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Abstract - This paper reports on the development, 
execution, and open-sourcing of a new robotics course at 
MIT. The course is a modern take on “Visual Navigation 
for Autonomous Vehicles” (VNAV) and targets first-year 
graduate students and senior undergraduates with prior 
exposure to robotics. VNAV has the goal of preparing 
the students to perform research in robotics and vision-
based navigation, with emphasis on drones and self-
driving cars. The course spans the entire autonomous 
navigation pipeline; as such, it covers a broad set of 
topics, including geometric control and trajectory 
optimization, 2D and 3D computer vision, visual and 
visual-inertial odometry, place recognition, simultaneous 
localization and mapping, and geometric deep learning 
for perception. VNAV has three key features. First, it 
bridges traditional computer vision and robotics courses 
by exposing the challenges that are specific to embodied 
intelligence, e.g., limited computation and need for just-
in-time and robust perception to close the loop over 
control and decision making. Second, it strikes a balance 
between depth and breadth by combining rigorous 
technical notes (including topics that are less explored in 
typical robotics courses, e.g., on-manifold optimization) 
with slides and videos showcasing the latest research 
results. Third, it provides a compelling approach to 
hands-on robotics education by leveraging a physical 
drone platform (mostly suitable for small residential 
courses) and a photo-realistic Unity-based simulator 
(open-source and scalable to large online courses). 
VNAV has been offered at MIT in the Falls of 2018-2021 
and is now publicly available on MIT OpenCourseWare 
(OCW) and at vnav.mit.edu/.  
 
Index Terms – Open-source Course Material, Project-based 
Learning, Robotics and Computer Vision Education 

INTRODUCTION 

Robotics and autonomous systems are steadily transforming 
society by revolutionizing transportation, manufacturing, 
supply chain logistics, aviation, disaster response and 
national security, among other domains.  

 

 
                    (a) Drone Platform 

  
                      (b) Unity-based Simulator 

FIGURE I 
HARDWARE PLATFORM & SIMULATION INFRASTRUCTURE USED IN VNAV 

 
This fast-paced transformation puts an increasing and urgent 
emphasis on training the next generation of engineers and 
scientists that will be in charge of conceiving, designing, 
implementing, and operating these systems. 

Challenges and opportunities of robotics education. 
Robotics education poses novel challenges to educators. 
First, robotics education cuts across multiple disciplines 
(e.g., computer science, electrical/mechanical/aerospace 
engineering, applied mathematics) and research areas (e.g., 
computer vision, machine learning, control theory), hence 
any single-semester course has to find a suitable trade-off 
between depth and breadth, as well as between theory and 



applications. Second, robotics research and applications are 
advancing at an ever-increasing pace, hence challenging 
educators to continuously adjust the learning objectives to 
keep up with the changing demands of a flourishing job 
market. For instance, the last decade has simultaneously 
witnessed a boom in self-driving applications and a radical 
paradigm shift where model-based approaches have been 
challenged by learning-based data-driven methods. Third, 
advanced robotics applications often require multiple 
sensors (e.g., 3D lidars, commercial RGB-D cameras) and 
powerful embedded computers that are often too expensive 
to purchase and maintain for residential project-based 
education and become inadequate for online offerings. 

At the same time, these challenges offer unprecedented 
opportunities for students and educators. First, the fact that 
robotics spans multiple communities and disciplines makes 
it a natural playground to exercise foundational knowledge 
(e.g., linear algebra, optimization, control) while reinforcing 
it through deliberate practice (e.g., implementing and testing 
algorithms on a robot). Second, the presence of a vibrant 
research community and the growing interest towards 
autonomous systems from the media provide a natural 
motivation for students, by exposing a clear set of 
stakeholders that can use the expertise developed in robotics 
courses. Finally, one realizes that the need for sensors and 
embedded computing is a “feature” rather than a “bug”: 
robotics is the science of embodied intelligence and the goal 
of processing information in real-time subject to limited 
computation is an essential ingredient rather than an 
afterthought. In addition to this pedagogical opportunity, 
concerns about the cost of sensors and computation have 
been partially alleviated by two trends: (i) advances in chip 
and sensor design –triggered by their use in commercial 
products, such as smart phones– have led to a new 
generation of sensors and computers whose cost and form-
factor become increasingly compatible with residential 
education; (ii) advances in simulation have led to the 
development of lightweight and photo-realistic simulators, 
which are now commonly used in industry and academia to 
exercise robotics algorithms and implementations. 

