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Abstract - This paper reports on the development,
execution, and open-sourcing of a new robotics course at
MIT. The course is a modern take on “Visual Navigation
for Autonomous Vehicles” (VNAV) and targets first-year
graduate students and senior undergraduates with prior
exposure to robotics. VNAYV has the goal of preparing
the students to perform research in robotics and vision-
based navigation, with emphasis on drones and self-
driving cars. The course spans the entire autonomous
navigation pipeline; as such, it covers a broad set of
topics, including geometric control and trajectory
optimization, 2D and 3D computer vision, visual and
visual-inertial odometry, place recognition, simultaneous
localization and mapping, and geometric deep learning
for perception. VNAV has three key features. First, it
bridges traditional computer vision and robotics courses
by exposing the challenges that are specific to embodied
intelligence, e.g., limited computation and need for just-
in-time and robust perception to close the loop over
control and decision making. Second, it strikes a balance
between depth and breadth by combining rigorous
technical notes (including topics that are less explored in
typical robotics courses, e.g., on-manifold optimization)
with slides and videos showcasing the latest research
results. Third, it provides a compelling approach to
hands-on robotics education by leveraging a physical
drone platform (mostly suitable for small residential
courses) and a photo-realistic Unity-based simulator
(open-source and scalable to large online courses).
VNAY has been offered at MIT in the Falls of 2018-2021
and is now publicly available on MIT OpenCourseWare
(OCW) and at vrav.mit.edu/.

Index Terms — Open-source Course Material, Project-based
Learning, Robotics and Computer Vision Education

INTRODUCTION

Robotics and autonomous systems are steadily transforming
society by revolutionizing transportation, manufacturing,
supply chain logistics, aviation, disaster response and
national security, among other domains.
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HARDWARE PLATFORM & SIMULATION INFRASTRUCTURE USED IN VNAV

This fast-paced transformation puts an increasing and urgent
emphasis on training the next generation of engineers and
scientists that will be in charge of conceiving, designing,
implementing, and operating these systems.

Challenges and opportunities of robotics education.
Robotics education poses novel challenges to educators.
First, robotics education cuts across multiple disciplines
(e.g., computer science, electrical/mechanical/aerospace
engineering, applied mathematics) and research areas (e.g.,
computer vision, machine learning, control theory), hence
any single-semester course has to find a suitable trade-off
between depth and breadth, as well as between theory and



applications. Second, robotics research and applications are
advancing at an ever-increasing pace, hence challenging
educators to continuously adjust the learning objectives to
keep up with the changing demands of a flourishing job
market. For instance, the last decade has simultaneously
witnessed a boom in self-driving applications and a radical
paradigm shift where model-based approaches have been
challenged by learning-based data-driven methods. Third,
advanced robotics applications often require multiple
sensors (e.g., 3D lidars, commercial RGB-D cameras) and
powerful embedded computers that are often too expensive
to purchase and maintain for residential project-based
education and become inadequate for online offerings.

At the same time, these challenges offer unprecedented
opportunities for students and educators. First, the fact that
robotics spans multiple communities and disciplines makes
it a natural playground to exercise foundational knowledge
(e.g., linear algebra, optimization, control) while reinforcing
it through deliberate practice (e.g., implementing and testing
algorithms on a robot). Second, the presence of a vibrant
research community and the growing interest towards
autonomous systems from the media provide a natural
motivation for students, by exposing a clear set of
stakeholders that can use the expertise developed in robotics
courses. Finally, one realizes that the need for sensors and
embedded computing is a “feature” rather than a “bug”
robotics is the science of embodied intelligence and the goal
of processing information in real-time subject to limited
computation is an essential ingredient rather than an
afterthought. In addition to this pedagogical opportunity,
concerns about the cost of sensors and computation have
been partially alleviated by two trends: (i) advances in chip
and sensor design —triggered by their use in commercial
products, such as smart phones— have led to a new
generation of sensors and computers whose cost and form-
factor become increasingly compatible with residential
education; (ii) advances in simulation have led to the
development of lightweight and photo-realistic simulators,
which are now commonly used in industry and academia to
exercise robotics algorithms and implementations.

