN without
GNC). We also compare against Zhou-Robust, which is a robust
version of Zhou’s solver from [126], MS-PnP and RANSAC-MS-
PnP where we wrap MS-PnP in a standard RANSAC loop, with
the same inlier threshold as PACE2D# (OH). Fig. 8(c) plots the
results under increasing outlier rates. PACE2D# (OH) remains
robust up to 20%, while GNC-PACE2D? (OH), MS-PnP, RANSAC-
MS-PnP, and Zhou-Robust already exhibit large median errors
at 10% outlier rates. Interestingly, at around 10%, Clique-
PACE2D? remains robust while GNC-PACE2D? (OH) starts to
show severe failures. This remarks the effectiveness of ROBIN
in filtering out outliers, also shown in the clique inlier rate
plot in Fig. 8(c). Similar to PACE3D#, ROBIN improves the
convergence rate of GNC; see runtime curves of PACE2D# (OH)
and GNC-PACE2D? (OH) in Fig. 8 (c). Fig. 8(d) reports quali-
tative results on an simulated instance with 30% outlier rate;
in this case, PACE2D# succeeds while the other methods fail.
These results underline that 2D-3D category-level perception
is a much harder problem compared to its 3D-3D counterpart.
The proposed algorithms, while being competitive against
baselines, are still slow and only robust to a small fraction
of outliers. In certain cases, we have also observed RANSAC-
MS-PnP to have a more graceful degradation for increasing
outliers, see results in Appendix Q-B.

C. Vehicle Pose and Shape Estimation on ApolloScape

Setup and Baselines. We evaluate PACE3D# and PACE2D# on
the ApolloScape dataset [110], [94]. The ApolloScape self-driving

dataset is a large collection of multi-modal data collected in
four different cities in China under varying lighting and road
conditions [110]. For our experiments, we specifically use the
subset of ApolloScape named ApolloCar3D. ApolloCar3D consists
of high-resolution (3384 ⇥ 2710) images taken from the main
ApolloScape dataset, with additional 2D annotations of semantic
keypoints, ground truth poses, and 3D CAD models of car
instances in each frame. The dataset contains a total of 5277
images, with an average of 11.7 cars per image, and a total of
79 ground-truth CAD models [94]. For each car, a total of 66
semantic keypoints were labeled on 2D images. In addition,
the ground truth CAD model (out of the 79 models) is provided
for each vehicle. Note this corresponds to having a one-hot
vector for the ground-truth c in eqs. (2) and (3).

Fig. 9. We pass ground-truth annotated keypoints to ROBIN, using a winding
order dictionary generated from ray tracing. Green dots represent keypoints
inliers accepted by ROBIN. Red dots represent outliers rejected by ROBIN. In
these four examples, ROBIN correctly rejects mislabelled keypoints. From top
left clockwise: #8 and #49 are switched (with respect to the CAD models);
#61 and #60 are switched; #34 is wrongly placed (should be #26 instead);
#29 is wrongly placed (should be placed below the right tail light).

We compare PACE3D# and PACE2D# (OH) against Deep-
MANTA [15], 3D-RCNN [46], and GSNet [41], three recent
state of the art methods for 3D vehicle pose estimation. We
use the one-hot variant of PACE2D# because the ApolloScape
ground truth shape coefficients are one-hot vectors. For our
experiments, we use the official splits of the ApolloCar3D
dataset. Namely, we use the validation split (200 images) for
all the quantitative experiments shown below, consistent with
the evaluation setups reported in other baseline methods.

We use the 2D semantic keypoints extracted by GSNet [41]
as measurements for PACE2D#. We use the pretrained weights
from [41] and reject keypoints with confidence less than
0.05. For PACE3D#, we additionally retrieve the corresponding
depth from the depth images provided by ApolloScape for
each 2D semantic keypoint; the resulting technique is labeled
PACE3D#-ApolloDepths. For PACE2D#, we learn the dictionary of
feasible winding orders for keypoints from the training set, as
well as by performing ray tracing to keypoints in a volume
surrounding each CAD model (see Appendix H).

Interestingly, when we applied ROBIN on the ground-truth
annotations, we uncovered multiple mislabeled keypoints (see
Fig. 9). This lends further credence to the effectiveness of
ROBIN, and suggests ROBIN may also be helpful in terms
of verifying datasets. While the 2D semantic keypoint an-

16

A3DP-Rel " A3DP-Abs "

mean c-l c-s mean c-l c-s

DeepMANTA [15] 16.0 23.8 19.8 20.1 30.7 23.8
3D-RCNN [46] 10.8 17.8 11.9 16.4 29.7 19.8
GSNet [41] 20.2 40.5 19.9 18.9 37.4 18.4
PACE2D# 14.4 25.5 19.2 9.6 17.5 12.2
PACE3D#-ApolloDepths 28.5 37.4 35.8 24.0 36.4 33.3

PACE2D#-GTKeypoints 31.5 56.7 44.5 17.4 34.1 24.0
PACE2D#-
GTReprojKeypoints 61.2 91.9 91.9 61.2 91.9 91.9

PACE3D#-GTDepths 37.3 44.9 43.5 36.5 43.6 42.6
PACE3D#-GTKeypoints 64.8 86.6 85.0 64.6 86.6 85.0

TABLE I
EVALUATION OF PACE# ON ApolloScape. RESULTS FOR

DEEPMANTA,3D-RCNN, AND GSNET ARE TAKEN FROM [41]. THE
BEST RESULT FOR EACH COLUMN IS HIGHLIGHTED IN BOLDFACE.

notations are provided by ApolloCar3D, the dataset does not
provide the corresponding 3D keypoint annotations on the
CAD models. To obtain the necessary 2D-3D correspondences,
we manually labeled the 66 3D semantic keypoints on the 79
CAD models. We then provide them as the shape library to
PACE3D#. For PACE2D#, we instead select 3 random models,
including the ground truth model, as a shape library, since
using the entire set leads to prohibitive runtime. We use
� = 0.5 and �3D = 0.15 in PACE3D#, and � = 0.001 and
�2D = 0.01 in PACE2D#.

Results. Table I shows the performance of PACE3D# and
PACE2D# against various baselines (qualitative results can be
found in Appendix Q-C). We use two metrics called A3DP-
Rel and A3DP-Abs (for both, the higher the better) following
the same definitions in [94]. They are measures of preci-
sion with thresholds jointly considering translation, rotation,
and 3D shape similarity between estimated cars and ground
truth. A3DP-Abs uses absolute translation thresholds, whereas
A3DP-Rel uses relative ones. The mean column represents
the average A3DP-Abs/Rel over 10 different thresholds. c-l
represents a loose criterion (2.8 m for translation error, ⇡/6
rad for rotation error, and 0.5 for shape similarity), and c-s
represents a strict criterion (1.4 m for translation error, ⇡/12
rad for rotation error, and 0.75 for shape similarity).

Overall, PACE2D# achieves performance comparable but
slightly inferior to learning-based approaches in A3DP-Rel,
while PACE3D# excels in both A3DP-Rel and A3DP-Abs. The
main failure mode of PACE2D# is in its translation estimation:
over 98% of the failures do not meet the translation threshold
only. PACE3D# outperforms the baselines in terms of the mean
and c-s criteria; this is partially expected since we use depth
information, which is not available to the other methods at test
time. In terms of the strict criterion c-s, PACE3D# outperforms
competitors by a large amount, confirming that it can retrieve
highly accurate estimates. When using the loose criterion c-l,
GSNet is slightly better than PACE3D#, suggesting learning-
based techniques may have more graceful failure modes.

Further Ablation. We also provide a final ablation study
on PACE3D# and PACE2D#, to assess the impact of the key-
point quality. For PACE2D#, we test two variants: PACE2D#-
GTKeypoints where ground-truth annotated 2D semantic key-
points are used, and PACE2D#-GTReprojKeypoints where projec-
tions of 3D ground-truth transformed keypoints are used, with
occluded points removed. To assess the impact of depth and
keypoint quality on PACE3D#, we test two variants: PACE3D#-

GSNet Keypoint
Detection

PACE3D# PACE2D#
Max-clique GNC Max-clique GNC

0.45 s 2 ms 0.45 s 5.88 s 535.75 s

TABLE II
TIMING BREAKDOWN FOR PACE2D# AND PACE3D#.

GTDepths uses ground-truth depths obtained by ray-tracing the
GSNet keypoints using ground-truth 3D car models, while
PACE3D#-GTKeypoints uses ground-truth annotated 2D semantic
keypoints with ground-truth depths.

The results are reported in the bottom four rows
of Table I. Both PACE2D#-GTReprojKeypoints and PACE2D#-
GTKeypoints have better performance than PACE2D#, with
PACE2D#-GTReprojKeypoints being significantly better. This in-
dicates that (i) PACE2D# can achieve better performance with
better keypoint detections, and (ii) ground-truth 2D keypoint
annotations in ApolloScape are not entirely consistent with 3D
reprojected keypoints. In terms of PACE3D#, we see PACE3D#-
GTDepths outperforms baselines across all criteria, suggesting
that if accurate depth measurements are available, PACE3D# can
roughly double the performance of state-of-the-art methods in
terms of mean and c-s criteria. PACE3D#-GTKeypoints shows
the results produced by PACE3D# when using ground-truth
keypoint detections and depths: this is the best potential
accuracy PACE3D# could achieve if provided with perfect
keypoint detections. In our tests, the average number of inliers
produced by GSNet is 21.8%,5 showing that there is still a
large margin of improvement for state-of-the-art deep learning
methods for semantic keypoint detection.

Runtime. Table II shows the timing breakdown for PACE3D#
and PACE2D#. We also report the timing for the GSNet
keypoint detection from [41] for completeness. For PACE3D#,
the max-clique pruning is written in C++ and has negligible
runtime, while GNC is implemented in Python. For PACE2D#,
both the maximum hyperclique estimation and GNC are im-
plemented in Python. While data in Table II for PACE2D#
and PACE3D# are from different machines, the order of mag-
nitude difference makes it clear that PACE3D# is significantly
faster than PACE2D# thanks to PACE3D?’s compact semidefinite
relaxation. While PACE2D# is impractically slow for real-
world robotics applications, an optimized implementation of
PACE3D# is amenable to practical applications.

IX. RELATED WORK

This section reviews related work on category-level percep-
tion and outlier-robust estimation.

A. Category-level Perception
Early approaches for category-level perception focus on

2D problems, where one has to locate objects —from human
faces [69] to resistors [19]— in images. Classical approaches
include active contour models [40], [16] and active shape
models [19], [7]. These works use techniques like PCA to
build a library of 2D landmarks from training data, and then
use iterative optimization algorithms to estimate the 2D object
locations in the images, rather than estimating 3D poses.

The landscape of category-level perception has been re-
cently reshaped by the rapid adoption of convolutional net-
works [50], [45], [92]. Pipelines using deep learning have

5We define true inliers as 2D keypoint detections such that there exists a
ground-truth annotated keypoint with the same ID within a radius of 5 pixels.

17

seen great successes in areas such as human pose estima-
tion [105], [66], [103], [36], [62], and pose estimation of
household objects [60], [32], [73]. With the growing interest
in self-driving vehicles, research has also focused on jointly
estimating vehicle pose and shape [15], [41], [57], [46], [97].

For methods that aim to recover both the pose and shape
of objects, a common paradigm is to use end-to-end meth-
ods. Usually, an encoder-decoder network is used to first
convert input images to some latent representations, and then
map the latent representation back to 3D estimates (e.g., 3D
bounding boxes, or pose and shape estimates). For example,
Richter et al. [79] predict 3D shapes through an efficient
2D encoding. Groueix et al. [33] represent shapes as collec-
tions of parametric surface elements. Tatarchenko et al. [98]
generate 3D shapes through an octree representation. Burch-
fiel et al. [12] train CNNs with generative representations
of 3D objects to predict probabilistic distributions of object
poses. An additional alignment loss can also be incorporated
into the network to directly regress a pose [4], [58], [59].
Wen et al. [113] design a network with a loss function
over SE(3) to regress relative poses. One drawback of such
approaches is that it is difficult for neural networks to learn
the necessary 3D structure of the object on a per-pixel basis;
moreover, end-to-end approaches typically require 3D pose
labels that might be difficult (or expensive) to obtain for real
data. As shown by Tatarchenko et al. [99], such networks
can be outperformed by methods trained on model recognition
and retrieval only. Alternative methods circumvent pose and
shape estimation and directly regress 3D semantic keypoints
for manipulation [60] or dense visual descriptors [31].

