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Abstract

Outlier-robust estimation is a fundamental problem and has been extensively investigated

by statisticians and practitioners. The last few years have seen a convergence across research

fields towards “algorithmic robust statistics”, which focuses on developing tractable outlier-robust

techniques for high-dimensional estimation problems. Despite this convergence, research e!orts

across fields have been mostly disconnected from one another. This monograph bridges recent

work on certifiable outlier-robust estimation for geometric perception in robotics and computer

vision with parallel work in robust statistics. In particular, we adapt and extend recent results

on robust linear regression (applicable to the low-outlier regime with → 50% outliers) and

list-decodable regression (applicable to the high-outlier regime with ↑ 50% outliers) to the setup

commonly found in robotics and vision, where (i) variables (e.g., rotations, poses) belong to

a non-convex domain, (ii) measurements are vector-valued, and (iii) the number of outliers is

not known a priori. The emphasis here is on performance guarantees: rather than proposing

radically new algorithms, we provide conditions on the input measurements under which modern

estimation algorithms (possibly after small modifications) are guaranteed to recover an estimate

close to the ground truth in the presence of outliers. These conditions are what we call an

“estimation contract”. The monograph also provides numerical experiments to shed light on the

applicability of the theoretical results and to showcase the potential of list-decodable regression

algorithms in geometric perception. Besides the proposed extensions of existing results, we believe

the main contributions of this monograph are (i) to unify parallel research lines by pointing out

commonalities and di!erences, (ii) to introduce advanced material (e.g., sum-of-squares proofs)

in an accessible and self-contained presentation for the practitioner, and (iii) to point out a few

immediate opportunities and open questions in outlier-robust geometric perception.
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1 Introduction
Geometric perception is the problem of estimating unknown geometric models (e.g., poses, rotations,
3D structure) from sensor data (e.g., camera images, lidar scans, inertial data, wheel odometry).
Geometric perception has been at the center stage of robotics and computer vision research since their
inception, and includes problems such as object pose (and possibly shape) estimation [1, 2], robot
or camera motion estimation [3], sensor calibration [4], Simultaneous Localization And Mapping
(SLAM) [5], and Structure from Motion (SfM) [6], to mention a few.

At its core, geometric perception solves an estimation problem, where, given measurements
yi, i = 1, . . . , n, one has to compute a variable of interest x→ (the “ground truth”). For instance, in an
object pose estimation problem, x→ is the to-be-computed 3D pose of the object (say, a car), while
the yi’s might be observations of relevant points on the object (e.g., the wheels and the headlights
of the car). The unknown x

→ and the measurements yi are related by a measurement (or generative)
model. In this monograph, we focus our attention on the common case where the measurements are
vector-valued, i.e., yi ↓ Rdy , and the noise is additive, leading to measurement models in the form:

yi = fi(x
→
) + ω, with yi ↓ Rdy and x

→
↓ X ↔ Rdx , (1)

where fi(·) is a known function, ω is the measurement noise, and X is the domain of x→ (e.g., the set
of 3D poses in an object pose estimation problem). As we will see in Section 3, many geometric
perception problems have measurement models in the form of eq. (1).1

When the noise in (1) is zero-mean and Gaussian, the maximum likelihood estimate of x→ can
be computed via standard least squares:2

xLS = argmin
x↑X

n∑

i=1

↗yi ↘ fi(x)↗
2

2
. (LS)

While problem (LS) can be still hard to solve (e.g., due to potential non-convexity of fi(·) or
X), its structure —at least for common geometric perception problems— has been extensively
studied in robotics and vision, and the literature o!ers a broad range of solvers, including closed-form
solutions [8], iterative local solvers [9], minimal solvers [10], and convex relaxations [7, 11, 2, 12, 13, 14].

Outlier-robust estimation. In practice, many of the measurements fed to the estimation
process are outliers, i.e., they largely deviate from the measurement model (1) and possibly do not
carry any information about x

→. In robotics and vision, the measurements yi are the result of a
pre-processing of the raw sensor data; such preprocessing is often referred to as the perception front-
end, while the estimation algorithms that compute x

→ from the yi’s are referred to as the perception
back-end. For instance, in an object pose estimation problem, the perception front-end extracts
the position of relevant features yi on the object from raw image pixels (typically using a neural
network), while the back-end computes the object pose given the yi’s. The perception front-end is
prone to errors (e.g., the network may mis-detect the wheels of the car in the image), resulting in
measurements yi with large errors. In the presence of outliers, the least squares estimator (LS) is

1Assuming additive noise comes at a small loss of generality, e.g., in SLAM and rotation averaging the measurements
belong to a smooth manifold rather than a vector space and the noise is multiplicative. However, even in these cases,
the resulting outlier-free formulations —under suitable noise assumptions— lead to standard least squares [7, 4], hence
we believe adapting the results in this monograph to those setups is indeed possible, see Section 9.

2Without loss of generality, we assume ω to have an isotropic Gaussian distribution with identity covariance, but
arbitrary covariances can be easily accommodated by rescaling yi and fi(·) by the square root of the inverse covariance.
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known to produce grossly incorrect results, hence it is desirable to adopt an outlier-robust estimator
that can correctly estimate x

→ in the presence of many outliers. In this monograph, we do not
make assumptions on the nature of the outliers and consider the worst case where a fraction ω of
measurements is arbitrarily corrupted, a setup commonly referred to as the strong adversary model
in statistics and learning [15].

The robust statistics lens. Classical robust statistics [16, 17, 18, 19] provides many alternative
formulations to (LS) that allow regaining robustness to outliers. For instance, if the number of
outliers is known, say a fraction ω of the n measurements is corrupted, we can use the Least Trimmed
Squares (LTS) estimator [18] to compute an outlier-robust estimate:

xLTS = argmin

ω↑{0;1}
n

x↑X

n∑

i=1

εi · ↗yi ↘ fi(x)↗
2

2
, subject to

n∑

i=1

εi = ϑn , (LTS)

where we defined the inlier rate ϑ ↭ 1↘ ω, and introduced binary variables ε ↓ {0; 1}
n which are

in charge of selecting the best ϑn measurements (when εi = 1, the i-th measurement is selected
as an inlier by (LTS), while εi = 0 otherwise); in words, (LTS) selects the ϑn measurements
that induce the smallest error for some estimate x and disregards the remaining measurements as
outliers. Unfortunately, the optimization problem (LTS), as well as many other popular outlier-
robust formulations, are NP-hard [20] and for a long while no tractable algorithm was available for
high-dimensional outlier-robust estimation problems (e.g., in the problems we discuss in Section 3
and Section 9, x’s dimension ranges from 9 to potentially more than a thousand). In recent years,
algorithmic robust statistics came to the rescue, by proposing polynomial-time algorithms for outlier-
robust estimation with strong performance guarantees, including [15, 21, 22, 23, 24]. For instance,
while not explicitly recognized in the paper, the algorithm by Klivans et al. [15] can be understood
as a convex relaxation for problem (LTS) for the case where fi(·) is a real-valued linear function.
Many of these works use Lasserre’s moment relaxation [25] as an algorithmic workhorse, and adopt
the dual view of sum-of-squares relaxations [26] to prove bounds on the quality of the estimates.

The computer vision lens. In typical robotics and vision applications, the number of outliers
is unknown, therefore outlier-robust estimators have to simultaneously look for a suitable estimate
of x

→ while searching for a large set of inliers. In computer vision, a common formulation for
outlier-robust estimation with unknown number of outliers is consensus maximization [27], which
searches for the largest set of inliers such that the measurements selected as inliers have a low error
with respect to some estimate:

xMC = argmax

ω↑{0;1}
n

x↑X

n∑

i=1

εi , subject to εi · ↗yi ↘ fi(x)↗
2

2
≃ c̄

2
, (MC)

where the given constant c̄ ⇐ 0 is the maximum error for a measurement to be considered an
inlier. Problem (MC) has been shown to be inapproximable [28, 29], and the literature has been
traditionally split between fast heuristics (which do not provide performance guarantees) and globally
optimal solvers (which can compute optimal solutions but run in worst-case exponential time). The
recent work [30] shows that for common geometric perception problems, (MC) can be written as a
polynomial optimization problem (POP) and relaxed via Lasserre’s moment relaxation. The key
insight behind [30], reviewed in Section 3, is that —for common perception problems— the domain
X is a basic semi-algebraic set (i.e., it can be written as a set of polynomial inequalities), while with
a suitable parametrization, the function fi(·) becomes a (vector-valued) linear function.
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The robotics lens. In robotics, the go-to approach for outlier-robust estimation has been the
use of M-estimators [17], which replace the least squares cost in (LS) with a robust loss function. In
this monograph we focus on a particular choice of robust loss function, the truncated least squares
(or truncated quadratic) cost:

xTLS = argmin
x↑X

n∑

i=1

min

(
↗yi ↘ fi(x)↗

2

2
, c̄

2

)

= argmin

ω↑{0;1}
n

x↑X

n∑

i=1

εi · ↗yi ↘ fi(x)↗
2

2
+ (1↘ εi) · c̄

2
, (TLS)

where the objective is the pointwise minimum of a quadratic and a constant function, i.e., it
is quadratic for small residuals ↗yi ↘ fi(x)↗2 ≃ c̄, and becomes constant for large residuals. In
the second line in (TLS) we noticed that the truncated least squares cost can be equivalently
rewritten using auxiliary binary variables ε, by observing that for two numbers a, b, min(a, b) =

minω↑{0;1} ε · a + (1 ↘ ε) · b. Also problem (TLS) has been shown to be inapproximable in the
worst case [28]. While traditionally problem (TLS) has been attacked using local solvers [31] or
continuation schemes [32], recent work [30, 33, 1, 34, 35] has shown that for common perception
problems, (TLS) can be written as a POP and relaxed via Lasserre’s moment relaxation. More
surprisingly, many works have empirically observed the relaxation to be tight [30, 33, 34], at least for
reasonable levels of noise and outliers, with very recent work [36] providing initial theoretical results
to support such empirical evidence, at least for the specific problem of rotation search. However,
the performance of these estimators is commonly demonstrated via empirical evaluation, and the
literature is still lacking more general theoretical guarantees on the quality of the resulting estimates.

Catalyst, convergence, and contribution. Despite the heterogeneity of the formulations
reviewed above, we observe that recent years have witnessed a convergence across fields towards de-
signing tractable algorithms for high-dimensional outlier-robust estimation using moment relaxations.
A few examples include [15, 37, 30, 33, 1, 34, 35, 36, 38]. Such a convergence has been triggered
by the progress in polynomial optimization via moment and sum-of-squares relaxations, starting
from the seminal works [25, 26, 39, 40, 41]. At the same time, research across fields has remained
disconnected, with researchers being mostly unaware of the parallel work in other areas.

The goal of this monograph is to bridge this gap and connect geometric perception problems in
robotics and vision to novel tools in outlier-robust statistics. Towards this goal we adapt and extend
recent results from robust statistics to the setup and formulations commonly found in robotics and
vision. For the case with low outlier rates (i.e., ω → 0.5), we adapt results from [15], which considers
outlier-robust regression using least trimmed squares (LTS) with scalar linear measurements, to the
robotics setup where the measurements are vector valued and the variables belong to a non-convex
domain; we also develop a simple bound on the distance of the estimate from the ground truth
(while [15] focuses on bounding the residual errors for the inliers). Then, we extend these results
to the case where the number of outliers is unknown. In particular, we compute bounds on the
estimation error (i.e., the distance between the estimate and x

→) for (MC) and (TLS). These results
constitute the first general performance guarantees for the convex relaxations [30, 33, 34], going
beyond the empirical observations in [30] and the problem-specific optimality guarantees in [34, 36].

Then we consider the case with high outlier rates (i.e., ω ↑ 0.5), where a majority of the
measurements are outliers. While in robotics and vision it has been observed that with random
(i.e., non-adversarial) outliers, the point estimators (MC) and (TLS) are still able to retrieve
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good estimates for x
→ [30, 33, 34, 1], in the presence of adversarial outliers, the estimate resulting

from (LTS), (MC), and (TLS) can be arbitrarily far from the ground truth: intuitively, since the
outliers constitute the majority of the measurements, they can agree on an arbitrary x and form a large
set of mutually consistent measurements that are picked as solution to (LTS), (MC), and (TLS).3 In
robotics and related fields, this setup has been recognized to require computing multiple estimates, in
order to find one that is close to the ground truth, ranging from early work on multi-hypothesis target
tracking [42] and particle filters [43], to recent work on multi-hypothesis smoothing [44, 45]. However,
none of these works simultaneously provide tractable algorithms and performance guarantees for
the resulting estimates. In this monograph, we connect to the recent literature on list-decodable
regression [37], which proposes polynomial-time estimators that return a small list of estimates such
that with high probability at least one of the estimates is close to the ground truth. In particular,
we provide an adaptation of the results in [37] to account for vector-valued measurements.

Finally, we present numerical experiments on a canonical geometric perception problem to
shed light on the theoretical results. The experiments provide encouraging evidence that many of
the assumptions supporting the theoretical analysis (e.g., certifiable hypercontractivity) are often
satisfied by real data. At the same time, they reveal a large gap between theory (which mostly
guarantees performance for high-order, computationally expensive moment relaxations) and practice
(where low-order relaxations already exhibit impressive performance). Our numerical evaluation also
provides the first empirical evidence that a sparse low-order moment relaxation for list-decodable
regression (based on a modified version of the algorithm proposed in [37]) is able to accurately recover
estimates in geometric perception problems with high outlier rates, where (LTS), (MC), and (TLS)
are doomed to fail. Moreover, the experiments show that if the measurements are generated by
multiple estimates (e.g., di!erent subsets of measurements are generated by di!erent variables
x
→), then our sparse moment relaxation for list-decodable regression is able to simultaneously

recover all the estimates generating the data.4 We release open-source code to reproduce our
numerical experiments, including an implementation of key algorithms covered in this monograph
at https://github.com/MIT-SPARK/estimation-contracts.

We remark that the emphasis in this monograph is on performance guarantees. We do not
present new algorithms (we mostly propose small modifications to existing algorithms) but rather try
to address the question: under which conditions on the input measurements can we guarantee that
modern outlier-robust estimation algorithms based on moment relaxations recover an estimate close
to the ground truth in the presence of outliers? These conditions are what we call an “estimation
contract”. Besides the proposed extensions of existing results, we believe the main contributions of
this monograph are (i) to unify parallel research lines by pointing out commonalities and di!erences,
(ii) to introduce advanced material (e.g., sum-of-squares proofs) in an accessible and self-contained
presentation for the practitioner, and (iii) to point out a few immediate opportunities and open
questions in outlier-robust geometric perception. This “unification” is expected to benefit both
practitioners and researchers in robust statistics. On the robotics and computer vision side, this
monograph provides new and fairly general performance guarantees for robust estimation algorithms

3Note that the case with a high number of adversarial outliers is often the one encountered in practice in robotics
and vision: think about a motion estimation problem where the robot has to estimate its motion from point features
detected by the camera [3]: if there is a large moving object in front of the camera, most features may fall on the
moving object (rather that on the static portion of the scene), leading to incorrect motion estimates.

4With reference to the motion estimation example in footnote 3, such an algorithm would simultaneously recover
the motion of all the objects in the scene, rather than just the motion with respect to the object capturing most point
features, which would be quite useful in practical applications.
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based on moment relaxations, applied to geometric perception problems. Moreover, the monograph
reviews a new proof system (based on sum-of-squares proofs) that provides a richer language to
discuss properties of moment relaxations beyond the typical analysis based on a manual design of
dual certificates [34, 36, 46, 7]. Furthermore, it positions list-decodable regression based on moment
relaxations as a useful and computationally tractable tool for multi-hypotheses estimation. On
the robust statistics side, we hope the reader will be intrigued by the remarks about the practical
performance and the empirical tightness of the moment relaxation of (TLS) (discussed in greater
detail in [30]) and the practical performance of a low-order relaxation for list-decodable regression,
which we believe deserve further investigation. We also hope to attract further attention towards
the case where the number of outlier is unknown and the variables are confined to semi-algebraic
sets, which is the setup commonly encountered in robotics and vision problems.

Monograph structure. Section 2 starts by reviewing related works across fields. Section 3
showcases the fact that many estimation problems in robotics and vision can be formulated using
a linear measurement model with variables belonging to a basic semi-algebraic set. Section 4
introduces notation and preliminaries (while postponing as many details as possible to the appendix).
Section 5 succinctly states the problem of outlier-robust estimation and our quest for estimation
contracts. Section 6 studies the case with low outlier rates and provides error bounds for (LTS),
(MC), and (TLS). Section 7 studies the case with high outlier rates and adapts results from
list-decodable regression. Section 8 presents numerical experiments on a rotation search problem.
Section 9 discusses opportunities and open problems, and Section 10 concludes the monograph. The
appendices provide background information regarding moment relaxations (Appendix A), pseudo-
distributions (Appendix B), and sum-of-squares proofs (Appendix C), and contain technical proofs
(Appendices D to I) and algorithmic details about sparse list-decodable estimation (Appendix J).

Learning paths. The main body of this monograph (up to Section 10) is designed to be
self-contained, and readers interested in getting a bird’s-eye view of the technical tools underlying
our results, the corresponding performance guarantees, and sparse list-decodable estimation can
focus their attention on these sections. Expert readers from statistics might find the numerical
experiments of particular interest. Junior researchers in computer vision and robotics interested
in advancing this research are recommended to carefully read Appendices A to C, which should
serve as a gentle introduction to the key technical tools. Beyond this monograph, the book [47] and
monograph [9] provide necessary background information about geometric perception, the book [48]
provides an in-depth introduction to semidefinite programming and sum-of-squares relaxations, and
the notes [49] and monograph [50] provide a more formal introduction to sum-of-squares proofs.

2 Related Work
Outlier-robust estimation in robotics and computer vision. Traditional algorithms for
outlier-robust estimation for geometric perception can be divided into fast heuristics and globally
optimal solvers. Two general frameworks for designing fast heuristics are RANSAC [51] and graduated
non-convexity (GNC) [52, 32, 28]. RANSAC solves problem (MC) by repeatedly sampling a minimal
set of measurements, computing an estimate x from the minimal set, and searching for a large set
of measurements that agrees with the estimate x [27]; while being a well-established algorithm,
RANSAC mostly applies to low-dimensional problems, since the expected number of iterations
required by RANSAC to find an outlier-free set of measurements grows exponentially in the size of
the minimal measurement set; moreover, the number of RANSAC iterations also grows exponentially
with the outlier rate ω [53]. GNC solves M-estimation problems, including (TLS), via a continuation
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scheme that starts from a convex approximation of the cost function and then gradually recovers
the robust cost. GNC can scale to high-dimensional problems and applies to a broad class of loss
functions —including adaptive loss functions [54, 55]. However, the e!ectiveness of the continuation
scheme is problem-dependent. Iterative local optimization is also a popular fast heuristics for the
case where an initial guess is available [56, 57, 58, 59]. Approximate but deterministic algorithms
have also been designed to solve consensus maximization [60]. On the other hand, globally optimal
solvers are guaranteed to retrieve optimal solutions for outlier-robust estimation but run in worst-case
exponential time. These solvers are typically designed using Branch and Bound or mixed-integer
programming [61, 62, 63, 64, 65, 66, 67, 68]. Enqvist et al. [69] present an outlier-robust estimator
that runs in polynomial time with respect to the number of measurements, but still has exponential
complexity in the dimension of the variable to be estimated (see also [70, 71]). Chin et al. [72]
frame (MC) as a tree search problem and propose an approach based on A

↓ search.
Certifiably optimal outlier-robust algorithms [30, 33, 1, 34, 35] have recently emerged as a

way to obtain optimal solutions to certain outlier-robust problems in polynomial time (both with
respect to the number of measurements and the dimension of the variable to be estimated). These
approaches relax non-convex outlier-robust formulations, including (MC) and (TLS), into a convex
optimization. The key insight behind these algorithms is twofold: (i) for several estimation problems
arising in robotics and vision, we can rewrite the optimization problems arising in outlier-robust
estimation as polynomial optimization problems (POP), and (ii) for these POPs, Lasserre’s moment
relaxation [25] is empirically seen to be tight at the lowest relaxation order (i.e., order 2), hence
providing a tractable way to compute robust estimates. These works mostly provide a posteriori
optimality certificates [30, 33] (i.e., they solve the relaxation, compute a rounded estimate, and then
compute a suboptimality gap for that specific estimate, possibly certifying its optimality), while the
papers [34, 36] provide problem-specific a priori conditions under which the relaxation is tight.

Outlier-robust estimation in robust statistics. Outlier-robust estimation has been studied
in robust statistics, starting from the seminal work of Huber, Tukey, and Rousseeuw [16, 17, 18, 19],
among many others. However, these classical frameworks do not immediately lead to tractable
algorithms and are often provably hard to solve [20, 28, 27], leading to algorithms whose complexity
increases exponentially in the dimension of x. The growing interest towards high-dimensional outlier-
robust estimation has triggered a large number of recent works on “algorithmic robust statistics”,
which focus on the design of tractable algorithms for high-dimensional estimation with outliers.
Early algorithms along this line have focused on clustering and moment estimation (e.g., how to
robustly estimate mean and covariance of a distribution given samples) [73, 74, 75, 76, 77, 78, 79]
and subspace learning for classification in the presence of malicious noise [80, 81, 82].

More relevant to this monograph is the recent work on robust linear regression [15, 21, 22,
23, 24, 83], where one has to compute an estimate of x→ given an outlier-corrupted set of linear
measurements:

yi = a
T
i x

→
+ ϖ, with yi ↓ R and x

→
↓ Rdx , (2)

where yi are given scalar measurements, ai are given vectors of suitable dimension, and ϖ is the
measurement noise. Typical contamination models studied in the literature include the Huber
contamination model (e.g., [84]), which assumes that a fraction of measurements are randomly
generated by an unknown outlier distribution, and the strong adversary model, in which the outlier-
generation mechanism has access to the inliers and can replace a given fraction of them with arbitrary
outliers. The literature on outlier-robust linear regression in the low-outlier regime (ω → 0.5)
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includes approaches based on iterative outlier filtering [21, 23], robust gradient estimation [22], hard
thresholding [24, 85, 86], ϱ1-regression [87, 83, 88], and moment/sum-of-squares relaxations [15]. Our
interest towards moment/sum-of-squares relaxations is motivated by that fact that the framework
in [15] can accommodate a large class of linear measurement models —more precisely, fairly general
distributions for the vectors ai in (2)— while related work often takes stronger assumptions on ai

(e.g., [23] assumes ai’s are sampled from a Gaussian distribution); moreover, the corresponding
algorithms operate in the strong adversary model, which is useful to derive worst-case guarantees
for geometric perception. In the high-outlier regime (ω ↑ 0.5), it is still possible to recover a good
estimate when the outliers are not adversarial. The works [87, 88] provide approaches based on
ϱ1-minimization to recover good estimates assuming oblivious outliers (rather than adversarial),
and under relatively strong assumptions on the measurements ([88] assumes sub-orthogonality, [87]
assumes the vectors ai to be drawn from an isotropic Gaussian). The works [89, 90, 91] also assume
oblivious outliers and analyze the Huber loss estimator ([90] assumes Gaussian ai, [89] requires the
column span of the matrix staking all the vectors ai not to contain approximately sparse vectors, [91]
assumes a bounded or sub-Gaussian distribution for the ai’s). The works [37, 92] are the first to
provide polynomial-time algorithms for list-decodable linear regression with adversarial outliers,
where the estimator returns multiple hypotheses such that at least one of the hypotheses is close to
the ground truth x

→. List-decodable learning was originally introduced in [93] and was also studied
in the context of moment estimation in [76, 94, 77].

3 Motivating Problems
This section shows that many foundational problems in geometric perception can be formulated as
linear estimation problems with variables belonging to a basic semi-algebraic set (i.e., a set that
can be described by a finite number of polynomial inequality constraints).5 Mathematically, we will
formulate the measurement model for many problems of interest as:

yi = A
T
i x

→
+ ω, with yi ↓ Rdy and x

→
↓ X ↔ Rdx . (3)

This observation will be crucial towards adapting existing results in robust statistics to the geometric
perception setup. Indeed, the measurement model (3) is essentially the same of the one used in
robust regression, see eq. (2), with the exception that measurements yi ↓ Rdy are vector-valued,
and the variable x

→ belongs to a specific domain X (typically, a smooth manifold) rather than Rdx .
Towards recasting many estimation problems in geometric perception as in eq. (3), we start by
restating the well-known fact that —for common variables of interest in robotics and vision— the
domain X is a basic semi-algebraic set (see e.g., [30, 95, 13, 96, 97]).

Fact 1 (Variables in geometric perception). The d-dimensional Special Orthogonal group SO(d) ↭
{R ↓ Rd↔d

| R
T
R = Id, det(R) = +1} ( i.e., the group of rotations), and the Special Euclidean

group SE(d) ↭
{[

R t
0 1

]
↓ R(d+1)↔(d+1)

| R ↓ SO(d), t ↓ Rd
}

( i.e., the group of poses and rigid
transformations) are basic semi-algebraic sets.6 Moreover, several geometric constraints ( e.g., field-
of-view or maximum distance constraints) can be written as basic semi-algebraic sets.

5This observation constitutes the basis for many certifiable solvers for outlier-free and outlier-robust estimation
that have been developed in robotics and vision, see [30, 7] and the references therein.

6More precisely, SO(d) and SE(d) are algebraic varieties, i.e., sets that can be described by a finite set of polynomial
equality constraints {f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0}. Note that we can rewrite a variety as a basic semi-algebraic
set by replacing each equality constraint fi(x) = 0 with two inequality constraint fi(x) → 0 and fi(x) ↑ 0, hence a
variety can be understood as a special case of a basic semi-algebraic set.
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Now we observe that several geometric perception problems can be written as linear models, akin
to eq. (3) (we will discuss few more examples, including SLAM and rotation averaging in Section 9).
The reader familiar with geometric perception can safely skip this section.

Example 1 (Rotation search (a.k.a. the Wahba problem)). Estimate the rotation R ↓ SO(3) that
aligns pairs of 3D points (ai, bi), i = 1, . . . , n. The measurement model for the (inlier) measurements
is given by:

bi = Rai + ω
x→↭vec(R)

=======⇒

same form as (3)︷ ︸︸ ︷
bi = (a

T
i ⇑ I3)x

→
+ ω, (4)

where ω is the measurement noise. In (4), we used the vectorization operator vec(·) to transform
a 3D matrix into a vector and manipulated the expression using standard vectorization properties.
Rotation search arises, for instance, in satellite attitude estimation [98] and image stitching [34].

Example 2 (3D point cloud registration). Estimate the rigid transformation (R, t), with R ↓ SO(3)

and t ↓ R3, that aligns pairs of 3D points (ai, bi), i = 1, . . . , n. The measurement model for the
(inlier) measurements is:

bi = Rai + t+ ω

x→↭
[

vec(R)
t

]

=========⇒

same form as (3)︷ ︸︸ ︷
bi =

[
a
T
i
⇑ I3 I3

]
x
→
+ ω, (5)

Point-to-plane 3D registration can be similarly formulated using a linear model involving a rigid
transformation [30]. Registration problems are commonly encountered in instance-level object pose
estimation, scan-matching for 3D reconstruction, and (stereo or RGB-D) visual odometry [1].

Example 3 (3D-3D category-level object pose and shape estimation). Estimate the rigid transfor-
mation (R, t), with R ↓ SO(3) and t ↓ R3, and the shape parameters c ↓ RK (describing the shape
of a 3D object) from 3D point measurements bi, i = 1, . . . , n. The generative model for the (inlier)
measurements is:

bi = RSic+ t+ ω

t↑↭RTt , ε↑↭RTε , x→↭
[

vec(RT)
t→

c

]

======================⇒ 0 =
[
↘b

T
i
⇑ I3 I3 Si

]
x
→
+ ω

↗
, (6)

where Si ↓ R3↔K is a matrix of given basis shapes (such that the final shape Sic, i = 1, . . . , n,
is written as a linear combination of the basis shapes). Note that for (6) to fall in the class of
problems (3), we have to assume that ω has an isotropic distribution, such that the distribution of
ω
↗ ↭ R

T
ω does not depend on the unknown R. The model in (6) is known as the active shape

model [99], and finds application in face detection, human pose estimation, and object pose and
shape estimation, see [2, 97, 11, 100] among others. In these problems, it is not uncommon for the
number of shapes K to be large, e.g., K ↑ 100.

Example 4 (Absolute pose estimation). Estimate the camera pose (R, t), with R ↓ SO(3) and
t ↓ R3, from (calibrated) pixel observations, written as unit-norm vectors ui, picturing known 3D
points ai ↓ R3, i = 1, . . . , n. The generative model for the (inlier) measurements is:

ςiui = Rai + t+ ω

ε↑i↭[ui]↓ε , x→↭
[

vec(R)
t

]

=================⇒

same form as (3)︷ ︸︸ ︷
0 =

[
[ui]↔(a

T
i
⇑ I3) [ui]↔

]
x+ ω

↗

i, (7)
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Intuitively, the measurement model on the left describes the fact that —up to an unknown scale
ςi— the pixel measurement ui pictures the 3D point ai after it is transformed to the camera frame
according to the camera pose (R, t). While the model on the left is already linear, on the right-
hand side we algebraically eliminated the scale factors ςi and obtained a lower-dimensional linear
measurement model by multiplying both sides by the orthogonal projector [ui]↔ ↭ I3 ↘uiu

T
i
, which is

such that [ui]↔ui = 0. The absolute pose estimation problem arises in camera localization in known
scenes and object pose estimation from camera images, see e.g., [101, 102, 103].

Two remarks are in order. First, we observe that while the adoption of the linear model in (3)
with variables in X might seem an obvious choice, this has not necessarily been the go-to approach
in robotics and vision. In many cases, researchers still prefer non-linear measurement models over
Euclidean space,7 rather than a linear model over the semi-algebraic domain X, since the former
leads to unconstrained nonlinear least squares problems that can be quickly solved by local solvers
when an initial guess is available [9]. The second remark is that —in the outlier-free case— all
the geometric perception examples in this section can be considered solved; in particular, rotation
search and 3D registration admit a closed-form solution [8]; absolute pose estimation can be solved
globally using Gröbner basis [101]; 3D-3D category-level perception can be solved via a tight convex
relaxation [100]. On the other hand, some of these problems remain challenging in the presence of
outliers and are still the subject of active research, see [53, 1, 100] and the references therein.

We conclude this section with an assumption that is required for the theoretical analysis and
practical performance of the machinery used in this monograph, i.e., moment/sum-of-squares
relaxations.

Assumption 2 (Explicitly bounded domain). In this monograph we assume that the domain X is
explicitly bounded (or Archimedian), meaning that it contains a constraint in the form ↗x↗

2

2
≃ M

2
x

for some finite constant Mx > 0.

This assumption is typically not restrictive since many geometric variables already belong
to bounded sets. For instance, rotations R ↓ SO(3) satisfy ↗vec(R)↗

2

2
= 3; the shape vector

in Example 3 is typically assumed to belong to the probability simplex, hence it satisfies ↗c↗
2

2
≃ 1;

finally, translations can be assumed to be bounded since the sensors producing the measurements in
the examples above have finite range.

4 Preliminaries on Moment Relaxations and Sum-of-Squares Proofs
This section reviews the three main ingredients of modern techniques for outlier-robust estimation:
semidefinite programming, moment relaxations, and sum-of-squares proofs. In the next sections,
we will use these concepts to state outlier-robust estimation algorithms (using moment relaxations,
which lead to relaxing our estimation problems to tractable semidefinite programs) and to analyze
their performance (using sum-of-squares proofs). We keep this presentation short and pragmatic,
and refer the interested reader to the appendix and to specialized references [104, 41, 49] for details.

Notation. We use lowercase characters (e.g., y) to denote real scalars, bold lowercase characters
(e.g., y) for real (column) vectors, and bold uppercase characters (e.g., A) for real matrices. Id
denotes the identity matrix of size d ⇓ d, 1d denotes the vector of ones of size d, 0 denotes the
all-zero vector or matrix of appropriate size. The symbol ⇑ denotes the Kronecker product. For a

7For instance, one can parametrize a rotation using Euler angles (or a tangent-space representation), which makes
the corresponding measurement models nonlinear, but allows treating the variables as unconstrained quantities.
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square matrix A ↓ Rd↔d, tr (A) ↭ ∑
d

i=1
aii denotes the matrix trace. For A,B ↓ Rm↔d, ⇔A,B↖ ↭

tr
(
A

T
B
)
=

∑
m

i=1

∑
d

j=1
AijBij denotes the usual inner product between real matrices. [A,B] and

[A B] denote the horizontal concatenation, while [A ; B] denotes the vertical concatenation, for
proper A,B. For a vector v, we use ↗v↗

1
, ↗v↗

2
, and ↗v↗

↘
to denote the ϱ1, ϱ2, and ϱ↘ norm of

v, respectively. For a ↓ R, the symbol ↙a∝ returns the smallest integer ⇐ a. We use Sd to denote
the space of d⇓ d real symmetric matrices, and Sd+ (resp. Sd++) to denote the set of matrices in Sn
that are positive semidefinite (resp. definite). We also write X ′ 0 (resp. X ∞ 0) to indicate X is
positive semidefinite (resp. definite). We denote with N the set of natural numbers (nonnegative
integers), and for a given m ↓ N with m ⇐ 1, we use the notation [m] ↭ {1, . . . ,m} to denote the
set of indices from 1 to m. For a finite set A, |A| denotes the cardinality of A. Finally, 1A ↓ {0; 1}

m

is the indicator vector of the set A ↔ [m], whose i-th entry is 1 if i ↓ A or zero otherwise.