The untapped potential of visual navigation. Within 
the broad landscape of robotics education, visual navigation 
(where “visual” is meant in a broad sense to include 
information-rich onboard sensors such as cameras and 3D 
lidars) has quickly become a fundamental area of expertise. 
Visual navigation powers modern autonomous vehicles, 
from self-driving cars, to drones for disaster response, last-
mile delivery, and precision agriculture. However, few 
courses are currently capturing the complexity and untapped 
educational opportunities in this area. Expertise contributing 
to visual navigation is fragmented across different courses 
focusing on robotics and control, computer vision, and 
machine learning. This fragmentation has several downsides: 
(i) traditional robotics and control courses often prefer 
focusing on simpler sensors (e.g., 2D lidars or ultrasonic 
sensors), hence creating a disconnect with many modern 
robotics applications; (ii) computer vision courses typically 

do not “close the loop” over control and actuation, hence de-
emphasizing the importance of just-in-time computation; 
and (iii) machine learning courses typically do not focus on 
robotics applications, hence missing an opportunity to stress 
the implications of learning-induced failures on safety 
critical applications and also creating a disconnect with 
traditional model-based approaches in robotics and vision. 

Contribution. In this paper, we attempt to bridge this 
gap by reporting on the development, execution, and open-
sourcing of a new robotics course at MIT. The course is a 
modern take on “Visual Navigation for Autonomous 
Vehicles” (VNAV) and targets first-year graduate students 
and senior undergraduates with prior exposure to robotics. 
VNAV aims at preparing students to perform research in 
robotics and vision-based navigation (or, more generally, to 
design, develop, and operate advanced robotics systems), 
with emphasis on drones and self-driving cars. The course 
covers a broad set of topics, including geometric control and 
trajectory optimization, 2D and 3D computer vision, visual 
and visual-inertial odometry, place recognition, 
simultaneous localization and mapping, and geometric deep 
learning for perception. VNAV has three key features: 
• it bridges traditional computer vision and robotics 

courses by exposing the challenges that are specific to 
embodied intelligence, e.g., limited computation and 
need for just-in-time processing and robust perception 
to close the loop over control and decision making. This 
is done by combining selected topics in control with 
advanced topics in robot vision and perception;  

• it strikes a balance between depth and breadth by 
combining rigorous technical notes with slides and 
videos showcasing recent research advances. For 
instance, the course starts with a basic introduction to 
3D geometry, using a Lie-group theoretic lens, touches 
on advanced topics, such as optimization on manifolds, 
and stretches to the latest advances in geometric deep 
learning and graph neural networks;  

• it provides a compelling approach for hands-on robotics 
education by leveraging a physical drone platform 
(mostly suitable for small residential courses) and a 
photo-realistic Unity-based simulator (open-source and 
scalable to large online courses). 
In the rest of this paper, we discuss the VNAV 

curriculum, software and hardware infrastructure, and we 
report on students’ feedback and lessons learned. VNAV has 
been offered at MIT in 2018-2021 and is now publicly 
available on MIT OpenCourseWare (OCW) [28] and at 
vnav.mit.edu/. Moreover, courses based on VNAV have 
been also offered at the University of Michigan and at the 
Technical University of Munich in 2021. 

RELATED COURSES 

Robotics education is a well-studied topic. An IEEE Xplore 
search for the keywords “robotics & education & course” 
shows more than 650 publications after the year 2000. 

The existing literature has extensively stressed the 
importance of hands-on labs [1]-[3]. Moreover, the use of 



final projects and competitions has been understood as a 
powerful approach to improve knowledge assimilation, and 
to stress that there can be more than one correct answer to a 
problem [4]-[6]. Researchers and educators have also 
investigated flipped classroom approaches [7], where the 
classroom time has a stronger focus on hands-on activities. 
Several courses are at the introductory level and target first-
year undergraduate students [8] or high school students [9], 
where the goal is retention rather than preparing the students 
for research, development, and operation of advanced 
robotics systems. Other educators have proposed multi-
semester courses to deal with the breadth of robotics topics 
to cover [10]. Traditional robotics courses focus on control 
algorithms and use simple sensors and actuators (e.g., LEGO 
Mindstorm [11]). Efforts to increase scalability and reduce 
costs have focused on the development of simulators [12] or 
web-based technologies to enhance learning [13], which 
however have mostly targeted robotics manipulation. 