The untapped potential of visual navigation. Within
the broad landscape of robotics education, visual navigation
(where “visual” is meant in a broad sense to include
information-rich onboard sensors such as cameras and 3D
lidars) has quickly become a fundamental area of expertise.
Visual navigation powers modern autonomous vehicles,
from self-driving cars, to drones for disaster response, last-
mile delivery, and precision agriculture. However, few
courses are currently capturing the complexity and untapped
educational opportunities in this area. Expertise contributing
to visual navigation is fragmented across different courses
focusing on robotics and control, computer vision, and
machine learning. This fragmentation has several downsides:
(1) traditional robotics and control courses often prefer
focusing on simpler sensors (e.g., 2D lidars or ultrasonic
sensors), hence creating a disconnect with many modern
robotics applications; (ii) computer vision courses typically

do not “close the loop” over control and actuation, hence de-
emphasizing the importance of just-in-time computation;
and (iii) machine learning courses typically do not focus on
robotics applications, hence missing an opportunity to stress
the implications of learning-induced failures on safety
critical applications and also creating a disconnect with
traditional model-based approaches in robotics and vision.

Contribution. In this paper, we attempt to bridge this
gap by reporting on the development, execution, and open-
sourcing of a new robotics course at MIT. The course is a
modern take on “Visual Navigation for Autonomous
Vehicles” (VNAV) and targets first-year graduate students
and senior undergraduates with prior exposure to robotics.
VNAV aims at preparing students to perform research in
robotics and vision-based navigation (or, more generally, to
design, develop, and operate advanced robotics systems),
with emphasis on drones and self-driving cars. The course
covers a broad set of topics, including geometric control and
trajectory optimization, 2D and 3D computer vision, visual
and  visual-inertial  odometry, place  recognition,
simultaneous localization and mapping, and geometric deep
learning for perception. VNAYV has three key features:

e it bridges traditional computer vision and robotics
courses by exposing the challenges that are specific to
embodied intelligence, e.g., limited computation and
need for just-in-time processing and robust perception
to close the loop over control and decision making. This
is done by combining selected topics in control with
advanced topics in robot vision and perception;

e it strikes a balance between depth and breadth by
combining rigorous technical notes with slides and
videos showcasing recent research advances. For
instance, the course starts with a basic introduction to
3D geometry, using a Lie-group theoretic lens, touches
on advanced topics, such as optimization on manifolds,
and stretches to the latest advances in geometric deep
learning and graph neural networks;

e it provides a compelling approach for hands-on robotics
education by leveraging a physical drone platform
(mostly suitable for small residential courses) and a
photo-realistic Unity-based simulator (open-source and
scalable to large online courses).

In the rest of this paper, we discuss the VNAV
curriculum, software and hardware infrastructure, and we
report on students’ feedback and lessons learned. VNAV has
been offered at MIT in 2018-2021 and is now publicly
available on MIT OpenCourseWare (OCW) [28] and at
vnav.mit.edu/. Moreover, courses based on VNAV have
been also offered at the University of Michigan and at the
Technical University of Munich in 2021.

RELATED COURSES

Robotics education is a well-studied topic. An IEEE Xplore
search for the keywords “robotics & education & course”
shows more than 650 publications after the year 2000.

The existing literature has extensively stressed the
importance of hands-on labs [1]-[3]. Moreover, the use of



final projects and competitions has been understood as a
powerful approach to improve knowledge assimilation, and
to stress that there can be more than one correct answer to a
problem [4]-[6]. Researchers and educators have also
investigated flipped classroom approaches [7], where the
classroom time has a stronger focus on hands-on activities.
Several courses are at the introductory level and target first-
year undergraduate students [8] or high school students [9],
where the goal is retention rather than preparing the students
for research, development, and operation of advanced
robotics systems. Other educators have proposed multi-
semester courses to deal with the breadth of robotics topics
to cover [10]. Traditional robotics courses focus on control
algorithms and use simple sensors and actuators (e.g., LEGO
Mindstorm [11]). Efforts to increase scalability and reduce
costs have focused on the development of simulators [12] or
web-based technologies to enhance learning [13], which
however have mostly targeted robotics manipulation.