Multi-stage methods constitute another major paradigm for
category-level perception. Such approaches commonly include
a neural-network-based front-end that extracts features from
input data (such as RGB or RGB-D images) [73], [21], and
an optimization-based back-end that recovers the 3D pose of
the object given the features [73], [67], [74], [88], [38]. The
front-ends may predict positions of semantic keypoints [73], or
feature embeddings [21], and generate correspondences from
those features. In early works, Lim et al. [55] establish 2D-
3D correspondences between images and textureless CAD
models by using HOG descriptors on images and rendered
edgemaps of the CAD models. Chabot et al. [15] regress a set
of 2D part coordinates, and then choose the best corresponding
3D template. Pavlakos et al. [73] use a stacked hourglass
neural network [66] for 2D semantic keypoint detection. In
other works, a canonical category-level coordinate space is
predicted for each detection, from which correspondences are
generated [109], [29], [54], [17]. Our work belongs to the
class of multi-stage methods. In particular, we use [41] as our
front-end, and develop optimal and robust back-end solvers.

Research effort has also been devoted to developing more
robust and efficient back-end solvers given 2D or 3D features
extracted by the front-end. The back-end solvers recover the
3D pose (and possibly the shape) of the object by solving an
optimization problem [67], [73], [74], [88], [38]. Depending
on the input modalities, back-end solvers can be roughly
divided into 2D-3D or 3D-3D solvers, where the former
use 2D inputs only, and the latter incorporate additional
depth information. A number of related works investigate 2D-
3D back-end solvers [73], [102], [43], [66], [125], [126],

[86]. Hou et al. [38] defer the task of shape estimation
to a neural network, and use EPnP [52] to solve for the
object bounding box’s pose only. Zhou et al. [125], [126]
propose a convex relaxation to jointly optimize 3D shape
parameters and object pose from 2D keypoints. However,
the relaxation assumes a weak perspective camera model,
which might lead to poor results if the object is close to
the camera. Yang and Carlone [117] apply the moment/sums-
of-squares hierarchy [10], [49] to develop tighter relaxations
than [125], still under the assumption of a weak perspective
model. Schmeckpeper et al. [86] use a local solver with a full
perspective camera model. Our work differs from [125], [126],
[117], [86] since we propose a certifiably optimal solver for
the full perspective case, using an algebraic point-to-line cost.

3D-3D back-end solvers have been investigated in the
robotics literature [112], [93], [108]. In robotics applications
such as manipulation and self-driving, depth information
is readily available either via direct sensing (e.g., RGB-D
or stereo) or algorithms (e.g., mono depth techniques [25],
[48]), so the requirements of depth is not too constraining.
Wang et al. [107] decouple shape from pose estimation by pre-
dicting category specific keypoints and use Arun’s method [2]
for estimating frame-by-frame relative pose. Wen et al. [112]
view category-level object detection and tracking as a pose
graph optimization problem, solving 3D registration of key-
points across frames and then jointly optimizing the pose
graph online. Deng et al. [21] use nonlinear optimization, and
alternate between optimizing shape size and pose. In this and
our previous work [89], we propose the first 3D-3D certifiably
optimal solver that runs in a fraction of a second even in the
presence of thousands of CAD models.

B. Robust Estimation
We review three robust estimation paradigms: M-estimation,

consensus maximization, and graph-based outlier pruning.
M-Estimation performs estimation by optimizing a robust

cost function that reduces the influence of outliers. The re-
sulting problems are typically optimized using iterative local
solvers. MacTavish and Barfoot [100] compare several robust
costs using iterative re-weighted least squares solvers. The
downside of local solvers is that they need a good initial guess,
which is often unavailable in practice. A popular approach to
circumvent the need for an initial guess is Graduated Non-
Convexity (GNC) [9], [8]. Zhou et al. [124] use GNC for point
cloud registration. Yang et al. [115] and Antonante et al. [1]
combine GNC with global non-minimal solvers and show their
general applicability to problems with up to 80% outliers.

For certain low-dimensional geometric problems, fast global
solvers exist. Enqvist et al. [26] use a truncated least squares
(TLS) cost to solve triangulation problems in polynomial time
in the number of measurements, but exponential time in the
dimension of the to-be-estimated state x. Ask et al. [3] use
a TLS cost for image registration. Recently, certifiably-robust
globally optimal solvers based on convex relaxations have been
used for M-estimation [118], [47], [121], [116]. Carlone and
Calafiore [14] and Lajoie et al. [47] study SDP relaxations for
pose graph optimization. Yang et al. [121] develop an SDP
relaxation for point cloud registration. Unfortunately, due to
the poor scalability of current SDP solvers, such methods are
mostly viable to check optimality [121], [118].

18

Consensus Maximization is a framework for robust es-
timation that aims to find the largest set of measurements
with errors below a user-defined threshold. Consensus max-
imization is NP-hard [18], [1], hence the community has
resorted to randomized approaches, such as RANSAC [30].
RANSAC repeatedly draws a minimal subset of measurements
from which a rough estimate is computed, and the algorithm
stops after finding an estimate that agrees with a large set
of measurements. While RANSAC works well for problems
where the minimal set is small and there are not many
outliers, the average number of iterations it requires increases
exponentially with the percentage of outliers [76], making it
impractical for problems with many outliers. On the other
hand, global solvers, such as branch-and-bound (BnB) [53] and
tree search [13], exist but scale poorly with the problem size,
with BnB being exponential in the size of x, and tree search
being exponential in the number of outliers [13].

Graph-based Outlier pruning methods aim at discarding
gross outliers from the set of measurements. These methods
do not necessarily reject all the outliers, hence they are
often used as a preprocessing for M-estimation or maximum
consensus [121], [90]. Outlier pruning methods detect outliers
by analyzing a compatibility graph, where vertices represent
data points and edges represent pre-defined compatibility
measures between data points [90]. Bailey et al. [5] pro-
pose a Maximum Common Subgraph algorithm for feature
matching in lidar scans. Segundo and Artieda [84] build
an association graph and find the maximum clique for 2D
image feature matching. Perera and Barnes [75] segment
objects under rigid body motion with a clique formulation.
Leordeanu and Hebert [51] establish image matches by finding
strongly-connected clusters in the correspondence graph with
an approximate spectral method. Enqvist et al. [27] develop an
outlier rejection algorithm for 3D-3D and 2D-3D registration
based on approximate vertex cover. Recent progress in graph
algorithms (e.g., [82], [71]) has led to fast graph-theoretic
outlier pruning algorithms that are robust to extreme outlier
rates, see, e.g.,TEASER++ [121].

In this work we generalize graph-based methods to use
hypergraphs: while a standard graph only contains edges
connecting pairs of nodes (which represent compatibility tests
in our context), each edge in a hypergraph may connect an
arbitrary subset of vertices. Hypergraphs have been studied in
the context of network learning, robotics, and computer vision.
Torres-Jimenez [104] develops an exact algorithm for finding
maximum cliques in uniform hypergraphs. Shun [91] develops
a collection of fast parallel hypergraph algorithms for large-
scale networks. Srinivasan et al. [95] develop a framework
for hypergraph representation learning. Rueb et al. [83] for-
mulate free space as a hypergraph for robot path planning.
Du et al. [23] represent humans as a hypergraph for visual
tracking. Yu et al. [122] treat image classification as a hy-
pergraph edge weight optimization problem. In our work, we
build upon [90] by extending the definition of compatibility
graphs from simple graphs to hypergraphs.

X. CONCLUSION

We proposed PACE2D? and PACE3D?, the first certifiably
optimal solvers for the estimation of the pose and shape of
3D objects from 2D and 3D keypoint detections, respectively.

While existing iterative methods get stuck in local minima cor-
responding to poor estimates, PACE2D? and PACE3D? leverage
tight SDP relaxations to compute certifiably optimal estimates.
We then design a general framework for graph-theoretic outlier
pruning, named ROBIN, that extends our original proposal
in [90] to operate on compatibility hypergraphs. We show that
ROBIN can be effectively applied to 2D and 3D category-level
perception and is able to prune a large fraction of outliers.
The combination of ROBIN and our optimal solvers (PACE2D?

and PACE3D?), leads to PACE2D# and PACE3D#, which are
outlier-robust algorithms for 3D-3D and 2D-3D pose and
shape estimation. While PACE2D# is currently slow and is
sensitive to the quality of the keypoint detections, PACE3D#
largely outperforms the state of the art and a non-optimized
implementation runs in a fraction of a second.

REFERENCES

[1] P. Antonante, V. Tzoumas, H. Yang, and L. Carlone. Outlier-robust
estimation: Hardness, minimally tuned algorithms, and applications.
IEEE Trans. Robotics, 38(1):281–301, 2021. (pdf).

[2] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-D
point sets. IEEE Trans. Pattern Anal. Machine Intell., 9(5):698–700,
sept. 1987.

[3] E. Ask, O. Enqvist, and F. Kahl. Optimal geometric fitting under the
truncated l2-norm. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 1722–1729, 2013.

[4] A. Avetisyan, A. Dai, and M. Nießner. End-to-End CAD Model
Retrieval and 9DoF Alignment in 3D Scans. In Intl. Conf. on Computer
Vision (ICCV), 2019.

[5] T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F. Durrant-Whyte. Data
association for mobile robot navigation: a graph theoretic approach. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 3, pp. 2512–
2517, 2000.

[6] A. Bandeira. A note on probably certifiably correct algorithms.
arXiv:1509.00824, 2015.

[7] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Anal. Machine
Intell., 24(4):509–522, 2002.

[8] M. J. Black and A. Rangarajan. On the unification of line processes,
outlier rejection, and robust statistics with applications in early vision.
Intl. J. of Computer Vision, 19(1):57–91, 1996.

[9] A. Blake and A. Zisserman. Visual reconstruction. MIT Press, 1987.
[10] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite

optimization and convex algebraic geometry. SIAM, 2012.
[11] J. Briales and J. Gonzalez-Jimenez. Fast global optimality verification

in 3D SLAM. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 4630–4636, Oct 2016.

[12] B. Burchfiel and G. Konidaris. Probabilistic category-level pose
estimation via segmentation and predicted-shape priors. arXiv preprint
arXiv:1905.12079, 2019.

[13] Z. Cai, T.-J. Chin, and V. Koltun. Consensus maximization tree search
revisited. In Intl. Conf. on Computer Vision (ICCV), pp. 1637–1645,
2019.

[14] L. Carlone and G. Calafiore. Convex relaxations for pose graph
optimization with outliers. IEEE Robotics and Automation Letters (RA-
L), 3(2):1160–1167, 2018. arxiv preprint: 1801.02112, (pdf).

[15] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau.
Deep manta: A coarse-to-fine many-task network for joint 2d and 3d
vehicle analysis from monocular image. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 2040–2049, 2017.

[16] T. Chan and L. Vese. An active contour model without edges. In
Intl. Conf. Scale-Space Theor. Comput. Vision, pp. 141–151. Springer,
1999.

[17] D. Chen, J. Li, Z. Wang, and K. Xu. Learning canonical shape space
for category-level 6d object pose and size estimation. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 11973–11982,
2020.

[18] T.-J. Chin, Z. Cai, and F. Neumann. Robust fitting in computer vision:
Easy or hard? In European Conf. on Computer Vision (ECCV), 2018.

[19] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape
models - their training and application. Comput. Vis. Image Underst.,
61(1):38–59, January 1995.

[20] E. De Klerk. Aspects of semidefinite programming: interior point
algorithms and selected applications, vol. 65. Springer Science &
Business Media, 2006.

https://arxiv.org/pdf/2007.15109.pdf
https://arxiv.org/pdf/1801.02112.pdf

19

[21] X. Deng, J. Geng, T. Bretl, Y. Xiang, and D. Fox. iCaps: iterative
category-level object pose and shape estimation. IEEE Robotics and
Automation Letters, 2022.