The literature on visual navigation education is sparser 
and more recent. If we also add the keyword “computer 
vision” to the IEEE Xplore search mentioned above, then the 
number of results drops to 36. Few courses focus on 
advanced vision-based navigation due to the challenges 
mentioned in the introduction. Early attempts to infuse 
visual-navigation in mobile robotics [14] trace back to 
before the “deep learning revolution” and before most of the 
latest advanced in visual localization and mapping. Maxwell 
and Meeden [14] focus on early vision (e.g., edge detection, 
stereo depth). Nitschke et al. [15] propose a one-day contest 
on automatic visual drone navigation, but mostly focuses on 
control aspects. Paull et al. [16] propose “Duckietown”, a 
course meant to exercise vision-based navigation for self-
driving cars; the course has a broader scope and while it has 
the advantage of leveraging relatively inexpensive robots 
(e.g., a differential drive wheeled platform equipped with a 
Raspberry PI and a camera), these robots do not have 
enough computation to exercise advanced vision-based 
localization and mapping algorithms. Brand et al. [17] and 
Eller et al. [18] develop the “PiDrone” platform, an exciting 
low-cost aerial platform for robotics education. The 
autonomy stack is developed in Python and uses the Robot 
Operating System (ROS). Other efforts have focused on 
middle school and high school outreach, with emphasis on 
mobile robotics [2], [3] and manipulation [19]. 

Finally, it is worth reviewing relevant online courses 
and material. Thrun’s seminal course on “Artificial 
Intelligence for Robotics” [20] on Udacity covers selected 
topics in planning, localization, tracking and control using 
self-driving cars as the main motivation. Daniilidis and Shi 
offer the course “Robotics: Perception” [21] on Coursera; 
the course covers from basic geometric and computer vision 
to multi-view geometry. Waslander and Kelly offer a “Self-
Driving Cars Specialization” [22] on Coursera which 
leverages an advanced driving simulator. Roy et al. [47] 
offer the course “Flying Car and Autonomous Flight 
Engineer” on Udacity, which focuses on control, planning, 
and GPS-based state estimation. Stachniss [48] focuses on 

mapping for robotics, with full lectures and short online 
videos. Recent courses on edX share similar motivations as 
ours but differ in the selection of topics [23], [24]. It is also 
worth mentioning broader open-source initiatives, such as 
the F1Tenth initiative [25] and BWSI (Beaver Works 
Summer Institute) [26], that provide introductory-level 
courses for seniors and K-12 students. 

THE VNAV CURRICULUM 

I. Prerequisites, Topics, and Learning Goals 

VNAV assumes basic familiarity with C++ programming 
(e.g., syntax, function calls, compilation and execution of 
programs using CMake), linear algebra (e.g., matrix 
operations, eigenvalues/eigenvectors, matrix factorization), 
and control theory (e.g., dynamical systems, PID control). 
 

 
FIGURE II 

CANONICAL ARCHITECTURE USED IN VNAV 
 

The course covers the building blocks and the entire 
architecture of a modern vision-based autonomous 
navigation system, as shown in Figure II. The system 
receives as input a target location the robot has to reach and 
plans a path to that location (orange blocks). The path is then 
followed using a suitable controller to govern the robot 
dynamics (purple blocks). In vision-based navigation, the 
state of the system and the external environment are not 
known a priori, and must be estimated from sensor data. The 
blocks in green represent sensing and robot state estimation 
algorithms (typically executed at high-rate to provide state 
feedback to the controller). The blocks in red and blue 
instead lead to the estimation of the map of the environment 
the robot is moving in, which is used to inform planning 
algorithms (typically, both planning and mapping are 
executed at a lower rate). VNAV covers all these modules 
(the number above each module in Figure II corresponds to a 
week in the schedule in Table I): while the perception 
modules (blocks in red, green, blue) are presented in full 
generality and are applicable to common sensing modalities 
(e.g., cameras, lidars, IMU), the planning and control blocks 
are tailored to agile drone navigation, which –contrarily to 
wheeled platforms– allow highlighting the complexity of 
navigation in 3D environments. The VNAV labs focus on 
implementing each module in the architecture, and gradually 
build towards an implementation of the entire visual-
navigation pipeline in Figure II. 
     