The literature on visual navigation education is sparser
and more recent. If we also add the keyword “computer
vision” to the IEEE Xplore search mentioned above, then the
number of results drops to 36. Few courses focus on
advanced vision-based navigation due to the challenges
mentioned in the introduction. Early attempts to infuse
visual-navigation in mobile robotics [14] trace back to
before the “deep learning revolution” and before most of the
latest advanced in visual localization and mapping. Maxwell
and Meeden [14] focus on early vision (e.g., edge detection,
stereo depth). Nitschke et al. [15] propose a one-day contest
on automatic visual drone navigation, but mostly focuses on
control aspects. Paull et al. [16] propose “Duckietown”, a
course meant to exercise vision-based navigation for self-
driving cars; the course has a broader scope and while it has
the advantage of leveraging relatively inexpensive robots
(e.g., a differential drive wheeled platform equipped with a
Raspberry PI and a camera), these robots do not have
enough computation to exercise advanced vision-based
localization and mapping algorithms. Brand et al. [17] and
Eller et al. [18] develop the “PiDrone” platform, an exciting
low-cost aerial platform for robotics education. The
autonomy stack is developed in Python and uses the Robot
Operating System (ROS). Other efforts have focused on
middle school and high school outreach, with emphasis on
mobile robotics [2], [3] and manipulation [19].

Finally, it is worth reviewing relevant online courses
and material. Thrun’s seminal course on “Artificial
Intelligence for Robotics” [20] on Udacity covers selected
topics in planning, localization, tracking and control using
self-driving cars as the main motivation. Daniilidis and Shi
offer the course “Robotics: Perception” [21] on Coursera;
the course covers from basic geometric and computer vision
to multi-view geometry. Waslander and Kelly offer a “Self-
Driving Cars Specialization” [22] on Coursera which
leverages an advanced driving simulator. Roy et al. [47]
offer the course “Flying Car and Autonomous Flight
Engineer” on Udacity, which focuses on control, planning,
and GPS-based state estimation. Stachniss [48] focuses on

mapping for robotics, with full lectures and short online
videos. Recent courses on edX share similar motivations as
ours but differ in the selection of topics [23], [24]. It is also
worth mentioning broader open-source initiatives, such as
the FlTenth initiative [25] and BWSI (Beaver Works
Summer Institute) [26], that provide introductory-level
courses for seniors and K-12 students.

THE VNAYV CURRICULUM

1 Prerequisites, Topics, and Learning Goals

VNAV assumes basic familiarity with C++ programming
(e.g., syntax, function calls, compilation and execution of
programs using CMake), linear algebra (e.g., matrix
operations, eigenvalues/eigenvectors, matrix factorization),
and control theory (e.g., dynamical systems, PID control).
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CANONICAL ARCHITECTURE USED IN VNAV

The course covers the building blocks and the entire
architecture of a modern vision-based autonomous
navigation system, as shown in Figure II. The system
receives as input a target location the robot has to reach and
plans a path to that location (orange blocks). The path is then
followed using a suitable controller to govern the robot
dynamics (purple blocks). In vision-based navigation, the
state of the system and the external environment are not
known a priori, and must be estimated from sensor data. The
blocks in green represent sensing and robot state estimation
algorithms (typically executed at high-rate to provide state
feedback to the controller). The blocks in red and blue
instead lead to the estimation of the map of the environment
the robot is moving in, which is used to inform planning
algorithms (typically, both planning and mapping are
executed at a lower rate). VNAV covers all these modules
(the number above each module in Figure II corresponds to a
week in the schedule in Table I): while the perception
modules (blocks in red, green, blue) are presented in full
generality and are applicable to common sensing modalities
(e.g., cameras, lidars, IMU), the planning and control blocks
are tailored to agile drone navigation, which —contrarily to
wheeled platforms— allow highlighting the complexity of
navigation in 3D environments. The VNAV labs focus on
implementing each module in the architecture, and gradually
build towards an implementation of the entire visual-
navigation pipeline in Figure II.



TABLEI

COURSE STRUCTURE AND TOPICS

Week Lecture Topics Lab Topics
1 Introduction Lab 1: Linux, C++, Git
2 3D Geometry and Lie Groups  Lab 2: ROS
Geometric Control Lab 3: 3D trajectory following