[22] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning
Research, 17(83):1–5, 2016.

[23] D. Du, H. Qi, L. Wen, Q. Tian, Q. Huang, and S. Lyu. Geometric hyper-
graph learning for visual tracking. IEEE Trans. Cybern., 47(12):4182–
4195, 2016.

[24] D. Eberly. 3D game engine design: a practical approach to real-time
computer graphics. CRC Press, 2006.

[25] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a
single image using a multi-scale deep network. In Advances in Neural
Information Processing Systems (NIPS), pp. 2366–2374, 2014.

[26] O. Enqvist, E. Ask, F. Kahl, and K. Åström. Robust fitting for multiple
view geometry. In European Conf. on Computer Vision (ECCV), pp.
738–751. Springer, 2012.

[27] O. Enqvist, K. Josephson, and F. Kahl. Optimal correspondences from
pairwise constraints. In Intl. Conf. on Computer Vision (ICCV), pp.
1295–1302, 2009.

[28] A. Eriksson, C. Olsson, F. Kahl, and T.-J. Chin. Rotation averaging and
strong duality. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[29] Q. Feng and N. Atanasov. Fully convolutional geometric features for
category-level object alignment. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pp. 8492–8498, 2020.

[30] M. Fischler and R. Bolles. Random sample consensus: a paradigm
for model fitting with application to image analysis and automated
cartography. Commun. ACM, 24:381–395, 1981.

[31] P. R. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learn-
ing dense visual object descriptors by and for robotic manipulation. In
Conference on Robot Learning (CoRL), 2018.

[32] W. Gao and R. Tedrake. kpam 2.0: Feedback control for category-level
robotic manipulation. IEEE Robotics and Automation Letter (RA-L),
2020.

[33] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A
papier-mâché approach to learning 3d surface generation. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 216–
224, 2018.

[34] L. Gu and T. Kanade. 3D alignment of face in a single image. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp.
1305–1312, 2006.

[35] R. Hartley and F. Kahl. Global optimization through rotation space
search. Intl. J. of Computer Vision, 82(1):64–79, 2009.

[36] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Intl.
Conf. on Computer Vision (ICCV), pp. 2980–2988, 2017.

[37] B. K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. J. Opt. Soc. Amer., 4(4):629–642, Apr 1987.

[38] T. Hou, A. Ahmadyan, L. Zhang, J. Wei, and M. Grundmann. Mobile-
pose: Real-time pose estimation for unseen objects with weak shape
supervision. arXiv preprint arXiv:2003.03522, 2020.

[39] J. F. Hughes, A. Van Dam, M. McGuire, J. D. Foley, D. Sklar, S. K.
Feiner, and K. Akeley. Computer graphics: principles and practice.
Pearson Education, 2014.

[40] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour
Models. Intl. J. of Computer Vision, 1(4):321–331, 1987.

[41] L. Ke, S. Li, Y. Sun, Y.-W. Tai, and C.-K. Tang. GSNet: joint
vehicle pose and shape reconstruction with geometrical and scene-
aware supervision. In European Conf. on Computer Vision (ECCV),
pp. 515–532. Springer, 2020.

[42] L. Kneip, H. Li, and Y. Seo. UPnP: An optimal o(n) solution to the
absolute pose problem with universal applicability. In European Conf.
on Computer Vision (ECCV), pp. 127–142. Springer, 2014.

[43] N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis. Learning
to reconstruct 3D human pose and shape via model-fitting in the loop.
In Intl. Conf. on Computer Vision (ICCV), pp. 2252–2261, 2019.

[44] N. Kolotouros, G. Pavlakos, and K. Daniilidis. Convolutional mesh
regression for single-image human shape reconstruction. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), pp. 1097–1105, 2012.

[46] A. Kundu, Y. Li, and J. M. Rehg. 3d-rcnn: Instance-level 3d object
reconstruction via render-and-compare. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 3559–3568, 2018.

[47] P. Lajoie, S. Hu, G. Beltrame, and L. Carlone. Modeling perceptual
aliasing in SLAM via discrete-continuous graphical models. IEEE
Robotics and Automation Letters (RA-L), 2019. extended ArXiv
version: (pdf), Supplemental Material: (pdf).

[48] K. Lasinger, R. Ranftl, K. Schindler, and V. Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer. arXiv preprint arXiv:1907.01341, 2019.

[49] J. B. Lasserre. Global optimization with polynomials and the problem
of moments. SIAM J. Optim., 11(3):796–817, 2001.

[50] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learn-
ing applied to document recognition. Proc. of the IEEE, 86(11):2278–
2324, 1998.

[51] M. Leordeanu and M. Hebert. A spectral technique for correspondence
problems using pairwise constraints. In Intl. Conf. on Computer Vision
(ICCV), vol. 2, pp. 1482–1489. IEEE, 2005.

[52] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n)
solution to the pnp problem. Intl. J. of Computer Vision, 81(2):155,
2009.

[53] H. Li. Consensus set maximization with guaranteed global optimality
for robust geometry estimation. In Intl. Conf. on Computer Vision
(ICCV), pp. 1074–1080, 2009.

[54] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song.
Category-level articulated object pose estimation. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 3706–3715,
2020.

[55] J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA objects: Fine pose
estimation. In Intl. Conf. on Computer Vision (ICCV), pp. 2992–2999,
2013.

[56] Y.-L. Lin, V. I. Morariu, W. H. Hsu, and L. S. Davis. Jointly optimizing
3D model fitting and fine-grained classification. In European Conf. on
Computer Vision (ECCV), 2014.

[57] J. G. López, A. Agudo, and F. Moreno-Noguer. Vehicle pose estimation
via regression of semantic points of interest. In Intl. Symp. on Image
and Signal Processing and Analysis (ISPA), pp. 209–214. IEEE, 2019.

[58] F. Manhardt, W. Kehl, and A. Gaidon. Roi-10d: Monocular lifting of
2d detection to 6d pose and metric shape. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 2069–2078, 2019.

[59] F. Manhardt, M. Nickel, S. Meier, L. Minciullo, and N. Navab. Cps++:
Class-level 6d pose and shape estimation from monocular images.
arXiv preprint arXiv:2003.05848, 2020.

[60] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kpam: Keypoint
affordances for category-level robotic manipulation. In Proc. of the
Intl. Symp. of Robotics Research (ISRR), 2019.

[61] F. L. Markley. Attitude determination using vector observations and
the singular value decomposition. J. of the Astronautical Sciences,
36(3):245–258, 1988.

[62] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple yet
effective baseline for 3d human pose estimation. In Intl. Conf. on
Computer Vision (ICCV), pp. 2640–2649, 2017.

[63] P. McCausland. Self-driving Uber car that hit and killed woman did
not recognize that pedestrians jaywalk. NBC News, Nov 2019.

[64] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual.
Version 8.1., 2017.

[65] J. Mundy and A. Zisserman. Geometric invariance in computer vision.
MIT Press, Cambridge, MA, USA, 1992.

[66] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for
human pose estimation. In European Conf. on Computer Vision
(ECCV), pp. 483–499. Springer, 2016.

[67] M. Oberweger, M. Rad, and V. Lepetit. Making deep heatmaps robust
to partial occlusions for 3d object pose estimation. In European Conf.
on Computer Vision (ECCV), pp. 119–134, 2018.

[68] C. Olsson, F. Kahl, and M. Oskarsson. Optimal estimation of perspec-
tive camera pose. In Intl. Conf. on Pattern Recognition (ICPR), vol. 2,
pp. 5–8. IEEE, 2006.

[69] M. Pantic and L. J. M. Rothkrantz. Automatic analysis of facial
expressions: The state of the art. IEEE Trans. Pattern Anal. Machine
Intell., 22(12):1424–1445, 2000.

[70] Á. Parra Bustos and T. J. Chin. Guaranteed outlier removal for point
cloud registration with correspondences. IEEE Trans. Pattern Anal.
Machine Intell., 40(12):2868–2882, 2018.

[71] A. Parra Bustos, T.-J. Chin, F. Neumann, T. Friedrich, and M. Katz-
mann. A practical maximum clique algorithm for matching with
pairwise constraints. arXiv preprint arXiv:1902.01534, 2019.

[72] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical programming, 96(2):293–320, 2003.

[73] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis.
6-dof object pose from semantic keypoints. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2017.

[74] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. PVNet: Pixel-wise
Voting Network for 6DoF Pose Estimation. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 4561–4570, 2019.

[75] S. Perera and N. Barnes. Maximal cliques based rigid body motion
segmentation with a RGB-D camera. In Asian Conf. on Computer
Vision, pp. 120–133. Springer, 2012.

[76] R. Raguram, J.-M. Frahm, and M. Pollefeys. A comparative analysis
of ransac techniques leading to adaptive real-time random sample
consensus. In European Conf. on Computer Vision (ECCV), pp. 500–
513. Springer, 2008.

[77] V. Ramakrishna, T. Kanade, and Y. Sheikh. Reconstructing 3D human

https://arxiv.org/pdf/1810.11692.pdf
https://www.dropbox.com/s/vupak65wi75yzbl/2018j-RAL-DCGM-supplemental.pdf?dl=0

20

pose from 2D image landmarks. In European Conf. on Computer Vision
(ECCV), 2012.

[78] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[79] S. R. Richter and S. Roth. Matryoshka networks: Predicting 3D
geometry via nested shape layers. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 1936–1944, 2018.

[80] R. T. Rockafellar. Convex analysis, vol. 36. Princeton Univ. Press,
1970.

[81] D. Rosen, L. Carlone, A. Bandeira, and J. Leonard. SE-Sync:
a certifiably correct algorithm for synchronization over the Special
Euclidean group. Intl. J. of Robotics Research, 2018. arxiv preprint:
1611.00128, (pdf).

[82] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin. Parallel maximum
clique algorithms with applications to network analysis. SIAM J. on
Scientific Computing, 37(5):C589–C616, 2015.

[83] K. D. Rueb and A. K. Wong. Structuring free space as a hypergraph
for roving robot path planning and navigation. IEEE Trans. Pattern
Anal. Machine Intell., (2):263–273, 1987.

[84] P. San Segundo and J. Artieda. A novel clique formulation for the
visual feature matching problem. Appl. Intelligence, 43(2):325–342,
2015.

[85] S. Schaible and J. Shi. Fractional programming: the sum-of-ratios case.
Optimization Methods and Software, 18(2):219–229, 2003.

[86] K. Schmeckpeper, P. R. Osteen, Y. Wang, G. Pavlakos, K. Chaney,
W. Jordan, X. Zhou, K. G. Derpanis, and K. Daniilidis. Semantic
keypoint-based pose estimation from single rgb frames. arXiv preprint
arXiv:2204.05864, 2022.

[87] G. Schweighofer and A. Pinz. Globally optimal O(n) solution to the
PnP problem for general camera models. In British Machine Vision
Conf. (BMVC), pp. 1–10, 2008.

[88] M. Shan, Q. Feng, and N. Atanasov. Object residual constrained visual-
inertial odometry. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 5104–5111, 2020.

[89] J. Shi, H. Yang, and L. Carlone. Optimal pose and shape estimation for
category-level 3D object perception. In Robotics: Science and Systems
(RSS), 2021. arXiv preprint arXiv: 2104.08383, (pdf), (video).

[90] J. Shi, H. Yang, and L. Carlone. ROBIN: a graph-theoretic approach
to reject outliers in robust estimation using invariants. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2021. arXiv preprint arXiv:
2011.03659, (pdf).

[91] J. Shun. Practical parallel hypergraph algorithms. In ACM SIGPLAN
Symp. on Princ. and Pract. of Parallel Program., pp. 232–249, 2020.

[92] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In Intl. Conf. on Learning Representa-
tions, 2015.

[93] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic. Sdf-2-sdf: Highly
accurate 3d object reconstruction. In European Conf. on Computer
Vision (ECCV), pp. 680–696. Springer, 2016.