TABLE I 
COURSE STRUCTURE AND TOPICS  

Week  Lecture Topics Lab Topics 
1 
2 

Introduction  
3D Geometry and Lie Groups 

Lab 1: Linux, C++, Git 
Lab 2: ROS 

3 Geometric Control Lab 3: 3D trajectory following 
4 Trajectory Optimization Lab 4: 3D trajectory optimization 
5 
6 
 

7 
 

2D Computer Vision 
2-view Geometry and 
RANSAC 
Multi-View Geometry, Visual 
Odometry, and Optimization 

Lab 5: Feature detection 
Lab 6: Feature tracking and 
matching 
Lab 7: GTSAM 
 

8 
9 
 

Place Recognition  
SLAM and Visual-Inertial 
Navigation 

Lab 8: ML for robotics 
Lab 9: SLAM 
 

10 
 

11 
 

12 
 

Active Research Areas 
in Robot Perception 
Robust Estimation and  
Dense 3D Reconstruction 
Semantic Understanding and 
Geometric Deep learning 

Final project  
 
Final project 
 
Final project 
 

13 
14 

Guest Lectures  
Students Presentations 

Final project 
 

 
The learning goals for the VNAV students consist in 

developing the ability to: 
• recall and understand basic mathematical notions in 

numerical linear algebra, Lie groups, and optimization 
on manifolds, and their application to visual navigation; 

• solve novel problem instances (from computer vision 
to trajectory optimization problems) using proof 
techniques seen in class, and formally present their 
derivation and results using proper terminology; 

• read, understand, and critically analyze technical 
papers and test state-of-the-art algorithms available in 
standard open-source libraries; 

• critically analyze the performance of given software 
implementations, perform rigorous experimental 
evaluation, and discuss the impact of different 
algorithmic and parameter choices; 

• improve existing methods, implement them on a real or 
simulated platform, and demonstrate their effectiveness. 

II. Course Structure 

The learning goals are achieved in a 14-week schedule 
(Table II), which alternates frontal lectures with hands-on 
labs, and concludes with an open-ended final project. We 
describe each component of the VNAV schedule below. 

Lectures are offered three times a week; each lecture is 
designed to be 50 minutes long. The lectures are mostly 
done on the board and cover the mathematical foundations, 
but also alternate mathematical concepts on the board with 
slides (typically presented at the beginning or the end of 
lecture) to provide motivations or show applications of the 
theoretical concepts. The lectures are supported by lecture 
notes (also released at vnav.mit.edu/). Table I shows the 
topics for each week of lecture; the table is color-coded 
using the same colors used to describe the blocks in Figure 
II. The color code highlights how the lectures cover the 
entire architecture, while emphasizing aspects related to 
perception and vision. The first two weeks are used to 

refresh basic concepts in linear algebra and 3D geometry, as 
well as provide a pragmatic introduction to manifolds and 
Lie groups. Weeks 3 to 12 cover the core material of the 
course, including geometric control, trajectory optimization, 
2D and 3D computer vision (e.g., feature detection and 
matching, 2-view and multi-view geometry, RANSAC), 
optimization on manifolds, visual and visual-inertial 
odometry, place recognition, and Simultaneous Localization 
and Mapping (SLAM). These weeks conclude with 
advanced topics, including robust estimation, dense 3D 
reconstruction, and geometric deep learning for semantic 
understanding. The last two weeks of VNAV are devoted to 
guest lectures and students’ presentations. Guest lecturers 
from industry are invited to discuss other advanced topics or 
to highlight applications of the VNAV material to real 
problems; for instance, we invited speakers from Skydio to 
showcase vision-based drone navigation, or speakers from 
Boston Dynamics to discuss additional challenges arising 
from legged locomotion (not covered in VNAV).  

Labs complement the theoretical foundations developed 
in the lectures. VNAV includes 2-hour-long weekly labs 
with hands-on activities. The first two labs are individual 
and introduce key software tools used in VNAV (more 
details in the “Hardware and Software Infrastructure” 
section below), including Git [29] (for version control) and 
ROS (the Robot Operating System) [30]. Moreover, these 
introductory labs provide a refresher about C++ and Linux. 
Starting from Lab 3, students form teams of 2 or 3, and work 
together towards implementing instances of the autonomy 
blocks in Figure II (we refer the reader to the color code 
used in Figure II and Table I, that describes the 
correspondence between labs and autonomy blocks). 
Contrarily to introductory courses, the labs are designed to 
exercise advanced open-source libraries (e.g., OpenCV [31], 
GTSAM [32], ORB-SLAM [33-35], DBoW2 [36]) rather 
than implementing capabilities from scratch, which more 
closely mimics the typical robotics research and 
development process. Moreover, the lab exercises stress 
potential failure cases of existing algorithms and the 
importance of designing trustworthy algorithms and 
implementations to support safety critical applications of 
autonomous vehicles. The labs rely on the platforms 
discussed in the “Hardware and Software Infrastructure” 
section below and alternate more abstract coding exercises 
with deployment and testing on the robot and simulator. For 
instance, Lab 3 includes a simpler control exercise based on 
our Unity simulator, which aims at developing a geometric 
control scheme to have the drone fly as quickly as possible 
along a circular pattern. On the other hand, Lab 4 considers a 
more realistic and compelling application scenario where the 
students have to design a trajectory optimization scheme for 
drone racing, where the drone has to traverse a sequence of 
gates in the shortest time (see Figure I(b) and the following 
short video youtu.be/ssgfN7l4STI for an example). Labs 5-9 
introduce the students to four open-source libraries, OpenCV 
[31], GTSAM [32], ORB-SLAM [33-35], DBoW2 [36], 
which are broadly used by researchers and practitioners.   