5 2D Computer Vision Lab 5: Feature detection

6 2-view Geometry and Lab 6: Feature tracking and
RANSAC matching

7 Multi-View Geometry, Visual — Lab 7: GTSAM
Odometry, and Optimization

8 Place Recognition Lab 8: ML for robotics

) SLAM and Visual-Inertial Lab 9: SLAM

Navigation

(VI Active Research Areas
in Robot Perception

11 Robust Estimation and
Dense 3D Reconstruction

VA Semantic Understanding and
Geometric Deep learning

13 Guest Lectures

14 Students Presentations

Final project
Final project
Final project

Final project

The learning goals for the VNAV students consist in
developing the ability to:

o recall and understand basic mathematical notions in
numerical linear algebra, Lie groups, and optimization
on manifolds, and their application to visual navigation;

e solve novel problem instances (from computer vision
to trajectory optimization problems) using proof
techniques seen in class, and formally present their
derivation and results using proper terminology;

e read, understand, and critically analyze technical
papers and test state-of-the-art algorithms available in
standard open-source libraries;

e critically analyze the performance of given software
implementations, perform rigorous experimental
evaluation, and discuss the impact of different
algorithmic and parameter choices;

e improve existing methods, implement them on a real or
simulated platform, and demonstrate their effectiveness.

1I. Course Structure

The learning goals are achieved in a 14-week schedule
(Table II), which alternates frontal lectures with hands-on
labs, and concludes with an open-ended final project. We
describe each component of the VNAV schedule below.
Lectures are offered three times a week; each lecture is
designed to be 50 minutes long. The lectures are mostly
done on the board and cover the mathematical foundations,
but also alternate mathematical concepts on the board with
slides (typically presented at the beginning or the end of
lecture) to provide motivations or show applications of the
theoretical concepts. The lectures are supported by lecture
notes (also released at vmav.mit.edu/). Table 1 shows the
topics for each week of lecture; the table is color-coded
using the same colors used to describe the blocks in Figure
II. The color code highlights how the lectures cover the
entire architecture, while emphasizing aspects related to
perception and vision. The first two weeks are used to

refresh basic concepts in linear algebra and 3D geometry, as
well as provide a pragmatic introduction to manifolds and
Lie groups. Weeks 3 to 12 cover the core material of the
course, including geometric control, trajectory optimization,
2D and 3D computer vision (e.g., feature detection and
matching, 2-view and multi-view geometry, RANSAC),
optimization on manifolds, visual and visual-inertial
odometry, place recognition, and Simultaneous Localization
and Mapping (SLAM). These weeks conclude with
advanced topics, including robust estimation, dense 3D
reconstruction, and geometric deep learning for semantic
understanding. The last two weeks of VNAYV are devoted to
guest lectures and students’ presentations. Guest lecturers
from industry are invited to discuss other advanced topics or
to highlight applications of the VNAV material to real
problems; for instance, we invited speakers from Skydio to
showcase vision-based drone navigation, or speakers from
Boston Dynamics to discuss additional challenges arising
from legged locomotion (not covered in VNAYV).

Labs complement the theoretical foundations developed
in the lectures. VNAV includes 2-hour-long weekly labs
with hands-on activities. The first two labs are individual
and introduce key software tools used in VNAV (more
details in the “Hardware and Software Infrastructure”
section below), including Git [29] (for version control) and
ROS (the Robot Operating System) [30]. Moreover, these
introductory labs provide a refresher about C++ and Linux.
Starting from Lab 3, students form teams of 2 or 3, and work
together towards implementing instances of the autonomy
blocks in Figure II (we refer the reader to the color code
used in Figure II and Table I, that describes the
correspondence between labs and autonomy blocks).
Contrarily to introductory courses, the labs are designed to
exercise advanced open-source libraries (e.g., OpenCV [31],
GTSAM [32], ORB-SLAM [33-35], DBoW2 [36]) rather
than implementing capabilities from scratch, which more
closely mimics the typical robotics research and
development process. Moreover, the lab exercises stress
potential failure cases of existing algorithms and the
importance of designing trustworthy algorithms and
implementations to support safety critical applications of
autonomous vehicles. The labs rely on the platforms
discussed in the “Hardware and Software Infrastructure”
section below and alternate more abstract coding exercises
with deployment and testing on the robot and simulator. For
instance, Lab 3 includes a simpler control exercise based on
our Unity simulator, which aims at developing a geometric
control scheme to have the drone fly as quickly as possible
along a circular pattern. On the other hand, Lab 4 considers a
more realistic and compelling application scenario where the
students have to design a trajectory optimization scheme for
drone racing, where the drone has to traverse a sequence of
gates in the shortest time (see Figure I(b) and the following
short video youtu.be/ssgfN714STI for an example). Labs 5-9
introduce the students to four open-source libraries, OpenCV
[31], GTSAM [32], ORB-SLAM [33-35], DBoW2 [36],
which are broadly used by researchers and practitioners.