[94] X. Song, P. Wang, D. Zhou, R. Zhu, C. Guan, Y. Dai, H. Su, H. Li,
and R. Yang. ApolloCar3D: A large 3d car instance understanding
benchmark for autonomous driving. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 5452–5462, 2019.

[95] B. Srinivasan, D. Zheng, and G. Karypis. Learning over families of
sets-hypergraph representation learning for higher order tasks. In SIAM
Intl. Conf. on Data Mining, pp. 756–764. SIAM, 2021.

[96] G. Strang. Introduction to linear algebra. Cambridge Press, Wellesley,
MA, 5th edition, 2016.

[97] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi. Discovery
of latent 3d keypoints via end-to-end geometric reasoning. arXiv
preprint arXiv:1807.03146, 2018.

[98] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating
networks: Efficient convolutional architectures for high-resolution 3D
outputs. In Intl. Conf. on Computer Vision (ICCV), pp. 2088–2096,
2017.

[99] M. Tatarchenko, S. R. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox.
What Do Single-view 3D Reconstruction Networks Learn? In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3405–
3414, 2019.

[100] K. M. Tavish and T. D. Barfoot. At all costs: A comparison of robust
cost functions for camera correspondence outliers. In Conf. Computer
and Robot Vision, pp. 62–69. IEEE, 2015.

[101] A. N. Tikhonov, A. Goncharsky, V. Stepanov, and A. G. Yagola.
Numerical methods for the solution of ill-posed problems, vol. 328.
Springer Science & Business Media, 2013.

[102] D. Tome, C. Russell, and L. Agapito. Lifting from the deep: Con-
volutional 3d pose estimation from a single image. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pp. 2500–2509,
2017.

[103] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training
of a convolutional network and a graphical model for human pose

estimation. arXiv preprint arXiv:1406.2984, 2014.
[104] J. Torres-Jimenez, J. C. Perez-Torres, and G. Maldonado-Martinez.

hclique: An exact algorithm for maximum clique problem in uniform
hypergraphs. Discrete Math., Algo. and Appl., 9(06):1750078, 2017.

[105] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep
neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1653–1660, 2014.

[106] R. Tron, D. Rosen, and L. Carlone. On the inclusion of determinant
constraints in lagrangian duality for 3D SLAM. In Robotics: Science
and Systems (RSS), Workshop “The problem of mobile sensors: Setting
future goals and indicators of progress for SLAM”, 2015. (pdf).

[107] C. Wang, R. Martín-Martín, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu. 6-pack: Category-level 6d pose tracker with anchor-based
keypoints. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 10059–10066. IEEE, 2020.

[108] F. Wang and K. Hauser. In-hand object scanning via rgb-d video
segmentation. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 3296–3302. IEEE, 2019.

[109] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas.
Normalized object coordinate space for category-level 6d object pose
and size estimation. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 2642–2651, 2019.

[110] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang. The
ApolloScape open dataset for autonomous driving and its application.
IEEE Trans. Pattern Anal. Machine Intell., 2019.

[111] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application.
arXiv preprint arXiv:1309.1541, 2013.

[112] B. Wen and K. Bekris. Bundletrack: 6d pose tracking for novel objects
without instance or category-level 3d models. In IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), pp. 8067–8074. IEEE, 2021.

[113] B. Wen, C. Mitash, B. Ren, and K. E. Bekris. se(3)-tracknet: Data-
driven 6d pose tracking by calibrating image residuals in synthetic
domains. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pp. 10367–10373. IEEE, 2020.

[114] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond PASCAL: A
benchmark for 3d object detection in the wild. In IEEE Winter Conf.
on Appl. of Computer Vision, pp. 75–82. IEEE, 2014.

[115] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone. Graduated non-
convexity for robust spatial perception: From non-minimal solvers to
global outlier rejection. IEEE Robotics and Automation Letters (RA-
L), 5(2):1127–1134, 2020. arXiv preprint arXiv:1909.08605 (with
supplemental material), (pdf).

[116] H. Yang and L. Carlone. A quaternion-based certifiably optimal
solution to the Wahba problem with outliers. In Intl. Conf. on Computer
Vision (ICCV), 2019. (Oral Presentation, accept rate: 4%), Arxiv
version: 1905.12536, (pdf).

[117] H. Yang and L. Carlone. In perfect shape: Certifiably optimal 3D shape
reconstruction from 2D landmarks. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020. Arxiv version: 1911.11924,
(pdf).

[118] H. Yang and L. Carlone. One ring to rule them all: Certifiably robust
geometric perception with outliers. In Conf. on Neural Information
Processing Systems (NeurIPS), vol. 33, pp. 18846–18859, 2020. (pdf).

[119] H. Yang and L. Carlone. Certifiably optimal outlier-robust geometric
perception: Semidefinite relaxations and scalable global optimization.
IEEE Trans. Pattern Anal. Machine Intell., 2021. (pdf).

[120] H. Yang, C. Doran, and J.-J. Slotine. Dynamical pose estimation. In
Intl. Conf. on Computer Vision (ICCV), pp. 5926–5935, 2021.

[121] H. Yang, J. Shi, and L. Carlone. TEASER: Fast and Certifiable
Point Cloud Registration. IEEE Trans. Robotics, 37(2):314–333, 2020.
extended arXiv version 2001.07715 (pdf).

[122] J. Yu, D. Tao, and M. Wang. Adaptive hypergraph learning and its
application in image classification. IEEE Trans. Image Processing,
21(7):3262–3272, 2012.

[123] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi.
Revisiting the PnP problem: A fast, general and optimal solution. In
Intl. Conf. on Computer Vision (ICCV), pp. 2344–2351, 2013.

[124] Q. Zhou, J. Park, and V. Koltun. Fast global registration. In European
Conf. on Computer Vision (ECCV), pp. 766–782. Springer, 2016.

[125] X. Zhou, S. Leonardos, X. Hu, and K. Daniilidis. 3D shape recon-
struction from 2D landmarks: A convex formulation. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2015.

[126] X. Zhou, M. Zhu, S. Leonardos, and K. Daniilidis. Sparse represen-
tation for 3D shape estimation: A convex relaxation approach. IEEE
Trans. Pattern Anal. Machine Intell., 39(8):1648–1661, 2017.

https://arxiv.org/abs/1611.00128
https://arxiv.org/pdf/2104.08383.pdf
https://youtu.be/kiNBS0IF2-g
https://arxiv.org/pdf/2011.03659.pdf
https://www.dropbox.com/s/859umrdf7ldd2kv/2015ws-rss-duality3Ddet.pdf?dl=0
https://arxiv.org/pdf/1909.08605.pdf
https://arxiv.org/pdf/1905.12536.pdf
https://arxiv.org/pdf/1911.11924.pdf
https://arxiv.org/pdf/2006.06769.pdf
https://arxiv.org/pdf/2109.03349.pdf
https://arxiv.org/pdf/2001.07715.pdf

21

APPENDIX A
PROOF OF THEOREM 7: INLIERS BELONG TO A CLIQUE

Proof: By definition, compatibility tests are designed to
pass as long as the subset of n nodes under test includes all
inliers. Therefore, the set of nodes corresponding to inliers,
say I, will be such that any subset of n nodes in I will
be connected by a hyperedge, and therefore will form a
hyperclique in the compatibility hypergraph.

APPENDIX B
COMPARISON BETWEEN CLIQUE-EXPANDED GRAPHS AND

HYPERGRAPHS FOR ROBIN

Comparison with [90]. In our previous work [90] —
where we first proposed ROBIN— we defined compatibility
graphs as ordinary graphs, and inliers structures as maximum
cliques. In the present paper, we define compatibility graphs as
hypergraphs (Definition 5), and inlier structures as maximum
hypercliques (Theorem 7). This new formulation is equivalent
to [90] for 2-invariants, but different otherwise. Topologically,
the compatibility graphs in [90] can be seen as clique-
expanded compatibility hypergraphs, where each hyperedge on
a subset of n nodes is substituted with pairwise edges between
all nodes in the subset (i.e., a clique in the graph). Compared
to [90], our new formulation leads to pruning a larger number
of outliers, as shown in the example below.

Example. Consider a 3-invariant and its compatibility test,
with 5 measurements, denoted as Nodes 1 to 5. Node 5 is
an outlier, whereas Node 1 through 4 are inliers. Assume
Table A3 contains the results of running the compatibility test
with the 3-invariant. Note that (1, 2, 5), (2, 3, 5), and (2, 4, 5)
pass the compatibility test despite Node 5 being an outlier.
Fig. A1 shows the compatibility hypergraph constructed ac-
cording to the results, with the maximum hyperclique being
(1, 2, 3, 4). Fig. A2 shows the clique-expanded hypergraph. In
this case, the maximum clique is (1, 2, 3, 4, 5), which is the
entire measurement set including the outlier. Thus, for this
example, ROBIN described in this paper will successfully reject
Node 5 as an outlier, while ROBIN described in [90] will not.

Triplet Pass the Compatibility Test?

1,2,3 True
1,2,4 True
1,2,5 True
1,3,4 True
1,3,5 False
1,4,5 False
2,3,4 True
2,3,5 True
2,4,5 True
3,4,5 False

TABLE A3
RESULTS OF RUNNING THE COMPATIBILITY TEST ON ALL POSSIBLE

TRIPLETS.

While this is only a toy example, we empirically observe
that using hypergraphs improves the effectiveness of outlier
pruning in real problems, such as the ones in Section V-B.

Fig. A1. Compatibility hypergraph with hyperedges including the outlier
(outlier is Node 5 circled in red; hyperedges containing the outlier are
represented with dashed edges). The maximum hyperclique is (1, 2, 3, 4).

Fig. A2. Clique-expanded compatibility graph. Outlier is Node 5; all edges
including the outlier are marked in red, with dashed lines. Comparing to the
hypergraph where the maximum hyperclique is (1, 2, 3, 4), in this graph the
maximum clique is (1, 2, 3, 4, 5).

APPENDIX C
FINDING MAXIMUM HYPERCLIQUES

IN COMPATIBILITY HYPERGRAPHS

While there exist fast parallel implementations for finding
the maximum clique in ordinary graphs (see, e.g., [82]), to
the best of our knowledge there is no such implementation
for hypergraphs. Thus, in this paper we use a simple mixed-
integer linear programming (MILP) formulation for finding the
maximum hyperclique within an n-uniform hypergraph.

Assume an arbitrary n-uniform hypergraph G(V, E), where
|V|= N . Consider the following MILP:

max
b2{0,1}N

PN
i=1

bi

s.t.
P

i2M bi  n� 1, 8M ⇢ V , |M|= n,M /2 E
(MILP)

where E is the set of hyperedges, M ⇢ V are subsets of n
nodes, and bi, i = 1, . . . , N , are binary variables that indicate
whether node i belongs to the maximum hyperclique.

Intuitively, (MILP) looks for a set of nodes such that —
within that set— there is no subset of n nodes that are not
connected by a hyperedge. This matches the definition of a
hyperclique, as formalized below.

Theorem A1 (MILP Finds Maximum Hypercliques). For
any feasible solution b to (MILP), the set of nodes {i 2
V : bi = 1} forms a hyperclique in G; moreover, the optimal
solution b? is such that the set {i 2 V : b?i = 1} is a maximum
hyperclique.

Proof: Assume by contradiction that there exists a fea-
sible solution of the MILP that does not form a hyperclique.

22

Without loss of generality, assume that —for some m— such a
solution includes nodes V̂ .

= {v1, v2, . . . , vm}, i.e., bi = 1 for
i = 1, . . . ,m, and zero otherwise. Since this set of nodes does
not form a hyperclique, there is a subset M of n nodes in V̂
that does not belong to the hyperedge set E , and for such subsetP

i2M bi = n. which violates the constraint in the MILP.
Since V̂ violates a constraint, it cannot be feasible, leading to
a contradiction. Since the objective maximizes the count of
non-zero bi (i.e., the number of nodes in the hyperclique), the
optimal solution is a maximum hyperclique.