4.1 Semidefinite Programming
The algorithms discussed in this monograph require solving large semidefinite programs. A semidefi-
nite program is a convex optimization problem and can be solved in polynomial time by o!-the-shelf
optimization solvers, e.g., [105, 106]. More formally, a multi-block semidefinite programming (SDP)
problem is an optimization problem in the following primal form [107]:

min
X↑Xsdp

{⇔C,X↖ | A(X) = b, X ′ 0} , (SDP)

where the variable X = (X1, . . . ,Xl) is a collection of l square matrices (the “blocks”) with Xi ↓

Rdi↔di for i = 1, . . . , l (conveniently ordered such that d1 ⇐ . . . ⇐ dl); the domain Xsdp ↭ Sd1⇓. . .⇓Sdl
and the constraint X ′ 0 restrict the matrices to be symmetric positive semidefinite. The objective
is a linear combination of the matrices in X, i.e., ⇔C,X↖ ↭ ∑

l

i=1
⇔Ci,Xi↖ (for given matrices

Ci ↓ Sdi , i = 1, . . . , l). The problem includes independent linear constraints A(X) = b, where:

A(X) ↭
[

l∑

i=1

⇔Ai1,Xi↖ ; . . . ;

l∑

i=1

⇔Aim,Xi↖


↓ Rm

, (8)

for given matrices Aij↓Sdi , i=1, . . . , l, and j=1, . . . ,m, and a given vector b↓Rm.

4.2 Polynomial Optimization and Lasserre’s Hierarchy of Moment Relaxations
Our interest towards polynomial optimization stems from the fact that the outlier-robust formulations
discussed in Section 1, i.e., (LTS), (MC), and (TLS), can be written as polynomial optimization
problems when the measurement model is linear (or, more generally, polynomial) and x belongs to a
basic semi-algebraic set. Moreover, as we will see in this section, Lasserre’s hierarchy of moment
relaxations provides a systematic approach to relax polynomial optimization problems (which in
general are hard to solve) into semidefinite programs (which can be solved in polynomial time). Indeed,
the tools covered in this section already provide a fairly general template to design outlier-robust
estimators for geometric perception and have been used in recent works [30, 33, 1, 34, 35].

Polynomial optimization. Given a vector x = [x1 ; x2 ; . . . ; xdx ] ↓ Rdx , a monomial in x is a
product of xi’s with nonnegative integer exponents (for instance x

2
1
x5x

3
6

is a monomial). The sum of
the exponents is called the degree of the monomial (e.g., the monomial x2

1
x5x

3
6

has degree 6). A real
polynomial p(x) is a finite sum of monomials with real coe"cients. We shorthand p in place of p(x)
when the variable x is clear from the context. The degree of a polynomial p, denoted by deg (p), is
the maximum degree of its monomials. The ring of real polynomials is denoted by R[x].
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A polynomial optimization problem (POP) is an optimization problem in the form:

p
ε ↭ min

x↑Rdx


p(x)


hi(x) = 0, i = 1, . . . , lh

gj(x) ⇐ 0, j = 1, . . . , lg


, (POP)

where p, hi, gj ↓ R[x]. Problem (POP) is hard to solve in general [104] (e.g., hard combinatorial
problems with binary constraints xi ↓ {0, 1} can be written in the form (POP) by imposing
x
2

i
= xi, i = 1, . . . , dx), but it admits a well-studied convex relaxation that we review below.
Lasserre’s hierarchy of moment relaxations [104, 25, 108]. We denote with [x]r the

vector of monomials of degree up to r. For example, if x = [x1 ; x2] and r = 2, then [x]2 =

[1 ; x1 ; x2 ; x
2
1
; x1x2 ; x

2
2
]. The dimension of [x]r is dr ↭

(
dx+r
r

)
. With [x]r, we form the so-called

moment matrix X2r ↭ [x]r[x]
T
r . For instance, for x = [x1 ; x2] and r = 2 (cf. [x]2 above)8:

X4 ↭ [x]2[x]
T
2 =





1 x1 x2 x
2
1 x1x2 x

2
2

x1 x
2
1 x1x2 x

3
1 x

2
1x2 x1x

2
2

x2 x1x2 x
2
2 x

2
1x2 x1x

2
2 x

3
2

x
2
1 x

3
1 x

2
1x2 x

4
1 x

3
1x2 x

2
1x

2
2

x1x2 x
2
1x2 x1x

2
2 x

3
1x2 x

2
1x

2
2 x1x

3
2

x
2
2 x1x

2
2 x

3
2 x

2
1x

2
2 x1x

3
2 x

4
2




. (9)

By construction, X2r is positive semidefinite and has rank (X2r) = 1. Moreover, the set of unique
entries in X2r is simply [x]2r, i.e., the set of monomials of degree up to 2r (these monomials appear
multiple times in X2r, e.g., see x1x2 in eq. (9)). Therefore, a key fact is that —for a suitable matrix
A— the linear function ⇔A,X2r↖ can express any polynomial in x of degree up to 2r.9

The key idea of Lasserre’s hierarchy of moment relaxations is to (i) rewrite (POP) using the
moment matrix X2r, (ii) relax the (non-convex) rank-1 constraint on X2r (and only enforce X2r ′ 0,
which is a convex constraint),10 and (iii) add redundant constraints that are trivially satisfied
in (POP) but still contribute to improving the quality of the relaxation. This leads to a convex
semidefinite program in the form (SDP) (the interested reader can find a more detailed derivation
in Appendix A), which can be conveniently solved in polynomial time:

m
ε ↭ min

X↑Xsdp

{⇔C,X↖ | A(X) = b, X ′ 0} . (LASr)

One can solve the relaxation for di!erent choices of r, leading to a hierarchy of convex relaxations;
r is typically referred to as the order of the relaxation. The importance of Lasserre’s hierarchy lies
in its stunning theoretical properties: when the set defined by the constraints is explicitly bounded
(Assumption 2), then Lasserre’s relaxation (LASr) can be proven to compute a solution to the

8Contrary to [30], we use the subscript 2r instead of r for the moment matrix computed as [x]r[x]
T
r ; we believe

this notation is more intuitive (the moment matrix contains monomials up to degree 2r) and is more consistent with
the standard definition of pseudo-distributions, as we will see in Appendix B.

9For instance, we can write the polynomial 5x3
1 + 0.3x4

1 + 4x2
1x

2
2 + x4

2 as ↓A,X2r↔ with:

A =





0 0 0 0 0 0

0 0 0
5
2 0 0

0 0 0 0 0 0

0
5
2 0 0.3 0 2

0 0 0 0 0 0

0 0 0 2 0 1




. (10)

10As shown in Appendix B, relaxing the rank constraint converts the moment matrix into a pseudo-moment matrix.
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original (POP) when r ∈ ∋, and —under further technical conditions— the relaxation computes a
solution to (POP) for some finite r [108, 109]. In practice, the dimension of X2r quickly grows for
increasing r, hence solving the SDP (LASr) is only practical for small relaxation orders r. Therefore,
it would be interesting to see if we can compute a good approximation of the solution x

ε of (POP)
from the solution of the moment relaxation at some small r. We expand on this point below.

Rounding and a posteriori guarantees. How can we estimate a “good” solution for (POP)
and assess its quality using (LASr)? Given a solution X

ε to (LASr) (again, computable in polynomial
time) for some small relaxation order r, one can extract a feasible (but possibly suboptimal) estimate
x̂ for (POP), using a rounding procedure; for instance, we can extract the entries of Xε corresponding
to x, which we denote as X

ε

[x] (cf. (9), where we can extract X
ε

[x] = [x1 ; x2] from the first column
of the matrix), and then project the corresponding vector to the set X. The rounding procedure
is often problem dependent, but it is straightforward to implement in the geometric perception
problems considered in this monograph, where projecting to the feasible set (POP) is easy (e.g.,
given a generic 3⇓ 3 matrix, it is easy to project the matrix onto the set of 3D rotations, see [4]).
Interestingly, checking the quality of the estimate x̂ a posteriori (i.e., after solving the moment
relaxation) is also easy: if we call p̂ ↭ p(x̂) the objective attained by x̂ in (POP), it holds:

m
ε
≃ p

ε
≃ p̂, (11)

where the first inequality follows from the fact that (LASr) is a relaxation, while the second follows
from the fact that p

ε is the optimal (lowest) cost over the feasible set of (POP) and x̂ is feasible
for (POP). Since we can compute m

ε after solving the relaxation (LASr) and we can also compute
p̂ after rounding, we can use (11) to bound the suboptimality of x̂ (i.e., from (11), we can bound the
suboptimality gap of x̂ as p̂↘ p

ε
≃ p̂↘m

ε) and understand how far is x̂ from an optimal solution.
Moreover, if p̂ = m

ε, the inequalities (11) become tight, and we can conclude that p̂ = p
ε and x̂ is

indeed an optimal solution. This a posteriori checks are at the basis of the certifiable algorithms
proposed in robotics and vision [30, 33, 1, 34, 35], which first reformulate robust estimation as
a (POP) and then apply the following algorithmic workflow:

(POP) moment relaxation
==============⇒ (LASr)

SDP solver
========⇒ (X

ε
,m

ε
)

rounding
======⇒ (x̂, p̂)

certification
=========⇒ p̂

?
= m

ε
,

(12)

where the last step is to certify optimality of x̂ whenever p̂ = m
ε. In practice, what is making the

works [30, 33, 1, 34, 35] (as well as the previous work on outlier-free estimation, e.g., [7, 110, 13, 111,
46]) compelling is the empirical observation that the moment relaxation is tight (meaning p̂ = m

ε)
in many practical problems for r = 1 or r = 2, hence the workflow above allows computing optimal
solutions to (POP) e"ciently in practice. Moreover, the certification step can be directly used in
practice, e.g., a robot can trust an estimate if it is certified as optimal or discard it (or at least
handle it more carefully) if no optimality certificate is obtained.

What about a priori guarantees? The a posteriori guarantees above can only be obtained
for a given problem and input data after solving the corresponding relaxation, and for a specific
choice of rounding. Moreover, the empirical observation that the relaxation is often tight seems to be
a deus ex machina and unexpectedly solve a provably hard problem. Therefore in this monograph
we are interested in a priori guarantees. How can we theoretically justify the empirical performance
of the moment relaxation for geometric perception? Can we characterize the input data for which
we expect to obtain good relaxations and rounded estimates close to the ground-truth variable we
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are trying to estimate? These questions are of practical relevance, since answering these questions
(i) would enable a better understanding of the conditions under which the perception system of a
robot is expected to work well, and (ii) would allow the design of novel perception front-ends that
can produce measurements that are more likely to lead to good estimates.

Providing a priori guarantees would be easy for very large relaxation orders, i.e., r ∈ ∋, since in
this case the solution of (LASr) can be proven to retrieve the solution of (POP) (see Appendix A).
However, here we want to provide a priori guarantees for very small r. In robotics and vision, such
guarantees have only appeared for specific problems [7, 46, 34, 36]. However, it would be desirable
to have a more general language to discuss properties of moment relaxations for small relaxation
orders r. Luckily, the sum-of-squares proofs system, described below, provides such a language.

4.3 Sum-of-Squares Proofs
Sum-of-squares (sos) proofs provide an advanced way to reason about polynomial constraints and to
infer properties of the moment relaxation introduced above. Here we want to give some intuition
about the sos proof system, and we postpone a more formal introduction to Appendix C.

Why do we need to reason about polynomial constraints? Let us start with some intuition
and motivation, before formalizing the concept of sos proof. Assume that we rephrased one of the
problems presented in the introduction, e.g., (TLS), as a (POP) and obtained the corresponding
moment relaxation (LASr). We then solved (LASr) to obtain a solution matrix X

ε (later, we are
going to call this object a “pseudo-moment matrix”). Now, we would like to infer that X

ε satisfies
some property of interest; for instance, in our estimation problems we may want to ensure that for
some suitable linear function L(·), the following holds:

↗L(X
ε
)↘ x

→
↗
2

2
≃ φ

2
, (13)

which states that the estimate L(Xε
) computed from X

ε is within a distance φ from the ground-truth
x
→. The sos proofs system does exactly that: it provides a systematic way to conclude that the

solution of the relaxation of a system of polynomial constraints, such as the constraints in (TLS)
(let us call these polynomial constraints A) also satisfies a desired polynomial relation, e.g., (13) (let
us call this polynomial constraint B). The key idea is that if we can provide an sos proof that A

“implies” B, a novel type of proof that we introduce below, then a moment relaxation of A will also
satisfy B. Note that (13) is only an example of implication we might be attempting to prove, while
in general, we might try to prove other (polynomial-expressible) properties of the moment relaxation.

What is an sos proof? First of all, we recall that a polynomial p(x) is sum-of-squares (sos)
if there exist polynomials q1(x), . . . , qt(x) such that p = q

2
1
+ . . . + q

2
t . Now consider a system of

polynomial constraints A(x) = {f1(x) ⇐ 0, f2(x) ⇐ 0, . . . , fm(x) ⇐ 0} for some given polynomials
fi(x), i ↓ [m], and the inequality g(x) ⇐ 0 (for some polynomial g(x)). We are then interested in
defining a proof that A(x) implies g(x) ⇐ 0, i.e., any x that satisfies A(x) is such that g(x) ⇐ 0.

Definition 3 (Sum-of-squares proof). Given a system of polynomial constraint A and a polynomial
g, a sum-of-square (sos) proof that the system A implies g ⇐ 0 consists of sum-of-squares polynomials
{pS}S≃[m] such that:

g =

∑

S≃[m]

pS ·



i↑S

fi. (14)

We say that the proof has degree k if for every S ↔ [m], deg
(
pS ·


i↑S

fi

)
≃ k where deg (·) denotes
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the degree of a polynomial. We use the notation:

A(x) x
k
{g(x) ⇐ 0} or {fi(x) ⇐ 0, . . . , fm(x) ⇐ 0} x

k
{g(x) ⇐ 0} (15)

to denote that there is a proof of degree at most k of the fact that A = {fi(x) ⇐ 0, . . . , fm(x) ⇐ 0}

implies g ⇐ 0 ( i.e., any x that satisfies A(x) is such that g(x) ⇐ 0). We omit the variables and
write A(x)

k
{g(x) ⇐ 0}, when they are clear from the context. Moreover, we write

x
k
{g(x) ⇐ 0} (16)

if there is a sum-of-squares proof that g(x) ⇐ 0 for any x ↓ Rdx ( i.e., g(x) is sum-of-squares).

From eq. (14), it is clear why the polynomials pS are a “proof” of g ⇐ 0 for any x satisfying A:
for any x ↓ A,


i↑S

fi ⇐ 0 by definition, hence if we can write g as the product of a sum-of-squares
(hence non-negative) polynomial and


i↑S

fi, we automatically prove that g ⇐ 0 whenever x ↓ A.
We note that the existence of an sos proof is a su!cient condition for the fact that g(x) ⇐ 0 whenever
A(x) is satisfied. However, it is not a necessary condition, in that there might be valid relations that
cannot be proved using sos proofs. For instance, while the polynomial p(x) = x

4
1
x
2
2
+x

2
1
x
4
2
+1↘3x

2
1
x
2
2

(the Motzkin polynomial, see [48, p. 59]) is such that p(x) ⇐ 0 for all x ↓ R2, it is not possible to
develop an sos proof for such a fact, since p(x) is not sos [48, p. 59]. In other words, the sos proof
system is more stringent than the traditional proofs we might be used to, and properties that hold
with traditional proofs might not hold in the sos sense. At the same time, if we are able to derive an
sos proof we can obtain strong guarantees for our moment relaxations, and existing results reassure
us that all relevant properties of moment relaxations can be proven via sos proofs (see Appendix C).

How to derive an sos proof? Sum-of-squares provide a proof system to reasons about
polynomial constraints. For instance, imagine that our goal is to derive a proof that A implies
g ⇐ 0. In a traditional mathematical proof system, we might first prove that A implies g

↗
⇐ 0 (for

some other polynomial g↗) and that g ⇐ g
↗, to finally conclude that A implies g ⇐ 0. Similarly, the

sos proof system provides a systematic mechanism to derive this chain of implications, but with
more stringent rules compared to the ones we are typically used to in robotics and vision. For
instance, we have already observed the fact that p(x) ⇐ 0 for some degree k polynomial does not
necessarily imply that there is a sum-of-squares proof x

k
{p(x) ⇐ 0}. Similarly, for some polynomial

constraints A and polynomials g
↗
(x) and g(x) such that g(x) ⇐ g

↗
(x) for every x ↓ Rdx , the fact

that A x
k
{g

↗
(x) ⇐ 0} does not necessarily imply that A x

k
{g(x) ⇐ 0}, since the latter fact might

not admit a sum-of-squares proof. In this sense, the sos proof system is more restrictive than the
typical algebraic manipulation we are used to. Fortunately, previous work provides a toolkit of
inference rules that can be used to correctly reason in the sos proof system. We collect a set of “sos
rules” in Appendix C, mostly drawing from [37, 15, 112, 113, 114].

How to use sos proofs? Assume we were able to derive a proof that A(x) x
k

{g(x) ⇐ 0}.
Then, the key fact that we mention here informally, and formalize in Appendix C, is that any
pseudo-moment matrix that satisfies a moment relaxation of A also satisfies a moment relaxation
of g ⇐ 0.11 This fact will be instrumental in proving that the solution of the moment relaxations
of (LTS), (TLS), and (MC) have to satisfy some desirable properties, and will be key to deriving the
error bounds we present below. The sos proof system has found extensive applications in algorithmic

11We will need some extra notation to make this claim more precise, and postpone those details to Appendix C.
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statistics (tracing back to the seminal paper [115]), leading to the so called “proof to algorithms”
paradigm, where the proof system directly suggests tractable algorithms to solve a problem.

The reader should be able to follow the rest of this monograph without reading the appendices,
whose material is mostly useful to support the technical proofs and for a more rigorous introduction
to the material informally reviewed in this section. At the same time, we invite the reader to use
Appendix A to Appendix C as an accessible introduction to the world of moment relaxations and sos
proofs: in those appendices, we attempt to bridge the advanced presentation that is typically found
in statistics papers and books with the more familiar optimization lens used in robotics and vision.

5 Estimation Contracts: Problem Statement
This monograph is concerned with the following problems.

Problem 1 (Outlier-robust estimation in geometric perception). Estimate x
→
↓ X (where X is a basic

semi-algebraic set) given n measurements (yi,Ai), i ↓ [n], such that a subset of ϑn measurements
(the inliers) follows the measurement model:

yi = A
T
i x

→
+ ω, with yi ↓ Rdy and x

→
↓ X ↔ Rdx , (17)

with ↗ω↗
2
≃ c̄ (for a given noise bound c̄) and the remaining ω n measurements (the outliers, with

ω = 1↘ ϑ) are arbitrary (and possibly adversarially chosen).

Problem 2 (Estimation contracts). For each algorithm developed to solve Problem 1, provide condi-
tions on the inliers such that the resulting estimate is guaranteed to be close to the ground truth x

→.

As discussed in Section 3 (and further stressed in Section 9 below), Problem 1 arises in many
geometric perception applications. Our main focus in this monograph will be on designing estimation
contracts (Problem 2): rather than proposing radically new algorithms for Problem 1, we review
existing algorithms (possibly with small modifications), and then derive suitable conditions under
which those algorithms are guaranteed to return good estimates.

Section 6 below studies the low-outlier case, where ω → 0.5. There, we review algorithms
to attack Problem 1 based on moment relaxations of (LTS), (MC), and (TLS). Then, for each
algorithm, we provide estimation contracts.

Section 7 studies the high-outlier case, where ω ↑ 0.5. In such a case, a sound algorithm must
return multiple estimates and our estimation contracts derive conditions under which at least one of
the returned estimates is close to the ground truth. The results we present are an adaptation to the
geometric perception setup of the recent work on list-decodable regression by Karmalkar et al. [37].

6 Estimation Contracts for Low Outlier Rates
This section provides estimation contracts for (LTS), (MC), and (TLS) for problems with low-outlier
rates (i.e., ω → 0.5). We start by deriving some naive contracts for (MC) and (TLS) in Section 6.1:
these naive results only use basic manipulations and do not rely on any of the machinery presented
above; at the same time, their derivation shares several insights with the more advanced contracts
we provide in the subsequent sections and motivates the need for the machinery in Section 4.
Then, Section 6.2.1, Section 6.2.2, and Section 6.2.3 present more advanced estimation contracts
based on sos proofs for (LTS), (MC), and (TLS), respectively.
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6.1 A Posteriori (Naive) Estimation Contracts for (MC) and (TLS)
Here we develop two simple results for (MC) and (TLS) that quantify the distance of an optimal
solution of the two problems from the ground-truth parameter x

→. These results are straightforward
to prove, but have several shortcomings that we discuss in Remark 7 at the end of the section.

Before presenting the results in this section, we need to remark that in all the estimation problems
considered in Section 3, we cannot reconstruct the unknown x

→ from a single measurement, but we
rather need a su"ciently large subset of measurements.

Definition 4 (Nondegenerate and minimal measurement set). A set J of measurements is nonde-
generate if the following optimization problem admits a unique solution:

min
x↑X

∑

i↑J

yi ↘A
T
i x


2

2

. (18)

A nondegenerate set of minimal size d̄ is called a minimal measurement set.

Characterizations of the minimal sets for common geometric perception problems are well known
in the literature. Indeed, a subfield of computer vision is specifically concerned with the design of
minimal solvers, which compute an estimate x from a minimal set of measurements.12 For instance,
the rotation search problem and the 3D registration problem in Section 3 require at least d̄ = 3

non-collinear 3D point measurements for the resulting estimate in (18) to be unique.
The following proposition provides our first estimation contract, which establishes when an

optimal solution of (MC) is close to the ground truth x
→.

Proposition 5 (Low-outlier case: a posteriori estimation contract for (MC)). Consider Problem 1
with measurements (yi,Ai), i ↓ [n], and assume the measurement set contains ϑn ⇐

n+d̄

2
inliers,

where d̄ is the size of a minimal set. Moreover, assume that every subset of d̄ inliers is nondegenerate.
Then, for any integer dJ such that d̄ ≃ dJ ≃ (2ϑ↘ 1)n, an optimal solution xMC of (MC) satisfies

↗xMC ↘ x
→
↗
2
≃

2

dJ c̄

minJ⇐IMC,|J |=dJ ↼min(AJ )

, (19)

where IMC is the set of inliers selected by (MC), AJ is the matrix obtained by horizontally stacking all
submatrices Ai for all i ↓ J , and ↼min(·) denotes the smallest singular value of a matrix. Moreover,
if the inliers are noiseless, i.e., ω = 0 in eq. (17), and c̄ = 0, then xMC = x

→.

We report the proof here (while all other technical proofs are postponed to the appendix) since the
structure of the proof is quite enlightening in its simplicity. Indeed, we will see that this simple proof
shares many insights with the proofs of more advanced results presented later in this monograph.

Proof. Given an optimal solution (xMC,εMC) of problem (MC), let us call I and IMC the true inliers
and the set of measurements selected by (MC) (i.e., IMC ↭ {i ↓ [n] : εMC,i = 1}), respectively.
Recall that the proposition assumes |I|= ϑn ⇐

n+d̄

2
. We prove the result in two steps.

(i) The solution of (MC) captures enough inliers. We denote with 1I the indicator vector
of the set I, i.e., the n-vector that has the i-th entry equal to 1 if i ↓ I or zero otherwise. We then

12The popularity of minimal solvers stems from their extensive use in outlier rejection schemes, such as RANSAC [51].
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note that (x
→
,1I) is a feasible solution for (MC) and attains a cost ϑn. Therefore, by optimality of

(xMC,εMC), it follows |IMC|⇐ ϑn. Since |I|= ϑn and |IMC|⇐ ϑn then:

|I △ IMC|

sets overlap in [n]︷︸︸︷
⇐ (2ϑ↘ 1)n

using ϑn⇒
n+d̄
2︷︸︸︷

⇐ d̄, (20)

i.e., the measurements selected by (MC) must include at least (2ϑ↘ 1)n ⇐ d̄ inliers.
(ii) The inliers captured by (MC) bound the estimation error. Let us pick any subset J

of the set I △ IMC, such that |J |= dJ , for any choice of integer dJ such that d̄ ≃ dJ ≃ (2ϑ↘ 1)n.
Note that both x

→ and xMC are feasible for (MC) over J , hence:

max
i↑J

yi ↘A
T
i x

→


2

2

≃ c̄
2
=⇒

∑

i↑J

yi ↘A
T
i x

→


2

2

≃ dJ c̄
2
=⇒

yJ ↘A
T
Jx

→


2

≃


dJ c̄ (21)

max
i↑J

yi ↘A
T
i xMC


2

2

≃ c̄
2
=⇒

∑

i↑J

yi ↘A
T
i xMC


2

2

≃ dJ c̄
2
=⇒

yJ ↘A
T
JxMC


2

≃


dJ c̄, (22)

where yJ and A
T
J

vertically stack all the measurements yi and matrices A
T
i

for i ↓ J .
Now we observe that the mismatch between xMC and x

→ after multiplying by A
T
J

must be small:

AT
J (xMC ↘ x

→
)


2

adding and subtracting yJ︷︸︸︷
=

(yJ ↘A
T
Jx

→
)↘ (yJ ↘A

T
JxMC)


2

(23)

triangle inequality︷︸︸︷
≃

yJ ↘A
T
Jx

→


2

+

yJ ↘A
T
JxMC


2

using (21)-(22)︷︸︸︷
≃ 2


dJ c̄. (24)

Recalling that for a matrix M and vector v, ↗Mv↗
2
⇐ ↼min(M) ↗v↗

2
, where ↼min(M) is the

smallest singular value of M :
AT

J (xMC ↘ x
→
)


2

⇐ ↼min(A
T
J ) ↗xMC ↘ x

→
↗
2
. (25)

Combining (25) and (24):
↗xMC ↘ x

→
↗
2
≃

2


dJ c̄

↼min(A
T
J
)
. (26)

Since we do not know which subset J was selected by (MC), we choose the set J of cardinality dJ

attaining the smallest singular value across the set of inliers selected by (MC), yielding the desired
result for the case of noisy inliers. In the case of noiseless inliers and c̄ = 0, (21)-(22) hold exactly,
i.e., yJ ↘A

T
J
x
→
= 0 and yJ ↘A

T
J
xMC = 0 and both x

→ and xMC attain the minimum (with zero
cost in this case) of (18). However, from the non-degeneracy assumption, problem (18) admits a
unique minimizer, hence xMC = x

→, which concludes the proof. ↫

The proof of Proposition 5 involves two steps: (i) we proved that the solution of (MC) must
capture a su"cient number of true inliers (i.e., there must be enough overlap between the set of
measurements selected by (MC) and the true inliers), (ii) the fact that the solution xMC has to be
consistent with the true inliers forces the estimation error to be small. In the noiseless case (c̄ = 0),
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Figure 1: Plane fitting with 9 inliers (green 3D points) and 6 outliers (red 3D points). True plane is
shown in black, while the plane computed by (MC) is shown in red. When the estimation contract
in Proposition 5 is violated, (MC) may fail to recover the variable x

→ even when given n+d̄

2
inliers.

the proposition predicts that xMC = x
→ as long as there are at least n+d̄

2
(nondegenerate) inliers.13

The noisy bound in (19) holds for any choice of integer dJ between d̄ and (2ϑ↘ 1)n. As we will see
in Section 8, larger values of dJ lead to better bounds but are harder to compute (due to the need
to search over all possible subsets of measurements of size dJ ).

Fig. 1 stresses the key role of nondegeneracy in the estimation contract in Proposition 5. The
figure shows a simple linear regression problem in 3D where we need to fit a plane given 3D points
belonging to the plane. In particular, we are given a set of 15 measurements with 9 inliers and 6

outliers. While the set of inliers has size n+d̄

2
= 9 (which satisfies one requirement in the proposition),

there are subsets of degenerate points (in particular, the 4 collinear points at the intersection
between the two planes). In this case, (MC) will produce the estimate in red, which is far from the
ground truth (black plane). Intuitively, degenerate sets of measurements can be easily “stolen” by an
adversary since they are compatible with multiple estimates of x (including estimates far from x

→).
A result similar to Proposition 5 can be proven for (TLS).

13While still easy to prove, in the case of noiseless inliers and c̄ = 0, the result xMC = x→ does not directly follow as

a consequence of the noisy bound ↗xMC ↘ x→↗2 ↑ 2
≃

dJ c̄

minJ↑IMC,|J |=dJ ωmin(AJ )
: in the noiseless case the singular value

ωmin(AJ ) might become zero for any subset J (since the ground truth might be in the null space of AT
i , cf. (6)

and (7)), therefore both the numerator (in particular, c̄) and the denominator of the noisy upper bound go to zero.
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Proposition 6 (Low-outlier case: a posteriori estimation contract for (TLS)). Consider Problem 1
with measurements (yi,Ai), i ↓ [n], and denote with ↽

→ the squared residual error of the ground truth
x
→ over the set of inliers I, i.e., ↽→ ↭ ∑

i↑I

yi ↘A
T
i
x
→
2
2
. Moreover, assume the measurement set

contains at least n+d̄

2
+

ϖ
→

c̄2
inliers, where d̄ is the size of a minimal set, and that every subset of d̄

inliers is nondegenerate. Then, for any integer dJ such that d̄ ≃ dJ ≃ (2ϑ↘ 1)n↘
ϖ
→

c̄2
, an optimal

solution xTLS of (TLS) satisfies

↗xTLS ↘ x
→
↗
2
≃

2

dJ c̄

minJ⇐ITLS,|J |=dJ ↼min(AJ )

, (27)

where ITLS is the set of inliers selected by (TLS), AJ is the matrix obtained by horizontally stacking
all submatrices Ai for all i ↓ J , and ↼min(·) denotes the smallest singular value of a matrix. Moreover,
if the inliers are noiseless, i.e., ω = 0 in eq. (17), and for a su!ciently small c̄ > 0, xTLS = x

→.

While Proposition 5 and Proposition 6 allow us to gain intuition about the problem, the
applicability of these estimation contracts is limited, as we discuss below.

Remark 7 (A posteriori estimation contracts). The estimation contracts in Proposition 5 and Propo-
sition 6 refer to the optimal solutions of (MC) and (TLS), respectively. However, both problems are
NP-hard [28, 29], hence computing optimal solutions is di!cult in general. We can still apply these
contracts as follows. Assume that we solve (MC) and (TLS) using the moment relaxation described
in Section 4 (see also [30]) and that the relaxation produces a certifiably optimal result ( cf. the work-
flow (12)); then, such a certifiably optimal solution would still enjoy the guarantees in Proposition 5
and Proposition 6. However, since we can only check optimality a posteriori (and only apply these
contracts when the relaxation is tight), we call these contracts “a posteriori” estimation contracts.

In practice, we would like to have more general performance guarantees regardless of the tightness
of the moment relaxation. Luckily, the sos proof machinery we introduced in Section 4 does exactly
that: it allows inferring properties of the solution of moment relaxations, regardless of its tightness.
Using such a machinery, we can derive “a priori” estimation contracts as shown below.

Remark 8 (Approximation Bounds for Inapproximable Problems?). We have already observed that
common robust estimators have been proven to be NP-hard [20, 29], and recent results [28, 29] have
concluded that (MC) and (TLS) are inapproximable, i.e., it is not possible to find constant-factor
approximation bounds in the worst case. Therefore, our pursuit of a priori performance guarantees
might seem to start o" on the wrong foot. The key insight behind the results we are going to
discuss below is that while (MC) and (TLS) are intractable in the worst case ( i.e., there are unlucky
problem instances where polynomial-time algorithms cannot retrieve “good” solutions), we can identify
properties of the input data ( e.g., hypercontractivity, anti-concentration, see Section 6.2 below) that
rule out those worst-case instances and enable the computation of performance bounds.