The course concludes with a 4-week-long final project.
The instructors provide final project ideas, grouped in three
types of projects:

e survey projects do not directly require implementation
but rather consist in reviewing and presenting technical
papers on topics that were not cover in the lectures and
labs; in particular, these projects are used to cover more
advanced topics in robotics research (e.g., novel
applications of deep learning to SLAM, localization in
challenging visual conditions);

e system projects consist in replicating an existing result
in the literature; these projects involve a substantial
amount of implementation and testing and may involve
the use of robotics platforms or standard benchmarking
datasets; these projects are often a good starting point
for students approaching robotics research and
exploring potential research opportunities. Moreover,
they align with existing international initiatives, such as
the ML reproducibility challenge [37];

e research projects target students who have already
started doing robotics research and may benefit from
making progress and getting early/external feedback on
their work. These projects are often student-driven, but
may also arise from project ideas proposed by the
instructors.

The final project ideas are typically inspired by real-
world use cases. For instance, multiple research projects
(e.g., mapping the MIT tunnels, multi-sensor calibration)
have been inspired by the DARPA Subterranean Challenge
[43], a research-oriented competition aimed at developing
autonomous systems capable of mapping underground
environments and reporting the location of elements of
interest (e.g., survivors).

The VNAYV structure is largely inspired by the CDIO
(Conceive Design Implement Operate) approach [38], in that
it features extensive group projects and project-based
learning, and provides opportunities for the students to
exercise technical knowledge as well as communication
skills. The final projects lead to a final report and
presentation, both designed to roughly mimic the publication
and conference presentation process. The report is done
using a standard robotics paper format and the evaluation is
similar to a peer review process in robotics. The final
projects are then presented to the rest of the students in a 20-
minute frontal presentation. The presentations for system
and research projects typically include videos and demo
showcasing the robotics systems and algorithms developed
during the final projects.

1. Resources and Grading

While the course is mostly self-contained, two main
textbooks are also suggested as a more in-depth complement
to the lecture notes. In particular, VNAV adopts Barfoot’s
“State Estimation for Robotics” book [27] and Yi et al.’s
“An Invitation to 3-D Vision: From Images to Geometric
Models” book [39]. Some portions of VNAYV are inspired by
Dellaert and Kaess’ monograph “Factor Graph for Robot

Perception” [40]. Finally, each lecture also provides pointers
to relevant references (e.g., tutorial/survey papers as well as
technical papers), which target specific approaches (e.g.,
polynomial trajectory optimization) or more recent topics
that are still subject of active research (e.g., graph neural
networks for robot perception).

The students are graded based on the lab exercises and
the final project. The lab exercises (also released at
vnav.mit.edu/) include a set of questions covering both
theoretical aspects (discussed during the lectures) and the
result of implementation and testing of algorithms (assigned
during the labs). Initial assignments (Lab 1-2) are individual,
while Labs 3-9 include a mix of team assignments and
individual assignments. The lab grades account for 65% of
the final grade, while the final project accounts for 25%.
Both labs and final project handouts outline a clear rubric for
grading. The remaining 10% of the grade is based on TA
and team-members’ evaluations: each student is assessed by
their teammates and the TAs in order to more fairly assess
their contribution to their team’s assignments.

HARDWARE AND SOFTWARE INFRASTRUCTURE

This section describes the hardware platform and the
simulator used in VNAV, as well as the software
infrastructure developed to support the course.

1. Hardware Platforms and Simulator

During the first two years, VNAV used a physical drone to
support the labs and the final projects. The platform has been
replaced by a photo-realistic simulator after the COVID-19
outbreak in 2020. We describe both below.

The hardware platform was based on the Intel Aero
Ready To Fly quadrotor [41] —see Figure I(a)— which is
customizable and can be easily interfaced with the Robot
Operating System (ROS) and standard motion capture
systems (e.g., OptiTrack or Vicon). The quadrotor is
equipped with an embedded real-time flight controller
running the PX4 Autopilot [42] combined with a more
capable computer (the Intel Aero Compute Board) dedicated
to running ROS. The quadrotor is equipped with an Inertial
Measurement Unit (IMU), and a RealSense depth camera.
The drone, which has been recently discontinued, costed
around $2,500. We are currently working on developing a
custom platform, with similar sensing and actuation, but
using a more powerful NVIDIA Xavier NX [44] computer.
An interesting alternative is the PiDrone platform [18].