APPENDIX D
MINIMUM AND MAXIMUM DISTANCES

BETWEEN CONVEX HULLS FOR EQ. (17)

Recall from eq. (17) the definitions of bmin

ij and bmax

ij :

bmin

ij = min
c�0,1Tc=1

�����

KX

k=1

ck(b
k
j � b

k
i)

����� , (A1)

bmax

ij = max
c�0,1Tc=1

�����

KX

k=1

ck(b
k
j � b

k
i)

����� , (A2)

and let us use the following shorthand:

b
k
ij , b

k
j � b

k
i , (A3)

Bij ,
⇥
b
1

ij · · · b
K
ij

⇤
2 R3⇥K , (A4)

to write problems (A1) and (A2) compactly as:

bmin

ij = min
c�0,1Tc=1

kBijck , bmax

ij = max
c�0,1Tc=1

kBijck . (A5)

Compute bmax

ij . Because kBijck is a convex function of
c, and the maximum of a convex function over a polyhedral
set (in our case, the standard simplex �K , {c 2 RK

: c �
0,1T

c = 1}) is always obtained at one of the vertices of the
polyhedron [80, Corollary 32.3.4], we have:

bmax

ij = max
k

��bkij
�� , (A6)

since the vertices of �K are the vectors ek, k = 1, . . . ,K,
where ek is one at its k-th entry and zero anywhere else.

Compute bmin

ij . Observe that computing the minimum
of kBijck is equivalent to computing the minimum of
kBijck2 = c

T
(B

T
ijBij)c because the quadratic function

f(x) = x2 is monotonically increasing in the interval [0,1],
and hence we first solve the following convex quadratic
program (QP):

min
c2RK

c
T
(B

T
ijBij)c (A7)

s.t. c � 0, 1T
c = 1 (A8)

and then compute bmin

ij = kBijc
?k from the solution c

? of
the QP. Note that the QP (A7) can be solved in milliseconds
for large K, so pre-computing bmin

ij for all 1  i < j  N is
still tractable even when N is large.

APPENDIX E
PROOF OF PROPOSITION 10: 2D WINDING ORDERS

Proof: Consider the 2D image points p2D,i, p2D,j , and
p2D,m and their representation in homogeneous coordinates:

p̄2D,i =


p2D,i

1

�
p̄2D,j =


p2D,j

1

�
p̄2D,m =


p2D,m

1

�
.

Recall these 3D vectors are expressed in a standard right-
handed image coordinate frame with origin at the center of
the image (irrelevant for the derivation below), and where the
x axis points towards the right in the image plane, the y axis
points down in the image plane, and the z axis points into the
image plane (to ensure right-handedness).

Now the triplet of points is arranged in clockwise order if
their crossproduct is aligned with the z axis:

(p̄2D,j � p̄2D,i)⇥ (p̄2D,m � p̄2D,i) (A9)

=det

0

@

2

4
x y z

(p2D,j � p2D,i)
T

0

(p2D,m � p2D,i)
T

0

3

5

1

A (A10)

=det

✓
(p2D,j � p2D,i)

T

(p2D,m � p2D,i)
T

�◆
z (A11)

=det
�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
z (A12)

where we used the standard relation between the cross product
and the determinant and then developed the expression of the
determinant. Therefore, we have

det
�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
> 0 (A13)

if the points are arranged clockwise. And

det
�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
< 0 (A14)

if the points are arranged counter-clockwise.

APPENDIX F
PROOF FOR THEOREM 11: 3D WINDING ORDERS

We first recall a simple fact about the scalar triple product.

Lemma A2 (Scalar Triple Product As Determinant). For
arbitrary a, b, c 2 R3,

a · (b⇥ c) = det
⇥
a b c

⇤
(A15)

This is a well-known property and can be proven by
inspection. We are now ready to prove Theorem 11.

Proof: Recall that o is the optical center of the camera
in the CAD model’s frame. Since (R, t) is the pose of the
object in the coordinate frame of the camera, it follows that
o = �RT

t.

23

For an arbitrary camera center o, it follows that

(o� b
k
i) · nk

i,j,m

(using the definition of nk
i,j,m in (20) and Lemma A2)

=det
�⇥
o� b

k
i b

k
j � b

k
i b

k
m � b

k
i

⇤�
(A16)

(subtracting the first column from the second and third)
=det

�⇥
o� b

k
i b

k
j � o b

k
m � o

⇤�
(A17)

(flipping the sign of the first column)
=� det

�⇥
b
k
i � o b

k
j � o b

k
m � o

⇤�
(A18)

(multiplying the matrix by a rotation matrix R)
=� det

�⇥
R(b

k
i � o) R(b

k
j � o) R(b

k
m � o)

⇤�
(A19)

(using o = �RT
t and RR

T
= I)

=� det
�⇥
Rb

k
i + t Rb

k
j + t Rb

k
m + t

⇤�
(A20)

(dividing each column by its third coordinate)
=� (p3D,i)z(p3D,j)z(p3D,m)z

det

0

@

2

4
(p3D,i)x/(p3D,i)z (p3D,j)x/(p3D,j)z (p3D,m)x/(p3D,m)z

(p3D,i)y/(p3D,i)z (p3D,j)y/(p3D,j)z (p3D,m)y/(p3D,m)z

1 1 1

3

5

1

A

(A21)

In (A17) we used the fact that adding a scalar multiple of
one column to another column does not change the value of
the determinant, while in (A18) we observed that flipping the
sign of the first column flips the sign of the determinant [96,
pp. 249-252]. In (A19) we observed that left multiplying by R

does not change the determinant because det(R) = 1. Finally,
in (A21) we divided each column by its third coordinate and
multiplied the determinant by the same coordinate to keep it
constant [96, pp. 249-252].

Now recall that the canonical perspective projection of 3D
points p3D,i, p3D,j , p3D,m is

p2D,i =


(p3D,i)x/(p3D,i)z

(p3D,i)y/(p3D,i)z

�
p2D,j =


(p3D,j)x/(p3D,j)z

(p3D,j)y/(p3D,j)z

�

p2D,m =


(p3D,m)x/(p3D,m)z

(p3D,m)y/(p3D,m)z

�

Substituting the projections back into (A21):

(A21) =� (p3D,i)z(p3D,j)z(p3D,m)z

det


p2D,i p2D,j p2D,m

1 1 1

�

=� (p3D,i)z(p3D,j)z(p3D,m)z

det


p2D,i p2D,j � p2D,i p2D,m � p2D,i

1 0 0

�
(A22)

because subtracting a column from another does not change
the determinant. By cofactor expansion along the last row:

(A22) =� (p3D,i)z(p3D,j)z(p3D,m)z

det
⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤
(A23)

Note that we assume the object always stays in front of the
camera (i.e., in the direction of the positive z-axis of the
camera frame). Applying the signum function, we finally have

sgn
�
(o� b

k
i) · nk

i,j,m

�

= � sgn
�
det
⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�

which proves the claim.
One way to interpret Theorem 11 is that for all o in the

positive half-space (resp. negative half-space) of the triplet
plane, the observed winding order of the projected points is
counter-clockwise (resp. clockwise) following Proposition 10.

APPENDIX G
EXTENSIONS OF PROPOSITION 16

This appendix discusses conditions under which Proposi-
tion 16 can be extended to the case where the 2D keypoints
are generated from a convex combination of shapes —as in
our generative model (3)— rather than being generated by a
single shape (as currently assumed in Proposition 16).

Consider K shapes, with 2D measurements p2D,i, i =

1, . . . , N , generated according to eq. (3), and such that
k✏2D,ik< � and � is small enough for Theorem 11 to hold.
Assume for each shape, we have obtained the feasible winding
orders dictionary Wk a priori. Let c =

⇥
c1c2 . . . cK

⇤
be an

arbitrary ground-truth shape coefficient vector.
Given an arbitrary camera center o, let the visible keypoints’

index set be Mo. In other words, o is able to observe
p2D,i, i 2 Mo, and therefore o lies within the non-empty
covisibility region of

PK
k=1

ckbki , i 2Mo. In the following,
we assume that whenever a camera center o observes a 3D
point

PK
k=1

ckbki , it is also in the visibility region of b
k
i for

i 2Mo and for k = 1, . . .K.
Given an arbitrary triplet of keypoints p2D,i, p2D,j ,

and p2D,m (corresponding to
PK

k=1
ckbki ,

PK
k=1

ckbkj , andPK
k=1

ckbkm), we want to prove (cf. Proposition 16)

f2D(p2D,i,p2D,j ,p2D,m) 2 F2D(✓i,✓j ,✓m) (A24)

with

f2D(p2D,i,p2D,j ,p2D,m)

.
= det

�⇥
p2D,j � p2D,i p2D,m � p2D,i

⇤�
(A25)

F2D(✓i,✓j ,✓m) =

K[

k=1

Wk(i, j,m) (A26)

We have the following cases:

Case 1.
KS

k=1

Wk(i, j,m) = {+1,�1}. In this case,

f2D(p2D,i,p2D,j ,p2D,m) 2 F2D(✓i,✓j ,✓m) trivially since
the points are assumed in generic position and hence the
determinant is non-zero (i.e., either positive or negative).

Case 2.
KS

k=1

Wk(i, j,m) = {+1} or
KS

k=1

Wk(i, j,m) =

{�1}. In other words, the winding order dictionaries
Wk(i, j,m) for all k have the same winding order. To have
f2D(p2D,i,p2D,j ,p2D,m) 2 F2D(✓i,✓j ,✓m), we need to find
a condition under which the convex combination of keypoints
has the same winding order as any of the corresponding
keypoints in each individual shape. In other words, we need:

sgn

⇣
(o�

PK
k=1

ckbki) · n
⌘
= Wk(i, j,m) (A27)

where n = (
PK

k=1
ck(bkj � b

k
i))⇥ (

PK
k=1

ck(bkm � b
k
i)).

We can rewrite eq. (A27) in a way that eliminates n.
Towards this goal, we start by using Lemma A2 to establish

24

the following equality for a triplet of points bki , bkj , bkm and for
each shape:

sgn
�
(o� b

k
i) · nk

i,j,m

�
= sgn

�
det
⇥
v
k
i b

k
ji b

k
mi

⇤�

8k = 1, . . . ,K (A28)

where v
k
i = o�b

k
i , bkji = b

k
j �b

k
i , and b

k
mi = b

k
m�b

k
i (recall

that nk
i,j,m = (b

k
j � b

k
i)⇥ (b

k
m � b

k
i) from eq. (20)).

Let Ak
=
⇥
v
k
i b

k
ji b

k
mi

⇤
for k = 1, . . . ,K. It follows

det

KX

k=1

ckA
k

!

=det

hPK
k=1

cko�
PK

k=1
ckbki

PK
k=1

ckbkji
PK

k=1
ckbkmi

i

=det

h
o�

PK
k=1

ckbki
PK

k=1
ckbkji

PK
k=1

ckbkmi

i

=(o�
KX

k=1

ckb
k
i) · n (A29)

Therefore, as long as:

sgn

det

KX

k=1

ckA
k

!!
= sgn

�
det
�
A

k
��

, 8c 2 �K

(A30)

then, we have

sgn

det

KX

k=1

ckA
k

!!
= sgn

(o�

KX

k=1

ckb
k
i) · n

!

= Wk(i, j,m) (A31)

which matches the claim in Proposition 16 since it implies
f2D(p2D,i,p2D,j ,p2D,m) 2 F2D(✓i,✓j ,✓m).

While condition (A30) might not be satisfied in general,
with simulated data, we check empirically whether Proposi-
tion 16 and eq. (A31) hold under scenarios where the ground-
truth shape coefficients are randomly sampled in the probabil-
ity simplex �K . Fig. A3 shows the percentage of test instances
where eq. (A31) holds true under the same synthetic data
generation procedure for the robustness experiments described
in Section VIII-B, with octahedra as shapes. We set the outlier
rate to 0% (the invariant is only expected to hold for inliers),
while changing the number of shapes from 2 to 5. At all shape
counts, eq. (A31) holds true for 100% of the generated test
instances.