6.2 A Priori Estimation Contracts for (LTS), (MC), and (TLS)
In the rest of this monograph we develop “a priori” estimation contracts, which establish conditions on
the input data such that certain algorithms based on moment relaxations of (LTS), (MC), and (TLS)
are able to compute an estimate for Problem 1 which is provably close to the ground truth x

→.
The philosophy is quite di!erent from the typical work done in robotics and vision. While in

those fields, one is typically concerned with the distribution of the measurement noise ω in (3), here
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we are concerned with both the measurement noise and the distribution producing the matrices Ai

in (3).14 One for instance might assume the entries of the measurement matrices to be sampled
from a zero-mean Gaussian and study the behavior of an outlier-robust estimator. The importance
of these matrices for outlier-robust estimation should already be apparent from the statements
of Proposition 5 and Proposition 6. In the following, we write A to denote a matrix random variable,
while Ai, i ↓ [n], are the realizations of such a random variable. Moreover, we denote with I the
distribution producing the matrices Ai, i ↓ [n] for the inlier measurements (note the tilde, which we
use to distinguish the distribution of the inliers from the inlier set I ↔ [n], cf. Proposition 5).

In this context, we hope to make the least restrictive assumptions on I; in other words, we would
like our estimators to be guaranteed to work well for a broad class of distributions that generate
the input data. Moreover, we want to restrict any assumptions to the inliers, while the mechanism
generating outliers can be arbitrary. In particular we will consider two large families of distributions:
certifiable hypercontractive and certifiable anti-concentrated distributions, which we introduce below.
These definitions are based on [15, 37], but we extend both to be defined over matrices.

Definition 9 (Certifiable hypercontractivity for matrices, adapted from [15]). For a function
C : [k] ▽∈ R+, we say that a distribution I over matrices A is k-certifiably C-hypercontractive if for
every t ≃ k/2, there is a degree k sum-of-squares proof of the following inequality in variable v

E
Ĩ

AT
v


2t

2


≃ C(t)

t


E
Ĩ

AT
v


2

2

t

. (28)

We say that a set of matrices Ai, i ↓ I, is k-certifiably C-hypercontractive if the uniform distribution
over the set is k-certifiably C-hypercontractive, i.e.,


1

|I|

∑

i↑I

AT
i v


2t

2

)
≃ C(t)

t


1

|I|

∑

i↑I

AT
i v


2

2

)t

. (29)

We remark that certifiable hypercontractivity not only requires (28) (or (29)) to be satisfied, but
also requires this fact to have a sum-of-squares proof (see Section 4). Hypercontractivity essentially
requires controlling the moments of

AT
v

2
, or, in the case of (29), it bounds the 2t-norm of the

vector with entries
AT

i
v

2

with respect to the 2-norm. In the proofs, this property will be used to
bound terms such as

AT
(x↘ x

→
)
2
2

for some x, an aspect that was also key to proving Proposition 5
and Proposition 6 (cf. with eq. (25)). What makes certifiable hypercontractivity interesting is the fact
that a large class of distributions satisfies this property, including Gaussians, product of distributions
with sub-gaussian marginals, and uniform distributions over the boolean hypercube [116]. Moreover,
in Section 8 we show that this property is empirically satisfied in many real problems. Finally, we
note that, given a set of matrices Ai, i ↓ I, we can easily check if (29) is satisfied (for a given t),
since one can check if the polynomial expression (29) (in variable v) is sum-of-squares in polynomial
time using semidefinite programming (see Section 8, Appendix C, and [48, chapter 3]).

While we use hypercontractivity in Theorem 12, in most of the monograph, we will use a stronger
assumption on the inlier distribution, known as certifiable anti-concentration. Since this property
is more involved, we first introduce the concept of anti-concentration, and then provide its sos
counterpart, i.e., certifiable anti-concentration. Both Definition 10 and Definition 11 are based
on [37] and extend the corresponding definitions to work with matrices (rather than vectors).

14While these matrices are considered given in robotics and computer vision applications, we can imagine they are
generated by sampling from a distribution.
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Definition 10 (Anti-concentration for matrices, adapted from [37]). A zero-mean random matrix
A ↓ Rdx↔dy has a ⇀-anti-concentrated distribution if P

(AT
v

2
= 0

)
≃ ⇀ for all non-zero v.

In the technical proofs, we are going to apply these properties to terms such as
AT

i
(x↘ x

→
)

2

and anti-concentration is essentially asking that any mismatch vector (x↘x
→
) remains “visible” (with

some probability) after mapping it through A
T
i
; similarly to the proof of Proposition 5, this will

allow us to bound ↗x↘ x
→
↗
2

given a bound on
AT

i
(x↘ x

→
)

2
. Anti-concentration is also related

to the probability of sampling a set of matrices Ai, i ↓ I, such that [A
T
1
; A

T
2
; . . . ; A

T
|I|
] is not full

rank. In this sense, it is connected to the notion of non-degeneracy and to the results in Section 6.1
(e.g., if a matrix is not full rank, its smallest singular value is zero, cf. Proposition 5).

The sos version of Definition 10 reads as follows.

Definition 11 (Certifiable anti-concentration for matrices, adapted from [37]). A random matrix A

has a k-certifiably (C, ⇀,M)-anti-concentrated distribution if there is an even univariate polynomial p
satisfying p(0) = 1 such that there is a degree k sum-of-squares proof of the following two inequalities:15

̸v ,

AT
v


2

2

≃ ⇀
2 implies p

2

(AT
v


2

)
⇐ (1↘ ⇀)

2
, (30)

̸v , ↗v↗
2

2
≃ M

2 implies ↗v↗
2
·E

[
p
2

(AT
v


2

)]
≃ C ⇀M

2
. (31)

A set of matrices Ai, i ↓ I, is k-certifiably (C, ⇀,M)-anti-concentrated if the uniform distribution
over the set is k-certifiably (C, ⇀,M)-anti-concentrated, i.e.,

̸v ,

AT
i v


2

2

≃ ⇀
2 implies p

2

(AT
i v


2

)
⇐ (1↘ ⇀)

2
, (32)

̸v , ↗v↗
2

2
≃ M

2 implies ↗v↗
2
·
1

|I|

∑

i↑I

p
2

(AT
i v


2

)
≃ C ⇀M

2
. (33)

The connection between Definition 10 and its sos counterpart in Definition 11 is not immediate,
so a few comments are in order. First, let us consider the probability in Definition 10 and observe
that by definition, for any given c̄ ⇐ 0, P

(AT
v
2
2
≃ c̄

2

)
= E

[ (AT
v
2
2
≃ c̄

2

)]
, where E [·] is

the standard expectation and (·) denotes the indicator function, which is such that, for a boolean
condition a, (a) = 1 if the condition is satisfied or zero otherwise. Ideally, we would like to just
define certifiable anti-concentration to be satisfied when there is an sos proof for:

P
AT

v


2

2

≃ c̄
2


= E

 AT
v


2

2

≃ c̄
2


≃ ⇀. (34)

Unfortunately, the indicator function is not a polynomial so such a requirement would not make sense.
Therefore, the insight behind Definition 11 is twofold. First, we require the existence of a polynomial
p that “behaves” like the indicator function (cf. conditions (30) and (32)): this polynomial is required
to be close to 1 (i.e., close to the indicator function) whenever the input is smaller than a threshold.
Second, we impose such a polynomial to satisfy an anti-concentration bound similar to (34) (cf.
conditions (31) and (33)). Intuitively, the right-hand-side inequality in (33) prevents that vectors

15We remark that p
(∥∥ATv

∥∥
2

)
in eq. (30) is also a polynomial function of the vector ATv since p is an even

polynomial, hence it only includes monomials of even degree which can be written as a function of the polynomial∥∥ATv
∥∥2

2
; the same observation holds for p

(∥∥AT
i v

∥∥
2

)
in eq. (32) with respect to AT

i v.
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with large norm ↗v↗ produce small
AT

i
v

2
, since that would in turn make p

2
(AT

i
v

2

)
large, hence

violating the inequality. Certifiable anti-concentration will allow us to control the norm ↗x↘ x
→
↗
2

from the norm of AT
i
(x↘ x

→
), similarly to what we did in the proofs in Section 6.1.

Certifiable anti-concentration, in its original definition in [37], is a stronger requirement compared
to certifiable hypercontractivity, but it still encompasses several relevant distributions, including
the standard Gaussian distribution and any anti-concentrated spherically symmetric distributions
with strictly sub-exponential tails [37]. In addition, this requirement has been shown to be necessary
for list-decodable linear regression in [37]. We remark that our definition is slightly di!erent from
the one in [37], e.g., we do not normalize the right-hand-side of the inequality

AT
v
2
2
≃ ⇀

2 by the
variance of

AT
v

2

and assume a slightly di!erent implication in (30) and (32); these choices were
made for the sake of simplicity, at the cost of some desirable properties of the original definition
(e.g., scale invariance) and the need for an additional parameter M in the definition. In Section 8,
we empirically show that certifiable anti-concentration is much harder to satisfy in practice (in
particular for low-degree polynomials p), but it still applies to some practical problems. We are now
ready the present the main results of this monograph.

6.2.1 Estimation Contracts for (LTS)

This section presents estimation contracts for two slightly di!erent estimators based on moment
relaxations of the (LTS) problem. The first contract is from [15] (which we adapt to vector-valued
measurements) and bounds the residual error of the estimate with respect to the inliers; the second
is novel and directly bounds the distance of the estimate with respect to the ground truth.

Algorithm 1: Moment relaxation for (LTS), version 1 [15].
Input: input data (yi,Ai), i ↓ [n], inlier rate ϑ, exponent k, relaxation order r ⇐ k.
Output: estimate of x→.
/* Algorithm solves a relaxation of the following (LTS) problem: */
/*

min
ω,x,ȳi,Āi,i↑[n]


1

n

n∑

i=1

ȳi ↘ Ā
T
i x


2

2

) k
2

s.t. Lω,x ↭






ε
2

i
= εi, i ↓ [n]∑
n

i=1
εi = ϑn

εi · (ȳi ↘ yi) = 0 i ↓ [n]

εi · (Āi ↘Ai) = 0 i ↓ [n]

x ↓ X






(LTS1)

*//* Compute matrix X
ε by solving SDP resulting from moment relaxation */

1 X
ε
= solve_moment_relaxation_at_order_r (LTS1)

/* Pick entries of X
ε corresponding to x */

2 xlts⇑sdp1 ↭ X
ε

[x]

3 return xlts⇑sdp1.

Let us first review the estimator proposed in [15], that we report in Algorithm 1. The algorithm
corresponds to Algorithm 5.2 in [15], with the exception that we consider vector-valued measurements
and the unknown x in our problem belongs to a basic semi-algebraic set X. The algorithm is based
on a moment relaxation of a slightly di!erent (but equivalent) reformulation of (LTS), given
in (LTS1) within Algorithm 1. In particular, problem (LTS1) enforces the constraint ε

2

i
= εi,

which is equivalent to the constraint εi ↓ {0; 1} in (LTS); moreover, similar to (LTS), it includes
the constraints

∑
n

i=1
εi = ϑn and x ↓ X. However, problem (LTS1) also includes extra variables
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ȳi, Āi, i ↓ [n], that are such that ȳi = yi and Āi = Ai whenever εi = 1 (which is enforced by the
constraints εi · (ȳi ↘ yi) = 0,εi · (Āi ↘Ai) = 0), or are zero otherwise (which is enforced by the
objective, since whenever εi = 0 these variables are no longer constrained). Clearly, this is equivalent
to using εi in the objective as we did in (LTS). Finally, problem (LTS1) also elevates the objective
to the power k/2 (where k is an input parameter), which again does not change the optimal solution
xLTS of the non-relaxed problem as compared to the formulation (LTS). In (LTS1), we denoted with
Lω,x the set of constraints of the problem, since in the technical proofs we will establish sos proofs
that connect the set of polynomial constraints Lω,x to relevant properties of the estimate xlts⇑sdp1.
After solving the moment relaxation of (LTS1) at order r, Algorithm 1 returns the entries of the
(pseudo-moment) matrix X

ε corresponding to x, i.e., Xε

[x].
We are now ready to present the estimation contract for Algorithm 1, which is an adaptation of

Theorem 5.1 in [15] to vector-valued measurements.16

Theorem 12 (Low-outlier case: a priori estimation contract for Algorithm 1, adapted from Theorem
5.1 in [15]). Consider Problem 1 with measurements (yi,Ai), i ↓ [n], and known outlier rate ω.
Call

...
I the set of uncorrupted measurements (yε

i
,A

ε

i
), i ↓ [n], where the outliers are replaced by

inliers and assume that the set of matrices A
ε

i
, i ↓

...
I , is k-certifiably C-hypercontractive with k ⇐ 4.

Moreover, assume ω < ωmax =
k
2↔1

√
1/(C(k/2)

k
2 23k⇑1). Then, Algorithm 1 with relaxation order

r ⇐ k outputs an estimate xlts⇑sdp1 (not necessarily in X) such that:

err ...I (xlts⇑sdp1) ≃ (1 + C1(k,ω)
2
k ) opt ...I + C2(k,ω)

2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

) 2
k

, (35)

where C1(k,ω) and C2(k,ω) are given functions, err ...I (x)↭ 1

n

∑
n

i=1

yε

i
↘ (A

ε

i
)
T
x
2
2

is the residual
error of an estimate x with respect to the inliers

...
I , xε ↭ argminx↑X

1

n

∑
n

i=1

yε

i
↘ (A

ε

i
)
T
x
2
2

is the
best estimate from an oracle estimator that has access to all the inliers, and opt ...I ↭ err ...I (x

ε
) is the

corresponding residual error with respect to the inliers
...
I .

The theorem states that —under certifiable hypercontractivity and as long as the outlier rate is
below ωmax— the estimate xlts⇑sdp1 fits well the inlier measurements. In order words, the residual
error of xlts⇑sdp1 over the inliers is not much larger than the best residual opt ...I that an “oracle”
estimator that has access to all the inliers would achieve, plus some some higher-order terms that
depend on the optimal estimate x

ε returned by the oracle.
The proof of Theorem 12 given in Appendix E is quite involved, but a key tool in it is to bound

terms such as A
T
i
(x↘ x

ε
) using certifiable hypercontractivity. In particular, the proof derives an

sos proof that the constraint set Lω,x of (LTS1) implies a desired error bound, and then uses this
proof to infer the bound in (35). On the downside, Theorem 12 requires a moment relaxation of
order r ⇐ k ⇐ 4: this requirement stems from the fact that the objective function in (LTS1) is a
polynomial of degree 2k (which requires a moment relaxation of order at least r ⇐ k) and the fact
that the theorem demands k ⇐ 4. Unfortunately, solving moment relaxations of order 4 is currently

16The reader might notice that, at first glance, the statement Theorem 12 is quite di!erent from the statement of
Theorem 5.1 in [15]; however, the substance is identical: we work directly on the set of matrices Ai, i ⇐ [n], rather
than the generative distribution creating such samples (in the notation of [15], we work on D̂ instead of D), to avoid
the complexity of discussing generalization bounds and requiring bounds on the bit complexity of xε, which do not
add much to the discussion in this monograph.
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impractical.17 For instance, related work [30] relies on relaxations of order 2 and still has to develop
sparse approximations and ad-hoc solvers to make them run in a reasonable time. Moreover, the
bound (35) does not immediately inform us about how far the estimate is from the ground truth.

In the rest of this section we present a second algorithm and the corresponding estimation
contract that directly quantifies the distance between the estimate and the ground truth. This result
is novel, but relies on two lemmas proposed for a di!erent goal in [37].

Let us start by stating a slightly di!erent (LTS)-like estimator in Algorithm 2.

Algorithm 2: Moment relaxation for (LTS), version 2.
Input: input data (yi,Ai), i ↓ [n], inlier rate ϑ, relaxation order r ⇐ 2.
Output: estimate of x→.
/* Algorithm solves a relaxation of the following (LTS)-like problem: */
/*

min
ω,x

1

n

n∑

i=1

εi ·

yi ↘A
T
i x


2

2

s.t. Tω,x ↭






ε
2

i
= εi, i ↓ [n]∑
n

i=1
εi = ϑn

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
i ↓ [n]

x ↓ X





(LTS2)

*//* Compute matrix X
ε by solving SDP resulting from moment relaxation */

1 X
ε
= solve_moment_relaxation_at_order_r (LTS2)

/* Compute estimate */

2 for each i ↓ [n] set: vi =






Xε
[ϑix]

Xε
[ϑi]

if Xε

[ωi]
> 0

0 otherwise

3 xlts⇑sdp2 =
∑

n

i=1

Xε
[ϑi]∑n

j=1 X
ε
[ϑj ]

vi

4 return xlts⇑sdp2.

Algorithm 2 is fairly di!erent from Algorithm 1. First of all, it is based on a relaxation of an “(LTS)-
like” problem: the non-relaxed problem (LTS2) has additional constraints εi ·

yi ↘A
T
i
x
2
2
≃ c̄

2 that
do not appear in (LTS), but it can be seen to be equivalent to (LTS) with fi(x) = A

T
i
x otherwise.18

Moreover, while Algorithm 2 also uses a moment relaxation, it computes an estimate xlts⇑sdp2 by
averaging multiple vectors extracted from the solution of the moment relaxation (lines 2-3).

We provide the following estimation contract for Algorithm 2.
17Recall from Section 4 that the moment matrix has size (d+r

r )⇒ (d+r
r ) where d is the dimension of the variables in

the polynomial optimization problem (LTS1) and r is the relaxation order; note that the dimension d grows with the
number of measurements n, and in practical problems n ⇑ 100. Therefore, the matrix quickly becomes too large to
handle for current SDP solvers. As an example, for d = 100 and r = 4, (d+r

r ) = 4 598 126.
18Note that the pair (x→,ε→

), where ε→
i = 1 if i ⇐ I and zero otherwise, satisfies all the constraints in (LTS2), hence

the problem is feasible.
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Proposition 13 (Low-outlier case: a priori estimation contract for Algorithm 2). Consider Problem 1
with measurements (yi,Ai), i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω >

0.5). Call I the set of inliers and assume that the set of matrices Ai, i ↓ I, is k-certifiably
(
ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some φ > 0. Then, Algorithm 2 with relaxation order

r ⇐ k/2 outputs an estimate xlts⇑sdp2 (not necessarily in X) such that:

↗xlts⇑sdp2 ↘ x
→
↗
2
≃ Mx


ϑ φ

2
+ 2

1↘ ϑ

ϑ


. (36)

While Proposition 13 takes a stronger assumption on the input data (see the discussion on certifiable
hypercontractivity vs. certifiable anti-concentration in Section 6.2), it provides a direct bound on
the distance of the estimate from the ground truth x

→. Fig. 2 plots the bound on the right-hand-side
of eq. (36) as a solid blue line, for Mx = 1, φ = 0.01, and inlier rates ϑ between 0 and 1. For
comparison, we also report the trivial bound ↗xlts⇑sdp2 ↘ x

→
↗
2
≃ 2Mx as a dashed red line.19 We

observe that, as expected, the proposed bound is only informative in the low-outlier case (i.e., when
ϑ > 0.5). Moreover, the bound predicts decreasing estimation errors when the number of inliers
increases, consistently with our expectations, and approaches Mxϱ

2
as ϑ approaches 1.
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Figure 2: Comparison between the proposed bound in eq. (36) with Mx = 1, φ = 0.01 (solid blue
line) and the trivial bound ↗xlts⇑sdp2 ↘ x

→
↗
2
≃ 2Mx (dashed red line) for inlier rates ϑ ↓ [0, 1].

We conclude this section by noting that —while in principle Algorithm 2 might require a
relaxation of order as low as 2, similar to the ones commonly used in practice (see [30])— the
choice of the order is still dictated by the anti-concentration properties of the input data, due to
the constraint r ⇐ k/2, where r is the order of the moment relaxation, while k depends on the
anti-concentration properties of the inliers. As we will see in Section 8, k will need to be ⇐ 6 (due to
the degree of the polynomials involved in (33)), thus again restricting the practicality of the result
in Proposition 13, which in practice would only be applicable to relaxations of order ⇐ 3.

19The bound follows from the triangle inequality ↗xlts↔sdp2 ↘ x→↗2 ↑ ↗xlts↔sdp2↗2 + ↗x→↗2 ↑ 2Mx.
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6.2.2 Estimation Contract for (MC)

This section presents an estimation contract for Algorithm 3 below, which is based on a moment
relaxation of the (MC) problem. Notice that (MC1) in Algorithm 3 is equivalent to (MC) for
fi(x) = A

T
i
x. Let us start by presenting the algorithm the estimation contract refers to.

Algorithm 3: Moment relaxation for (MC).
Input: input data (yi,Ai), i ↓ [n], relaxation order r ⇐ 2.
Output: estimate of x→.
/* Algorithm solves a relaxation of the following (MC) problem: */
/*

max
ω,x

n∑

i=1

εi, s.t. Mω,x ↭






ε
2
i
= εi, i ↓ [n]

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
i ↓ [n]

x ↓ X




 (MC1)

*//* Compute matrix X
ε by solving SDP resulting from moment relaxation */

1 X
ε
= solve_moment_relaxation_at_order_r (MC1)

/* Compute estimate */

2 for each i ↓ [n] set: vi =






Xε
[ϑix]

Xε
[ϑi]

if Xε

[ωi]
> 0

0 otherwise

3 xmc⇑sdp =
∑

n

i=1

Xε
[ϑi]∑n

j=1 X
ε
[ϑj ]

vi

4 return xmc⇑sdp.

Contrary to the algorithms in Section 6.2.1, Algorithm 3 does not require prior knowledge about
the number of inliers ϑn. The moment relaxation in Algorithm 3 is similar to the one proposed
in [30];20 the computation of the estimate xmc⇑sdp is di!erent from the one in [30], but the two
“rounding” schemes are equivalent when the relaxation is tight (in which case X

ε

[ωi]
↓ {0, 1} and

X
ε

[ωix]
= X

ε

[x] ̸i such that Xε

[ωi]
> 0). We provide the following estimation contract for Algorithm 3.

Proposition 14 (Low-outlier case: a priori estimation contract for Algorithm 3). Consider Problem 1
with measurements (yi,Ai), i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω >

0.5). Call I the set of inliers and assume that the set of matrices Ai, i ↓ I, is k-certifiably
(
ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some φ > 0. Then, Algorithm 3 with relaxation order

r ⇐ k/2 outputs an estimate xmc⇑sdp (not necessarily in X) such that:

↗xmc⇑sdp ↘ x
→
↗
2
≃ Mx


ϑ φ

2
+ 2

1↘ ϑ

ϑ


. (37)

Note that the performance guarantees are essentially the same as Proposition 13 and the proof
proceeds along the same line, but in this case the objective forces the solution to pick enough inliers,
while in Proposition 13 the same role was played by the constraint

∑
n

i=1
εi = ϑn.

20The presentation in [30] uses the slightly di!erent but equivalent parametrization where the binary variables are
restricted to εi ⇐ {↘1;+1} and their binary nature is enforced via ε2

i = 1, while here we use a more straightforward
parametrization with εi ⇐ {0; 1} and enforce it via ε2

i = εi.
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6.2.3 Estimation Contract for (TLS)

This section presents an estimation contract for Algorithm 4, which is based on a moment relaxation
of the (TLS) problem. Notice that (TLS1) in Algorithm 4 is equivalent to (TLS) for fi(x) = A

T
i
x.21

Algorithm 4: Moment relaxation for (TLS).
Input: input data (yi,Ai), i ↓ [n], relaxation order r.
Output: estimate of x→.
/* Algorithm solves a relaxation of the following (TLS) problem: */
/*

min
x,ω

n∑

i=1

εi ·

yi ↘A
T
i x


2

2

+ (1↘ εi) · c̄
2 (TLS1)

s.t. Mω,x ↭






ε
2

i
= εi, i ↓ [n]

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
i ↓ [n]

x ↓ X






*//* Compute matrix X
ε by solving SDP resulting from moment relaxation */

1 X
ε
= solve_moment_relaxation_at_order_r (TLS1)

/* Compute estimate */

2 for each i ↓ [n] set: vi =






Xε
[ϑix]

Xε
[ϑi]

if Xε

[ωi]
> 0

0 otherwise

3 xtls⇑sdp =
∑

n

i=1

Xε
[ϑi]∑n

j=1 X
ε
[ϑj ]

vi

4 return xtls⇑sdp.

Similar to Algorithm 3 in Section 6.2.2, Algorithm 4 does not require prior knowledge about
the number of inliers ϑn. Moreover, the moment relaxation is similar to the one proposed in [30]
(except from the redundant constraints εi ·

yi ↘A
T
i
x
2
2
≃ c̄

2 in Mω,x); the computation of the
estimate xtls⇑sdp is di!erent from the one in [30], but the two “rounding” schemes are equivalent
when the relaxation is tight. We provide the following estimation contract for Algorithm 4.

21The attentive reader might notice that Mω,x in (TLS1) includes redundant constraints εi ·
∥∥yi ↘AT

i x
∥∥2

2
↑ c̄2 in

Mω,x: these constraints do not change the optimal solution of (TLS) —since the objective is already forcing εi = 0

whenever
∥∥yi ↘AT

i x
∥∥2

2
> c̄2— but will make our proofs easier.
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Proposition 15 (Low-outlier case: a priori estimation contract for Algorithm 4). Consider Problem 1
with measurements (yi,Ai), i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω >

0.5). Call I the set of inliers and assume that the set of matrices Ai, i ↓ I, is k-certifiably
(
ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some φ > 0. Then, Algorithm 4 with relaxation order

r ⇐ k/2 outputs an estimate xtls⇑sdp (not necessarily in X) such that:

↗xtls⇑sdp ↘ x
→
↗
2
≃

ϑMxn

ϑn↘
ϖ→

c̄2


ϑ φ

2
+ 2

1↘ ϑ

ϑ


, (38)

where ↽
→ ↭ ∑

i↑I

yi ↘A
T
i
x
→
2
2

is the squared residual error of the ground truth x
→ over the inliers I.

Contrarily to Proposition 13 and Proposition 14, the error bound in Proposition 15 depends on the
ground truth residual error ↽

→. In particular, if ↽→ = 0 (i.e., noiseless inliers), the bound becomes
the same as the ones in Proposition 13 and Proposition 14, but as the residual error approaches
↽
→
= ϑn c̄

2 (i.e., each inlier has the maximum allowed error c̄
2), the bound become vacuous.

7 Estimation Contracts for High Outlier Rates
This section focuses on the high-outlier case where ω ↑ 0.5. Note that in the high-outlier case any
point estimator —including (LTS), (MC), and (TLS)— can be tricked into returning an arbitrarily
wrong estimate: intuitively, since the majority of the measurements are outliers, the outliers can
agree on an x that optimizes (LTS), (MC), or (TLS), while being far from x

→. At the same time, an
algorithm can still compute a provably accurate estimate if it is allowed to return a list of potential
hypotheses, in the hope that at least one of them is correct. This setup is typically referred to as
list-decodable regression [37]. In the following, we review the algorithm and theoretical guarantees
from [37], which we adapt to the case of vector-valued measurements.

Remark 16 (High vs. Low Outlier Rates). While the algorithms and results in this section are
designed for the high-outlier case ( i.e., ω > 0.5) they are also applicable to the low-outlier case; in
other words, the estimation contracts in this section will not require ω > 0.5. At the same time, if
one can assume that ω → 0.5, it remains convenient to use the algorithms in Section 6 since those
return a unique estimate, which is typically desirable in practice.

7.1 A Priori Estimation Contract for List-Decodable Estimation
In the high-outlier case, Karmalkar et al. [37] proposed using Algorithm 5 (given below) to perform
list-decodable outlier-robust regression. The algorithm returns a (small) list of potential estimates,
and, as we will see below, under suitable conditions on the inliers, it guarantees that at least one
of such estimates is close to the ground truth. Both the algorithm and estimation contract in this
section are adaptations of the results in [37] to the case of vector-valued measurements.

The rationale behind problem (LDR) is not as immediate as the problems presented in the
previous sections. For instance, in (MC1), it was clear we tried to select the largest number of
measurements, i.e., the largest

∑
n

i=1
εi, such that the corresponding estimate x had residual below

c̄. However, (LDR) seems to do just the opposite: it is looking for the smallest
∑

n

i=1
ε
2

i
.

Intuitions behind Algorithm 5. Imagine we could build a list ˆ̂
S containing every possible

subset S
↗ of ϑn measurements that satisfy

yi ↘A
T
i
x
↗
2
2
≃ c̄

2
, ̸i ↓ S

↗ and for some estimate x
↗.

Clearly, the set of inliers I would be one of such subsets and hence belong to ˆ̂
S. For each such
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Algorithm 5: List-Decodable Outlier-Robust Estimation [37].
Input: input data (yi,Ai), i ↓ [n], inlier rate ϑ, relaxation order r ⇐ 2, integer N ⇐ 1.
Output: list of estimates of x→.
/* Algorithm solves a relaxation of the following problem: */
/*

min
ω,x

↗ε↗
2

2
, s.t. Tω,x ↭






ε
2
i
= εi, i = [n]∑
n

i=1
εi = ϑn

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
, i = [n]

x ↓ X





(LDR)

*//* Compute matrix X
ε by solving SDP resulting from moment relaxation */

1 X
ε
= solve_moment_relaxation_at_order_r (LDR)

/* Compute list of estimates */

2 for each i ↓ [n] set: vi =






Xε
[ϑix]

Xε
[ϑi]

if Xε

[ωi]
> 0

0 otherwise
3 create empty list L = ∅.
4 sample N/ϑ times from [n] with probability 1

ϑn
X

ε

[ωi]
, and for each extracted i add vi to L.

5 return L.

subset S
↗
↓

ˆ̂
S, we could define the indicator vector ε

↗
= 1S↑ , and by inspection, (ε↗

,x
↗
) would

be feasible for (LDR). Therefore, the first intuition behind Algorithm 5 is that the feasible set
of Tω,x of (LDR) includes every such (ε

↗
,x

↗
), including (εI ,x

→
). Unfortunately, the list ˆ̂

S has
exponential size in general [37]. Therefore, the second intuition behind Algorithm 5 is that the
moment relaxation (LDR) will compute an indicator vector ε that will “spread” across many subsets
in ˆ̂

S. While this is formalized in the proofs (and further discussed in [37]), it is relatively easy to
visualize why the relaxation would “spread” across the subsets by considering the following simpler
relaxation of (LDR):

min
ω,x

↗ε↗
2

2
, s.t.






εi ↓ [0, 1], i = [n]∑
n

i=1
εi = ϑn

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
, i = [n]

x ↓ X





(39)

where we only relaxed εi ↓ {0; 1} to εi ↓ [0, 1]. Imagine that the list ˆ̂
S contains two overlapping

sets S
↗ and S” and hence ε

↗
= 1S↑ and ε” = 1S” would be feasible for (39) for some x. In such a

case the vector ε =
1S↑+1S”

2
—that spreads across both subsets— would still satisfy the constraint∑

n

i=1
εi = ϑn and achieve a lower objective in (39) compared to 1S↑ and 1S”.22 Similarly, after

applying the moment relaxation to (LDR), the objective of (LDR) will favor indicator vectors that
span multiple sets. The last intuition behind Algorithm 5 is that we can use these indicator vectors
to sample good estimates of x→, as done in lines 2-4 of the algorithm.

Estimation contract. The estimation contract for Algorithm 5 is given as follows.
22Calling t the number of common elements between S ↑ and S”: ↗ε↗22 =

1
4 (↗1S→ + 1S”↗22) =

1
4 (2ϑn+ 2t) = ϖn+t

2

(which is < ϑn as long as the sets do not fully overlap), while each set would achieve an objective ↗ε↑↗22 = ↗ε”↗22 = ϑn.
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Theorem 17 (High-outlier case: a priori estimation contract for Algorithm 5, adapted from Theorem
1.5 in [37]). Consider Problem 1 with measurements (yi,Ai), i ↓ [n], and known outlier rate ω (or,
equivalently, known inlier rate ϑ = 1↘ω), possibly with ω > 0.5. Call I the set of inliers and assume
that the set of matrices Ai, i ↓ I, is k-certifiably (

ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some

φ > 0. Then, with probability at least 1↘
(
1↘

ϑ

2

)N
ϖ (over the draw of the samples in the algorithms),

where N ⇐ 1 is a user-defined parameter, Algorithm 5 with relaxation order r ⇐ k/2 outputs a list L
of size N/ϑ such that there is an estimate x ↓ L (with x not necessarily in X) such that

↗x↘ x
→
↗
2
≃ φMx. (40)

Moreover, when ϑ ⇐ 0.01 ( i.e., at least 1% of the measurements are inliers) and N = 10, the relation
↗x↘ x

→
↗
2
≃ φMx holds with probability at least 0.99 over the draw of the samples.

The estimation contract in Theorem 17 provides probabilistic guarantees on the outcome of the
estimator, as opposed to the deterministic results in the previous sections. The sampling stage is
needed to keep the list small, while also ensuring that it captures at least an estimate close to the
ground truth. Note that the final statement in the theorem is just a particularization of the claim
that eq. (40) holds with probability at least 1↘

(
1↘

ϑ

2

)N
ϖ ; this is given to reassure the reader that

the approach can provide good estimates with high probability already for small N (i.e., N = 10)
and for very challenging problems where ϑ is very low (i.e., ϑ = 0.01). Clearly, the probability will
increase with the user-specified parameter N , which controls the number of samples to draw.