After the COVID-19 outbreak, VNAV’s labs have
transitioned to use a photo-realistic Unity-based simulator,
named TESSE, which has been developed in collaboration
with MIT Lincoln Laboratory and has been also released
open-source at github.com/MIT-TESSE. In the context of
VNAYV, we have adapted TESSE to model realistic drone
dynamics, simulate sensor data found on typical quadrotors
(i.e., IMU and depth cameras), and re-create challenging
testing scenarios based on a drone racing application. Figure
I(b) reports a snapshot from the simulator, showcasing the
drone and the gates (in red) used for drone racing. The



simulator has enabled a virtual offering of VNAYV during the
COVID-19 pandemic and may be also used in future (larger-
scale) online offerings of the course.

1I. Software Infrastructure

The VNAV software infrastructure relies on GNU/Linux as
an operating system (Ubuntu distribution), and uses ROS
(the Robot Operating System) [30] as a middleware. Version
control and software distribution is based on Git [29]. These
tools are commonly adopted in robotics research and
development. All coding assignments are based on C++.

Within this environment, we make use of popular open-
source libraries to support the different VNAV modules. The
2D computer vision algorithms rely on OpenCV [31]. The
3D geometric computer vision algorithms (from RANSAC
to on-manifold optimization) rely on OpenGV [45] and
GTSAM [32]. The trajectory optimization module relies on
an open-source library from ETH [46]. The place
recognition lab uses DBoW?2 [36], which implements a bag-
of-visual-words approach for place recognition. Finally, the
SLAM lab relies on ORB-SLAM3 [35] as a library for
visual and visual-inertial localization and mapping.

ASSESSMENT AND DISCUSSION

This section provides an assessment of VNAV’s learning
outcomes and discusses potential improvements.

1L Quantitative Assessment

Figure III reports aggregate statistics obtained from the
student responses to the end-of-semester course evaluations.
Figure III focuses on the evaluations measuring VNAV’s
impact in increasing the students’ (i) interest on the subject
(blue bars), (ii)) knowledge spectrum (magenta bars), and
(iii) ability to perform research (orange and yellow bars).
Data are cumulative across all the course’s offerings at MIT
and the University of Michigan. The MIT data spans the
period 2018-2021 (4 offerings), including 60 student
evaluations (average response rate was 70%); the University
of Michigan data was collected in 2021 (1 offering),
including 36 student evaluations (response rate was 85%).
The students responded with either Strongly Agree (SA),
Agree (A), Neutral (N), Disagree (D), or Strongly Disagree
(D). We observe that across all 4 subject questions (A to D
above), at least 87-92% of the students responded with SA
or A, at most 1-4% of the students responded with D or SD,
and the rest 3-8% of the students responded with N.

Several observations are in order. First, VNAV
increased the students’ interest on the topic of vision-based
autonomous navigation (cf. blue bars in Figure III). The
students quoted in their written evaluations their excitement
for being introduced to a whole new field. We believe that
the dual focus of the course on theory and practice was one
of the major reasons that helped increase the students’
interest in the subject; we also believe that connecting labs
and final projects to real-world applications, ranging from
the DARPA Subterrancan Challenge [43], to Mars rovers

and autonomous drones’ applications has contributed to
increasing the students’ interest.

M Increased my interest in the subject

B Increased my understanding of the subject matter
B Increased my ability to apply math and science knowledge to engineering problems
Increased my ability to apply, formulate, and solve engineering problems

Number of Students

Neutral

FIGURE III

END-OF-SEMESTER COURSE EVALUATIONS: SUMMARY STATISTICS

Strongly Agree Agree
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Second, VNAV largely increased the students’
knowledge spectrum on autonomous navigation (cf. magenta
bars in Figure III). We believe that the course’s focus on
teaching the entire visual-navigation pipeline allowed the
students to acquire a holistic perspective of how real-world
robots can perceive and navigate their surroundings. The
students frequently quoted the valuable experience of both
working on theory exercises and, at the same time,
implementing software to enable real-time perception
capabilities in real-world navigation scenarios.