Fig. A3. Percentage of simulated test instances where eq. (A31) and Propo-
sition 16 hold even when the keypoints are generated by linear combinations
of shapes (rather than by one of the shapes in the CAD library).

APPENDIX H
GENERATING WINDING ORDER DICTIONARIES

In this section, we discuss three different methods for
constructing winding order dictionaries. The first method uses
linear programming to solve eq. (22) and eq. (23) directly. It
is suitable for cases where analytical equations of the faces
of the CAD models are known, and the shapes are convex.
The second method, which uses ray tracing, is applicable to
complex non-convex shapes. The last method constructs the
winding order dictionaries by learning from ground-truth 2D
annotations. Our simulated experiments for PACE2D# uses the
first method. Our experiments on ApolloScape uses a combina-
tion of the last two methods.

A. Using Linear Programs
Eq. (22) and eq. (23) are two feasibility problems that can

be solved using linear program solvers, if o 2 C can be
expressed as linear constraints. Luckily, this can be achieved
if the underlying shape is closed and convex, with keypoints
lying strictly in the interior of the faces (excluding the vertices
and edges). In essence, for keypoints on an arbitrary face, their
visibility regions are equivalent to the half-space outside the
shape. Assume we have L faces with known plane equations

nl · o+ bl = 0, 8l = 1, . . . , L, (A32)

where nl is the normal vector of face l pointing away from
the model, and bl is a constant. Then, the visibility region of
all keypoints on face l is equivalent to checking whether there
exists a o such that

nl · o+ bl > 0 (A33)

The covisibility region of a keypoint triplet i, j,m can there-
fore be found by combining the above constraints for all three
keypoints

nl1 · o+ bl1 > 0 (A34)
nl2 · o+ bl2 > 0 (A35)
nl3 · o+ bl3 > 0 (A36)

where l1, l2, and l3 are the indices of the faces keypoints i, j,
and m belong to. Fig. A4 shows an example of a covisibility
region of three keypoints on a cube, which is the intersection
of two half-spaces.

The feasibility linear program for solving eq. (22) is then

find o

subject to nl1 · o+ bl1 � C
nl2 · o+ bl2 � C
nl3 · o+ bl3 � C
(o� b

k
i) · nk

i,j,m� C

(A37)

where C is a small positive constant. If (A37) has a solution,
that means keypoints i, j,m can be viewed in counterclock-
wise winding order. And the feasibility linear program for
solving eq. (22) is

find o

subject to nl1 · o+ bl1 � C
nl2 · o+ bl2 � C
nl3 · o+ bl3 � C
(o� b

k
i) · nk

i,j,m �C

(A38)

25

Fig. A4. A top down view of a cube, with 3 keypoints (1, 2, and 3) on two
different faces. Shaded region A (blue) is the visibility region of keypoint 1.
Shaded region B (red) is the visibility region of 2 and 3. Shaded region C
(purple) is the covisibility region of 1, 2, and 3.

If (A38) has a solution, that means keypoints i, j,m can be
viewed in clockwise winding order. To construct the winding
order dictionary, we simply solve (A37) and (A37) for all
triplets, and record the results.

B. Using Ray Tracing
For shapes where we do not have access to analytical face

equations, or non-convex shapes, ray tracing can be used
instead. The main insight is to use ray tracing to check
visibilities of keypoints from a set of sampled camera locations
around the model, instead of using linear programs.

Given a shape model, we first discretize the volume sur-
rounding it into voxels, with each voxel center outside the
model representing a potential optical center for ray tracing.
For each optical center, we perform ray tracing with all
keypoints to determine the set of visible keypoints. We store
the results of ray tracing into a dictionary of 3D boolean
arrays, with keypoints as keys. For any keypoint, its boolean
array represents the visibility of it from each optical center.

After we have the dictionary, for an arbitrary triplet of
keypoints i, j and m, we can check whether the constraint
o 2 C can be met by performing an AND operation on the
boolean visibility arrays of the three keypoints. If the resulting
array after AND has at least one True value, that means
there exists one optical center such that all three keypoints
are visible. Hence o 2 C can be satisfied. The feasibility
problems of eq. (22) and eq. (23) can then be checked by
calculating (o� b

k
i) · nk

i,j,m for all optical centers in C.

C. Learning From 2D Annotations
In cases where ground-truth 2D keypoints annotations are

available, we may also construct winding order dictionaries
by learning. We first construct a dictionary D with keypoint
triplets as keys and empty sets as values. For each ground-
truth annotated training image, we calculate the winding order
following Proposition 10 for each triplet (i, j,m) in the image,
and push the result into the (i, j,m) entry of D. Since the
values are sets, only unique winding orders will be preserved.
After enumerating through all the training images, if there are
triplets that were not found during training, we use ray tracing

to estimate the feasible winding orders. We use this approach
to construct the winding order dictionary for our experiments
on the ApolloScape dataset.

APPENDIX I
PROBLEM (3D-3D) IS A MAP ESTIMATOR WHEN THE

MEASUREMENT NOISE IS GAUSSIAN

Here we prove that the optimization in eq. (3D-3D) is a
maximum a posteriori (MAP) estimator when the measure-
ment noise ✏3D,i in (2) follows a zero-mean Gaussian with
covariance 1

wi
I3 (where I3 is the 3-by-3 identity matrix) and

we have a zero-mean Gaussian prior with covariance 1

�IK over
the shape parameters c. Mathematically:

P (✏3D,i) = ✏ exp

⇣
�wi

2
k✏3D,ik2

⌘
, (A39)

P (c) = c exp

✓
��

2
kck2

◆
, (A40)

where ✏ and c are suitable normalization constants that are
irrelevant for the following derivation.

A MAP estimator for the unknown parameters x ,
{R, t, c} (belonging to a suitable domain X) given measure-
ments p3D,i (i = 1, . . . , N) is defined as the maximum of the
posterior distribution P (x|p3D,1 . . . p3D,N):

argmax
x2X

P (x|p3D,1 . . . p3D,N) = argmax
x2X

NY

i=1

P (p3D,i|x)P (x)

(A41)
where on the right we applied Bayes rule and used the stan-
dard assumption of independent measurements. Using (A39)
and (2) we obtain:

P (p3D,i|x) = ✏ exp

0

@�wi

2

�����p3D,i�R
KX

k=1

ckb
k
i �t

�����

2
1

A .(A42)

Moreover, assuming we only have a prior on c:

P (x) = P (c) = c exp

✓
��

2
kck2

◆
. (A43)

Substituting (A42) and (A43) back into (A41) and observing
that the maximum of the posterior is the same as the minimum
of the negative logarithm of the posterior:

argmax
x2X

NY

i=1

P (p3D,i|x)P (x) = (A44)

argmin
x2X

NX

i=1

� logP (p3D,i|x)� logP (x) = (A45)

argmin

R2SO(3),
t2R3,c2RK ,

1Tc=1

NX

i=1

wi

2

�����p3D,i �R

KX

k=1

ckb
k
i � t

�����

2

(A46)

+
�

2
kck2+constants (A47)

which, after dropping constant multiplicative and additive
factors, can be seen to match eq. (3D-3D), proving the claim.

26

APPENDIX J
CERTIFIABLY OPTIMAL ROTATION ESTIMATION:

PROOF OF PROPOSITION 18

Let us first develop the cost function of problem (37) as a
quadratic function of r , vec (R):

��M(IN ⌦R
T
)ȳ + h

��2 (A48)

=
��Mvec

�
R

T
Y
�
+ h

��2 (A49)

=
��M(Y

T ⌦ I3)vec
�
R

T
�
+ h

��2 (A50)

=
��M(Y

T ⌦ I3)Pr + h
��2 (A51)

= r̃
T
Qr̃ (A52)

where P 2 R9⇥9 is the following permutation matrix

(1, 1, 1), (2, 4, 1), (3, 7, 1), (A53)
(4, 2, 1), (5, 5, 1), (6, 8, 1), (A54)
(7, 3, 1), (8, 6, 1), (9, 9, 1), (A55)

with the triplet (i, j, v) defining the nonzero entries of P

(i.e., Pij = v), such that:

vec
�
R

T
�
⌘ P vec (R) (A56)

always holds, Y and r̃ are defined as:

Y ,
⇥
ȳ1 · · · ȳN

⇤
2 R3⇥N , (A57)

r̃ ,
⇥
1 r

T
⇤T 2 R10, (A58)

and Q 2 S10 can be assembled as follows:

Q ,


h
T
h h

T
M(Y

T ⌦ I3)P
? P

T
(Y ⌦ I3)MT

M(Y
T ⌦ I3)P

�
. (A59)

Now that the objective function of (37) is quadratic in r (R),
we can write problem (37) equivalently as the quadratically
constrained quadratic program (QCQP) in (39), where Ai 2
S10, i = 1, . . . , 15, are the constant matrices that define the
quadratic constraints associated with R 2 SO(3) [117, Lemma
5]. For completeness, we give the expressions for Ai’s:

A0 : (1, 1, 1)

A1 �A3 : columns have unit norm
A1 : (1, 1, 1), (2, 2,�1), (3, 3,�1), (4, 4,�1)
A2 : (1, 1, 1), (5, 5,�1), (6, 6,�1), (7, 7,�1)

A3 : (1, 1, 1), (8, 8,�1), (9, 9,�1), (10, 10,�1)

A4 �A6 : columns are mutually orthogonal
A4 : (2, 5, 1), (3, 6, 1), (4, 7, 1)

A5 : (2, 8, 1), (3, 9, 1), (4, 10, 1)

A6 : (5, 8, 1), (6, 9, 1), (7, 10, 1)

A7 �A15 : columns form right-handed frame
A7 : (3, 7, 1), (4, 6,�1), (1, 8,�1)
A8 : (4, 5, 1), (2, 7,�1), (1, 9,�1)
A9 : (2, 6, 1), (1, 10,�1), (3, 5,�1)
A10 : (6, 10, 1), (1, 2,�1), (7, 9,�1)
A11 : (7, 8, 1), (5, 10,�1), (1, 3,�1)
A12 : (5, 9, 1), (1, 4,�1), (6, 8,�1)
A13 : (4, 9, 1), (3, 10,�1), (1, 5,�1)
A14 : (2, 10, 1), (1, 6,�1), (4, 8,�1)
A15 : (3, 8, 1), (2, 9,�1), (1, 7,�1)

where the triplets (i, j, v) define the diagonal and upper
triangular nonzero entries of a symmetric matrix (i.e., Aij =

Aji = v with i  j).

APPENDIX K
SHOR’S SEMIDEFINITE RELAXATION:

PROOF OF PROPOSITION 18

Proof: To see why problem (40) is a convex relaxation
for problem (39), let us first create a matrix variable

X = r̃r̃
T 2 S10, (A60)

and notice that X satisfies

X ⌫ 0, rank (X) = 1. (A61)

Moreover, if X ⌫ 0, rank (X) = 1 then X must have a
factorization of the form (A60). Therefore, the non-convex
QCQP (39) is equivalent to the following rank-constrained
matrix optimization problem:

min
X2S10

tr (QX) (A62)

s.t. tr (A0X) = 1, (A63)
tr (AiX) = 0, 8i = 1, . . . , 15, (A64)

X ⌫ 0, (A65)
rank (X) = 1, (A66)

where A0 2 S10 is an all-zero matrix except the top-left entry
being 1 (to enforce that the first entry of r̃ is 1), and we have
used the fact that

r̃
T
Ar̃ = tr

�
r̃
T
Ar̃
�
= tr

�
Ar̃r̃

T
�
= tr (AX) . (A67)

Now observe that the only nonconvex constraint in prob-
lem (A62) is the rank constraint (A66), and the SDP relax-
ation (40) is obtained by simply removing the rank constraint.

In practice, we solve the convex problem (40) and obtain
an optimal solution X

?; if rank (X
?
) = 1, then the optimal

solution of problem (40) is unique (the rationale behind this
is that interior-point methods converge to a maximum rank
solution [20]) and it actually satisfies the rank constraint that
has been dropped. Therefore, in this situation, we say the
convex relaxation is tight and the global optimal solution to the
nonconvex problem (39) can be obtained from the rank-one
factorization of X?.