Theorem 17 and Algorithm 5 are of interest for geometric perception for several reasons. First
of all, contrary to the literature on multi-hypothesis estimation (e.g., [42, 44, 45]) and particle
filtering (e.g., [43]) in robotics and related fields, Algorithm 5 provides performance guarantees while
retaining a small number of hypotheses; on the other hand, in multi-hypothesis tracking, one either
has to retain an exponential number of hypotheses or typically loses performance guarantees, while
in particle filtering one typically only has asymptotic guarantees for growing number of samples.
Furthermore, while the sampling scheme might carry some resemblance of RANSAC [51], the number
of samples (i.e., iterations) required by RANSAC grows exponentially with the size of the minimal
set (which, in turn, depends on the dimension of x→) and the outlier rate [62]; this is in stark contrast
with Algorithm 5, where the number of samples is independent on the dimension of x→ and only
grows as N/ϑ (also note that the number of samples in Algorithm 5 is upper bounded by n).

In the following section we show that while the guarantees in Theorem 17 fall short in practical
problems, a simple modification of Algorithm 5 with r = 2 has impressive performance in practice.

8 Numerical Experiments
This section elucidates on the theoretical results, by (i) assessing the tightness and the applicability of
the error bounds discussed in this monograph, (ii) evaluating how strict are the assumptions made on
the input data (i.e., certifiable hypercontractivity or certifiable anti-concentration), and (iii) assessing
the practical performance of (a variant of) Algorithm 5 for list-decodable estimation. The analysis is
performed on a canonical perception problem, namely rotation search (see Example 1), which finds
application in satellite attitude estimation [98] and image stitching [34] problems, among others.
After introducing the experimental setup in Section 8.1, Section 8.2 focuses on the a posteriori bound
introduced in Proposition 6, Section 8.3 analyzes the certifiable hypercontractivity assumption and
the contract in Theorem 12, Section 8.4 analyzes the certifiable anti-concentration assumption and
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the contract in Proposition 6. Section 8.5 concludes the experiments with an empirical evaluation of
list-decodable estimation.

8.1 Experimental Setup
We use rotation search (also known as the Wahba problem) [98, 34] as a prototypical outlier-robust
estimation problem, see Example 1. The goal of the problem is to estimate a rotation R that aligns
two sets of 3D vectors (typically normalized to have unit norm). The inputs to the problem are the
vector pairs ai, bi ↓ R3, i = 1, . . . , n. The vectors ai are used to build the measurement matrix Ai as
in Example 1; these vectors are either known or measured: for instance, in satellite pose estimation
these vectors are read from a star database, while in image stitching they correspond to detected
image features. bi are measured bearing vectors. The association between pairs of vectors (ai, bi) is
obtained using image processing or learning-based methods and is prone to errors, making a large
number of measurements outliers. We test on both synthetic and real data, as described below.

Synthetic data. We use the same data generation protocol of [34]. In particular, we create
each test instance by sampling n vectors {ai}

n

i=1
uniformly at random on the unit sphere. Then, we

pick a random rotation R, and apply it to each ai according to eq. (4) and add zero-mean Gaussian
noise with covariance 10

⇑4
· I3 to get {bi}

n

i=1
. To generate outliers, we replace a fraction ω of bi’s

with random unit-norm vectors. We set the maximum error bound c̄
2 from the quantile of the ⇁

2

distribution with three degrees of freedom and lower tail probability equal to 0.9999 (see Remark 1
in [34]), thus obtaining c̄

2
= 0.0021 (which also accounts for the measurement variance). Results on

synthetic data are averaged over 100 Monte Carlo runs unless specified otherwise.

(a) (b)
Figure 3: Image stitching example: (a) Feature matches between two images from which the vectors
(ai, bi), i = 1, . . . , n, are generated; the matches include many outliers, shown in red (inliers are
shown in green). (b) Image stitching results using the moment relaxation approach in [34].

Real data. We use the PASSTA dataset to test rotation search problems arising in image
stitching applications [117] and use the same data generation protocol of [34]. In particular, to
generate the vector pairs ai, bi ↓ R3, i = 1, . . . , n, we first use SURF [118] to detect and match
point features between the two images. Fig. 3(a) shows the matches for one of the image pairs in the
dataset. From the SURF feature points, we apply the inverse of the known camera intrinsic matrix
K to obtain unit-norm bearing vectors {ai, bi}

70
i=1

observed in each camera frame. Then, we solve
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Figure 4: Actual error of the (TLS) estimator compared to the a posteriori bounds from Proposition 6
and the trivial bound 2Mx = 2

∀
3, with n = 50 and increasing outlier rates ω. We report a posteriori

bounds for dJ = 5 (“bound-5”) and for the set J chosen as the correctly selected inliers (“bound-J”).

the rotation search problem to estimate the rotation R between the two camera frames, using the
outlier-corrupted pairs {ai, bi}

70

i=1
. Finally, using the estimated R, we can compute the homography

matrix as H = KRK
⇑1 to stitch the pair of images together; see the example in Fig. 3(b).

Algorithms and implementation details. We use the sparse moment relaxation proposed
in [34] to solve the (TLS) formulation of the rotation search problem, and use STRIDE [30, 119]
as an SDP solver for the resulting semidefinite relaxation. Note that the SDP proposed in [34]
is a sparse version of the relaxation in Algorithm 4 (with order r = 2), and the output of the
two relaxations match whenever the sparse relaxation is tight; in all results below we observe the
sparse moment relaxation of (TLS) to be tight (i.e., relaxation gap below 10

⇑7) hence we do not
di!erentiate between the two algorithms. We use cvx [106] and MOSEK [105] as a parser/solver for
the SDPs arising in list-decodable estimation. The numerical results are obtained on a MacBook Pro
with 2.8 GHz Quad-Core Intel Core i7 processor. The Matlab code to reproduce the experiments
below can be found at https://github.com/MIT-SPARK/estimation-contracts.

8.2 Low Outlier Rates: A Posteriori Bounds
This section evaluates the quality of the a posteriori bound in Proposition 6. The bound applies since
in all the tests in this section the relaxation from [34] is tight and hence it obtains an optimal solution
to (TLS). Moreover, with our data generation method, every subset of d̄ = 3 inliers is nondegenerate
by construction.23 We note that the bound holds for any choice of integer dJ = d̄, . . . , (2ϑ↘1)n↘

ϖ
→

c̄2
.

For a small dJ , we can compute the bound by brute-force testing every subset J of the set of inliers
computed by (TLS) and exhaustively searching the smallest value of ↼min(AJ ); in our tests, we are
able to compute the bound for dJ = 5 in a matter of seconds. However, we expect large values of dJ
to produce more informative bounds (intuitively, in the proof of Proposition 6 those bounds leverage

23In rotation search, the unknown rotation can be uniquely estimated from d̄ = 3 non-collinear 3D points, and our
data generation method for the 3D vectors ai produces triplets of collinear points with probability zero.
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a larger number of measurements); since the bound Proposition 6 is expensive to compute for large
dJ , we manually compute the set J corresponding to the intersection of the measurements selected
by (TLS) as inliers and the true inliers, and compute the resulting bound for that choice of J : this
is the set used in our proofs to derive the estimation error bounds; note that such a set J can only
be computed in simulation, since in practice the true inliers are unknown.

Figure 4 compares the actual estimation error with the bounds from Proposition 6. The estimation
error is computed as ↗xTLS ↘ x

→
↗
2
, where x and x

→ are the vectorized representations of the estimated
and the ground-truth rotation, respectively. For the bounds, we plot the bound we compute for
dJ = 5 (label: “bound-5”) and the bound obtained from the choice of J described above (label:
“bound-J”). We also plot the trivial bound 2Mx = 2

∀
3 computed by using the triangle inequality on

↗xTLS ↘ x
→
↗
2

and by noting that every (vectorized) rotation has norm
∀
3. Several comments are in

order. First, the actual error increases with the outlier rate (the trend is slightly more di"cult to
see due to the log scale): this is expected since with increasing outlier rates the number of “useful”
measurements decreases; however, the error remains very small (i.e., less than 1 degree) for all outlier
rates. This confirms the empirical robustness of moment relaxations of (TLS) already observed in
related work [34, 30], which have been reported to achieve impressive performance even for much
higher rates of random outliers. Second, bound-5 is unfortunately too loose and uninformative, since
—while it improves for larger outlier rates24— it remains larger than the trivial bound. On the other
hand, bound-J is significantly better than the trivial bound. While there is still a large gap between
the actual error and bound-J, we remark that the bound considers the worst-case scenario where the
outliers are possibly adversarial; on the other hand, the outlier generation mechanism we borrow
from [34] is relatively benign, since the outliers are sampled independently, at random, and without
knowledge of the inliers. In other words, there might well be instances where the actual error could
be much closer to bound-J.

8.3 Low Outlier Rates: A Priori Bounds and Hypercontractivity
This section shows that k-certifiable hypercontractivity is a relatively mild assumption for k = 4

and for choices of C(t)
t as small as 5 or 6. This observation is validated on both synthetic and real

data. On the other hand, the experiments o!er a closer look at the bound in Theorem 12, which in
hindsight only applies to relatively “easy” problems with very small amounts of outliers.

Numerically checking hypercontractivity. Certifiable hypercontractivity can be easily
assessed numerically using the definition in eq. (28). The definition of k-certifiable hypercontractivity
essentially requires that the polynomial

h(v) = C(t)
t


1

n

n∑

i=1

AT
i v


2

2

)t

↘


1

n

n∑

i=1

AT
i v


2t

2

)
(41)

is a sum-of-squares polynomial for every t ≃ k/2 and for a given choice of C(t)
t. While larger values

of k lead to slightly better bounds here we are interested in the smallest choice of k (which is k = 4

according to Theorem 12) since the larger the k the larger the size of the resulting moment relaxation.
Choosing k = 4, we are only left to test that h(v) is sos for t = 2 (the condition is trivially satisfied
for t = 1 as long as C(t)

t
⇐ 1). For t = 2, we test multiple values of C(t)

t and for each we check if
h(v) is sos using the findsos function in the SOSTOOLS library [120]. The function either returns
a decomposition of the polynomial into a sum of squares or reports that the polynomial is not sos.

24The bound improves for larger ϖ since the set of inliers selected by (TLS) ITLS typically shrinks for increasing ϖ
and hence it becomes less likely to sample data producing small ωmin(AJ )
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Figure 5: Certifiable hypercontractivity results on synthetic data: (a) Percentage of tests where
4-certifiable hypercontractivity holds for various choices of C(t)

t and number of measurements n. (b)
Average runtime (in seconds, averaged over 100 tests) for the same test configurations in figure (a).

We remark that Theorem 12 requires that the set of all n matrices Ai —where potential outliers
are replaced with inliers— satisfies k-certifiable hypercontractivity. Therefore, if we assume that the
outliers only contaminate the vectors bi (hence do not alter the Ai’s, which are only influenced by
the vectors ai’s),25 we can actually check hypercontractivity in practice. Note that for t = 2, h(v) is
a degree-4 polynomial in the variable v (which is 9-dimensional in our rotation search example):
therefore, as we will see, it is quite fast to check if h(v) is sos using o!-the-shelf solvers.

Experiments on synthetic data. We show that 4-certifiable hypercontractivity is satisfied for
small C(t)

t in our synthetic examples and observe that we can numerically check if a given set of
measurements is certifiably hypercontractive in a fraction of a second.

Figure 5(a) reports the number of tests (over 100 runs) where 4-certifiable hypercontractivity
holds for various choices of C(t)

t (chosen as a constant ranging from 1 to 6) and for increasing
number of measurements n (we test n = {5, 10, 20, 40, 60, 80, 100, 200}). All instances were found to
satisfy 4-certifiably hypercontractivity for C(t)

t
= 6 (independently of the choice of n), while no

instance satisfied the property for C(t)
t
= 1. From Fig. 5(a), we observe a sharp phase transition

between the two regimes, and we note that large measurement sets tend to satisfy 4-certifiable
hypercontractivity for even smaller values of C(t)

t. This is desirable, since the smaller the C(t)
t, the

better are the error bounds we obtain from Theorem 12.
Figure 5(b) reports the average runtime (in seconds, averaged over 100 tests) for the same test

configurations in Fig. 5(a). The average runtime remains below 1 second in all cases and is fairly
insensitive to the number of measurements. It is interesting to notice that the solver is faster in
resolving instances that are clearly certifiably hypercontractive or not, while it has to work harder
to decide the instances at the “boundary” of the phase transition observed in Fig. 5(a).

Experiments on real data. We show that 4-certifiable hypercontractivity also holds for
real data for a small value of C(t)

t (with t = 2), with a similar trend as the one observed in the
synthetic experiments above. Towards this goal, we consider the image stitching data described
in Section 8.1. Table 1 reports the percentage of tests where 4-certifiable hypercontractivity holds for

25This assumption is mild in many rotation search applications, for instance when ai are read from a database or
we have control on how to sample them.
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Table 1: Certifiable hypercontractivity results on real image stitching data: percentage of tests where
4-certifiable hypercontractivity holds for increasing C(2)

2.
C(2)

2
= 1 2 3 4 5 6 7 8 9 10 15 20

% cert. hypercon. 0.0 0.0 0.0 8.3 50.0 58.3 75.0 83.3 83.3 91.7 100.0 100.0

various choices of C(t)
t (chosen as a constant between 1 and 20). Most instances satisfy 4-certifiably

hypercontractivity already for C(t)
t
= 6 and all instances satisfy the property for C(t)

t
= 15,

confirming that certifiable hypercontractivity is a mild assumption for the rotation search problem.
Bound in Theorem 12. We evaluate the bound in Theorem 12 by plotting the coe"cients

C1(k,ω)
2
k and C2(k,ω)

2
k in the theorem, and the maximum outlier rate ωmax for which the theorem

holds (i.e., ωmax =
k
2↔1

√
1/(C(k/2)

k
2 23k⇑1)). Ideally, we would like for both C1(k,ω)

2
k and C2(k,ω)

2
k

to be as small as possible, which would make the residual error of our estimate xlts⇑sdp1 with respect
to the inliers err ...I (xlts⇑sdp1) as close as possible to the residual error opt ...I an oracle estimator that
has access to all the inliers would commit. Moreover, we would like ωmax to be as large as possible
(but still below 0.5), in order for the theorem to be broadly applicable.

Figure 6(a-b) show the coe"cients C1(k,ω)
2
k and C2(k,ω)

2
k for k = 4 and for increasing outlier

rates ω; we plot multiple lines corresponding to di!erent choices of the coe"cient C(t)
t
↓ {1, 2, 4, 6}.

For each choice of C(t)
t we also plot the maximum outlier rate ωmax (visualized as a dashed vertical

line) for which that error bound holds (indeed it can be seen that the bounds diverge as they
approach their admissible upper bound). To interpret the coe"cients, the reader might observe
that when C1(k,ω)

2
k = 1 it means that the estimator has twice the error of the oracle, while when

C1(k,ω)
2
k = 10 it has an error that is more than 10 times larger than the oracle. By observing the

x-axis of the plot, we quickly realize that for k = 4, even for small values of C(t)
t, the maximum

outlier rate captured by the theorem is very small (in the order of 10⇑4); this makes the theorem
overly conservative for robotics applications where even in the low-outlier case, the outliers can
approach 50%, and where the number of measurements typically ranges from tens to thousands
(which, with an outlier rate of 10⇑4, would only allow for a handful of outliers).

Figure 6(c-d) show the coe"cients C1(k,ω)
2
k and C2(k,ω)

2
k for C(t)

t
= 6 and for increasing

outlier rates ω; in this case, we plot multiple lines corresponding to di!erent choices of k ↓ {4, 6, 8, 10}.
For each choice of k we also plot the maximum outlier rate ωmax (visualized as a dashed vertical
line). As we mentioned, the bound in the theorem becomes stronger for higher k (at the cost of
much increased computation in solving the moment relaxation). At the same time, even with a k as
large at 10 the bound remains applicable only to outlier rates below 4.5 · 10

⇑3, which is unfortunately
still tiny to be of practical interest for robotics and vision.

8.4 Low Outlier Rates: A Priori Bounds and Anti-Concentration
This section shows that k-certifiable anti-concentration is a more stringent condition in practice,
but it can still be satisfied for k = 6 and for suitable choices of φ that make the error bounds
in Propositions 13 and 14 nontrivial. While in the rotation search problem the property is only
satisfied for outlier rates close to zero, we show that on a variant of the problem, certifiable anti-
concentration is satisfied for outlier rates up to 50%. To the best of our knowledge, this is the
first study evaluating certifiable anti-concentration numerically and showing its applicability with
low-degree polynomials p.
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Figure 6: Coe"cients C1(k,ω)
2
k (left column), C2(k,ω)

2
k (right column), and ωmax (visualized as

dashed vertical lines in each figure) in Theorem 12 for di!erent choices of C(t)
t (sub-figures (a) and

(b)) and k (sub-figures (c) and (d)), and for increasing outlier rates.

Numerically checking anti-concentration. Certifiable anti-concentration can be assessed
numerically (given the set of inliers I) using the definition in eqs. (32)-(33). Let us rewrite the
anti-concentration conditions as two polynomial optimization problems:

min
v

p
2

(AT
i v


2

)
↘ (1↘ ⇀)

2
, subject to

AT
i v


2

2

≃ ⇀
2 (42)

min
v

C ⇀M
2
↘ ↗v↗

2
·
1

|I|

∑

i↑I

p
2

(AT
i v


2

)
, subject to ↗v↗

2

2
≃ M

2
. (43)

Anti-concentration requires that the optimal cost of both problems remains greater than zero such
that p

2
(AT

i
v

2

)
⇐ (1↘ ⇀)

2 (for all i ↓ I) and ↗v↗
2
·
1

|I|

∑
i↑I

p
2
(AT

i
v

2

)
≃ C ⇀M

2 as requested
by the definition. Certifiable anti-concentration requires an sos proof of anti-concentration; because of
the duality between moment relaxations and sos relaxations, certifiable anti-concentration essentially
requires that even if we apply a moment relaxation (of suitable order) to the polynomial optimization
problems (42)-(43), then the optimal objective of the relaxation remains positive. Clearly, asking
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the moment relaxation to produce a positive objective is a su"cient condition for the objective
of (42)-(43) to remain positive, hence certifiable anti-concentration is a more stringent condition.

Given the matrices Ai (for all the inliers), the polynomial p, and the coe"cients C, ⇀,M , and
φ, we can numerically solve a moment relaxation of (42)-(43) using the findbound function in
the SOSTOOLS library [120]. We note that (42) involves polynomials of degree up to 2 · deg (p)
while (43) involves polynomials of degree up to 2 · deg (p) + 2, both in the variable v (which is
9-dimensional in our rotation search example). In practice, the findbound function runs out of
memory for degrees larger than 8 in our problem, which imposes to choose a degree-2 polynomial p.
For such choice of p, (42) involves degree-4 polynomials, while (43) involves degree-6 polynomials,
which has implications on the minimum order of the moment relaxation we compute via findbound.26

So far we concluded that we can numerically check certifiable anti-concentration given the
matrices Ai, the polynomial p, and the coe"cients C, ⇀,M , and φ. The matrices Ai are given as an
input to the problem, while our theorems (Propositions 13 to 15) specify how to set ⇀, C, and M .
Therefore, we are only left to figure our how to set the constant φ and the polynomial p. As we will
see, these parameters control the trade-o! between tightness of our error bound and computational
cost (more precisely, the order of the moment relaxation) of the corresponding estimators.

Setting p and φ. The goal of this subsection is to provide insights on the selection of p and φ.
As we have already observed, for computational reasons we are going to restrict ourselves to degree-2
polynomials p; however later in this subsection we are also going to comment on the impact of
higher-degree polynomials p. Definition 11 imposes p(0) = 1 and requires p to be an even polynomial,
hence a degree-2 polynomial p is restricted to the form:

p(a) = 1 + c2a
2
, (44)

for some scalar variable a and coe"cient c2. In order to evaluate potential choices of c2 we consider the
case of a single inlier (|I|= 1) and visualize the functions involved in the definition of certifiable anti-
concentration. In particular, we observe that a necessary condition for certifiable anti-concentration
to be satisfied is that the following inequalities hold in the traditional sense:27
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2
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2
≃ M

2
, (46)

where we assumed |I|= 1. Now we see that the conditions (45)-(46) can be understood as constraints
on the behavior of the polynomial p2

(AT
i
v

2

)
. Figure 7(a) shows the behavior of the functions

involved in the inequalities (45)-(46). We visualize 4 choices of p2
(AT

i
v

2

)
, corresponding to 4

di!erent choices of coe"cients c2 ↓ {↘1,↘0.3,↘0.1,↘0.05,↘0.01} in (44). We also visualize the
bounds (1 ↘ ⇀)

2 in (45), which only has to hold for
AT

i
v
2
2
≃ ⇀

2. Moreover, we visualize the
upper bound C ςM

2

⇓v⇓2 for C, ⇀,M chosen as in Proposition 13 and for φ = 3.26 (we discuss how to
choose φ below). Note that the latter function has a di!erent x-axis (↗v↗, in red), but, noting
that the matrices Ai in the rotation search problem have maximum singular value equal to 1, the

26findbound takes a “degree” input argument, that can be understood as the level of the pseudo-distribution
computed by the function. In this case, we use the minimum degree=4 for (42) and degree=6 for (43).

27Recall again that asking for an sos proof imposes a stronger condition compared to just asking for the inequality
to be satisfied in the traditional sense.
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Figure 7: Visualization of the functions involved in the definition of anti-concentration in eq. (45)-
(46). (a) Polynomials p

2 parametrized as in (44) for di!erent choices of coe"cient c2 compared to
the bounds in (45)-(46) for φ = 3.26. (b) Estimation error bounds from Propositions 13 and 14
for di!erent choices of φ. (c) Polynomials p

2 parametrized as in (44) with c2 = ↘0.1, and bounds
in (45)-(46) for di!erent choices of φ. (d) Polynomials p

2 of degree 2, 4, 8, and suitable choices of
coe"cients compared to the bounds in (45)-(46) for φ = 1.32.

axes are still useful to visualize together.28 In this example with |I|= 1, a necessary condition for
certifiable anti-concentration to hold is that the squared polynomial p2 remains below the red upper
bound in Fig. 7(a) and above the lower bounds (1 ↘ ⇀)

2 visualized as a black dotted line in the
figure. From the figure it is clear that the latter condition is relatively easy to satisfy (at least for
degree-2 polynomials), while remaining below the red upper bound is a more stringent constraint.
In particular, if we choose large negative values of the coe"cient c2 (e.g., c2 = ↘1 or c2 = ↘0.3), the
squared polynomial p2 “bounces back” and quickly reaches the upper bound. If the coe"cient is too
small (e.g., c2 = ↘0.01 in the figure), the polynomial does not decrease su"ciently fast and still

28Since the matrices Ai are built from unit vectors, it can be easily shown that the matrices have the largest singular
value equal to 1. Therefore, for each choice of ↗v↗ one can choose the direction of v to make ↗Aiv↗= ↗v↗, making
the top and bottom x-axes of Fig. 7(a) commensurable; however note that ↗Aiv↗↑ ↗v↗ in general, and ↗Aiv↗ can
become as small as zero for rank-deficient Ai.
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violates the upper bound. However, choosing c2 = ↘0.1 and c2 = ↘0.05 satisfies both constraints,
with c2 = ↘0.1 being the farthest of the two from the upper bound. Later on, we will show that
c2 = ↘0.1 indeed leads to certifying anti-concentration in our rotation search problem for a suitably
chosen φ. We remark that while Fig. 7(a) is somewhat insightful in visualizing the constraints that
the polynomial p has to satisfy, when |I|> 1 the upper bound has to be only satisfied in average
(i.e., 1

|I|

∑
i↑I

p
2
(AT

i
v

2

)
≃

C ςM
2

⇓v⇓2 rather than p
2
(AT

i
v

2

)
≃

C ςM
2

⇓v⇓2 for all i), giving some extra
slack in satisfying anti-concentration.

Now let us turn our attention to the parameter φ. The parameter φ can be roughly understood
as a measure of the “quality” of the inlier set: good inlier sets will be certifiably anti-concentrated
for a small φ, which induces better error bounds (all bounds in Propositions 13 to 15 increase
monotonically with φ). On the other hand, while we can arbitrarily increase the φ to make a
given batch of inliers certifiably anti-concentrated, a large φ might lead to a trivial bound in the
corresponding theorem. In particular, for the bounds in Propositions 13 and 14 to be nontrivial (i.e.,
smaller than the trivial bound 2Mx), we need:


ϑ φ

2
+ 2

1↘ ϑ

ϑ


< 2 =⇒ φ <

2

ϑ


2↘ 2

1↘ ϑ

ϑ


. (47)

Therefore, for a certain inlier rate ϑ, we can choose the φ such that our theorems do not produce
a trivial bound and then test is such φ ensures certifiable anti-concentration. Ideally, we would
like to have a nontrivial bound already around ϑ = 0.5, but as we will see in a second that
might lead to a small φ, which makes the certifiable anti-concentration condition too strict. Below,
we choose potential values of φ according to (47), such that they produce nontrivial bounds for
ϑ ↓ [0.55, 0.6, 0.7, 0.8], respectively leading to the φ ↓ [1.32, 2.22, 3.26, 3.75]. Figure 7(b) shows the
trend of the bounds in Propositions 13 and 14 for those choices of φ, compared with the trivial
bound 2Mx = 2

∀
3. As expected, our choices of φ are designed such that the proposed bounds move

below the trivial bound for ϑ ↓ [0.55, 0.6, 0.7, 0.8], respectively. Ideally, we would like to choose the
smallest possible φ. Figure 7(c) visualizes the price we need to pay to decrease the φ: the figure shows
how smaller values of φ lead to increasingly tight upper bounds C ςM

2

⇓v⇓2 that the polynomial p needs
to satisfy. The figure already shows that in this case (|I|= 1) it is unlikely we can find a degree-2
polynomial that satisfies the upper bound for φ = 1.32. Figure 7(d) shows that we can still satisfy
the upper bound C ςM

2

⇓v⇓2 for a small φ if we are willing to increase the degree of the polynomial p:
the figure plots even polynomials of degree 2, 4, and 8 (with suitably chosen coe"cients) contrasting
them with the upper bound obtained for φ = 1.32. It can be observed that the degree-8 polynomial
remains below the upper bound in the figure. This shows that we can a!ord stronger guarantees
(i.e., smaller φ) if we are willing to pay the computational cost of using a higher-degree polynomial,
which in turns implies a larger k in the definition of certifiable anti-concentration and a higher order
of the moment relaxations involved in our robust estimators. In the following we stick to the more
realistic case of degree-2 polynomial p and we numerically investigate which φ we can “a!ord” in
synthetic problems for both the rotation search problem and for a variation of the problem.

Experiments on synthetic data. We choose the univariate polynomial to be p(a) = 1↘ 0.1a
2

and test certifiable anti-concentration in a rotation search problem with n = 50 measurements,
generated as described in Section 8.1. Testing certifiable anti-concentration is much slower than
testing certifiable hypercontractivity, hence we only compute statistics over 10 runs. We test whether
certifiable anti-concentration holds for increasing outlier rates ω ↓ {0; 0.1; 0.3; 0.5; 0.7; 0.9} and
for di!erent choices of φ ↓ {1.32; 2.22; 3.26; 3.75}. Fig. 8(a) reports the percentage of tests where
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Figure 8: Certifiable anti-concentration results on synthetic data: (a) Rotation search problem:
percentage of tests where 6-certifiable anti-concentration holds for various choices of φ and outlier
rates ω (with n = 50). (b) Rotation search problem: percentage of tests where 6-certifiable anti-
concentration holds for increasing number of measurements n and outlier rates ω (with φ = 3.75).
(b) Modified version of the rotation search problem: percentage of tests where 6-certifiable anti-
concentration holds for various choices of φ and ω (with n = 50). Statistics computed over 10 runs.

6-certifiable anti-concentration holds for various choices of φ and outlier rates ω. We observe that
certifiable anti-concentration is only satisfied for a relatively large φ and for small outlier rates. In
particular, the parameter C in (46) depends on the square of ϑ = 1↘ ω according to Propositions 13
and 14, hence quickly making the condition too strict for increasing outlier rates ω.

Figure 8(b) reports the percentage of tests where 6-certifiable anti-concentration holds for
increasing number of measurements n and outlier rates ω, and for φ = 3.75. The figure shows that
certifiable anti-concentration is more likely to hold for larger sets of measurements, while still only
applying to problems with relatively low outlier rates (i.e., 10%). While Figure 8(a-b) seem to
suggest that certifiable anti-concentration with degree-2 polynomials p is too strict of a condition
to be of practical interest, below we report a variant of the rotation search problem, where the
condition is satisfied for much larger outlier rates ω.

We consider a modified version of the rotation search problem, where each measurement, instead
of being a single 3D vector bi, is a triplet of orthogonal vectors b

(1)

i
, b(2)

i
, b(3)

i
. In this variant of the

rotation search problem, the measurement model becomes:
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+ ω. (48)

The expert reader might notice that this is now similar to a rotation averaging problem (see Ex-
ample 18 in Section 9), since each measurement allows reconstructing the full rotation R. We
numerically test certifiable anti-concentration in this problem variant. Towards this goal, we use the
same data generation protocol described in Section 8.1 to sample ai, and set a(1)

i
= ai; then we create

an orthogonal vector a
(2)

i
by sampling a second random vector, projecting it onto the null space of

a
(1)

i
, and normalizing it to have unit norm; finally, we set a

(3)

i
= a

(1)

i
⇓ a

(2)

i
, where ⇓ is the cross

product. Note that the vectors b
(1)

i
, b

(2)

i
, b

(3)

i
do not appear in the definition of anti-concentration,
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hence we do not have to generate them. Figure 8(c) reports the percentage of tests where 6-certifiable
anti-concentration holds for various choices of φ and outlier rates ω in this variant of the rotation
search problem. In this case, certifiable anti-concentration is more broadly satisfied for several choices
of φ and for outlier rates as high as 50%. To the best of our knowledge, this is the first numerical
evidence supporting the use of certifiable anti-concentration with degree-2 polynomials p. Moreover,
since certifiable anti-concentration holds for relatively small φ, this variant of the problem enjoys the
tighter error bounds shown in Fig. 7(b). Besides the intuition that this variant of the rotation search
problem is “easier” (an aspect that is correctly captured by φ for which certifiable anti-concentration
holds), there is a precise technical reason that makes the property easier to satisfy. By inspection,
we note that the matrix Ai in eq. (48) is an orthogonal matrix,29 hence ↗A

T
i
v↗= ↗v↗. This makes

the top and bottom x-axes in Fig. 7(a) the same, and the anti-concentration condition becomes a
point-wise comparison between the polynomial p2 and the bounds.30

The runtime to check certifiable anti-concentration is much higher than the one required for
certifiable hypercontractivity, since now we have to solve constrained optimization problems, also
involving higher-degree polynomials. Solving a moment relaxation of (42) using findbound [120]
takes around 0.5 seconds on a standard laptop. However, solving a relaxation of (43) requires
around 5 minutes, due to the need to use a higher-order relaxation (recall that (43) involves degree-6
polynomials).

8.5 High Outlier Rates: List-Decodable Estimation
We conclude this experimental section by discussing list-decodable estimation and the high-outlier
regime. In particular, this section shows that despite the fact that the theoretical guarantees
of Theorem 17 fall short in practice, a small variation of Algorithm 5 has impressive empirical
performance. To the best of our knowledge, the algorithm we describe is the first practical algorithm
for list-decodable estimation based on the framework proposed in [37].

We start by observing that the theoretical results in Theorem 17 fall short of providing usable
performance guarantees in the high-outlier-rate case: first of all, certifiable anti-concentration, even
in the simpler variant of the rotation search problem in Fig. 8(c), does not empirically hold for
outlier rates ω > 0.5 (at least when using a degree-2 p), hence the results only cover the low-outlier
regime in practice. Second, the guarantees in Theorem 17 (i.e., the bound ↗x↘ x

→
↗
2
≃ φMx) are

non-trivial only for φ < 2; however, Fig. 8(c) shows that anti-concentration starts holding for φ > 2

in most cases, making the result in Theorem 17 of pure theoretical interest. Finally, the smallest k

allowed by the theorem is k = 6, which leads to large order-3 moment relaxations that we cannot
solve with current SDP solvers. Despite these limitations, one might still wonder if Algorithm 5
would produce good estimates even for lower relaxation orders, beyond what’s covered by the theory.