Third, VNAYV increased the students’ ability to apply
mathematical and scientific knowledge, formulate, and solve
complex engineering problems (cf. yellow and orange bars
in Figure III), which are key prerequisites for research. This
observation is also supported by the fact that in the first 3
offerings of VNAV (from 2018 to 2020), students' final
projects led to 12 peer-reviewed publications in top robotics
conferences (such as ICRA, IROS, ACC, and ISER) and
journals (IEEE Transactions on Robotics and IEEE Robotics
and Automation Letters). VNAV students also developed
and released two major open-source software libraries. The
anonymous feedback provided in the subject evaluations
suggests that VNAV has been successful in assisting young
robotics researchers to further hone their research skills and
ideas. That being said, additional data and further analysis
are needed to formally establish a causal link between our
approach in VNAYV and students' research results, which is
clearly impacted by factors external to VNAYV and is biased
by the fact that the student sample already includes research-
inclined students with interest towards robotics.

1. Potential Improvements

Improving the software and hardware infrastructure.
The VNAV software infrastructure has been developed and
refined over the 4 years the course has been offered at MIT.
While the feedback from the students has been increasingly
positive about the labs, it might be desirable to streamline
the software installation and setup process. For instance,
some students might spend time trying to compile specific
pieces of software on their machines and, while we believe
this is an important experience towards robotics research, it
might detract from the time spent towards the key learning
goals. A potential solution is to use Docker [49] to improve
software portability across platforms. Regarding the



hardware infrastructure, it would be desirable to develop
cheaper drone platforms to broaden access to the course. An
interesting effort in this direction is the PiDrone [18].

Undergraduate offerings and outreach. Currently,
VNAV targets first-year graduate students and senior
undergraduates with prior exposure to robotics. However, it
would be interesting to broaden participation and adapt the
course to be offered to undergraduates and high-school
students with no robotics experience. In future offerings, we
plan to open the MIT offering of VNAV to undergraduate
students with background in control theory, linear algebra,
optimization, and programming. We already had good
success with the seniors attending VNAV and we believe
that splitting the labs into baseline goals (targeting
undergraduates) and advanced goals (targeting graduate
students) might be an effective way to be more inclusive
towards undergraduate students. Redesigning a selected
portion of the course to support high-school outreach
activities is more challenging but feasible. For instance,
BWSI [26] has offered courses involving visual-navigation
with drones, using a platform (similar to the one in Figure
I(a)) designed in collaboration with the VNAYV staff in 2018.

Creating an open-source VNAV community. VNAV
has been offered in multiple universities, including MIT, the
University of Michigan, and TUM. In the future, it would be
desirable to establish bridges across the different offerings.
A potential starting point is to create a joint repository of
final projects, to increase the options the students can choose
from and to avoid duplicating efforts in developing the
project ideas and background material. For instance, the
2021 offering at the University of Michigan included a novel
project on perception-aware Model Predictive Control
(including description and background material) that might
be useful for future offerings at other universities

Visualization, visualization, visualization. In past
VNAYV offerings, we used GeoGebra [50] to visualize key
ideas when discussing optimization on manifolds. Students
were able to interact with our tool through the GeoGebra
web interface. This tool allowed students to visualize and
interact with abstract mathematical concepts such as tangent
spaces, tangent vectors, retractions, and geodesics.
Additionally, we also used g2o [51] (and its GUI) in the
classroom to visualize the behavior of various optimization
methods for solving SLAM. The feedback provided by the
students indicate that these visualization tools helped them
grasp and internalize key concepts quickly, accurately, and
intuitively. In future offerings of VNAYV, we plan to further
explore mathematical visualization, interactive learning, and
live demonstrations using tools such as GeoGebra [50],
Manim [52], and g20 [51].

CONCLUSION

This paper reported on the development, execution, and
open-sourcing of the course “Visual Navigation for
Autonomous Vehicles” (VNAV) offered at MIT in the Falls
of 2018-2021, which has also been adopted (with
modifications) in the curricula at the University of Michigan

and the Technical University of Munich. The course targets
first-year graduate students and senior undergraduates with
prior exposure to robotics. VNAYV has the goal of preparing
the students to perform research in robotics and vision-based
navigation, with emphasis on drones and self-driving cars.
The lectures cover a broad set of theoretical topics, including
geometric control and trajectory optimization, 2D and 3D
computer vision, visual and visual-inertial odometry, place
recognition, simultaneous localization and mapping, and
geometric deep learning for perception. The labs provide
hands-on activities to ground the theoretical concepts and
expose the students to advanced robotics platforms,
simulators, and open-source software libraries. The course
culminates in an open-ended final project. The course
material is now publicly available on MIT OpenCourseWare
and at vaav.mit.edu/.
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