27

APPENDIX L
ROUNDING AND SUBOPTIMALITY GAP FOR (40)

This appendix discusses how to compute a feasible rotation
estimate and the corresponding suboptimality gap from the
solution X

? of the SDP relaxation (40). Let f? be the optimal
objective value of the SDP (40), and X

?
=
P

10

i=1
�iuiu

T
i be

the spectral decomposition of X
? with �1 � . . . � �10. We

define a rounding procedure

ui
u1

u1(1)
, bR = proj

SO(3)
(u1(r)) (A68)

that extracts a feasible point bR to (39) from the leading
eigenvector u1 of X?. In (A68), u1(·) extracts the entries of
u1 using the indices of “·” in r̃, and proj

SO(3)
represents the

projection onto SO(3). Given bR, denote the objective value
of (39) at bR as bp; we compute a relative suboptimality as

⌘ = |bp� f?| /(1 + |bp|+ |f?|) (A69)

to evaluate the quality of the feasible solution. Apparently,
⌘ = 0 certifies the global optimality of bR.

APPENDIX M
ALTERNATION APPROACH

In Sections VI-A2-VI-A3 of the main paper, we presented
a certifiably optimal solver to solve the shape and rotation
(c,R) problem (30) (after eliminating the translation t). Here
we describe a baseline method that solves problem (30) using
alternating minimization (Altern), a heuristic that is popular
in related works on 3D shape reconstruction from 2D land-
marks [56], [34], [77], but offers no optimality guarantees.
Towards this goal, let us denote the cost function of (30)
as f(R, c); the Altern method starts with an initial guess
(R

(0), c(0)) (default R(0)
= I3, c(0) = 0), and performs the

following two steps at each iteration ⌧ :
1) Optimize c:

c
(⌧)

= argmin

c2RK ,1Tc=1

f(R(⌧�1), c), (A70)

which is a linearly constrained linear least squares prob-
lem and can be solved by the closed-form solution (34).

2) Optimize R:

R
(⌧)

= argmin

R2SO(3)

f(R, c(⌧)), (A71)

which can be cast as an instance of Wahba’s prob-
lem [116] and can be solved in closed form using singular
value decomposition [61].

The Altern method stops when the cost function con-
verges, i.e., |f(R(⌧), c(⌧))� f(R(⌧�1), c(⌧�1)

)|< ✏ for some
small threshold ✏ > 0, or when ⌧ exceeds the maximum
number of iterations (e.g., 1000).

APPENDIX N
ROUNDING AND SUBOPTIMALITY GAP FOR (45)

This section provides extra results related to Lasserre’s
Hierarchy of semidefinite relaxations and provides a rounding
procedure to obtain a rotation and shape parameters estimate
from the solution of the SDP (45).

Corollary A3 (Optimality Certification from Lasserre’s
Hierarchy [49]). Let p? and f? be the optimal objectives of
(43) and (45), respectively, and let X?

= (X
?
0
, . . . ,X?

K) be
an optimal solution of (45), we have

(i) f?  p?,
(ii) if rank (X

?
0
) = 1, then f?

= p?, and X
?
0

can
be factorized as X

?
0

= [x
?
]2[x

?
]
T
2

, where x
?

=

[vec (R
?
)
T , (c?)T]T is a globally optimal for (43).

Rounding. Empirically, we observe that solving the SDP
(45) empirically yields a rank-one optimal solution, and hence
it typically allows retrieving the global solution of the non-
convex problem (43) per Corollary A3. Even when the SDP
solution is not rank-one, we can “round” a feasible solution
to (43) from X

?
0

. To do so, let X?
0
=
Pn0

i=1
�iuiu

T
i be the

spectral decomposition of X
?
0

with �1 � �2 � . . . � �n0 .
To extract a feasible point (bR, bc) for (43) from the leading
eigenvector u1, we follow

u1
u1

u1(1)
, bR = proj

SO(3)
(u1(r)) , bc = proj

�K
(u1(c))

where proj
�K

represents the projection onto �K [111]. We
can then evaluate the relative suboptimality of the rotation and
shape estimate (bR, bc) using (A69).

APPENDIX O
2D-3D CATEGORY-LEVEL PERCEPTION WITH

ONE-HOT SHAPE VECTOR

Lasserre’s relaxation allows tackling even harder problem
instances and constraints compared to (43). For instance, we
can easily enforce the optimization to select a single shape
(i.e., finding a one-hot shape vector c). This is equivalent to
solving the following variant of (43):

min
R2SO(3)

c2{0,1}K ,1Tc=1

NX

i=1

������
Rsi(c)�

NX

j=1

fWjRsj(c)

������

2

Wi

(A72)

where the constraints c 2 {0, 1}K ,1T
c = 1 imply c is a

one-hot vector. One can observe that problem (A72) is also
a POP because the constraint c 2 {0, 1}K can be written as
polynomial equality constraints ck(ck�1) = 0, k = 1, . . . ,K.
Therefore, we can relax (A72) to an SDP (45), while retaining
the same optimality guarantees of Corollary A3.6

APPENDIX P
GRADUATED NON-CONVEXITY FOR

CATEGORY-LEVEL PERCEPTION

Robust 3D-3D Category-level Perception. As prescribed
by standard robust estimation, we can re-gain robustness to
outliers by replacing the squared `2 norm in (3D-3D) with a
robust loss function ⇢, leading to

min
R2SO(3),

t2R3,c2�K

NX

i=1

⇢

 �����p3D,i�R
KX

k=1

ckb
k
i �t

�����

!
+� kck2 (A73)

6The rounding procedure (A72) needs to be modified accordingly: bc is
obtained by setting the largest entry of u1(c) to 1 and the remaining entries
to 0.

28

While GNC can be applied to a broad class of loss func-
tions [115], here we consider a truncated least square loss
⇢(r) = min(r2,�2

3D) which minimizes the squared residuals
whenever they are below �2

3D or becomes constant otherwise
(note: the constant �3D is the same inlier threshold of Sec-
tion V-A). Such cost function can be written by using auxiliary
slack variables ⇢(r) = min(r2,�2

3D) = min!2{0,1} !r
2
+(1�

!)�2

3D [115], hence allowing to rewrite (A73) as

min
R2SO(3),

t2R3,c2�K
!i2{0,1}8i

NX

i=1

!i

�����p3D,i�R
KX

k=1

ckb
k
i �t

�����

2

+(1�!i)�2

3D+� kck2 (A74)

In (A74), when !i = 1, the i-th measurement is considered
an inlier and the cost minimizes the corresponding squared
residual; when !i = 0, the cost becomes independent of p3D,i

hence the corresponding measurement is rejected as an outlier.
Therefore, equation (A74) simultaneously estimates pose and
shape variables (R, t, c) while classifying inliers/outliers via
the binary weights !i (i = 1, . . . , N). Now the advantage is
that we can minimize (A74) with an alternation scheme where
we iteratively optimize (i) over (R, t, c) with fixed weights
!i and (ii) over the weights !i with fixed (R, t, c). This
approach is convenient since the optimization over (R, t, c)
can be solved to optimality with PACE3D? (see Section VI-A),
while the optimization of the weights can be solved in
closed form [115]. To improve convergence of this alterna-
tion scheme, we adopt graduated non-convexity [9], [115],
which starts with a convex approximation of the loss function
in (A74) and then gradually increases the non-convexity until
the loss ⇢ in (A74) is recovered.

Robust 2D-3D Category-level Perception. Similarly, we
adopt the graduate non-convexity scheme to robustify our
solver for Problem 2. We reformulate (41) with a truncated
least square loss cost function ⇢(r) = min(r2,�2

2D) into

min
R2SO(3),

t2R3,c2�K
!i2{0,1}8i

NX

i=1

!i

���p2D,i � ⇡
⇣
R
PK

k=1
ckbki + t

⌘���
2

+ (1� !i)�
2

2D + � kck2 (A75)

To minimize (A75), we adopt the same alternation scheme
as for (A74), where we iteratively optimize (i) over (R, t, c)
with fixed weights !i and (ii) over the weights !i with
fixed (R, t, c). To tackle the optimization over (R, t, c), we
generate an initial solution by solving (2D-3D) using PACE2D?,
and then locally refine the solution using the geometric repro-
jection error in (41). In Appendix Q-B we show the local
refinement improves the quality of the resulting estimates.

APPENDIX Q
EXTRA EXPERIMENTAL RESULTS

A. Results on PACE3D? and PACE3D#

In Section VIII-A, we demonstrate the robustness of
PACE3D# to 92% outlier rates when N = 100, K = 10,
and r = 0.1. Here we show extra results when K and r are
increased. Fig. A5(a) shows the results for N = 100, K = 10,
and r = 0.2. One can see that as the intra-class variation
radius r is increased, the compatibility checks become less
effective, leading to a slight decrease in the robustness of

PACE3D# against outliers; PACE3D# is still robust to up to
90% outliers while has two failures at 91% outliers. However,
PACE3D# still outperforms IRLS-TLS and IRLS-GM by a large
margin. Fig. A5(b) shows the results for N = 100, K = 50,
and r = 0.1. We see that PACE3D# is robust to 91% outliers
while encounters two failures at 92% outlier rate. Finally,
when K = 50 and r = 0.2 (Fig. A5(c)), PACE3D# is robust to
80% outlier rate.

B. Results on PACE2D? and PACE2D#

In Section VIII-B, we demonstrate the robustness of
PACE2D# (OH) to 20% outlier rates when N = 10 and K = 3,
with shape coefficients c sampled as random one-hot vectors.
Fig. A6 (a) shows extra results of PACE2D# when c are sampled
from �K uniformly at random. We see PACE2D# remains
robust at 20%, showing failures at 30%. Notably, PACE2D#
achieves zero shape errors from 0� 20% outlier rates.

Fig. A6 (b) shows GNC-PACE2D? running with and without
local refinement minimizing the reprojection cost. Evidently,
GNC-PACE2D? without refinement has consistently more failure
cases, especially in terms of shape errors. Note that using
refinement incurs a higher runtime cost, as in each GNC
iteration we need to run additional iterations of the local solver
minimizing the reprojection error.

C. Visualization of Results on ApolloScape

Fig. A6 shows results obtained with PACE3D# on Apol-
loScape. Fig. A6 shows results obtained with PACE2D# on
ApolloScape. In both figures, first four rows show successful
results, while the last row demonstrates failure cases.

29

0 10 20 30 40 50 60 70 80 90 91 92 93
10-1

100

101

102

R
ot

at
io

n
Er

ro
r [

de
g]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-3

10-2

10-1

100

Tr
an

sl
at

io
n

Er
ro

r [
m

]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-2

10-1

100

Sh
ap

e
Pa

ra
m

et
er

s
Er

ro
r

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93
Outlier Rate (%)

0

10

20

30

40

Av
er

ag
e

Ite

ra
tio

ns

20

40

60

80

100

Av
er

ag
e

C
liq

ue
 In

lie
r R

at
e

(%
)

IRLS-TLS
IRLS-GM

GNC
PACE#

Clique Inlier Rate

(a) Robustness of PACE3D# against increasing outliers on synthetic data: N = 100, K = 10, r = 0.2.

0 10 20 30 40 50 60 70 80 90 91 92 93
10-1

100

101

102

R
ot

at
io

n
Er

ro
r [

de
g]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-3

10-2

10-1

100

Tr
an

sl
at

io
n

Er
ro

r [
m

]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-1

100

Sh
ap

e
Pa

ra
m

et
er

s
Er

ro
r

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93
Outlier Rate (%)

0

5

10

15

20

25

30

35

Av
er

ag
e

Ite

ra
tio

ns

20

40

60

80

100

Av
er

ag
e

C
liq

ue
 In

lie
r R

at
e

(%
)

IRLS-TLS
IRLS-GM

GNC
PACE#

Clique Inlier Rate

(b) Robustness of PACE3D# against increasing outliers on synthetic data: N = 100, K = 50, r = 0.1.