This section shows that a sparse order-2 relaxation of problem (LDR) in Algorithm 5 already
leads to accurate list-decodable estimation. In particular, we show that a small variant of Algorithm 5,
that we call Sparse LIst-Decodable Estimation (SLIDE), (i) produces good estimates for problems

29AT
i Ai=




(a(1)

i )
T ⇓ I3

(a(2)
i )

T ⇓ I3
(a(3)

i )
T ⇓ I3



·
[

a(1)
i ⇓ I3 a(2)

i ⇓ I3 a(3)
i ⇓ I3

]
=




(a(1)

i )
Ta(1)

i I3 (a(1)
i )

Ta(2)
i I3 (a(1)

i )
Ta(3)

i I3
ϱ (a(2)

i )
Ta(2)

i I3 (a(2)
i )

Ta(3)
i I3

ϱ ϱ (a(3)
i )

Ta(3)
i I3



=I9

30As we observed, in the standard rotation search problem, ↗AT
i v↗ and ↗v↗ are di!erent in general, but it still

holds ↗AT
i v↗↑ ↗v↗ since the largest singular value of Ai is equal to 1. Since, however, for certain choices of v, ↗AT
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can be much smaller than ↗v↗ (and be even zero if the matrix Ai is rank-deficient), the condition (46) may need to
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i v↗↑ ↗v↗. On the other hand, when the matrix Ai is orthogonal, ↗AT
i v↗= ↗v↗ and the
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with high rates of random outliers, (ii) produces good estimates for problems with high rates of
“adversarial” (more precisely, mutually consistent) outliers, and (iii) if the measurements are generated
by multiple rotations (i.e., di!erent subsets of measurements are generated by di!erent rotations),
then SLIDE simultaneously recovers all the rotations generating the data.

Sparse LIst-Decodable Estimation (SLIDE). The proposed algorithm entails three main
changes to Algorithm 5, for r = 2. First of all, instead of solving a moment relaxation of order r = 2,
which is still expensive for large n (we test for n = 50), we develop a sparse relaxation, whose details
are given in Appendix J. The relaxation essentially considers a sparse monomial basis, which neglects
certain degree-2 monomials (e.g., εi · εj) that would make the dimension of the resulting SDP much
larger; the monomial basis is designed to still give us access to the entries of the pseudo-moment
matrix used in Algorithm 5. The second modification is to round the list of solutions of Algorithm 5
to the domain X. The latter is a consequential change: we empirically noticed that the original
approach in Algorithm 5 (but with our sparse relaxation) produces estimates with norm close to
zero. As we will see, projecting the estimates to X has the e!ect of re-normalizing the result and
correcting scaling problems. Finally, we always return n hypotheses, rather than sampling; this
makes the results deterministic and independent from an arbitrary choice of number of hypotheses
(which can no longer be guided by the guarantees in Theorem 17). Below, we will refer to this
modified algorithm as “SLIDE” (Sparse LIst-Decodable Estimation).

(a) (b)
Figure 9: Rotation search with random outliers: (a) Rotation error in degrees for the TLS approach
from [34] and SLIDE for increasing outlier rates ω. (b) Relaxation gap for the same approaches
(y-axis is on log scale). Shaded areas correspond to the 25th, 50th, 75th, and 90th percentiles.
Results are averaged over 10 runs.

Experiments on synthetic data. Figure 9 reports statistics comparing the estimation errors
of the sparse relaxation of the (TLS) problem proposed in [34] (label: “TLS”) against SLIDE, using
the data generation protocol of Section 8.1 with n = 50 and increasing outlier rates ω between 0.1

and 0.9 at increments of 0.1. Figure 9(a) reports the rotation error in degrees between the estimate
from each approach and the ground truth. For SLIDE, we report the smallest error across the
estimates in the list. The TLS results confirm the observation from [34] that TLS is extremely robust
to extreme rates of non-adversarial outliers (as described in Section 8.1, in this case we sample the
outliers at random). However, the interesting observation is that SLIDE is also able to retrieve good
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estimates in practice as long as the amount of inliers is su"ciently large; note that for ω = 0.9 we
only have 5 inliers, which is comparable to the size of the minimum set of measurements we need to
uniquely solve the problem (d̄ = 3 in rotation search). Figure 9(b) reports the relative relaxation
gap for both approaches, computed as in eq. (24) in [30]:

↽ =
|fsdp ↘ f̂ |

1 + |fsdp|+|f̂ |
(49)

where fsdp is the optimal objective of the SDP relaxation and f̂ is the objective attained by a rounded
solution.31 As already reported in [34], the TLS relaxation remains tight across the spectrum. On the
other hand, SLIDE’s relaxation is typically loose, while still returning accurate solutions. The lack
of tightness of SLIDE’s relaxation is a feature rather than a bug: a tight relaxation would produce a
binary vector ε,32 forcing the objective to be always equal to ↗ε↗

2

2
=

∑
n

i=1
ε
2
i
=

∑
n

i=1
εi = ϑn;

such a relaxation would always produce a set of ϑn inliers rather than “spreading” across multiple
potential sets of inliers (cf. Section 7). Indeed, in our example in eq. (39), enabling non-binary ε

was the key to allow solutions that spread across multiple potential sets of inliers.

(a) (b)
Figure 10: Rotation search with mutually consistent outliers: (a) Rotation error in degrees for the
TLS approach from [34] and SLIDE for increasing outlier rates ω. (b) Relaxation gap for the same
approaches (y-axis is on log scale). Shaded areas correspond to the 25th, 50th, 75th, and 90th
percentiles. Results are averaged over 10 runs.

Figure 10 reports the same statistics, but now for a case with mutually consistent outliers. In
this case, we generate the set of outliers according to the same generative model of the rotation
search model (4), but using a rotation R

↗
∃= R

→ that we choose at random. Essentially, the set of
measurements now contains two di!erent hypotheses for the parameter we want to estimate, and if
the outliers are more than 50% any single-hypothesis estimator is expected to fail (and return an
estimate close to R

↗ instead of R→). Figure 10(a) reports the rotation error for both TLS and SLIDE.
As expected, TLS experiences a phase transition, where for ω < 0.5 it is able to retrieve a good

31For SLIDE, the relaxation gap can be easily computed by observing that the optimal objective of the non-relaxed
polynomial optimization problem (LDR) is always ϑ · n.

32More precisely, it would produce binary entries X[ω] ⇐ {0; 1}n in the pseudo-moment matrix.
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estimate for R→, while for ω > 0.5, the outliers form the most likely hypothesis, leading the estimator
to perform arbitrarily poorly. However, one can observe how SLIDE still performs similarly to the
non-adversarial case, achieving much smaller errors (the mean error remains below 4

→ for ω = 0.8).
Figure 9(b) reports the relaxation gap for both approaches. SLIDE’s relaxation remains loose, while,
quite interestingly, TLS remains tight even in the presence of mutually consistent outliers.

(a) (b)

Figure 11: Rotation search with mutually consistent outliers: rotation errors in degrees for the TLS
approach from [34] and SLIDE for increasing outlier rates ω. Errors are reported for both rotation
hypotheses present in the data. Shaded areas are only shown for SLIDE and for the second rotation
(the shaded area for the first rotation can be observed in Fig. 9(a)) and correspond to the 25th, 50th,
75th, and 90th percentiles. Results are averaged over 10 runs.

For the same set of experiments with mutually consistent outliers, Fig. 11(a) provides error
statistics for both rotations (R↗, R→) present in the sensor data. As expected, TLS, depending on the
outlier rate, retrieves either one or the other rotation (i.e., it only retrieves the dominant hypothesis
in the data). Indeed, (TLS) —similarly to (MC)— looks for the estimate supported by the “largest”
set of measurements, hence it is not able to find more complex patterns in the measurements. On the
other hand, SLIDE’s behavior is much more intriguing. Let us start by considering the high-outlier
regime (ω > 0.5), which is easier to parse. It is clear that when ω > 0.5, SLIDE is able to report both
rotations producing the measurements, as long as the number of inliers for each is su"ciently large
(similarly to what we observed in Figs. 9 and 10). This is quite relevant for practical applications:
for instance, in rotation search, the presence of di!erent rotations generating the data may be
due to the 3D vectors experiencing di!erent motions over time (e.g., a subset belongs to a static
portion of the environment, while another subset belongs to a moving object), hence being able to
retrieve both might be useful to simultaneously infer motion of multiple objects with respect to the
sensor. In the low-outlier case ω < 0.5, it might seem that SLIDE is not able to recover the second
rotation; however, this is only a byproduct of our experimental setup: for each ω, the polynomial
optimization (LDR) that SLIDE solves only searchers for estimates “supported” by at least ϑ = 1↘ω

fraction of the measurements. Therefore, for ω = 0.1, we are asking SLIDE to report any estimate
that is supported by at least 90% of the measurements, hence SLIDE correctly reports a single
estimate (R→), since the other estimate (R↗) is only supported by 10% of the measurements (i.e., the
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outliers). If we instead pass the minimum min(ω, 1↘ω) between the inlier and the outlier rate as the
fraction of the measurement set SLIDE has to look for, we obtain the behavior in Fig. 11(b), where
SLIDE is able to recover both rotations as long as they are supported by enough measurements.

Figure 12 provides qualitative evidence to further support the observation that SLIDE is
empirically able to report all the estimates supported by at least ϑn inliers, as long as ϑn is
su"ciently large. Figure 12(a) shows an example with mutually consistent outliers and ω = 0.5:
the figure shows the rotations R

→ and R
↗ generating the data as coordinate frames with thick and

short axes, and the estimates in the list returned by SLIDE as coordinate frames with thin and long
axes. The figure shows that all the estimates returned by SLIDE cluster around the ground-truth
rotations generating the data. Figure 12(b) shows a more extreme case where the data is generated
by 5 di!erent rotations, each one producing 20% of the measurements. The figure shows the 5
ground-truth rotations with thick and short axes, and the estimates from SLIDE as thin and long
axes. Also in this case, SLIDE’s estimates cluster around the ground-truth rotations, and indeed
SLIDE is able to recover all rotations within a maximum error of 2.6→. These results also seem to
suggest other algorithmic variants of Algorithm 5, where one, rather than sampling a smaller list,
would get a list of size n and then reduce the size of the list by clustering it into fewer hypotheses.
We discuss this and other extensions in the following section.

As we mentioned in Section 8.1, our implementation of SLIDE is in Matlab and uses MOSEK [105]
as an SDP solver. The average runtime of SLIDE in problems with n = 50 is 3 minutes.

(a) (b)
Figure 12: Ground-truth rotations generating the data vs. estimates from SLIDE. The ground-truth
rotations are visualized as coordinate frames with thick and short x (red), y (green), and z (blue)
orthogonal axes, and the estimates in the list returned by SLIDE as coordinate frames with thin
and long axes. (a) Rotation search with 2 rotations, each generating 50% of the measurements. (b)
Rotation search with 5 rotations, each generating 20% of the measurements.

9 Extensions and Open Problems
Extensions to other geometric perception problems. In this monograph we focused on
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problems where inliers can be expressed via a linear model with additive noise: yi = A
T
i
x
→
+ ω.

However, in many geometric perception problems, the measurements do not belong to a vector space
and the noise is no longer additive. In the following, we review three examples of such problems,
and observe that —in the outlier-free case— they can still be cast as:

minx↑X
yi ↘A

T
i
x
2
2
, (50)

hence still being amenable for estimators such as (LTS), (MC), and (TLS) with fi(x) = A
T
i
x.

Example 18 (Single Rotation Averaging). Estimate a rotation R ↓ SO(3) given rotation measure-
ments Ri, i = 1, . . . , n. The measurement model for the (inlier) measurements is given by:

Ri = R ·Rφ, i ↓ [n], (51)

where Rφ is a random rotation describing the measurement noise. When the rotation noise Rφ follows
an isotropic Langevin distribution with mode I3 and concentration parameter κ (inconsequential in
this example), a maximum likelihood estimator for the outlier-free single rotation averaging problem
is given by the following optimization problem (where ↗·↗F denotes the Frobenius norm):

min
R↑SO(3)

n∑

i=1

κ ↗R↘Ri↗
2

F , (52)

which has the same form of (50) after vectorizing the matrix into a 9-vector. Rotation averaging
finds application in camera calibration, motion capture, spacecraft attitude determination, and
crystallography, see [121, 4] and the references therein.

Example 19 (Multiple Rotation Averaging). Estimate a set of rotations Rk ↓ SO(3), k = 1, . . . , N ,
from relative rotation measurements R̄ij between (a su!ciently large set of) pairs of rotations. The
generative model for the (inlier) measurements is:

R̄ij = R
T
i
RjRφ, (i, j) ↓ E , (53)

where E is the set of pairs (i, j) such that a measurement R̄ij is available. The problem can be
visualized as a graph, where each node is associated a to-be-estimated rotation, while edges correspond
to pairwise rotation measurements. When the rotation noise Rφ follows an isotropic Langevin
distribution with mode I3 and concentration parameter κ (inconsequential also in this example), a
maximum likelihood estimator for the outlier-free multiple rotation averaging problem is given by the
following optimization problem [122]:

min
Rk↑SO(3),k=1,...,N

∑

(i,j)↑E

κ
Rj ↘RiR̄ij

2
F
, (54)

which has the same form of (50) after vectorization. Multiple rotation averaging arises in Structure
from Motion and camera calibration [4] among other problems, and can be used to compute an
initial guess for Simultaneous Localization and Mapping methods [123]. It has also been studied in
conjunctions with Shor’s relaxation in [46, 122].

49



Example 20 (Pose Graph Optimization). Estimate a set of poses (tk,Rk) with tk ↓ R3 and
Rk ↓ SO(3), k = 1, . . . , N , from relative pose measurements (t̄ij , R̄ij) between (a su!ciently large
set of) pairs of poses. The generative model for the (inlier) measurements is:

R̄ij = R
T
i
RjRφ, t̄ij = R

T
i
(tj ↘ ti) + tφ, (i, j) ↓ E , (55)

where E is the set of pairs (i, j) such that a measurement (t̄ij , R̄ij) is available. The problem can
again be visualized as a graph, the pose graph, where each node is associated a to-be-estimated
pose, while edges correspond to pairwise pose measurements. When the rotation noise Rφ follows an
isotropic Langevin distribution with mode I3 and concentration parameter κ, and the translation error
tφ is a zero-mean Gaussian with covariance 1

↼
I3, a maximum likelihood estimator for the outlier-free

pose graph optimization problem is given by the following optimization problem [13, 110, 7]:

min
tk↑R3,Rk↑SO(3),k=1,...,N

∑

(i,j)↑E

τ ↗tj ↘ ti ↘Rit̄ij↗
2

2
+

∑

(i,j)↑E

κ
Rj ↘RiR̄ij

2
F
, (56)

which, observing the quadratic nature of the cost in (56), can be recast as in eq. (50). Pose graph
optimization finds application in Simultaneous Localization and Mapping among other fields [5] and
has been investigated in conjunction with Shor’s relaxation in [13, 110, 7, 124, 14, 125].

All the examples above still reduce to linear regression over a basic semi-algebraic set, hence we
believe it is possible to extend the results presented in this monograph to these problems. Indeed,
moment relaxations of a (TLS) formulation of outlier-robust pose graph optimization have been
proposed in [35]. At the same time, multiple rotation averaging and pose graph optimization pose
further challenges, due to the very high-dimensional nature of the problem (for which even a sparse
moment relaxation of order 2 is out of reach for current SDP solvers and for realistic problem
sizes [35]), and might benefit from di!erent assumptions on the measurements that better leverage
the graph-theoretic nature of the problem (e.g., problems (53) and (56) admit a unique solution
only if the underlying graph is connected).

Other extensions and open problems. This monograph extends results from outlier-robust
statistics to problems with vector-valued measurements, unknown outlier rates, and variables
belonging to a basic semi-algebraic set X. However, all the algorithms presented in this monograph
may return estimates outside X. While in principle, for the sets arising in geometric perception, it
is typically easy to project the outputs of these algorithms onto X, the corresponding estimation
contracts currently do not account for such a rounding. Leveraging Lemma 3 in [126], we could account
for the rounding by adding a constant factor of 2 in front of the error bounds in Propositions 13 to 15
and Theorem 17.33 However, it would be desirable to take advantage of the domain constraint to
tighten the error bounds in the proofs, rather than treating it as an afterthought (in this monograph,
we mostly make sure that the domain constraint does not break the proofs).

A second limitation is that the estimation contracts presented in this monograph require the corre-
sponding algorithms to solve high-order moment relaxations. For instance, we have already observed
that Theorem 12 requires a relaxation of order r ⇐ k ⇐ 4 (under k-certifiable hypercontractivity),
which would be impractical to solve with current SDP solvers; in this case the bound r ⇐ k ⇐ 4

on the relaxation order is imposed by the degree of the objective in Algorithm 1 (which imposes
r ⇐ k), and by the proof (which requires k ⇐ 4). This requirement is further reinforced by the fact
that typical distributions (e.g., Gaussians) have been shown to be 4-certifiably hypercontractive [15],

33We thank Kevin Doherty for pointing out the result in [126].
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hence again requiring k ⇐ 4 for the performance guarantees to hold. The same issue arises for the
other estimation contracts, due to the requirement that the relaxation order must satisfy r ⇐ k/2 for
k-certifiably anti-concentrated inliers and that k ⇐ 6, due to the degree of the polynomials in (33).
Therefore, it would be desirable to develop guarantees for more practical (and possibly sparse)
order-2 relaxations, with the goal of fully explaining the empirical performance observed in [30].

Third, it would be interesting to explore the performance of list-decodable estimation in other
perception problems. In particular, it would be useful to see if the impressive performance observed in
rotation search problems (Section 8.5) can be also replicated in other geometric perception problems.
Along these lines, it would be desirable to develop more sophisticated algorithmic variants of SLIDE
based on the framework in [37]. For instance, rather than sampling potential estimates from the
pseudo-moment matrix, one could collect all estimates (as done in SLIDE), cluster them into a
smaller number of hypotheses, and return the cluster centers, hoping that the cluster-wise averaging
can further reduce the estimation errors. Related to the discussion above, it would be desirable to
extend the performance guarantees in Theorem 17 to encompass order-2 relaxations and capture the
fact that projecting the estimates to the domain X leads to much better performance in practice.

Fourth, it would be interesting to characterize the behavior of adversarial outliers in geometric
perception. How does an adversarial attack on a geometric perception problem look like? While in the
experiments we observed that “mutually consistent” outliers are more challenging to reject, a strong
adversary model would also leverage the set of inliers to create even more di"cult problem instances.
Along these lines, designing algorithms to produce adversarial outliers in perception problems might
provide further insights on outlier-robust estimation algorithms, somewhat drawing inspiration from
the large and parallel body of research on adversarial machine learning, see, e.g., [127].34 A somewhat
related problem is how to train the front-end of a perception system to avoid these adversarial
instances. In other words, can we design a front-end (i.e., train a neural-network) in a way that the
resulting measurements satisfy our estimation contracts by construction? For instance, this would
entail enforcing or encouraging certifiable hypercontractivity or certifiable anti-concentration of the
measurements produced by the front-end during training.

Finally, a broader issue is that many of the estimation problems considered in this monograph
must be solved on a stringent runtime budget. For instance, point cloud registration problems
(Example 2) are solved at frame-rate (e.g., > 20 Hz) in many RGB-D SLAM applications [5],
hence requiring the estimation algorithm to run in a fraction of a second. SDP solvers applied
to the moment relaxations considered in this monograph (even at order 2) are far from meeting
this runtime constraints. Therefore, it would be interesting to develop specialized solvers that take
advantage of the problem structure; for instance, the work [119] leverages the fact that the SDP
is a relaxation of a polynomial optimization problem to speed up computation, while [7] achieves
real-time performance by solving large SDPs using the Riemannian staircase method [129]. Finally,
it is important to further extend the reach of sparse versions of Lasserre’s hierarchy of moment
relaxations, which can reduce the size of the matrices in the relaxation by leveraging the problem
structure, see [130, 131, 132, 133].

10 Conclusions
We studied outlier-robust estimation in the context of the geometric perception problems arising
in robotics and computer vision. Many of these problems can be reformulated as linear estimation

34An empirical study on adversarial attacks on SLAM has been recently proposed in [128].
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problems with variables belonging to a basic semi-algebraic set, and the goal is to retrieve a good
estimate of the variables in the presence of outliers. We provided a unified view of converging work
on outlier-robust estimation across robust statistics, robotics, and computer vision and discussed
technical tools underlying modern estimation approaches, including moment relaxations and sum-of-
squares proofs. Then, we reviewed existing algorithms and presented estimation contracts, which
establish conditions on the input measurements under which modern estimation algorithms are
guaranteed to recover an estimate close to the ground truth in the presence of outliers. Towards this
goal, we adapted and extended recent results on outlier-robust linear regression (applicable to the
low-outlier case with → 50% outliers) and list-decodable regression (applicable to the high-outlier
case with ↑ 50% outliers) to the setup commonly found in robotics and vision, where (i) variables
(e.g., rotations, poses) belong to non-convex sets, (ii) measurements are vector-valued, and (iii) the
number of outliers is not known a priori. Besides the technical results, we hope this monograph can
provide a unifying view of parallel research lines on outlier-robust estimation across fields. Moreover,
we hope that practitioners will benefit from our layman introduction to moment relaxations and
sum-of-squares proofs and will use these tools to attack other outstanding problems in robotics and
vision. Finally, we hope that researchers in robust statistics will be intrigued by the formulations
and the empirical performance observed in robotics and vision problems, and will contribute to
bridging the current gap between theoretical results and practical algorithms.
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A An Algorithmic View of Lasserre’s Hierarchy of Moment Relax-
ations

Here we provide an algorithmic (and somewhat unorthodox) view of Lasserre’s hierarchy of moment
relaxations [25]; we refer the reader to [108, 104] for a more standard introduction.

Lasserre’s hierarchy provides a systematic way to relax a polynomial optimization problem (POP)
into a semidefinite (convex) program. We start by restating (POP):

p
ε ↭ min

x↑Rdx


p(x)


hi(x) = 0, i = 1, . . . , lh

gj(x) ⇐ 0, j = 1, . . . , lg


, (POP)

where p(x), hi(x), gj(x) are polynomials in the variable x ↓ Rdx .
The key idea behind Lasserre’s hierarchy of moment relaxations is to (i) rewrite the polynomial

optimization problem (POP) using the moment matrix X2r
35, (ii) relax the (non-convex) rank-1

constraint on X2r, and (iii) add redundant constraints that are trivially satisfied in (POP) but might
still improve the quality of the relaxation; as shown below, this leads to a semidefinite program.

(i) Rewriting (POP) using X2r. Recall that any polynomial of degree up to 2r can be written
as a linear function of the moment matrix X2r (cf. Section 4.2). Therefore, we pick a positive integer r
(the order of the relaxation) such that 2r ⇐ max{deg (p), deg (h1), . . . , deg (hlh), deg (g1), . . . , deg

(
glg

)
},

such that we can express both objective function and constraints as a linear function of X2r. With
this choice of r, we can rewrite the objective and the equality constraints in (POP) as:

objective : ⇔C1,X2r↖ (A1)

equality constraints : ⇔Aeq,j ,X2r↖ = 0, j = 1, . . . , lh, (A2)

for suitable matrices C1 and Aeq,j .
(ii) Relaxing the (non-convex) rank-1 constraint on X2r. At the previous point we noticed we

can rewrite objective and constraints in (POP) as linear (hence convex) functions of X2r. However,
X2r still belongs to the set of positive-semidefinite rank-1 matrices (since it is defined as [x]r[x]

T
r ,

where [x]r is a vector of monomials), which is a non-convex set due to the rank constraint. Therefore,
we simply relax the rank constraint and only enforce:

pseudo-moment matrix : X2r ′ 0. (A3)

(iii) Adding redundant constraints. Since we have relaxed (POP) by re-parametrizing it using
X2r and dropping the rank constraint, the final step to obtain Lasserre’s relaxation consists in
adding extra constraints to make the relaxation tighter. First of all, we observe that there are
multiple repeated entries in the moment matrix (e.g., in (9), the entry x1x2 appears 4 times in
the matrix). Therefore, we can enforce these entries to be the same. In general, this leads to
mmom = t(dr)↘ d2r + 1 linear constraints, where d2r ↭

(
dx+2r

2r

)
(the size of the monomial basis of

degree up to 2r, i.e., [x]2r) and t(n) ↭ n(n+1)

2
is the dimension of Sn. These constraints are typically

called moment constraints:

moment constraints : ⇔Amom,0,X2r↖ = 1,

⇔Amom,j ,X2r↖ = 0,

j = 1, . . . , t(dr)↘ d2r,

(A4)

35Recall that the moment matrix is defined as X2r ↭ [x]r[x]
T
r , where [x]r is the vector of monomials of degree up

to r. For instance, for x = [x1 ; x2] and r = 2, the matrix X2r takes the form in eq. (9).
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where Amom,0 is all-zero except [Amom,0]11 = 1, and it is used to define the constraint [X2r]11 = 1,
following from the definition of the moment matrix (see eq. (9)).

Second, we can also add redundant equality constraints. Simply put, if hi = 0, then also hi ·x1 = 0,
hi · x2 = 0, and so on, for any monomial we multiply by hi. Since via X2r we can represent any
polynomial of degree up to 2r, we can write as linear constraints any polynomial equality in the
form hi · [x]2r⇑deg(hi)

= 0 (the degree of the monomials is chosen such that the product does not
exceed degree 2r). These new equalities can again be written linearly as:

(redundant) equality constraints : ⇔Areq,ij ,X2r↖ = 0,

i = 1, . . . , lh, j = 1, . . . , d2r⇑deg(hi)
,

(A5)

for suitable Areq,ij . Since the first entry of [x]2r⇑deg(hi)
is always 1 (i.e., the monomial of order

zero), eq. (A5) already includes the original equality constraints in (A2).
Finally, we observe that if gj ⇐ 0, then for any positive semidefinite matrix M , it holds gj ·M ′ 0.

Since we can represent any polynomial of order up to 2r as a linear function of X2r, we can add
redundant constraints in the form gj · X2(r⇑⇔deg(gj)/2↖)

′ 0 (by construction gj · X2(r⇑⇔deg(gj)/2↖)

only contains polynomials of degree up to 2r). To phrase the resulting relaxation in the standard
form (SDP), it is common to add extra matrix variables Xgj = gj ·X2(r⇑⇔deg(gj)/2↖)

for j = 1, . . . , lg

(the localizing matrices [104, §3.2.1]) and then force these matrices to be a linear function of X2r:

localizing matrices : Xgj ′ 0, j = 1, . . . , lg, (A6)

localizing constraints : ⇔Aloc,jkh,X2r↖ = [Xgj ]hk,

j = 1, . . . , lg, 1 ≃ h ≃ k ≃ dr⇑⇔deg(gj)/2↖
,

(A7)

where the linear constraints (for some matrix Aloc,jkh) enforce each entry of Xgj to be a linear
combination of entries of the matrix X2r.

Following steps (i)-(iii) above, it is straightforward to obtain the following semidefinite program:

f
ε

2r = min
X=(X2r,{Xgj }j↘[lg ])

{⇔C1,X2r↖ | A(X)=b,X′0}, (A8)

where the variable X = (X2r, {Xgj}j↑[lg ]) is a collection of positive-semidefinite matrices (cf. (A3)
and (A9)), the objective is the one given in (A1), and the linear constraints A(X) = b collect all
the constraints in (A4), (A5), and (A7). Problem (A8) can be readily formulated as a multi-block
SDP in the primal form (SDP), which matches the data format used by common SDP solvers. The
matrix X2r solving (A8) is typically referred to as the pseudo-moment matrix.36 One can solve the
relaxation for di!erent choices of r, leading to a hierarchy of convex relaxations.

While we presented Lasserre’s hierarchy in a somewhat procedural way, the importance of the
hierarchy lies in its stunning theoretical properties, that we review below.

Theorem A1 (Lasserre’s Hierarchy [25, 104, 109]). Let ↘∋ < p
ε
< ∋ be the optimum of (POP)

and f
ε
2r

(resp. X
ε
2r

) be the optimum (resp. one optimizer) of (A8), and assume (POP) is explicitly
bounded ( i.e., it satisfies the Archimedeanness condition in [48, Definition 3.137]), then

(i) (lower bound and convergence) f
ε
2r

converges to p
ε from below as r ∈ ∋, and convergence

occurs at a finite r under suitable technical conditions [109];
36The rationale behind this name will become apparent in Appendix B.
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(ii) (rank-one solutions) if fε
2r

= p
ε at some finite r, then for every global minimizer x

ε of (POP),
X

ε
2r

↭ [x
ε
]r[x

ε
]
T
r is optimal for (A8), and every rank-one optimal solution X

ε
2r

of (A8) can
be written as [x

ε
]r[x

ε
]
T
r for some x

ε that is optimal for (POP);

(iii) (optimality certificate) if rank (Xε
2r
) = 1 at some finite r, then f

ε
2r

= p
ε.

Theorem A1 states that (A8) provides a hierarchy of lower bounds for (POP). When the
relaxation is exact (pε=f

ε
2r

), global minimizers of (POP) correspond to rank-one solutions of (A8).
Moreover, after solving the convex SDP (A8), one can check the rank of the optimal solution X

ε
2r

to
obtain a certificate of global optimality.

Further tightening the relaxation. As we discussed above, in the standard presentation of
Lasserre’s hierarchy, one adds a localizing matrix for each inequality constraint to enforce constraints
such as gj · X2(r⇑⇔deg(gj)/2↖)

′ 0. However, in principle, we could also add constraints enforcing
gj1 ·gj2 ·M ′ 0, for any pair of inequality constraints gj1 ⇐0 and gj2 ⇐0, for j1, j2 ↓ [lg]. More generally,
we can add constraints


j↑S

gj ·M ′ 0, for any subset S ↔ [lg] as long as deg
(

j↑S
gj

)
has degree

no larger than 2r. After adding those extra constraints, we can still phrase the resulting relaxation
in the standard form (SDP), by adding extra matrix variables XS =


j↑S

gj ·X2(r⇑↙
∑

j↘S deg(gj)/2∝)
,

and then forcing these matrices to be a linear function of X2r:

localizing matrices : XS ′ 0, S ↔ [lg], (A9)

localizing constraints : ⇔Aloc,S,kh,X2r↖ = [XS ]hk,

S ↔ [lg], 1 ≃ h ≃ k ≃ d
r⇑↙

∑
j↘S deg(gj)/2∝

,
(A10)

where, similarly to the standard Lasserre’s relaxation, the linear constraints (for some suitable
matrices Aloc,S,kh) enforce each entry of XS to be a linear combination of the entries in X2r.

The additional constraints in eq. (A10) make the relaxation tighter compared to the standard
presentation of Lasserre’s relaxation, but are not necessary to obtain the convergence result in Theo-
rem A1, which holds regardless for explicitly bounded constraint sets. However, these constraints
become necessary to obtain convergence results akin to Theorem A1 for the case where the set of
constraints is not explicitly bounded (see [50, Section 3.3] and [48, p. 115] for a more extensive
discussion). For this reason, in order to maintain generality, related work following the “proofs to
algorithms” paradigm typically assumes those constraints to be present, see, e.g., [15, 37]. These
terms will indeed appear in the definitions of sos proofs and constrained pseudo-distribution, see Ap-
pendix B. In order to keep the definitions in our monograph consistent with [15, 37], we will also
assume these terms to be present, even though they are not strictly necessary under Assumption 2.

B Pseudo-distributions and Moment Relaxations
The start of this section follows standard introductions about pseudo-distributions given in related
work [15, 49, 78, 37], while later in the section we attempt to draw more explicit connections
with the optimization machinery in Appendix A. Although such a connection is self-evident to the
expert reader (indeed pseudo-distributions are the language traditionally used to justify the moment
relaxation [104]), such a connection is often less immediate for the practitioner, in particular when
taking the algorithmic view of moment relaxations presented in Appendix A.

Pseudo-distributions. Pseudo-distributions are a generalization of the concept of probability
distribution. A standard probability distribution µ with finite support in Rdx is simply a function
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µ : Rdx ▽∈ R such that
∑

x↑support(µ) µ(x) = 1 and µ(x) ⇐ 0 for all x. In other words, if support(µ)
is a finite collection a points in Rdx , µ assigns a non-negative probability mass to each of these points,
such that those probabilities sum up to 1. Similarly, a pseudo-distribution µ̃ is a finitely supported
function such that

∑
x↑support(µ̃) µ̃(x) = 1 but in this case the non-negativity condition is replaced

by a milder condition (i.e., a pseudo-distribution can assume negative values over its support).
In order to formally introduce the notion of pseudo-distribution, we start by defining the

pseudo-expectation of a function f : Rdx ▽∈ R under a finitely supported function µ̃:

Ẽµ̃ [f(x)]
.
=

∑

x↑support(µ̃)

f(x) · µ̃(x). (A11)

We are now ready to formally define a pseudo-distribution.

Definition A2 (Pseudo-distribution). A finitely supported function µ̃ : Rdx ▽∈ R is a level-ϱ
pseudo-distribution if Ẽµ̃ [1] = 1 and Ẽµ̃

[
f(x)

2
]
⇐ 0 for all polynomials f of degree deg (f) ≃ ϱ/2.

In words, µ̃ is a function that is allowed to become negative as long as its “expectation” (more
precisely, pseudo-expectation) with respect to every squared polynomials f(x)

2 of su"ciently low
degree remains positive. It is possible to show that a level-∋ pseudo-distribution is an actual
probability distribution, since the condition Ẽµ̃

[
f(x)

2
]
⇐ 0 would enforce µ̃ to remain positive (in

this case the pseudo-expectation becomes the traditional expectation of the distribution).
Towards reconnecting pseudo-distributions with the optimization machinery in Appendix A, we

start by observing the following link between pseudo-distributions and pseudo-moment matrices.

Lemma A3 (Pseudo-moment matrix [49]). Let µ̃ :Rdx ▽∈R be a finitely supported function with
Ẽµ̃ [1]=1. Then, µ̃ is a level-ϱ pseudo-distribution i" the pseudo-moment matrix Ẽµ̃

[
[x]↽/2[x]

T
↽/2

]
is

positive semidefinite, where [x]↽/2 is the vector of monomials of degree up to ϱ/2.

Now we define what it means for a pseudo-distribution to satisfy a set of polynomial constraints.

Definition A4 (Constrained pseudo-distribution). Let A
.
= {f1 ⇐ 0, . . . , fm ⇐ 0} be a set of

polynomial constraints over Rdx. Let µ̃ : Rdx ▽∈R be a level-ϱ pseudo-distribution. We say that µ̃
satisfies A at degree k, denoted as µ̃

k
A, if every set S ¬ [m] and every sum-of-squares polynomial

h on Rdx with deg (h) +
∑

i↑S
max{deg (fi) , k} ≃ ϱ satisfies:

Ẽµ̃

[
h ·



i↑S

fi


⇐ 0. (A12)

Moreover, we say that µ̃ k
A holds approximately if the above inequalities are satisfied up to an error

of 2⇑d
ς
x · ↗h↗·


i↑S

↗fi↗, where ↗·↗ denotes the Euclidean norm of the coe!cients of the polynomial.

The notion of pseudo-distributions approximately satisfying a set of constraints is useful to
account for the practical observation that numerical SDP solvers (which we are going to use to find
pseudo-distributions, as discussed later in this section) will only satisfy the constraints up to some
numerical tolerance, and we have to make sure that such numerical errors do not lead us to draw
incorrect conclusions using the sos proof system (see Appendix C).

In this monograph, we make use of the following facts about pseudo-distributions.
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Fact A5 (Linearity [134]). Let f, g be polynomials of degree at most ϱ in indeterminate x ↓ Rdx

and take ϑ,ω ↓ R. Then, for any level-ϱ pseudo-distribution µ̃,

Ẽµ̃ [ϑ f(x) + ω g(x)] = ϑẼµ̃ [f(x)] + ωẼµ̃ [g(x)] . (A13)

Fact A6 (Cauchy-Schwarz for pseudo-distributions [37]). Let f, g be polynomials of degree at most ϱ
in indeterminate x ↓ Rdx . Then, for any level-ϱ pseudo-distribution µ̃,

Ẽµ̃ [f · g] ≃

√
Ẽµ̃ [f

2] ·

√
Ẽµ̃ [g

2], (A14)

and (specializing the result above to g = 1):

Ẽµ̃ [f ]
2
≃ Ẽµ̃

[
f
2
]
. (A15)

Fact A7 (Hölder’s inequality for pseudo-distributions [15]). Let f, g be sos polynomials. Let
p, q be positive integers such that 1/p + 1/q = 1. Then, for any pseudo-distribution µ̃ of level
ϱ ⇐ pq · deg (f) · deg (g), we have:

(
Ẽµ̃ [f · g]

)pq

≃ Ẽµ̃ [f
p
]
q
· Ẽµ̃ [g

q
]
p
. (A16)

In particular, for all even integers k ⇐ 2, and polynomial f with deg (f) · k ≃ ϱ:
(
Ẽµ̃ [f ]

)k

≃ Ẽµ̃

[
f
k

]
. (A17)

Fact A8 (Norm inequality for pseudo-distributions). Let v be an m-vector with polynomial entries
of degree at most ϱ/2 in indeterminate x ↓ Rdx . Then, for any degree-ϱ pseudo-distribution µ̃,

Ẽµ̃ [v]


2

2

≃ Ẽµ̃

[
↗v↗

2

2

]
. (A18)

Proof. By definition, ↗v↗2
2
=

∑
m

i=1
v
2

i
. Moreover, by (A17),

(
Ẽµ̃ [vi]

)2

≃ Ẽµ̃

[
v
2

i

]
. Therefore:

Ẽµ̃ [v]


2

2

=

m∑

i=1

(
Ẽµ̃ [vi]

)2

≃

m∑

i=1

Ẽµ̃

[
v
2

i

] linearity︷︸︸︷
= Ẽµ̃

[
m∑

i=1

v
2

i


= Ẽµ̃

[
↗v↗

2

2

]
, (A19)

proving the claim. ↫

Making the connection with moment relaxations explicit. The non-expert reader might
still be confused about the relation between pseudo-distributions and moment relaxations. To shed
some light, let us restate our (POP):

min
x↑Rdx

p(x) (A20)

subject to hi(x) = 0, i = 1, . . . , lh

gj(x) ⇐ 0, j = 1, . . . , lg.
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Now, we start by relaxing (A20) using pseudo-distributions, and show that this leads back to the
relaxation presented in Appendix A. In particular, we relax (A20) to:

min
µ̃

Ẽµ̃ [p(x)] (A21)

subject to µ̃ is a level-ϱ pseudo-distribution (A22)

Ẽµ̃ [hi(x) · q(x)] = 0, (A23)
for all i = 1, . . . , lh and for all q ↓ R[x], such that deg (hi · q) ≃ ϱ

Ẽµ

[
j↑S

gj(x) · s(x)
2

]
⇐ 0, (A24)

for all S ↔ [lg] and for all s ↓ R[x] such that deg
(

j↑S
gj · s

2

)
≃ ϱ.

Despite the complexity of (A21), it is apparent that (A21) is a relaxation of (A20): for any x that is
feasible for (A20) (i.e., that satisfies hi(x) = 0 and gj(x) ⇐ 0), we can define a (pseudo-)distribution
µx supported on x (i.e., µx(x) = 1 and zero elsewhere) which is also feasible for (A21) (such
pseudo-distribution µx is such that Ẽµx [p(x)] = p(x) for any polynomial p, hence also preserving the
objective of (A20)). Indeed, it is possible to show that if we require µ̃ to be an actual distribution, and
replace the pseudo-expectations with actual expectations, then (A21) becomes equivalent to (A20),
see [108] for a more extensive discussion. The advantage of the relaxation (A21) is its tractability:
while (A20) is NP-hard [108], the relaxation (A21) can be written as a semidefinite program (SDP)
and solved in polynomial time. Indeed, in the following we show that rewriting (A21) as an SDP
leads us back to the same moment relaxation we procedurally introduced in Appendix A. Towards
this goal, we will need some extra notation.

Preliminaries to connect problem (A21) with Appendix A: Recall that [x]↽/2 is the vector of
monomials of degree up to ϱ/2 and therefore the moment matrix X↽ ↭ [x]↽/2[x]

T
↽/2

contains all
monomials of degree up to ϱ. It will be useful to define (and visualize) the pseudo-expectation of the
moment matrix: Ẽµ̃ [X↽]. For instance, for the case with x = [x1 ; x2] and ϱ = 4:

Ẽµ̃ [X4] ↭=





1 Ẽµ̃ [x1] Ẽµ̃ [x2] Ẽµ̃

[
x
2
1

]
Ẽµ̃ [x1x2] Ẽµ̃

[
x
2
2

]

Ẽµ̃ [x1] Ẽµ̃

[
x
2
1

]
Ẽµ̃ [x1x2] Ẽµ̃

[
x
3
1

]
Ẽµ̃

[
x
2
1x2

]
Ẽµ̃

[
x1x

2
2

]

Ẽµ̃ [x2] Ẽµ̃ [x1x2] Ẽµ̃

[
x
2
2

]
Ẽµ̃

[
x
2
1x2

]
Ẽµ̃

[
x1x

2
2

]
Ẽµ̃

[
x
3
2

]

Ẽµ̃

[
x
2
1

]
Ẽµ̃

[
x
3
1

]
Ẽµ̃

[
x
2
1x2

]
Ẽµ̃

[
x
4
1

]
Ẽµ̃

[
x
3
1x2

]
Ẽµ̃

[
x
2
1x

2
2

]

Ẽµ̃ [x1x2] Ẽµ̃

[
x
2
1x2

]
Ẽµ̃

[
x1x

2
2

]
Ẽµ̃

[
x
3
1x2

]
Ẽµ̃

[
x
2
1x

2
2

]
Ẽµ̃

[
x1x

3
2

]

Ẽµ̃

[
x
2
2

]
Ẽµ̃

[
x1x

2
2

]
Ẽµ̃

[
x
3
2

]
Ẽµ̃

[
x
2
1x

2
2

]
Ẽµ̃

[
x1x

3
2

]
Ẽµ̃

[
x
4
2

]





. (A25)

In the following, we will also need a more convenient way to index the monomials in [x]↽ (and,
as a consequence, the entries of X↽ and Ẽµ̃ [X↽]). Using standard notation, for a vector ϑ ↓ Ndx , we
write x

ϑ to denote the monomial with exponents ϑ (for instance, for ϑ = [1 ; 3 ; 0 ; 5], xϑ
= x1x

3
2
x
5
4
).

We also denote |ϑ|↭ ∑
dx
i=1

ϑi, which is the degree of the monomial. Using this notation, we can
index with ϑ the monomials appearing in [x]↽. For instance, for ϱ = 2:

[x]2 ↭ [

[0 ; 0]︷︸︸︷
1 ;

[1 ; 0]︷︸︸︷
x1 ;

[0 ; 1]︷︸︸︷
x2 ;

[2 ; 0]︷︸︸︷
x
2

1 ;

[1 ; 1]︷︸︸︷
x1x2 ;

[0 ; 2]︷︸︸︷
x
2

2 ], (A26)

where for each monomial, we reported the corresponding “index” ϑ. We can similarly index the rows
and columns of X↽ and Ẽµ̃ [X↽] using two indices ϑ and ϖ. For instance, the entry of the matrix
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indexed by row ϑ = [2 ; 0] and column ϑ = [0 ; 1] in (A25) will be Ẽµ̃

[
x
2
1
x2

]
. Note that the monomial

appearing in row ϑ and column ϖ of the moment matrix X↽ will always have exponent ϑ+ϖ, since,
due to the definition of the moment matrix (X↽ ↭ [x]↽/2[x]

T
↽/2

) its entry [X↽]ϑϖ = x
ϑ
· x

ϖ and for
two monomials x

ϑ and x
ϖ, it holds:37

x
ϑ
· x

ϖ
= x

ϑ+ϖ
. (A27)

Finally, we will conveniently use the following representation of a polynomial f(x) of degree ϱ:

f(x) =
∑

ϑ:|ϑ|↙↽
f̄ϑ x

ϑ
, (A28)

where we simply observed that the polynomial is the sum of monomials x
ϑ of degree |ϑ|≃ ϱ, and

with suitable coe"cients f̄ϑ, again indexed by ϑ.
We are now ready to show that both objective and constraints (A21) can be rewritten in a way

that leads back to the moment relaxation in Appendix A.
Rewriting the objective (A21): To simplify the objective Ẽµ̃ [p(x)], we note that the pseudo-

expectation is a linear operator, hence:

Ẽµ̃ [p(x)]

using (A28)︷︸︸︷
= Ẽµ̃




∑

ϑ:|ϑ|↙↽

p̄ϑ x
ϑ




using Fact A5︷︸︸︷

=

∑

ϑ:|ϑ|↙↽

p̄ϑ Ẽµ̃ [x
ϑ
]

for a suitable matrix C1︷︸︸︷
=

〈
C1, Ẽµ̃ [X↽]

〉
,

(A29)

which indeed produces the same structure as the objective of the moment relaxation in (A1) with
ϱ = 2r; as we will see in a while, Ẽµ̃ [X↽] will become the main matrix variable in the optimization.

Rewriting the equality constraints (A23): To simplify the constraint Ẽµ̃ [hi(x)q(x)] = 0 (which has
to hold for polynomials q of degree deg (hi · q) ≃ ϱ) we note that it su"ces to require Ẽµ̃

[
hi(x)x

ϖ
]
= 0

for |ϖ|≃ ϱ↘ deg (hi); this follows from the fact that any polynomial is a sum of monomials and the
pseudo-expectation is a linear function. Let us now manipulate Ẽµ̃

[
hi(x)x

ϖ
]
= 0 as follows:

Ẽµ̃

[
hi(x)x

ϖ
]
= 0

using (A28) for hi(x)︷ ︸︸ ︷
∅⇒ Ẽµ̃

[
∑

ϑ

h̄i,ϑx
ϑ
x
ϖ


= 0

using (A27)︷ ︸︸ ︷
∅⇒ Ẽµ̃

[
∑

ϑ

h̄i,ϑx
ϑ+ϖ


= 0

using Fact A5︷ ︸︸ ︷
∅⇒

∑

ϑ

h̄i,ϑẼµ̃

[
x
ϑ+ϖ

]
= 0

for a suitable matrix Ai,ε︷ ︸︸ ︷
∅⇒

〈
Ai,ϖ, Ẽµ̃ [X↽]

〉
= 0,

(A30)

which has to be imposed for each ϖ such that |ϖ|≃ ϱ↘ deg (hi). Note that the constraints in (A30)
capture both the equality constraints in (A2) (for |ϖ|= 0) as well as the redundant constraints (A5)
(for 0 < |ϖ|≃ ϱ↘ deg (hi)).

Rewriting the inequality constraints in (A46): We simplify the constraint Ẽµ

[
j↑S

gj(x) · s(x)
2

]
⇐

0, which has to hold for all S ↔ [lg] and for all s ↓ R[x] such that deg
(

j↑S
gj · s

2

)
≃ ϱ. To-

wards this goal, we use the representation (A28) for s(x) and write s(x) =
∑

ϖ:|ϖ|↙t
s̄ϖx

ϖ, where

37For instance, the product between the monomial x1x
3
2x

5
4 (namely, xϑ with ϑ = [1 ; 3 ; 0 ; 5]) and the monomial

x2
1x2x3 (namely, xε with ϖ = [2 ; 1 ; 1 ; 0]) is (x1x

3
2x

5
4) · (x2

1x2x3) = x3
1x

4
2x3x

5
4, which corresponds to the exponent

vector [3 ; 4 ; 1 ; 5].
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t ↭
⌊

↽⇑deg
(

j↑S
gj

)

2

⌋
. Therefore, we obtain:

Ẽµ

[
gj(x) · s(x)

2
]
⇐ 0

expanding s
2

︷ ︸︸ ︷
∅⇒ Ẽµ



gj(x) ·
∑

ϑ:|ϑ|↙t

s̄ϑx
ϑ

∑

ϖ:|ϖ|↙t

s̄ϖx
ϖ



 ⇐ 0 (A31)

rearranging︷ ︸︸ ︷
∅⇒ Ẽµ




∑

ϑ,ϖ:|ϑ|,|ϖ|↙t

s̄ϑs̄ϖx
ϑ+ϖ

gj(x)



 ⇐ 0 (A32)

using (A28) on
∏

S≃[lg ]
gj(x)

︷ ︸︸ ︷
∅⇒ Ẽµ




∑

ϑ,ϖ:|ϑ|,|ϖ|↙t

s̄ϑs̄ϖx
ϑ+ϖ

∑

ϱ:|ϱ|↙deg(
∏

j↘S gj(x))

ḡS,ϱx
ϱ



 ⇐ 0 (A33)

rearranging︷ ︸︸ ︷
∅⇒ Ẽµ




∑

ϑ,ϖ:|ϑ|,|ϖ|↙t

s̄ϑs̄ϖ

∑

ϱ:|ϱ|↙deg(
∏

j↘S gj(x))

ḡS,ϱx
ϑ+ϖ+ϱ



 ⇐ 0 (A34)

using Fact A5︷ ︸︸ ︷
∅⇒

∑

ϑ,ϖ:|ϑ|,|ϖ|↙t

s̄ϑs̄ϖ

∑

ϱ:|ϱ|↙deg(
∏

j↘S gj(x))

ḡS,ϱẼµ

[
x
ϑ+ϖ+ϱ

]
⇐ 0. (A35)

Now note that |ϑ+ ϖ + ϱ|≃ ϱ by construction, and hence we can write, for a given ϑ and ϖ, each∑
ϱ:|ϱ|↙deg(

∏
j↘S gj(x))

ḡS,ϱẼµ

[
x
ϑ+ϖ+ϱ

]
as a linear function of Ẽµ̃ [X↽]. Moreover, since ϑ and ϖ are

such that |ϑ|, |ϖ|≃ t, we can group these entries into an t⇓ t matrix XS , which is such that:

[XS ]ϑ,ϖ =

〈
Aloc,S,ϑϖ, Ẽµ̃ [X↽]

〉
, (A36)

for some suitable matrix Aloc,S,ϑϖ, such that
〈
Aloc,S,ϑϖ, Ẽµ̃ [X↽]

〉
=

∑
ϱ:|ϱ|↙deg(

∏
j↘S gj)

ḡi,ϱẼµ

[
x
ϑ+ϖ+ϱ

]
.

Using the matrix XS and defining a vector s̄ ↓ Rt with entries s̄ϑ for |ϑ|≃ t, we rewrite (A35) as:
∑

ϑ,ϖ:|ϑ|,|ϖ|↙t

s̄ϑs̄ϖ[XS ]ϑ,ϖ ⇐ 0 ∅⇒ s̄
T
XS s̄ ⇐ 0. (A37)

Since this has to hold for any s̄ (i.e., any polynomial s(x) of appropriate degree), we conclude the
constraint above is equivalent to:

XS ′ 0. (A38)

Now we can easily see that (A36) and (A38) match the localizing constraints we wrote in (A7).
Rewriting (A22): Finally, the constraint (A22) imposes that µ̃ must be a level ϱ pseudo-

distribution. However, we know from Lemma A3 that µ̃ is a level-ϱ pseudo-distribution if and only if
the pseudo-moment matrix Ẽµ̃

[
[x]↽/2[x]

T
↽/2

]
is positive semidefinite and Ẽµ̃ [1] = 1. Therefore, we

can reparametrize the objective (A29) and constraints (A30), (A36), (A38) with a matrix variable
(in place of Ẽµ̃ [X↽]) that is constrained to be positive semidefinite and to have the top-left entry
equal to 1 (cf. (A25)). This yields back the relaxation described in Appendix A as expected.
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Constrained pseudo-distributions: a practical view. So far we have shown that taking
suitable pseudo-expectations over the objective and constraints in a polynomial optimization problem
leads to a convex relaxation, known as the moment relaxation. Now we want to shed some light
on Definition A4 by showing that the condition (A12) is indeed the same as the inequality constrains
in (A46) and hence admits the same transcription as an SDP.

Towards this goal, let us consider the following feasibility POP:

find x ↓ Rdx (A39)
subject to hi(x) = 0, i = 1, . . . , lh (A40)

gj(x) ⇐ 0, j = 1, . . . , lg. (A41)

This is similar to (POP), with the exception that we are looking for a feasible solution rather
than optimizing a cost function. Now note that we can write a polynomial equality hi(x) = 0

as two inequality constraints hi(x) ≃ 0 and ↘hi(x) ≃ 0. Hence, without loss of generality we
rewrite (A39) as:

find x ↓ Rdx (A42)
subject to fj(x) ⇐ 0, j = 1, . . . ,m, (A43)

for suitable polynomials fi, i = 1, . . . ,m. Similarly to what we did earlier in this section, we
relax (A42) by using pseudo-expectations:

find µ̃ (A44)
subject to µ̃ is a level-ϱ pseudo-distribution (A45)

Ẽµ

[
s(x)

2
·


i↑S
fi(x)

]
⇐ 0, (A46)

for every set S ↓ [m] and every s ↓ R[x] such that deg
(
s
2
·


i↑S
fi

)
≃ ϱ.

First of all, we note that (A46) matches the definition of constrained pseudo-distribution in Def-
inition A4 for k = 0. Moreover, following the same derivation as above, we can easily show that
(i) (A44) can be transcribed as a standard SDP, and (ii) every pseudo-distribution solving Lasserre’s
relaxation of a (POP) satisfies the set of constraints in the (POP) in the sense of Definition A4.

Now we note that Definition A4 allows some extra slack through the parameter k, i.e., µ̃

satisfies A at degree k, if every set S ¬ [m] and every sum-of-squares polynomial h on Rdx

with deg
(
s
2
)
+

∑
i↑S

max{deg (fi) , k} ≃ ϱ satisfies Ẽµ̃

[
s
2
·


i↑S
fi

]
⇐ 0. This essentially means

that the inequality Ẽµ̃

[
s
2
·


i↑S
fi

]
⇐ 0 is enforced for a smaller number of subsets S.

C Sum-of-Squares Proofs
Sum-of-squares proofs provide an advanced way to reason about polynomial constraints and to
infer properties of pseudo-distributions, or, equivalently, properties of the moment relaxation
in Appendix A. The presentation in this section builds on [49], but also collects inference rules from
other papers, which we cite as we present the results.

Let us denote with f(x) a polynomial in variables x = [x1;x2; . . . ;xdx ] and let A = {f1(x) ⇐

0, . . . , fm(x) ⇐ 0} be a system of polynomial constraints over Rdx . In the following, we omit the
argument when clear from the context and write f instead of f(x). A polynomial p is sum-of-squares
(sos) if there exist polynomials q1, . . . , qt such that p = q

2
1
+ . . .+ q

2
t .

The key idea is to relate two sets of polynomial constraints using a “sum-of-squares proof” (the
definition below is the same as Definition 3 in the main manuscript).
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Definition A9 (Sum-of-squares proof). Given a system of polynomial constraint A and a polynomial
g, a sum-of-square (sos) proof that the system A implies g ⇐ 0 consists of sum-of-squares polynomials
{pS}S≃[m] such that:

g =

∑

S≃[m]

pS ·



i↑S

fi. (A47)

We say that the proof has degree k if for every S ↔ [m], deg
(
pS ·


i↑S

fi

)
≃ k where deg (·) denotes

the degree of a polynomial. We use the notation:

A(x) x
k
{g(x) ⇐ 0} or {fi(x) ⇐ 0, . . . , fm(x) ⇐ 0} x

k
{g(x) ⇐ 0} (A48)

to denote that there is a proof of degree at most k of the fact that A = {fi(x) ⇐ 0, . . . , fm(x) ⇐ 0}

implies g ⇐ 0 ( i.e., any x that satisfies A(x) is such that g(x) ⇐ 0). We omit the variables and
write A(x)

k
{g(x) ⇐ 0}, when they are clear from the context. Moreover, we write

x
k
{g(x) ⇐ 0} (A49)

if there is a sum-of-squares proof that g(x) ⇐ 0 for any x ↓ Rdx ( i.e., g(x) is sum-of-squares).

From eq. (A47), it is clear why the polynomials pS are a “proof” of g ⇐ 0 for any x satisfying A:
for any x ↓ A,


i↑S

fi ⇐ 0 by definition, hence if we can write g as the product of a sum-of-squares
(hence non-negative) polynomial and


i↑S

fi, we automatically prove that g ⇐ 0 whenever x ↓ A.
Sum-of-squares proofs allow us to deduce properties of pseudo-distributions: in particular, if we

have an sos proof relating two sets of constraints, we can conclude that any pseudo-distribution
satisfying a set of constraints, must also satisfy the other. This is formalized below.

Fact A10 (Soundness [37]). Consider a level-ϱ pseudo-distribution µ̃ such that µ̃
k
A. If there

exists a sum-of-squares proof that A k
↑
B, then µ̃

k·k
↑
+k

↑

B.

If the pseudo-distribution µ̃ satisfies A only approximately, soundness continues to hold but we
require an upper bound on the bit-complexity of the sum-of-squares proof A k

↑
B (i.e., the number

of bits to write down the proof). In this monograph, we mostly disregard bit-complexity issues and
refer the reader to [50, §3] for a more formal discussion. In other words, similarly to [15, 37], we
assume that all numbers appearing in the input have bit complexity d

O(1)

x and all sos proofs will
have bit complexity d

O(↽)

x , which is enough to claim soundness for the sos proof system.
Not only sos proofs allow us to infer properties of pseudo-distributions, but also the reverse is

true. The following fact states that every property of a pseudo-distribution can be derived via a
sum-of-squares proof.

Fact A11 (Completeness [37]). Suppose ϱ ⇐ k
↗
⇐ k and A is a system of explicitly bounded

polynomial constraints with degree at most k ( i.e., A {↗x↗
2

2
≃ M

2
x} for some finite Mx). Let

{g ⇐ 0} be a polynomial constraint. If every level-ϱ pseudo-distribution that satisfies µ̃
k
A also

satisfies µ̃
k
↑
B, then for every ϖ > 0 there is a sum-of-squares proof A ↽

{g ⇐ ↘ϖ}.

Sos rules. Sum-of-squares provide a proof system to reasons about polynomial constraints. For
instance, if we have an sos proof that A implies g ⇐ 0, we may want to use such a proof system
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to infer if another implication also holds true, say A implies g
↗
⇐ 0 (for some other polynomial g↗).

Reasoning in this proof system is not immediate. For instance, the fact that p(x) ⇐ 0 for some
degree-k polynomial does not necessarily imply that there is a sum-of-squares proof x

k
{p(x) ⇐ 0}.

Similarly, for some polynomial constraints A and polynomials g(x) and g(x)
↗ with g

↗
(x) ⇐ g(x) for

every x ↓ Rdx , the fact that A x
k

{g(x) ⇐ 0} does not necessarily imply that A x
k

{g
↗
(x) ⇐ 0},

since the latter fact might not admit a sum-of-squares proof. In this sense, the sos proof system is
more restrictive than the typical algebraic manipulation we are used to. Fortunately, previous work
provides a toolkit of inference rules that can be used to correctly reason over sos proofs. We collect
key facts below, mostly drawing from [37, 15, 112, 113, 114].

Fact A12 (Inference Rules [37]). The following inference rules hold for systems of polynomial
constraints A,B, C and polynomials f, g : Rdx ▽∈ R:

addition:
A

k
{f ⇐ 0, g ⇐ 0}

A
k
{f + g ⇐ 0}

(A50)

multiplication:
A

k
{f ⇐ 0} , A

k
↑
{g ⇐ 0}

A
k+k

↑
{f · g ⇐ 0}

(A51)

transitivity:
A

k
B , B

k
↑
C

A
k·k

↑
C

(A52)

where, for two logical statements A and B, we use the standard inference notation A
B to denote that

if A is true, then B must be true.

Fact A13 (Basics, p. 59 in [48] and p. 70 in [50]). Let p(x) be a degree-k polynomial such that
p(x) ⇐ 0 for all x ↓ Rdx . Then:

x
k
{p(x) ⇐ 0} (A53)

( i.e., p(x) is sos) if:

• dx = 1 (univariate case),
• k = 2 (quadratic polynomials), or
• dx = 2 and k = 4 (bivariate, quartic polynomials).

Moreover, (A53) holds whenever p is a function over the Boolean hypercube p : {0, 1}
dx ▽∈ R.

Fact A14 (Univariate polynomials over interval, Fact 3.7 in [37]). For any univariate degree k

polynomial p(x) ⇐ 0 for x ↓ [a, b],

{x ⇐ a, x ≃ b} x

k
{p(x) ⇐ 0} . (A54)

Fact A15 (Sos generalized triangle inequality, Fact 4.8 in [15]). For any a1, a2, . . . , am

a1,a2,...,am

k







m∑

i=1

ai

)k

≃ m
k


m∑

i=1

a
k

i

)


 . (A55)
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Fact A16 (Sos triangle inequality (same as Fact A15 with m = 2 and k = 2)). For any a1, a2

a,b

2
{
(a+ b)

2
≃ 2

2
a
2
+ 2

2
b
2

}
. (A56)

Fact A17 (Sos triangle inequality 2.0, p. 18 in [15]). For any indeterminates a, b, scalar ⇀, and
even integer k:

a,b

k
⇀
k
a
k
≃ (2⇀)

k
(a↘ b)

k
+ (2⇀)

k
b
k
. (A57)

Fact A18 (Sos squaring). Let f, g be sos polynomials of degree at most k and A = {f1(x) ⇐

0, . . . , fm(x) ⇐ 0} be a system of polynomial inequalities. If A x
k
↑
{f ⇐ g}, then A x

k
↑
+k

{f
2
⇐ g

2
}.

Proof. The assumption A x
k
f = 0 implies that:

f ↘ g =

∑

S≃[m]

pS ·



i↑S

fi. (A58)

Now note that f
2
↘ g

2
= (f ↘ g)(f + g) hence:

f
2
↘ g

2
= (f ↘ g)(f + g) = (f + g)

∑

S≃[m]

pS ·



i↑S

fi. (A59)

Since f, g are sos polynomial, the previous relation proves A x
k
↑
+k

{f
2
⇐ g

2
} with sos proof (f+g)·pS

and by noting that the maximum degree appearing in (A59) is k
↗
+ k. ↫

Fact A19 (Sos triangle inequality with norms, Fact A.2 in [112]). Let x1 and x2 be n-length vectors
of indeterminates. Then:

x1,x2

2
{
↗x1 + x2↗

2

2
≃ 2 ↗x1↗

2

2
+ 2 ↗x2↗

2

2

}
. (A60)

Fact A20 (Sos generalized triangle inequality with norms). Let x1 and x2 be n-length vectors of
indeterminates and k ↓ N be even. Then:

x1,x2

k
{
↗x1 + x2↗

k

2
≃ 2

k
↗x1↗

k

2
+ 2

k
↗x2↗

k

2

}
. (A61)

Proof.

x1,x2

k
↗x1 + x2↗

k

2
=

(
↗x1 + x2↗

2

2

) k
2

using (A60)︷︸︸︷
≃

(
2 ↗x1↗

2

2
+ 2 ↗x2↗

2

2

) k
2 (A62)

using (A55)︷︸︸︷
≃ 2

k
2 (2 ↗x1↗

2

2
)
k
2 + 2

k
2 (2 ↗x2↗2)

k
2 = 2

k
↗x1↗

k

2
+ 2

k
↗x2↗

k

2
. (A63)

↫

Fact A21 (Sos Cauchy-Schwarz, Fact A.1 in [112]). Let x1, x2, . . . , xn and y1, y2, . . . , yn be polyno-
mials in some indeterminates. Then:

x1,x2,...,xn,y1,y2,...,yn

4







n∑

i=1

xiyi

)2

≃


n∑

i=1

x
2

i

)
n∑

i=1

y
2

i

)


 , (A64)
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or, written in vector form, for two n-length vectors x and y:

x,y
4

(
x
T
y

)2

≃

(
↗x↗

2

2

)(
↗y↗

2

2

)
. (A65)

Fact A22 (Sos Hölder’s inequality, Fact 4.4 in [15]). Let fi, gi for 1 ≃ i ≃ n be sos polynomials. Let
p, q be integers such that 1

p
+

1

q
= 1. Then:

pq

{
1

n

n∑

i=1

figi

)pq

≃


1

n

n∑

i=1

f
p

i

)q 
1

n

n∑

i=1

g
q

i

)p}
. (A66)

Fact A23 (Sos Hölder’s inequality 2.0, Fact A.6 in [112]). Let ε1, . . . ,εn and x1, . . . , xn be indeter-
minates. Let q ↓ N be a power of 2. Then:

{
ε
2

i = εi, ̸i ↓ [n]
}

ω1,...,ωn,x1,...,xn

O(q)







n∑

i=1

εixi

)q

≃


n∑

i=1

ε
2

i

)q⇑1 n∑

i=1

x
q

i

)


 , (A67)

and

{
ε
2

i = εi, ̸i ↓ [n]
}

ω1,...,ωn,x1,...,xn

O(q)







n∑

i=1

εixi

)q

≃


n∑

i=1

ε
2

i

)q⇑1 n∑

i=1

εix
q

i

)


 . (A68)

Fact A24 (Sos Hölder’s inequality 3.0, Fact A.3 in [114]). Let fi, gi for 1 ≃ i ≃ n be indeterminates.
Then:

2







1

n

n∑

i=1

figi

)2

≃


1

n

n∑

i=1

f
2

i

)
1

n

n∑

i=1

g
2

i

)


 . (A69)

Fact A25 (Lemma A.3 in [113]). Let x be indeterminate and a be a positive real number. Then:

{x
2
≃ a

2
} {x ≃ a, x ⇐ ↘a} . (A70)

Fact A26 (Lemma A.2 in [113]). Let x be indeterminate and a be a unit vector. Let A{↗x↗
2
=

1, (x
T
a)

2
≃ τ}. Then, for any b such that ↗a↘ b↗

2
≃ 2⇀, we have:

A

{
(x

T
b)

2
≃ (

∀
τ +

∀

⇀)
2

}
. (A71)

We conclude with a self-evident fact that reassures us that certain manipulations of polynomials
are easy to reason over, even in the sos proof system.