0 10 20 30 40 50 60 70 80 90 91 92 93
10-1

100

101

102

R
ot

at
io

n
Er

ro
r [

de
g]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-3

10-2

10-1

100

Tr
an

sl
at

io
n

Er
ro

r [
m

]

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93

10-1

100

Sh
ap

e
Pa

ra
m

et
er

s
Er

ro
r

Outlier Rate (%)

PACE#
Clique-PACE*

GNC
IRLS-GM

IRLS-TLS

0 10 20 30 40 50 60 70 80 90 91 92 93
Outlier Rate (%)

0

5

10

15

20

25

30

35

Av
er

ag
e

Ite

ra
tio

ns

0

20

40

60

80

100

Av
er

ag
e

C
liq

ue
 In

lie
r R

at
e

(%
)

IRLS-TLS
IRLS-GM

GNC
PACE#

Clique Inlier Rate

(c) Robustness of PACE3D# against increasing outliers on synthetic data: N = 100, K = 50, r = 0.2.
Fig. A5. Performance of PACE3D# compared to baselines in simulated experiments with different number of CAD models K and variation radius r. (a) The
intra-class variation radius is increased to r = 0.2. (b) The number of CAD models is increased to K = 50. (c) K = 50 and r = 0.2. Each boxplot (and
lineplot) reports statistics computed over 50 Monte Carlo runs.

(c) Robustness of PACE2D# against increasing outliers on synthetic data: N = 10, K = 3; c sampled from �K uniformly at random.

(b) Performance of GNC-PACE2D? with and without local refinement.
Fig. A6. Additional results on PACE2D#. (a) Same as Fig. 8, but with shape parameters c sampled as a random one-hot vector. (b) Performance of
GNC-PACE2D? with and without local refinement, see Appendix P.

30

fa
ilu

re
s

Fig. A6. Qualitative results for PACE3D#: overlay of estimated vehicle pose and shape on the images from the ApolloScape dataset. The images are manually
selected out of the validation set in the dataset to showcase successful vehicle localization (top 4 rows) as well as failure cases (last row).

31

fa
ilu

re
s

Fig. A6. Qualitative results for PACE2D#: overlay of estimated vehicle pose and shape on the images from the ApolloScape dataset. The images are manually
selected out of the validation set in the dataset to showcase successful vehicle localization (top 4 rows) as well as failure cases (last row).

32

APPENDIX R
USING ROBIN TO UNCOVER MISLABELED GROUND-TRUTH

ANNOTATIONS IN ApolloScape

This section shows that ROBIN is also able to detect incorrect
ground-truth keypoint labels in the ApolloScape dataset. In
particular, we tested ROBIN on the ground-truth keypoints
provided by ApolloScape for training/validation/testing and
manually inspected the points discarded as outliers by ROBIN.
Intuitively, if the ground-truth annotations are correct (hence
consistent with the CAD models), then all ground-truth key-
points must be included in the maximum hyperclique of
the compatibility hypergraph, and ROBIN would detect zero
outliers. On the other hand, if there are keypoints not included
in the maximum hyperclique, then they might be potentially
mislabeled keypoints.

We ran ROBIN on the ground-truth annotated keypoints in
the validation set, which consists of 200 images with a total
of 2674 car instances. For each instance in which ROBIN
detected outliers (1566 counts), we then manually checked the
keypoints against their semantic descriptions provided in [94].
We uncovered a total of 31 instances of incorrect ground-truth
annotations, which is about 1.9% of the number of instances
where ROBIN detects outliers.7

Image Name Instance
Index Description

171206_034625454_Camera_5 3 #42 should be #38.
171206_034625454_Camera_5 11 #65 should be #22.
171206_035907482_Camera_5 3 #15 should be #19.
171206_065841148_Camera_6 0 #7 should be #50.
171206_070959313_Camera_5 0 #54 should be #8.

171206_071422746_Camera_5 4
#45 should be #41;
#38 should be #37;
#37 should be 36.

171206_074637632_Camera_5 3 #34 should be #26.
171206_080929510_Camera_5 5 #49 and #8 should be switched.
171206_082047084_Camera_5 0 #61 and #60 should be switched.

180114_023107908_Camera_5 4 #29 should be placed at the
right exhaust below #31.

180114_025215740_Camera_5 5 #36 should be #21.

180114_025714151_Camera_5 2 #62, #63, #64, #65 should
be #59, #58, #60, #61.

180114_030620413_Camera_5 18 #19 should be #24.
180116_031340200_Camera_5 18 #11 should be #9.
180116_032115845_Camera_5 4 #46 should be #33.
180116_040654119_Camera_5 6 #10 and #15 misplaced.
180116_041204649_Camera_5 0 #35 should be #22.
180116_041204649_Camera_5 5 #35 should be #22.
180116_053637003_Camera_5 4 #16 should be #41.
180116_053637003_Camera_5 10 #30 should be #24.
180116_053637003_Camera_5 11 #9 should be #48.
180116_053945714_Camera_5 6 #46 should be #11.
180116_064533064_Camera_5 17 #9 should be #12.
180116_065033600_Camera_5 11 #30 should be #33.
180118_070001729_Camera_5 11 Keypoints labeled are on two cars.
180118_070451170_Camera_5 5 #8 and #49 should be switched.
180118_070451170_Camera_5 13 #28 should be #33.
180118_071218867_Camera_5 5 #11 should be #29.
180118_071316772_Camera_5 4 #9 is mislabeled on another car.
180118_072006080_Camera_5 2 #42 should be #10.
180118_072006080_Camera_5 6 #11 should be #29.

TABLE A4
DETAILS ON ALL 31 MISLABELED INSTANCES WHERE ROBIN RETURNS

NON-ZERO OUTLIERS.

7Since in this case we build the winding order dictionary via ray-tracing and
due to the approximations induced by the discretization, ROBIN also returns
false positives, where the ground-truth is correct while ROBIN detects outliers.

Image Name Instance
Index Description

171206_072104589_Camera_5 8 #3 misplaced.
171206_074637632_Camera_5 5 #25 should be #35.
171206_080255599_Camera_5 1 #42 misplaced.
171206_080827230_Camera_5 3 #31 and #34 placed on another car.
180114_031156951_Camera_5 3 #9 should be #11.
180116_061243174_Camera_5 4 #1 should be #3.

TABLE A5
DETAILS ON 6 MISLABELED INSTANCES WHERE ROBIN RETURNS ZERO

OUTLIERS.

Table A4 details them with the specific frames in which
they are found. A common failure mode is the misplacement
of keypoints between the two sides of the car. For example,
placing #35 (defined as the top right corner of right rear car
light in [94]) instead of #22 (defined as the top left corner
of left rear car light). Fig. A8 and A9 show cropped images
of the 31 mislabeled instances, with keypoints annotated. In
particular, Fig. A8 shows an egregious case, with keypoint
#9 being mislabeled as belonging to a completely different
car on the other side of the frame (in this case, ROBIN
successfully detects #9 as the sole outlier). We want to point
out that due to the inaccuracies in the winding order dictionary,
outliers determined by ROBIN might contain false positives. For
example, in image 171206_071422746_Camera_5 (see
Fig. A9), 6 keypoints are flagged by ROBIN as outliers, yet
only 3 of them are actual outliers. Nevertheless, ROBIN still
provides a viable way to validate the quality of 2D keypoints
annotations based on 3D models.

A natural question to ask is how many mislabled keypoints
are there in instances where ROBIN returns zero outliers. After
all, it is possible for outliers to exist in degenerate config-
urations that pass ROBIN’s compatibility checks consistently,
making their ways into the maximum hyperclique. In addition,
the dictionary of feasible winding orders obtained through ray-
tracing is inherently only an approximation, due to the use of
discretization. There are a total of 993 instances where ROBIN
returns zero outliers. We manually checked all of them, and
6 of them contains mislabled keypoints, which is about 0.6%.
This is 3 times lower than that with non-zero ROBIN outliers,
suggesting that ROBIN is much more effective than a baseline
method that randomly samples instances.

We want to stress that we are not trying to discredit the
work behind ApolloScape. We sympathize with the authors and
workers behind [94], as labeling 66 keypoints for all cars in
the dataset is a herculean task. Our intent is to demonstrate that
ROBIN can effectively detects outliers, and that it may also be
used to validate human labels. In addition, exploring whether
ROBIN can be used to enable self-supervision for detecting
semantic keypoints will be an interesting topic for future
research. For consistency with prior works, when calculating
metrics in Section VIII, we used the original annotations,
including mislabeled ground-truth keypoints.

33

Fig. A7. Mislabeled ground-truth keypoint annotations in ApolloScape detected by ROBIN. Green and red dots represent inliers and outliers determined by
ROBIN, respectively. For a detailed description of the incorrect keypoint annotations for each image, we refer the reader to Table A4.

34

Fig. A8. Keypoint #9 (circled in yellow) is mislabeled in the 4th labeled instance in image 180118_071316772_Camera_5. Instead of being on the same
car as the rest of the keypoints, #9 is misplaced as belonging to another car on the far left side.

Fig. A9. Mislabeled ground-truth keypoint annotations in ApolloScape that were not detected by ROBIN. Green dots represent inliers determined by ROBIN.
For details, we refer the reader to Table A5.

	Introduction
	Problem Statement: 3D-3D and 2D-3D Category-Level Perception
	Active Shape Model
	3D-3D Category-Level Perception
	2D-3D Category-Level Perception

	Overview of PACE#: Pose and Shape Estimation for Robust Category-level Perception
	Stage 1: Graph-theoretic Outlier Pruning With ROBIN
	From Measurements to Invariants
	From Invariants to Compatibility Tests for Outlier Pruning
	From Compatibility Tests to Compatibility Hypergraph
	ROBIN: Graph-theoretic Outlier Rejection

	Stage 1 (continued): Application to Category-Level Perception
	3D-3D Category-level Compatibility Test
	2D-3D Category-level Compatibility Test

	Stage II: Certifiably Optimal Solvers for Category-Level Perception
	Certifiably Optimal Solver for Outlier-free 3D-3D Category-Level Perception
	Closed-form Translation Estimation
	Closed-form Shape Estimation
	Certifiably Optimal Rotation Estimation
	Summary

	Certifiably Optimal Solver for Outlier-free 2D-3D Category-Level Perception
	Closed-form Translation Estimation
	Certifiably Optimal Shape and Rotation Estimation
	Summary

	Stage II (continued): Further Robustness Through Graduated Non-Convexity
	Experiments
	Optimality and Robustness of PACE3D and PACE3D#
	Optimality and Robustness of PACE2D and PACE2D#
	Vehicle Pose and Shape Estimation on ApolloScape

	Related Work
	Category-level Perception
	Robust Estimation

	Conclusion
	References
	Appendix A: Proof of Theorem 7: Inliers Belong to a Clique
	Appendix B: Comparison Between Clique-expanded Graphs and Hypergraphs For ROBIN
	Appendix C: Finding Maximum Hypercliques in Compatibility Hypergraphs
	Appendix D: Minimum and Maximum Distances between Convex Hulls for Eq. (17)
	Appendix E: Proof of Proposition 10: 2D Winding Orders
	Appendix F: Proof for Theorem 11: 3D Winding Orders
	Appendix G: Extensions of Proposition 16
	Appendix H: Generating Winding Order Dictionaries
	Using Linear Programs
	Using Ray Tracing
	Learning From 2D Annotations

	Appendix I: Problem (3D-3D) is a MAP Estimator when the Measurement Noise is Gaussian
	Appendix J: Certifiably Optimal Rotation Estimation: Proof of Proposition 18
	Appendix K: Shor's Semidefinite Relaxation: Proof of Proposition 18
	Appendix L: Rounding and Suboptimality Gap for (40)
	Appendix M: Alternation Approach
	Appendix N: Rounding and Suboptimality Gap for (45)
	Appendix O: 2D-3D Category-level Perception with One-hot Shape Vector
	Appendix P: Graduated Non-Convexity for Category-level Perception
	Appendix Q: Extra Experimental Results
	Results on PACE3D and PACE3D#
	Results on PACE2D and PACE2D#
	Visualization of Results on ApolloScape

	Appendix R: Using ROBIN to Uncover Mislabeled Ground-truth Annotations in ApolloScape