Fact A27 (Equalities). Let f, g be polynomials and A be a system of polynomial inequalities. If
f = g and A x

k
f = 0, then A x

k
g = 0.
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D Proof of Proposition 6: A Posteriori Contract for (TLS)
We start by restating the theorem for the reader’s convenience.

Proposition A28 (Restatement of Proposition 6). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and denote with ↽

→ the squared residual error of the ground truth x
→ over the set of inliers I,

i.e., ↽→ ↭ ∑
i↑I

yi ↘A
T
i
x
→
2
2
. Moreover, assume the measurement set contains at least n+d̄

2
+

ϖ
→

c̄2

inliers, where d̄ is the size of a minimal set, and that every subset of d̄ inliers is nondegenerate. Then,
for any integer dJ such that d̄ ≃ dJ ≃ (2ϑ↘ 1)n↘

ϖ
→

c̄2
, an optimal solution xTLS of (TLS) satisfies

↗xTLS ↘ x
→
↗
2
≃

2

dJ c̄

minJ⇐ITLS,|J |=dJ ↼min(AJ )

, (A72)

where ITLS is the set of inliers selected by (TLS), AJ is the matrix obtained by horizontally stacking
all submatrices Ai for all i ↓ J , and ↼min(·) denotes the smallest singular value of a matrix. Moreover,
if the inliers are noiseless, i.e., ω = 0 in eq. (17), and for a su!ciently small c̄ > 0, xTLS = x

→.

Proof. Call I(xTLS) the inlier set corresponding to an estimate xTLS (i.e., I(xTLS) ↭ {i ↓

[n] :
yi ↘A

T
xTLS


2
≃ c̄}). Moreover, define the TLS cost at xTLS as:

f(xTLS) =
∑

i↑I(xTLS)

yi ↘A
T
i xTLS


2

2

+ c̄
2
(n↘ |I(xTLS)|). (A73)

We first prove that |I(xTLS)|⇐ ϑn↘
ϖ
→

c̄2
. Towards this goal, we observe that the cost evaluated

at the ground truth x
→ is:

f(x
→
) = ↽

→
+ c̄

2
(n↘ |I|) = ↽

→
+ c̄

2
(n↘ ϑn) (A74)

which follows from the assumption that the inliers have squared residual error ↽
→ and there are ϑn

of them. Now assume by contradiction that there exists an xTLS that solves (TLS) and is such that
|I(xTLS)|< ϑn↘

ϖ
→

c̄2
. Such an estimate would achieve a cost:

f(xTLS) =
∑

i↑I(xTLS)

yi ↘A
T
i xTLS


2

2

+ c̄
2
(n↘ |I(xTLS)|) (A75)

>

∑

i↑I(xTLS)

yi ↘A
T
i xTLS


2

2

+ c̄
2


n↘ ϑn+

↽
→

c̄2


(A76)

⇐ c̄
2


n↘ ϑn+

↽
→

c̄2


= ↽

→
+ c̄

2
(n↘ ϑn) , (A77)

which is larger than f(x
→
), hence contradicting optimality of xTLS, and implying |I(xTLS)|⇐ ϑn↘

ϖ
→

c̄2
.

Since |I(x
→
)|= ϑn and |I(xTLS)|⇐ ϑn↘

ϖ
→

c̄2
then:

|I(x
→
) △ I(xTLS)|

sets overlap in [n]︷︸︸︷
⇐ 2ϑn↘ n↘

↽
→

c̄2

using ϑn⇒
n+d̄
2 +

φ→
c̄2︷︸︸︷

⇐ d̄, (A78)
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The subset of measurements |I(x
→
) △ I(xTLS)| are simultaneously solved by xTLS and x

→ (i.e.,
are such that

yi ↘A
T
x

2
≃ c̄ for both x = x

→ and x = xTLS). Therefore, we can follow the same
line of thoughts as in the proof of Proposition 5, and prove the first claim.

In the case of noiseless inliers, ↽→ = 0 (or, equivalently, yi ↘A
T
x
→
= 0, for all i ↓ I) and we can

always choose c̄ > 0 small enough such that the corresponding estimate xTLS satisfies the selected
measurements exactly, i.e., yi ↘A

T
xTLS = 0. Therefore, we can follow the same line of the proof

of Proposition 5 (for the case of noiseless inliers) to conclude xTLS = x
→. ↫

E Proof of Theorem 12: Contract for Relaxation of (LTS1)
We start by restating the theorem for the reader’s convenience.

Theorem A29 (Restatement of Theorem 12). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and known outlier rate ω. Call

...
I the set of uncorrupted measurements (yε

i
,A

ε
i
), i ↓ [n],

where the outliers are replaced by inliers and assume that the set of matrices A
ε
i
, i ↓

...
I , is k-

certifiably C-hypercontractive with k ⇐ 4. Moreover, assume ω < ωmax =
k
2↔1

√
1/(C(k/2)

k
2 23k⇑1).

Then, Algorithm 1 with relaxation order r ⇐ k outputs an estimate xlts⇑sdp1 (not necessarily in X)
such that:

err ...I (xlts⇑sdp1) ≃ (1 + C1(k,ω)
2
k ) opt ...I + C2(k,ω)

2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

) 2
k

, (A79)

where C1(k,ω) and C2(k,ω) are given functions, err ...I (x)↭ 1

n

∑
n

i=1

yε

i
↘ (A

ε

i
)
T
x
2
2

is the residual
error of an estimate x with respect to the inliers

...
I , xε ↭ argminx↑X

1

n

∑
n

i=1

yε

i
↘ (A

ε

i
)
T
x
2
2

is the
best estimate from an oracle estimator that has access to all the inliers, and opt ...I ↭ err ...I (x

ε
) is the

corresponding residual error with respect to the inliers
...
I .

The proof is an adaptation of Lemma 5.3 and Lemma 5.6 in [15] to the case of vector-valued
measurements. Let us start by clarifying all relevant notation:

Lω,x ↭






ε
2

i
= εi, i ↓ [n]∑
n

i=1
εi = ϑn

εi · (ȳi ↘ yi) = 0 i ↓ [n]

εi · (Āi ↘Ai) = 0 i ↓ [n]

x ↓ X






(constraints in (LTS1)) (A80)

{yi,Ai}i↑[n] (given measurements) (A81)
{y

ε

iA
ε

i }i↑[n], (uncorrupted measurements with outliers replaced by inliers) (A82)

V ↭ {ȳiĀi}i↑[n], (auxiliary variables in (LTS1)) (A83)
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err ...I (x) ↭ 1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

(error of x w.r.t. uncorrupted measurements) (A84)

err(x,V ) ↭ 1

n

n∑

i=1

ȳi ↘ Ā
T
i x


2

2

(cost in (LTS1) without exponent k/2). (A85)

errω↑(x,V ) ↭ 1

n

n∑

i=1

ε
↗

i

ȳi ↘ Ā
T
i x


2

2

(error w.r.t. set of measurements specified by ε
↗) (A86)

Proof. The proof is quite involved and proceeds in two steps. First, we derive an sos proof that states
that the inliers picked up by any feasible solution for (LTS1) must also satisfy a desired error bound.
Then, we move to pseudo-expectations and conclude that the result of the moment relaxation must
satisfy the same bound, which can be manipulated into eq. (A79).

Sos proof of robust certifiability (adapted from Lemma 5.6 in [15]). For a given tuple
(ε,x,V ) that satisfies Lω,x, let ε

↗ be such that ε
↗

i
= εi i! i is an inlier and ε

↗

i
= 0 otherwise

(intuitively, ε↗ is the indicator for the subset of the selected measurements ε that are inliers).38

Then call the corresponding error errω↑(x,V ) as in (A86). We note that:

errω↑(x,V ) =
1

n

n∑

i=1

ε
↗

i

ȳi ↘ Ā
T
i x


2

2

=
1

n

n∑

i=1

ε
↗

i

yε

i ↘ (A
ε

i )
T
x


2

2

. (A87)

The previous equality follows from the fact that (i) by definition, ε↗

i
= 1 implies εi = 1 and since

the tuple (ε,x,V ) satisfies Lω,x, then whenever εi = 1 we must have Āi = Ai and ȳi = yi, and (ii)
ε
↗

i
can only be 1 for inliers, for which Ai = A

ε

i
and yi = y

ε

i
. Therefore, errω↑(x,V ) is essentially the

error attained by x, but restricted to the true inliers in the set of measurements selected by ε.
We now show that any set of variables (ε,x,V ) that are feasible for (LTS1) (i.e., that satisfy

the constraint set Lω,x), must also satisfy the following bound

Lω,x x
k
(err ...I (x)↘ errω↑(x,V ))

k
2 ≃ C1(k,ω)(err(x,V ))

k
2 + C2(k,ω)

1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

.

(A88)

We start by noting that
∑

n

i=1
ε
↗

i
⇐ (1↘ 2ω)n: this follows from the fact that the two sets, the

selected measurements {i : εi = 1} and the set of true inliers, have each size (1↘ ω)n, hence their
intersection must contain at least (1↘ 2ω)n measurements. Therefore:

1

n

n∑

i=1

(1↘ ε
↗

i)
2

binary variable︷︸︸︷
=

1

n

n∑

i=1

(1↘ ε
↗

i) = 1↘
1

n

n∑

i=1

ε
↗

i ≃ 1↘ (1↘ 2ω) hence:

Lω,x

Fact A13︷︸︸︷

ω↑
2

{
1

n

n∑

i=1

(1↘ ε
↗

i)
2
≃ 2ω

}
. (A89)

Now we note that from definition (A84), we can expand err ...I (x) as:

err ...I (x) =
1

n

n∑

i=1

ε
↗

i

yε

i ↘ (A
ε

i )
T
x


2

2

+
1

n

n∑

i=1

(1↘ ε
↗

i)

yε

i ↘ (A
ε

i )
T
x


2

2

(A90)

38Note that ε↑ is not required to (and typically does not) satisfy Lω,x.
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Combining (A90) and (A87), and observing that the result is a sum of squares, we get:

ω,x
4

err ...I (x)↘ errω↑(x,V ) =

error for uncorrupted measurements not selected by ω↑
︷ ︸︸ ︷
1

n

n∑

i=1

(1↘ ε
↗

i)

yε

i ↘ (A
ε

i )
T
x


2

2

⇐ 0 (A91)

Elevating both members of (A91) to k/2, and then using the sos version of Hölder’s inequality
(Fact A23), we get:

Lω,x ω,x,V
k

(err ...I (x)↘ errω↑(x,V ))
k
2

using (A91)︷︸︸︷
=


1

n

n∑

i=1

(1↘ ε
↗

i)

yε

i ↘ (A
ε

i )
T
x


2

2

) k
2

(A92)

≃

using (A67) in Fact A23︷ ︸︸ ︷

1

n

n∑

i=1

(1↘ ε
↗

i)
2

) k
2⇑1

1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


k

2

)
≃

using (A89)︷ ︸︸ ︷
(2ω)

k
2⇑1


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


k

2

)
. (A93)

Note that Fact A23 requires the exponent to be ⇐ 1 and a power of 2, which in turns implies k

2
⇐ 2

or k ⇐ 4, as required by the statement of the theorem. Now we observe that:

x
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


k

2

)
(A94)

adding/subtracting (Aε
i )

Txε

︷︸︸︷
=


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x+ (A

ε

i )
T
x
ε
↘ (A

ε

i )
T
x
ε


k

2

)
= (A95)

using Fact A20︷︸︸︷
≃ 2

k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

+ 2
k
1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


k

2

. (A96)

By certifiable hypercontractivity of Aε

i
, i ↓ [n]:

Lω,x x
k 1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


k

2

≃ C(k/2)
k
2


1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


2

2

) k
2

. (A97)

We can further bound the term above as follows:

Lω,x x
k


1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


2

2

) k
2

(A98)

adding/subtracting yε
i︷︸︸︷

=


1

n

n∑

i=1

↘y
ε

i + (A
ε

i )
T
x+ y

ε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

(A99)

using Fact A19︷︸︸︷
≃


1

n

n∑

i=1


2

yε

i ↘ (A
ε

i )
T
x


2

2

+ 2

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

(A100)
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rearranging︷︸︸︷
=


2
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

+ 2
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

(A101)

using Fact A15︷︸︸︷
≃ 2

k
2


2
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

) k
2

+ 2
k
2


2
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

(A102)

rearranging︷︸︸︷
= 2

k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

) k
2

+ 2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

. (A103)

Finally, using again the sos version of Hölder’s inequality

Lω,x x
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2

≃
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

. (A104)

Combining the above:

Lω,x x
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


k

2

)
(A105)

(A96)︷︸︸︷
≃ 2

k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

+ 2
k
1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


k

2

(A106)

(A97)︷︸︸︷
≃ 2

k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

+ 2
k
C(k/2)

k
2


1

n

n∑

i=1

(Aε

i )
T
(x↘ x

ε
)


2

2

) k
2

(A107)

(A103)︷︸︸︷
≃ 2

k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

(A108)

+2
k
C(k/2)

k
2



2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

) k
2

+ 2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


2

2

) k
2



 (A109)

(A104)︷︸︸︷
≃ 2

k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

(A110)

+2
k
C(k/2)

k
2



2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

) k
2

+ 2
k
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2



 (A111)

rearranging︷︸︸︷
= C(k/2)

k
2 2

2k


err ...I (x)︷ ︸︸ ︷

1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x


2

2

 k
2

(A112)

+

(
2
k
+ C(k/2)

k
2 2

2k

)
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

. (A113)
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Hence, together with (A93):

Lω,x x
k
(err ...I (x)↘ errω↑(x,V ))

k
2 ≃ (2ω)

k
2⇑1

C(k/2)
k
2 2

2kerr ...I (x)
k
2 (A114)

+(2ω)
k
2⇑1

(
2
k
+ C(k/2)

k
2 2

2k

)
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

. (A115)

Applying Fact A17 to the right-hand-side with a = err ...I (x), b = errω↑(x,V ),
⇀

k
2 = (2ω)

k
2⇑1

C(k/2)
k
2 2

2k, and exponent k/2:

Lω,x x
k
(err ...I (x)↘ errω↑(x,V ))

k
2 ≃

=⇀
k
2↔1

C(k/2)
k
2 23k↔1

︷ ︸︸ ︷
2

k
2 (2ω)

k
2⇑1

C(k/2)
k
2 2

2k
(err ...I (x)↘ errω↑(x,V ))

k
2 (A116)

+2
k
2 (2ω)

k
2⇑1

C(k/2)
k
2 2

2k
(errω↑(x,V ))

k
2 (A117)

+(2ω)
k
2⇑1

(
2
k
+ C(k/2)

k
2 2

2k

)
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

. (A118)

Rearranging the terms:

Lω,x x
k
(1↘ ω

k
2⇑1

C(k/2)
k
2 2

3k⇑1
)(err ...I (x)↘ errω↑(x,V ))

k
2 ≃ ω

k
2⇑1

C(k/2)
k
2 2

3k⇑1
(errω↑(x,V ))

k
2

+(2ω)
k
2⇑1

(
2
k
+ C(k/2)

k
2 2

2k

)
1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

.

(A119)

Noting that choosing ω < k
2↔1

√
1

C(k/2)
k
2 23k↔1

makes the constant 1↘ ω
k
2⇑1

C(k/2)
k
2 2

3k⇑1 positive, we

can divive both members of the inequality (A119) by such constant and obtain:

Lω,x x
k
(err ...I (x)↘ errω↑(x,V ))

k
2 ≃

ω
k
2⇑1

C(k/2)
k
2 2

3k⇑1

1↘ ω
k
2⇑1

C(k/2)
k
2 23k⇑1

(errω↑(x,V ))
k
2 (A120)

+

(2ω)
k
2⇑1

(
2
k
+ C(k/2)

k
2 2

2k

)

1↘ ω
k
2⇑1

C(k/2)
k
2 23k⇑1

1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

, (A121)

Now defining C1(k,ω) ↭
⇀

k
2↔1

C(k/2)
k
2 23k↔1

1⇑⇀
k
2↔1

C(k/2)
k
2 23k↔1

and C2(k,ω) ↭
(2⇀)

k
2↔1

(
2
k
+C(k/2)

k
2 22k

)

1⇑⇀
k
2↔1

C(k/2)
k
2 23k↔1

, and noting that

x
k
err(x,V ) ⇐ errω↑(x,V ),39 we finally get:

Lω,x x
k
(err ...I (x)↘ errω↑(x,V ))

k
2 ≃ C1(k,ω)(err(x,V ))

k
2 + C2(k,ω)

1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

, (A122)

which matches our claim in (A88).

39This follows from the definition of the two errors: err(x,V ) ↘ errω→(x,V ) =
1
n

∑n
i=1

∥∥ȳi ↘ ĀT
i x

∥∥2

2
↘

1
n

∑n
i=1 ε

↑
i

∥∥ȳi ↘ ĀT
i x

∥∥2

2
=

1
n

∑n
i=1(1↘ ε↑

i)
∥∥ȳi ↘ ĀT

i x
∥∥2

2
, which is a sum of squares.
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Completing the proof by moving to pseudo-distributions. Consider a pseudo-distribution
µ̃ that satisfies Lω,x. Using the sos proof in (A88) and thanks to Fact A10, we conclude that if µ̃
satisfies Lω,x then it must also satisfy:

Ẽµ̃

[
(err ...I (x) ↘ errω↑(x,V ))

k
2

]
≃ C1(k,ω)

by definition this is ôpt
k
2
lts↔sdp1︷ ︸︸ ︷

Ẽµ̃

[
err(x,V )

k
2

]
+C2(k,ω)


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

)
.

(A123)

Elevating to the power 2

k
both sides and recalling that (a+ b)

q
≃ a

q
+ b

q for any 0 < q < 1:

(
Ẽµ̃

[
(err ...I (x) ↘ err(x,V ))

k
2

]) 2
k
≃ C1(k,ω)

2
k ôptlts⇑sdp1 + C2(k,ω)

2
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
1

n

n∑
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yε

i ↘ (A
ε

i )
T
x
ε


k

2

) 2
k

.

(A124)

Now using the sos version of Hölder’s inequality for pseudo-expectations (Fact A7, eq. (A17)):

Ẽµ̃

[
err ...I (x) ↘ errω↑(x,V )

] k
2
≃ Ẽµ̃

[
(err ...I (x) ↘ errω↑(x,V ))

k
2

]
, (A125)

and therefore (A124) becomes:

Ẽµ̃

[
(err ...I (x) ↘ errω↑(x,V ))

]
≃ C1(k,ω)

2
k ôptlts⇑sdp1 + C2(k,ω)

2
k


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(A126)

By linearity of the pseudo-expectation and rearranging:

Ẽµ̃

[
err ...I (x)

]
≃ Ẽµ̃ [errω↑(x,V )] + C1(k,ω)

2
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2
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
1

n

n∑
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(A127)

Noting that ω,x
4

{err(x,V )↘ errω↑(x,V ) ⇐ 0},40 and using Fact A10, we get Ẽµ̃ [errω↑(x,V )] ≃

Ẽµ̃ [err(x,V )]. Moreover, we observe

Ẽµ̃ [err(x,V )] =

(
Ẽµ̃ [err(x,V )]

k
2

) 2
k

Fact A7, eq. (A17)︷︸︸︷
≃

(
Ẽµ̃

[
err(x,V )

k
2

]) 2
k
= ôptlts⇑sdp1 (A128)

concluding that Ẽµ̃ [errω↑(x,V )] ≃ Ẽµ̃ [err(x,V )] ≃ ôptlts⇑sdp1. Using this inequality in (A127):

Ẽµ̃

[
err ...I (x)

]
≃ (1 + C1(k,ω)

2
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2
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2

) 2
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(A129)

40This again follows from the definition of the errors err(x,V ) and errω→(x,V ), whose di!erence is a sum of squares.
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Applying Hölder’s inequality (Fact A7, eq. (A17)) one last time, we get err ...I (Ẽµ̃ [x]) ≃ Ẽµ̃ [err ...I (x)],
which leads to:

err ...I (Ẽµ̃ [x]) ≃ (1 + C1(k,ω)
2
k ) ôptlts⇑sdp1 + C2(k,ω)

2
k


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i ↘ (A
ε

i )
T
x
ε
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k

2

) 2
k

. (A130)

Finally, we need to prove that ôptlts⇑sdp1 ≃ opt ...I . Towards this goal, we observe that the
(pseudo-)distribution supported on the point (ε

ε
,x

ε
,V ) where ε

ε

i
= 1 for the true inliers and

zero otherwise is feasible for Lω,x, hence by optimality ôpt
k
2
lts⇑sdp1 ≃

(
1

n

∑
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ȳi ↘ Ā
T
i
x
ε
2
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2 , from

which it follows:
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ȳi ↘ Ā
T
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ε


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2
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≃
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i ↘ (A
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i )
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
2

= opt ...I . (A131)

Substituting (A131) back into (A130):

err ...I (Ẽµ̃ [x]) ≃ (1 + C1(k,ω)
2
k ) opt ...I + C2(k,ω)

2
k


1

n

n∑

i=1

yε

i ↘ (A
ε

i )
T
x
ε


k

2

) 2
k

, (A132)

which proves the claim of Theorem 12.
↫

F Proof of Proposition 13: Contract for Relaxation of (LTS2)
We start by restating the proposition for the reader’s convenience.

Proposition A30 (Restatement of Proposition 13). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i ↓ I, is k-certifiably (

ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some φ > 0. Then, Algorithm 2 with relaxation order r ⇐ k/2 outputs an estimate xlts⇑sdp2 (not
necessarily in X) such that:

↗xlts⇑sdp2 ↘ x
→
↗
2
≃ Mx


ϑ φ

2
+ 2

1↘ ϑ

ϑ


. (A133)

Towards proving the proposition we need to prove two technical lemmas (Lemmas A31 and A32
below). These lemmas extend results [37] to vector-valued and noisy measurements, and while in [37]
they have been proposed to attack the high-outlier case (i.e., for list-decodable regression), we show
they are also useful to prove estimation contracts for the low-outlier case.

Note that the two lemmas below use a subset of constraints compared to the one in the constraint
set of (LTS2) (i.e., the set Mω,x below does not contain the constraint

∑
n

i=1
εi = ϑn): this will

allow us to use them also to discuss the performance of (MC) and (TLS) later on.

Lemma A31 (Adapted from Lemma 4.1 in [37]). Consider the following constraint set, for given
measurements (yi,Ai), i ↓ [n], a constant c̄ ⇐ 0, and where X is an explicitly bounded basic

82



semi-algebraic set ( cf. Assumption 2):

Mω,x
.
=






ε
2

i
= εi, i ↓ [n]

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
i ↓ [n]

x ↓ X




 . (A134)

For any t ⇐ k and set of n measurements with at least ϑn inliers, such that for the set of inliers
I, the set of matrices Ai, i ↓ I, is k-certifiably (

ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated,41

Mω,x ω,x
t

{
1

|I|

∑

i↑I

εi ↗x↘ x
→
↗
2

2
≃

ϑ
2
φ
2
M

2
x

4

}
. (A135)

Proof. We follow the same logic as the proof of Lemma 4.1 in [37], but provide a slightly simpler
derivation, based on our definition of certifiable anti-concentration. We first observe that for the
inliers (i.e., i ↓ I) it holds:42

Mω,x x
t
εi ·

AT
i (x↘ x

→
)


2

2

adding/subtracting yi︷︸︸︷
= εi ·

(yi ↘A
T
i x

→
)↘ (yi ↘A

T
i x)


2

2

(A136)

Fact A19︷︸︸︷
≃ εi ·


2

yi ↘A
T
i x

→


2

2

+ 2

yi ↘A
T
i x


2

2


(A137)

ωi↙1 and Fact A13︷︸︸︷
≃ 2

yi ↘A
T
i x

→


2

2

+ 2 · εi ·

yi ↘A
T
i x


2

2

(A138)

(since (ε,x) satisfy Mω,x, and inliers by definition satisfy
yi ↘A

T
i x

→


2

2

≃ c̄
2)

≃ 4c̄
2
. (A139)

Since the set of matrices Ai, i ↓ I, is k-certifiably (
ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated, then

there exists a univariate polynomial p such that for every i ↓ I and for every t ⇐ k:

from (A139)︷ ︸︸ ︷
εi ·

AT
i (x↘ x

→
)


2

2

≃ 4c̄
2

 using (32) with ς = 2c̄︷ ︸︸ ︷
x
t
p
2

(
εi ·

AT
i (x↘ x

→
)


2

)
⇐ (1↘ 2c̄)

2 (A140)

and

↗x↗
2

2
≃ Mx

Fact A19︷ ︸︸ ︷
x
t
↗x↘ x

→
↗
2

2
≃ 4M

2

x (A141)
using certifiable anti-concentration in eq. (33)︷ ︸︸ ︷

x
t

{
↗x↘ x

→
↗
2

2
·
1

|I|

∑

i↑I

p
2

(AT
i (x↘ x

→
)


2

)
≃

ϑ
2
φ
2
(1↘ 2c̄)

2
M

2
x

4

}
. (A142)

41The constant “32
↑↑ in the anti-concentration requirement is arbitrary (i.e., it just amounts to a re-scaling of the

parameter ς) and has been chosen to keep the result consistent with the original statement in [37].
42Observe the analogy with the proof of Proposition 5.
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Now we note that:

Mω,x ω,x
t

εi · p
2

(
εi ·

AT
i (x↘ x

→
)


2

) ω
2
i = ωi︷︸︸︷
=

(
εi · p

(
εi ·

AT
i (x↘ x

→
)


2

))2

(A143)

=

calling h the homogeneous part of p and since p(0) = 1︷ ︸︸ ︷(
εi ·

(
1 + h

(
εi ·

AT
i (x↘ x

→
)


2

)))2

=

(
εi + εi · h

(
εi ·

AT
i (x↘ x

→
)


2

))2

(A144)

ω
2
i = ωi︷︸︸︷
=

(
εi + εi · h

(AT
i (x↘ x

→
)


2

))2

= ε
2

i ·

(
1 + h

(AT
i (x↘ x

→
)


2

))2

(A145)

= ε
2

i · p
2

(AT
i (x↘ x

→
)


2

) ωi↙1︷︸︸︷
≃ p

2

(AT
i (x↘ x

→
)


2

)
. (A146)

Combining the conclusions in (A140), (A142), and (A146) we obtain:

Mω,x ω,x
t 1

|I|

∑

i↑I

εi ↗x↘ x
→
↗
2

2

since 1
(1↔2c̄)2

p
2
(
ωi ·

∥∥AT
i (x⇑ x→

)
∥∥
2

)
⇒ 1 per (A140)

︷ ︸︸ ︷
≃

1

|I|

∑

i↑I

εi ↗x↘ x
→
↗
2

2
·

1

(1↘ 2c̄)2
p
2

(
εi ·

AT
i (x↘ x

→
)


2

)
(A147)

using ωi · p
2
(
ωi ·

∥∥AT
i (x⇑ x→

)
∥∥
2

)
↙ p

2
(∥∥AT

i (x⇑ x→
)
∥∥
2

)
from (A146)

︷ ︸︸ ︷
≃

1

(1↘ 2c̄)2
↗x↘ x

→
↗
2

2
·
1

|I|

∑

i↑I

p
2

(AT
i (x↘ x

→
)


2

)
using (A142)︷ ︸︸ ︷

≃
ϑ
2
φ
2
M

2
x

4
, (A148)

which concludes the proof. ↫

Lemma A32 (Adapted from Lemma 4.2 in [37]). Under the same assumptions of Lemma A31, for
any pseudo-distribution µ̃ of level at least k satisfying Mω,x,

1

|I|

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑφMx

2
, (A149)

where the vectors vi are extracted from the pseudo-moment matrix by setting vi =
Ẽµ̃[ωix]

Ẽµ̃[ωi]
if Ẽµ̃ [εi] > 0,

or vi = 0 otherwise, for i ↓ [n].

Proof. By Lemma A31, we have Mω,x ω,x
k

{
1

|I|

∑
i↑I

εi ↗x↘ x
→
↗
2

2
≃

ϑ
2
ϱ
2
M

2
x

4

}
. We also have:

Mω,x ω
2
{ε

2
i
= εi} for any i. Therefore:

Mω,x ω,x
k

{
1

|I|

∑

i↑I

↗εix↘ εix
→
↗
2

2
≃

ϑ
2
φ
2
M

2
x

4

}
. (A150)

Since µ̃ satisfies Mω,x, then it also satisfies:

1

|I|

∑

i↑I

Ẽµ̃

[
↗εix↘ εix

→
↗
2

2

]
≃

ϑ
2
φ
2
M

2
x

4
. (A151)
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Using the norm inequality for pseudo-distributions in Fact A8, we get
Ẽµ̃ [εix↘ εix

→
]


2

2

≃

Ẽµ̃

[
↗εix↘ εix

→
↗
2

2

]
; then observing that for any m-vector z, ↗z↗

1
≃

∀
m ↗z↗

2
or, equivalently,

↗z↗
2

1
≃ m ↗z↗

2

2
(below we will apply this inequality to the vector of size |I| with entries zi =

1

|I|

Ẽµ̃ [εix]↘ Ẽµ̃ [εi]x
→


2

), and chaining the inequalities back to (A151):

⇓z⇓21︷ ︸︸ ︷
1

|I|

∑

i↑I

Ẽµ̃ [εix]↘ Ẽµ̃ [εi]x
→


2

)2 ⇓z⇓21↙m⇓z⇓22︷︸︸︷
≃

m⇓z⇓22 with m=|I|︷ ︸︸ ︷
1

|I|

∑

i↑I

Ẽµ̃ [εix]↘ Ẽµ̃ [εi]x
→


2

2

(A152)

Fact A8︷︸︸︷
≃

1

|I|

∑

i↑I

Ẽµ̃

[
↗εix↘ εix

→
↗
2

2

] (A151)︷︸︸︷
≃

ϑ
2
φ
2
M

2
x

4
. (A153)

Remembering that vi =
Ẽµ̃[ωix]

Ẽµ̃[ωi]
if Ẽµ̃ [εi] > 0, or vi = 0 otherwise, and taking the square root of

both members in (A153):

1

|I|

∑

i↑I,Ẽµ̃[ωi]>0

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2

by def. of vi︷︸︸︷
=

1

|I|

∑

i↑I

Ẽµ̃ [εix]↘ Ẽµ̃ [εi]x
→


2

(A153)︷︸︸︷
≃

ϑφMx

2
, (A154)

concluding the proof of Lemma A32. ↫

Proof of Proposition 13: First of all, we note that since Tω,x in Algorithm 2 contains a superset
of the constraints in Mω,x defined in Lemma A31, the conclusions of Lemma A32 and Lemma A31
still hold if we replace Mω,x with Tω,x. Therefore we have that any pseudo-distribution of level at
least k (hence produced by a relaxation of order at least k/2) satisfying Tω,x also satisfies:

1

|I|

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑφMx

2

|I|=ϑn︷ ︸︸ ︷
∅⇒

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑ
2
φMx n

2
. (A155)

Let us define the set of outliers O ↭ [n]\I. We observe that since Ẽµ̃ [εi] ≃ 1, then
∑

i↑O
Ẽµ̃ [εi] ≃

(1↘ ϑ)n. Moreover, using the triangle inequality ↗vi ↘ x
→
↗
2
≃ 2Mx, hence:

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃ 2nMx(1↘ ϑ). (A156)

Using Eq. (A155) and Eq. (A156):

n∑

i=1

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
=

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
+

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2

(A157)

≃
ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ). (A158)
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Now note that any pseudo-distribution µ̃ satisfying Tω,x is such that Ẽµ̃ [
∑

n

i=1
εi] = ϑn (due to the

constraint
∑

n

i=1
εi = ϑn in Tω,x), hence by linearity

∑
n

i=1
Ẽµ̃ [εi] = ϑn. Dividing both members

of (A158) by
∑

n

j=1
Ẽµ̃ [εj ] (where we switched to using j as an index to avoid confusion):

n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

↗vi ↘ x
→
↗
2
≃

1
∑

n

j=1
Ẽµ̃ [εj ]


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


(A159)

=
1

ϑn


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


. (A160)

Using Jensen’s inequality, we observe

∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi ↘ x
→


2

≃
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

↗vi ↘ x
→
↗
2
,

hence (A180) becomes:


n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

vi ↘ x
→


2

≃
ϑ φ Mx

2
+ 2Mx

1↘ ϑ

ϑ
, (A161)

which, recalling that xlts⇑sdp2 =
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi, concludes the proof.
↫

G Proof of Proposition 14: Contract for Relaxation of (MC1)
We start by restating the proposition for the reader’s convenience.

Proposition A33 (Restatement of Proposition 14). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i ↓ I, is k-certifiably (

ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some φ > 0. Then, Algorithm 3 with relaxation order r ⇐ k/2 outputs an estimate xmc⇑sdp (not
necessarily in X) such that:

↗xmc⇑sdp ↘ x
→
↗
2
≃ Mx


ϑ φ

2
+ 2

1↘ ϑ

ϑ


. (A162)

Proof. First of all, we note that the constraint set Mω,x in (MC1) is the same as Lemma A31
and Lemma A32. Therefore we have that any pseudo-distribution µ̃ of level at least k (hence
produced by a relaxation of order at least k/2) satisfying Mω,x also satisfies:

1

|I|

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑφMx

2

|I|=ϑn︷ ︸︸ ︷
∅⇒

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑ
2
φMx n

2
. (A163)

Let us define the set of outliers O ↭ [n]\I. We observe that since Ẽµ̃ [εi] ≃ 1, then
∑

i↑O
Ẽµ̃ [εi] ≃

(1↘ ϑ)n. Moreover, using the triangle inequality ↗vi ↘ x
→
↗
2
≃ 2Mx, hence:

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃ 2nMx(1↘ ϑ). (A164)
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Using Eq. (A163) and Eq. (A164):
n∑

i=1

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
=

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
+

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2

(A165)

≃
ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ). (A166)

Let us call µ̃ the pseudo-distribution that achieves the optimal solution in (MC1), and observe
that the corresponding optimal objective

∑
n

i=1
Ẽµ̃ [εi] ⇐ ϑn: this follows from optimality of µ̃ and

from the fact that the pseudo-distribution supported on the single point (x
→
,ε

→
), where ε

→

i
= 1 if

i ↓ I or zero otherwise, is feasible for (MC1) and achieves an objective ϑn.
Now dividing both members of (A174) by

∑
n

j=1
Ẽµ̃ [εj ]:

n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

↗vi ↘ x
→
↗
2
≃

1
∑

n

j=1
Ẽµ̃ [εj ]


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


(A167)

≃
1

ϑn


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


. (A168)

Using Jensen’s inequality

∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi ↘ x
→


2

≃
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

↗vi ↘ x
→
↗
2

hence (A168)

becomes: 

n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

vi ↘ x
→


2

≃
ϑ φ Mx

2
+ 2Mx

1↘ ϑ

ϑ
, (A169)

which, recalling that xmc⇑sdp =
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi, concludes the proof. ↫

H Proof of Proposition 15: Contract for Relaxation of (TLS1)
We start by restating the proposition for the reader’s convenience.

Proposition A34 (Restatement of Proposition 15). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and outlier rate ω < 0.5 (or, equivalently, inlier rate ϑ = 1↘ω > 0.5). Call I the set of inliers
and assume that the set of matrices Ai, i ↓ I, is k-certifiably (

ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated

for some φ > 0. Then, Algorithm 4 with relaxation order r ⇐ k/2 outputs an estimate xtls⇑sdp (not
necessarily in X) such that:

↗xtls⇑sdp ↘ x
→
↗
2
≃

ϑMxn

ϑn↘
ϖ→

c̄2


ϑ φ

2
+ 2

1↘ ϑ

ϑ


, (A170)

where ↽
→ ↭ ∑

i↑I

yi ↘A
T
i
x
→
2
2

is the squared residual error of the ground truth x
→ over the inliers I.

Proof. First of all, we note that the constraint set Mω,x in (TLS1) is the same as Lemma A31
and Lemma A32. Therefore we have that any pseudo-distribution µ̃ of level at least k (hence
produced by a relaxation of order at least k/2) satisfying Mω,x also satisfies:

1

|I|

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑφMx

2

|I|=ϑn︷ ︸︸ ︷
∅⇒

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑ
2
φMx n

2
. (A171)
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Let us define the set of outliers O ↭ [n]\I. We observe that since Ẽµ̃ [εi] ≃ 1, then
∑

i↑O
Ẽµ̃ [εi] ≃

(1↘ ϑ)n. Moreover, using the triangle inequality ↗vi ↘ x
→
↗
2
≃ 2Mx, hence:

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃ 2nMx(1↘ ϑ). (A172)

Using Eq. (A171) and Eq. (A172):

n∑

i=1

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
=

∑

i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
+

∑

i↑O

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2

(A173)

≃
ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ). (A174)

Let us call µ̃ the pseudo-distribution that achieves the optimal solution in (TLS1), and observe
that µ̃ achieves a cost:

Ẽµ̃

[
n∑

i=1

εi ·

yi ↘A
T
i x


2

2

+ (1↘ εi) · c̄
2


=

n∑

i=1

Ẽµ̃


εi ·

yi ↘A
T
i x


2

2


+

n∑

i=1

(1↘ Ẽµ̃ [εi]) · c̄
2
.

(A175)

Now observe that the pseudo-distribution supported on the single point (x→
,ε

→
), where ε→

i
= 1 if i ↓ I

or zero otherwise, is feasible for (TLS1) and achieves an objective
∑

i↑I

yi ↘A
T
i
x
→
2
2
+ (1↘ ϑ)nc̄

2.
Therefore, by using (A175) and by optimality of µ̃:

n∑

i=1

Ẽµ̃


εi ·

yi ↘A
T
i x


2

2


+

=nc̄
2
⇑
∑n

i=1 Ẽµ̃[ωi]c̄
2

︷ ︸︸ ︷
n∑

i=1

(1↘ Ẽµ̃ [εi]) · c̄
2
≃

∑

i↑I

yi ↘A
T
i x

→


2

2

+

=nc̄
2
⇑ϑn c̄

2

︷ ︸︸ ︷
(1↘ ϑ)nc̄

2
. (A176)

Rearranging the terms in the previous inequality:

n∑

i=1

Ẽµ̃ [εi] ⇐
1

c̄2


n∑

i=1

Ẽµ̃


εi ·

yi ↘A
T
i x


2

2


↘

∑

i↑I

yi ↘A
T
i x

→


2

2

+ ϑn c̄
2

)
(A177)

⇐
1

c̄2


ϑn c̄

2
↘

∑

i↑I

yi ↘A
T
i x

→


2

2

)
= ϑn↘

1

c̄2

∑

i↑I

yi ↘A
T
i x

→


2

2

. (A178)

Now dividing both members of (A174) by
∑

n

j=1
Ẽµ̃ [εj ] and defining ↽

→ ↭ ∑
i↑I

yi ↘A
T
i
x
→
2
2
:

n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

↗vi ↘ x
→
↗
2
≃

1
∑

n

j=1
Ẽµ̃ [εj ]


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


(A179)

using (A178)︷︸︸︷
≃

1

ϑn↘
ϖ→

c̄2


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


. (A180)
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Using Jensen’s inequality

∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi ↘ x
→


2

≃
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

↗vi ↘ x
→
↗
2

hence (A180)

becomes: 

n∑

i=1

Ẽµ̃ [εi]∑
n

j=1
Ẽµ̃ [εj ]

vi ↘ x
→


2

≃
1

ϑn↘
ϖ→

c̄2


ϑ
2
φ Mx n

2
+ 2nMx(1↘ ϑ)


, (A181)

which, recalling that xtls⇑sdp =
∑

n

i=1

Ẽµ̃[ωi]∑n
j=1 Ẽµ̃[ωj ]

vi, concludes the proof. ↫

I Proof of Theorem 17: Contract for Relaxation of (LDR)
We start by restating the theorem for the reader’s convenience.

Theorem A35 (Restatement of Proposition 17). Consider Problem 1 with measurements (yi,Ai),
i ↓ [n], and known outlier rate ω (or, equivalently, known inlier rate ϑ = 1 ↘ ω), possibly with
ω > 0.5. Call I the set of inliers and assume that the set of matrices Ai, i ↓ I, is k-certifiably
(
ϑ
2
ϱ
2
(1⇑2c̄)

2

32c̄
, 2c̄, 2Mx)-anti-concentrated for some φ > 0. Then, with probability at least 1↘

(
1↘

ϑ

2

)N
ϖ

(over the draw of the samples in the algorithms), where N ⇐ 1 is a user-defined parameter, Algorithm 5
with relaxation order r ⇐ k/2 outputs a list L of size N/ϑ such that there is an estimate x ↓ L (with
x not necessarily in X) such that

↗x↘ x
→
↗
2
≃ φMx. (A182)

Moreover, when ϑ ⇐ 0.01 ( i.e., at least 1% of the measurements are inliers) and N = 10, the relation
↗x↘ x

→
↗
2
≃ φMx holds with probability at least 0.99 over the draw of the samples.

Proof. Note that Lemma A31 and Lemma A32 use a subset of constraints compared to the set Tω,x

in (LDR) (i.e., the set Mω,x in the lemmas does not contain the constraint
∑

n

i=1
εi = ϑn, while

Tω,x does). Therefore, their conclusions will still hold in the context of (LDR). We start by proving
the following lemma, which shows that the pseudo-distribution µ̃ built by optimizing the moment
relaxation of (LDR) “spreads” (i.e., has enough support) across the inliers. The proof is an extension
of Lemma 4.3 in [37] to the case of vector-valued measurements.

Lemma A36 (Adapted from Lemma 4.3 in [37]). For any pseudo-distribution µ̃ satisfying Tω,x that

minimizes
Ẽµ̃ [ε]


2

2

,
∑

i↑I
Ẽµ̃ [εi] ⇐ ϑ

2
n.

Proof. Let u =
1

ϑn
Ẽµ̃ [ε]. Then, u is a non-negative vector satisfying

∑
n

i=1
ui = 1. Let wt(I) =∑

i↑I
ui and let wt(O) =

∑
i↑O

ui, where O ↭ [n] \ I is the set of outliers. Then, wt(I)+wt(O) = 1.
By contradiction, we show that if wt(I) < ϑ, then there exists a pseudo-distribution satisfying

Tω,x that achieves a lower value of
Ẽµ̃ [ε]


2

2

, hence contradicting optimality of µ̃. Towards this goal,
we define a pseudo-distribution µ̃

ε which is supported on a single (ε,x), the indicator vector 1I and
x
→. Therefore, Ẽµ̃ε [εi] = 1 i! i ↓ I and zero otherwise. Clearly, µ̃ε satisfies Tω,x. Therefore, any

convex combination µ̃⇁ = (1↘ ς)µ̃+ ςµ̃
ε also satisfies Tω,x. We now show that whenever wt(I) < ϑ,

then
Ẽµ̃↼ [ε]


2

2

<

Ẽµ̃ [ε]


2

2

for some ς > 0, thus contradicting optimality of µ̃. We observe that:

u⇁ =
1

ϑn
Ẽµ̃↼ [ε] =

1

ϑn
(1↘ ς)Ẽµ̃ [ε] +

1

ϑn
(ς)Ẽµ̃ε [ε] = (1↘ ς)u+

ς

ϑn
1I . (A183)
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First, we compute the squared norm of u⇁ using (A183):

↗u⇁↗
2

2
=

observing 1T
I1I = ϑn and 1T

Iu = wt(I)
︷ ︸︸ ︷

(1↘ ς)
2
↗u↗

2

2
+ 2ς(1↘ ς)

wt(I)
ϑn

+
ς
2

ϑn
. (A184)

Next, we lower bound ↗u↗
2

2
in terms of wt(I) and wt(O). Observe that for any fixed values of

wt(I) and wt(O), the minimum of ↗u↗2
2

is attained by the vector u such that ui =
1

ϑn
wt(I) for

each i ↓ I and ui =
1

(1⇑ϑ)n
wt(O) otherwise. This gives:

↗u↗
2

2
⇐

sum of u2
i for i ↑ I︷ ︸︸ ︷

wt(I)
ϑn

2

ϑn +

sum of u2
i for i ↑ O︷ ︸︸ ︷

1↘ wt(I)
(1↘ ϑ)n

2

(1↘ ϑ)n (A185)

=
wt(I)2

ϑn
+

(1↘ wt(I))2

(1↘ ϑ)n

=
1

ϑn
·


wt(I)2 + (1↘ wt(I))2


ϑ

1↘ ϑ


. (A186)

Combining (A184) and (A186):

↗u⇁↗
2

2
↘ ↗u↗

2

2
=

=(1⇑⇁)
2
⇓u⇓22⇑⇓u⇓22︷ ︸︸ ︷

(↘2ς+ ς
2
) ↗u↗

2

2
+2ς(1↘ ς)

wt(I)
ϑn

+
ς
2

ϑn
(A187)

since (⇑2⇁+ ⇁
2
) ↙ 0︷︸︸︷

≃
↘2ς+ ς

2

ϑn


wt(I)2 + (1↘ wt(I))2

ϑ

1↘ ϑ


+ 2ς(1↘ ς)

wt(I)
ϑn

+
ς
2

ϑn
. (A188)

Rearranging (note that this part slightly di!ers from [37], but with the same conclusion):

↗u↗
2

2
↘ ↗u⇁↗

2

2
⇐

ς

ϑn


(2↘ ς)


wt(I)2 + (1↘ wt(I))2

ϑ

1↘ ϑ


↘ 2(1↘ ς)wt(I)↘ ς


(A189)

=
ς(2↘ ς)

ϑn


wt(I)2 + (1↘ wt(I))2

ϑ

1↘ ϑ


↘

2(1↘ ς)

(2↘ ς)
wt(I)↘

ς

(2↘ ς)


(A190)

observing
2(1↘ ς)

(2↘ ς)
=

2(1↘ ς)

2(1↘ ς) + ς
< 1 (for 0 < ς ≃ 1)

and
1

(2↘ ς)
≃ 1 <

1↘ wt(I)
1↘ ϑ

(for 0 ≃ wt(I) < ϑ ≃ 1)

>
ς(2↘ ς)

ϑn


wt(I)2 + (1↘ wt(I))2

ϑ

1↘ ϑ
↘ wt(I)↘

1↘ wt(I)
1↘ ϑ

ς


(A191)

=
ς(2↘ ς)

ϑn


↘wt(I)(1↘ wt(I)) + (1↘ wt(I))2

ϑ

1↘ ϑ
↘

1↘ wt(I)
1↘ ϑ

ς


(A192)

=
ς(2↘ ς)(1↘ wt(I))

ϑn(1↘ ϑ)
(↘wt(I)(1↘ ϑ) + (1↘ wt(I))ϑ↘ ς) (A193)

=

⇒0︷ ︸︸ ︷
ς(2↘ ς)(1↘ wt(I))

ϑn(1↘ ϑ)
(ϑ↘ wt(I)↘ ς) . (A194)
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Now whenever wt(I) < ϑ, (ϑ↘ wt(I)↘ ς) > 0 for a su"ciently small ς. Thus we can choose a
small enough ς > 0 such that ↗u↗

2

2
↘ ↗u⇁↗

2

2
> 0, which contradicts optimality of µ̃. ↫

Using Lemma A32 and Lemma A36 we can finally prove the correctness of Theorem 17. Let µ̃

be a pseudo-distribution satisfying Tω,x that minimizes
Ẽµ̃ [ε]


2

2

. Such a pseudo-distribution exists
since the set contains at least the distribution with εi = 1 i! i ↓ I and x = x

→.
From Lemma A32, we have 1

|I|

∑
i↑I

Ẽµ̃ [εi] ↗vi ↘ x
→
↗
2
≃

ϑϱMx
2

. Let Z
.
=

∑
i↑I

Ẽµ̃[ωi]

|I|
(this is

a normalization factor, such that Ẽµ̃[ωi]

Z|I|
is a valid pdf over the inliers, i.e., sums up to 1). By a

rescaling, we obtain:

∑

i↑I

Ẽµ̃ [εi]

Z|I|
↗vi ↘ x

→
↗
2
≃

1

Z

ϑφMx

2
. (A195)

Using Lemma A36, Z ⇐ ϑ. Therefore,

∑

i↑I

Ẽµ̃ [εi]

Z|I|
↗vi ↘ x

→
↗
2
≃

φMx

2
. (A196)

Let i ↓ [n] be chosen with probability Ẽµ̃[ωi]

ϑn
. Then, we sample i ↓ I with probability Z ⇐ ϑ.

By Markov’s inequality:

P (↗vi ↘ x
→
↗
2
≃ φMx) = P (↗vi ↘ x

→
↗
2
≃ φMx|i ↓ I) ·

⇒ϑ︷ ︸︸ ︷
P (i ↓ I) (A197)

⇐ ϑ · P (↗vi ↘ x
→
↗
2
≃ φMx|i ↓ I) (A198)

Markov’s inequality: P (X ⇐ a) ≃
E [X]

a
∅⇒ P (X ≃ a) ⇐ 1↘

E [X]

a

⇐ ϑ


1↘

1

φMx

Ei↑I [↗vi ↘ x
→
↗
2
]


= ϑ


1↘

1

φMx

∑

i↑I

Ẽµ̃ [εi]

Z|I|
↗vi ↘ x

→
↗
2

)
(A199)

using (A196)︷︸︸︷
⇐ ϑ


1↘

1

φMx

φMx

2


=

ϑ

2
. (A200)

So we concluded that P (↗vi ↘ x
→
↗
2
≃ φMx) ⇐

ϑ

2
(this is the probability that a single draw

satisfies ↗vi ↘ x
→
↗
2
≃ φMx). Calling S (as in “success”) the event that ↗vi ↘ x

→
↗
2
≃ φMx, we get

that the probability of S after m draws is:

P (Sm) = 1↘

failing m times︷ ︸︸ ︷
(1↘ P (S))

m
⇐ 1↘

(
1↘

ϑ

2

)m

(A201)

Finally, choosing the number of draws m ⇐
N

ϑ
, we obtain

P (Sm) ⇐ 1↘

(
1↘

ϑ

2

)N
ϖ (A202)

which matches the first claim in Theorem 17.
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Now the final claim (i.e., the claim that (A182) is satisfied with probability at least 0.99 for
ϑ ⇐ 0.01 and N = 10) is just a particularization of (A202) to the given choice of N . In particular,
we first observe that the probability of success 1↘

(
1↘

ϑ

2

)N
ϖ is a non-decreasing function of ϑ. Then

we note that the function f(ϑ, N) ↭ 1↘
(
1↘

ϑ

2

)N
ϖ evaluated at ϑ = 0.01 and N = 10 is such that

f(0.01, 10) ⇐ 0.99, which concludes the proof.
↫

J Sparse LIst-Decodable Estimation (SLIDE)
In this appendix, we present a variant of Algorithm 5 that empirically returns an accurate list of
estimates, as shown in Section 8.5. We start by stating the algorithm, whose pseudocode is given
in Algorithm A1.

Algorithm A1: Sparse LIst-Decodable Estimation (SLIDE).
Input: input data (yi,Ai), i ↓ [n], inlier rate ϑ.
Output: list of estimates of x→.
/* Algorithm solves a relaxation of the following problem: */
/*

min
ω,x

↗ε↗
2

2
, s.t. Tω,x ↭






ε
2

i
= εi, i = [n]∑
n

i=1
εi = ϑn

εi ·
yi ↘A

T
i
x
2
2
≃ c̄

2
, i = [n]

x ↓ X





(LDR)

*//* Compute matrix X
ε by solving SDP from sparse moment relaxation */

1 X
ε
= solve_sparse_moment_relaxation_at_order_2 (LDR)

/* Compute list of estimates */
2 create empty list L = ∅

3 for i ↓ [n] do

4 vi =






Xε
[ϑix]

Xε
[ϑi]

if Xε

[ωi]
> 0

0 otherwise
5 xi = project_to_X(vi)
6 add xi to L

7 end
8 return L.

The proposed algorithm is very close to Algorithm 5 (and is still based on the key insights
from [37]), but includes three small but important changes. First of all, instead of solving a moment
relaxation of order r = 2, which is still expensive for large n,43 we develop a sparse relaxation (line 1).
The sparse relaxation uses the following sparse monomial basis

m(ε,x) ↭ [1 ; ε1 ; . . . ; εn ; x ; ε1x ; . . . ; εnx], (A203)
43An order-2 moment relaxation of (LDR) entails solving an SDP with a matrix of size (n+dx+2

2 ), which is already
as large as 1830 for dx = 9 and n = 50, which is the typical setup considered in our experiments. In our tests,
MOSEK [105] runs out of memory when fed an SDP of size larger than 1000.
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which neglects other degree-2 monomials (e.g., εi · εj) that do not appear in problem (LDR) while
still giving access to the pseudo-expectations used in Algorithm 5. Note that the sparse relaxation
leads to SDPs of more manageable size (n+1)(dx+1).44 Note that the idea of using a sparse moment
relaxation is not new (see Remark 10 in [30]), but our relaxation is slightly di!erent from [30, 34]
and tailored to list-decodable estimation. Later in this section, we provide a derivation of the sparse
moment relaxation for the rotation search problem.

The second modification is to round the estimates to the domain X (line 5). The latter is a
consequential change: we empirically noticed that the original approach in Algorithm 5 (with our
sparse relaxation) produces estimates with norm close to zero, hence leading to large estimation
errors. Projecting the estimates to X has the e!ect of re-normalizing the result and correcting scaling
problems, enabling the compelling results in Section 8.5. At the end of this section we show that
projecting to the domain X is straightforward in the rotation search problem.

Finally, the third modification with respect to Algorithm 5, is that Algorithm A1 always returns n
hypotheses (line 3), rather than sampling; this makes the result deterministic and independent on the
choice of number of hypotheses (which can no longer be guided by the guarantees in Theorem 17).45

Sparse moment relaxation for rotation search. Here we provide an example of sparse
relaxation arising when applying SLIDE to the rotation search problem. Let us start by tailoring
the polynomial optimization problem (LDR) to rotation search:

min
ω,R

↗ε↗
2

2
, s.t.






ε
2

i
= εi, i = [n]∑
n

i=1
εi = ϑn

εi · ↗bi ↘Rai↗
2
≃ c̄

2
, i = [n]

R ↓ SO(3)





(A204)

where we substituted the residual errors (
yi ↘A

T
i
x
2
2
) with their expression in the rotation search

problem (↗bi ↘Rai↗
2), and where we made explicit that the domain is SO(3). Before presenting the

relaxation, we reparametrize (A204) using unit quaternions: while we could directly relax (A204)
following the approach we describe below, using quaternions has the benefit of (i) leading to an even
smaller relaxation (since the quaternion is parametrized by dx = 4 variables instead of 9 variables
needed to write a rotation matrix) and (ii) admitting a straightforward projection to the domain X.

Proposition A37 (Quaternion-based reformulation of (A204)). The polynomial optimization prob-
lem (A204) can be equivalently written as:

min
ω,q

↗ε↗
2

2
, s.t.






ε
2

i
= εi, i = [n]∑
n

i=1
εi = ϑn

εi ·

(
↗bi↗

2
+↗ai↗

2
↘2tr

(
M

T
ij
qq

T
))

≃ c̄
2
, i = [n]

↗q↗
2
= 1





(A205)

such that any optimal solution of (A205) can be mapped back to an optimal solution of (A204) and
vice-versa. In (A205), Mij is a constant matrix whose expression depends on ai and bi.

44For instance, when dx = 9 and n = 50, the sparse relaxation leads to a more compact SDP with a moment matrix
of size 510⇒ 510.

45Note that we can safely discard the hypotheses corresponding to Xε
[ϑi]

= 0 since those are uninformative (i.e.,
they always correspond to vi = 0). We only keep them in Algorithm A1 for the sake of simplicity, such that the
output list L has always size n.
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Proof. The proof proceeds by inspection, by reparametrizing the rotation R with the corresponding
unit quaternion. Each unit quaternion corresponds to a unique rotation, hence we replace the
domain R ↓ SO(3) with the constraint that the quaternion must have unit norm (i.e., ↗q↗2= 1).
Comparing (A204) and (A205), we realize we only have to rewrite the maximum-residual inequality
constraint in (A204) in the quaternion-based form in (A205). This derivation is largely inspired
by [34] (which presents a similar reformulation applied to a di!erent polynomial optimization
problem), but here we present a simpler proof. We start by observing that the rotation matrix
associated to the quaternion q = [q1 ; q2 ; q3 ; q4] (in our notation, q4 is the scalar part of the
quaternion) is:

R =




2(q

2
1
+ q

2
4
)↘ 1 2(q1q2 ↘ q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) 2(q
2
2
+ q

2
4
)↘ 1 2(q2q3 ↘ q1q4)

2(q1q3 ↘ q2q4) 2(q2q3 + q1q4) 2(q
2
3
+ q

2
4
)↘ 1



 = (A206)




q
2
1
+ q

2
4
↘ q

2
2
↘ q

2
3

2(q1q2 ↘ q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) q
2
2
+ q

2
4
↘ q

2
1
↘ q

2
3

2(q2q3 ↘ q1q4)

2(q1q3 ↘ q2q4) 2(q2q3 + q1q4) q
2
3
+ q

2
4
↘ q

2
1
↘ q

2
2



 (A207)

where the expression in (A207) is obtained by substituting ↗q↗
2
= q

2
1
+ q

2
2
+ q

2
3
+ q

2
4
= 1 (instead of 1)

in the diagonal entries of the expression in (A206). Now, by inspection from (A207), we note that:

vec(R) = P · vec(qq
T
) (A208)

where:

P ↭





1 0 0 0 0 ↘1 0 0 0 0 ↘1 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 ↘1 1 0 0 0 0 ↘1 0 0

0 1 0 0 1 0 0 0 0 0 0 ↘1 0 0 ↘1 0

↘1 0 0 0 0 1 0 0 0 0 ↘1 0 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

0 0 0 ↘1 0 0 1 0 0 1 0 0 ↘1 0 0 0

↘1 0 0 0 0 ↘1 0 0 0 0 1 0 0 0 0 1





, vec(qq
T
) =





q
2
1

q2q1

q3q1

q4q1

q2q1

q
2
2

q3q2

q4q2

q3q1

q3q2

q
2
3

q4q3

q4q1

q4q2

q4q3

q
2
4





Equipped with these relations, we are now ready to rewrite the inequality constraint in (A204)
as in (A205). We develop the squared residual ↗bi ↘Rai↗

2 in (A204) as follows:

↗bi ↘Rai↗
2
= ( developing the squares ) (A209)

↗bi↗
2
+↗ai↗

2
↘2b

T
i Rai = ( recalling that for a scalar a = vec(a) ) (A210)

↗bi↗
2
+↗ai↗

2
↘2vec(b

T
i Rai) = (using vec(ABC) = (C

T
⇑A)vec(B)) (A211)

↗bi↗
2
+↗ai↗

2
↘2(a

T
i ⇑ b

T
i )vec(R) = (using (A208)) (A212)

↗bi↗
2
+↗ai↗

2
↘2(a

T
i ⇑ b

T
i )P vec(qq

T
) = (using tr

(
A

T
B

)
= vec(A)

T
vec(B)) (A213)

↗bi↗
2
+↗ai↗

2
↘2tr

(
M

T
ijqq

T
)

(A214)
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where Mij is a 4⇓ 4 matrix such that vec(Mij) = ((a
T
i
⇑ b

T
i
)P )

T
= P

T
(ai ⇑ bi) (in other words,

Mij simply rearranges the 16 entries of the vector P
T
(ai ⇑ bi) into a 4 ⇓ 4 matrix). Replacing

↗bi ↘Rai↗
2 in (A204) with (A214) yields the inequality in (A205), hence proving the claim. ↫

Proposition A38 (Sparse moment relaxation of (A205)). The following SDP is a convex relaxation
of the non-convex optimization problem (A205):

min
X↑S5(n+1)

n∑

i=1

X
2

[ωi]
(A215)

s.t. X[ωi ,ωi]
= X[ωi]

, i = [n] (A216)
n∑

i=1

X[ωi]
= ϑn (A217)

X[ωi]
·
(
↗bi↗

2
+↗ai↗

2
)
↘ 2tr

(
M

T
ijX[q ,ωiqT]

)
≃ c̄

2
, i = [n] (A218)

tr

(
X[q , qT]

)
= 1 (A219)

X ′ 0 (A220)
X[1] = 1 (A221)
X[ωiq ,ωiqT] = X[q ,ωiqT], i = [n] (A222)

X[ωiqT] = X[ωi , qT], i = [n] (A223)

X[ωiqT] = X[ωi ,ωiqT], i = [n] (A224)

X[ωiq ,ωjqT] = X
T
[ωiq ,ωjqT]

, i, j = [n] (A225)

tr

(
X[ωiq ,ωjqT]

)
= X[ωi ,ωj ]

, i, j = [n] (A226)

where we index the rows of the matrix X according to the monomials m(ε, q), index the columns
of X according to the monomials m(ε, q)

T ↭ [1 , ε1 , . . . , εn , q
T
, ε1q

T
, . . . , εnq

T
], and use the

notation X[i,j] to access entries of the matrix with row indexed by monomial i and column indexed
by monomial j; we also overload the notation and write as X[i] to denote X[i,1].

Proof. While the SDP appears to be quite complicated, its constraints should become appar-
ent from the structure of the moment matrix built on the sparse monomial basis m(ε, q) ↭
[1 ; ε1 ; . . . ; εn ; q ; ε1q ; . . . ; εnq]:

1 ε1 . . . εn q
T

ε1q
T

. . . εnq
T

X = m(ε, q)m(ε, q)
T
=

1

ε1

...
εn

q

ε1q

...
εnq





1 ε1 . . . εn q
T

ε1q
T

. . . εnq
T

ℜ ε
2
1

. . .
... ε1q

T
ε
2
1
q
T

. . . ε1εnq
T

ℜ ℜ
. . . ...

...
...

...
...

ℜ ℜ . . . ε
2
n εnq

T
ε1εnq

T
. . . ε

2
nq

T

ℜ ℜ . . . ℜ qq
T

ε1qq
T

. . . εnqq
T

ℜ ℜ . . . ℜ ℜ ε
2
1
qq

T
. . . ε1εnqq

T

ℜ ℜ . . . ℜ ℜ ℜ
. . . ...

ℜ ℜ . . . ℜ ℜ ℜ . . . ε
2
nqq

T





(A227)
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where we also reported in gray the row and column indices described in the statement of the
proposition. We prove the proposition in two steps. First, we show how to rewrite (A205) using the
moment matrix X in (A227), which leads to the objective and constraints in (A215)-(A219). Second,
we show that any moment matrix with the structure in (A227) satisfies the constraints (A220)-(A226),
hence the feasible set of (A215) contains the feasible set of (A205). Let us start by rewriting (A205)
using the moment matrix X:

min
ω,q,X

n∑

i=1

X
2

[ωi]
(A228)

s.t. X[ωi ,ωi]
= X[ωi]

, i = [n] (A229)
n∑

i=1

X[ωi]
= ϑn (A230)

X[ωi]
·
(
↗bi↗

2
+↗ai↗

2
)
↘ 2tr

(
M

T
ijX[q ,ωiqT]

)
≃ c̄

2
, i = [n] (A231)

tr

(
X[q , qT]

)
= 1 (A232)

X = m(ε, q) ·m(ε, q)
T (A233)

where m(ε, q) ↭ [1 ; ε1 ; . . . ; εn ; q ; ε1q ; . . . ; εnq], and we simply noticed (from inspection
of (A227)) that X[ωi ,ωi]

= ε
2

i
, X[ωi]

= εi, X[q ,ωiqT] = εiqq
T, and tr

(
X[q , qT]

)
= tr

(
qq

T
)
=

q
T
q = ↗q↗

2, hence (A228) just rewrites objective and constraints in (A205) using the entries of the
moment matrix X in (A203). Problem (A228) is equivalent to (A205) and is still non-convex due
to the non-convexity of the constraint X = m(ε, q) ·m(ε, q)

T.
Now we are only left to prove that the feasible set of (A215) contains the feasible set of (A228).

More precisely, we prove that any matrix that satisfies X = m(ε, q) · m(ε, q)
T also satisfies

constraints (A220)-(A226) in (A215). Clearly, any X = m(ε, q) · m(ε, q)
T is such that X ′ 0.

The rest of the constraints can be also seen to hold by simple inspection of the entries of the moment
matrix (A203) and recalling that our constraint set also imposes ε

2

i
= εi (for all i ↓ [n]) and

tr
(
qq

T
)
= ↗q↗

2
= 1. Therefore, since (A215) has the same objective of (A228), but its feasible

set includes the feasible set of (A228), problem (A215) is a relaxation of (A228). Finally, we
observe that (A215) is a convex program, since it minimizes a convex cost function over the cone of
positive-semidefinite matrices and subject to a set of linear constraints. ↫

Rounding for rotation search. According to Algorithm A1, after solving the sparse moment
relaxation and obtaining the matrix X

ε, we build the vectors vi from the entries of the matrix
X

ε, and then project those vectors to the domain X. In our quaternion-based formulation of the
rotation search problem (Proposition A37), vi are 4-dimensional vectors, while X is the set of unit
quaternions. Hence projecting onto the domain X (line 5 in Algorithm A1) only requires normalizing
the vectors vi to have unit norm, i.e., xi = vi/↗vi↗. In particular, we add xi = vi/↗vi↗ whenever
↗vi↗> 0, while we mark an estimate as invalid when ↗vi↗= 0 and disregard it from the evaluation.
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