The course concludes with a 4-week-long final project. 
The instructors provide final project ideas, grouped in three 
types of projects: 
• survey projects do not directly require implementation 

but rather consist in reviewing and presenting technical 
papers on topics that were not cover in the lectures and 
labs; in particular, these projects are used to cover more 
advanced topics in robotics research (e.g., novel 
applications of deep learning to SLAM, localization in 
challenging visual conditions); 

• system projects consist in replicating an existing result 
in the literature; these projects involve a substantial 
amount of implementation and testing and may involve 
the use of robotics platforms or standard benchmarking 
datasets; these projects are often a good starting point 
for students approaching robotics research and 
exploring potential research opportunities. Moreover, 
they align with existing international initiatives, such as 
the ML reproducibility challenge [37]; 

• research projects target students who have already 
started doing robotics research and may benefit from 
making progress and getting early/external feedback on 
their work. These projects are often student-driven, but 
may also arise from project ideas proposed by the 
instructors.  
The final project ideas are typically inspired by real-

world use cases. For instance, multiple research projects 
(e.g., mapping the MIT tunnels, multi-sensor calibration) 
have been inspired by the DARPA Subterranean Challenge 
[43], a research-oriented competition aimed at developing 
autonomous systems capable of mapping underground 
environments and reporting the location of elements of 
interest (e.g., survivors). 

The VNAV structure is largely inspired by the CDIO 
(Conceive Design Implement Operate) approach [38], in that 
it features extensive group projects and project-based 
learning, and provides opportunities for the students to 
exercise technical knowledge as well as communication 
skills. The final projects lead to a final report and 
presentation, both designed to roughly mimic the publication 
and conference presentation process. The report is done 
using a standard robotics paper format and the evaluation is 
similar to a peer review process in robotics. The final 
projects are then presented to the rest of the students in a 20-
minute frontal presentation. The presentations for system 
and research projects typically include videos and demo 
showcasing the robotics systems and algorithms developed 
during the final projects.  

II. Resources and Grading 

While the course is mostly self-contained, two main 
textbooks are also suggested as a more in-depth complement 
to the lecture notes. In particular, VNAV adopts Barfoot’s 
“State Estimation for Robotics” book [27] and Yi et al.’s 
“An Invitation to 3-D Vision: From Images to Geometric 
Models” book [39]. Some portions of VNAV are inspired by 
Dellaert and Kaess’ monograph “Factor Graph for Robot 

Perception” [40]. Finally, each lecture also provides pointers 
to relevant references (e.g., tutorial/survey papers as well as 
technical papers), which target specific approaches (e.g., 
polynomial trajectory optimization) or more recent topics 
that are still subject of active research (e.g., graph neural 
networks for robot perception). 

The students are graded based on the lab exercises and 
the final project. The lab exercises (also released at 
vnav.mit.edu/) include a set of questions covering both 
theoretical aspects (discussed during the lectures) and the 
result of implementation and testing of algorithms (assigned 
during the labs). Initial assignments (Lab 1-2) are individual, 
while Labs 3-9 include a mix of team assignments and 
individual assignments. The lab grades account for 65% of 
the final grade, while the final project accounts for 25%. 
Both labs and final project handouts outline a clear rubric for 
grading. The remaining 10% of the grade is based on TA 
and team-members’ evaluations: each student is assessed by 
their teammates and the TAs in order to more fairly assess 
their contribution to their team’s assignments.  

HARDWARE AND SOFTWARE INFRASTRUCTURE 

This section describes the hardware platform and the 
simulator used in VNAV, as well as the software 
infrastructure developed to support the course. 

I. Hardware Platforms and Simulator 

During the first two years, VNAV used a physical drone to 
support the labs and the final projects. The platform has been 
replaced by a photo-realistic simulator after the COVID-19 
outbreak in 2020. We describe both below. 

The hardware platform was based on the Intel Aero 
Ready To Fly quadrotor [41] –see Figure I(a)– which is 
customizable and can be easily interfaced with the Robot 
Operating System (ROS) and standard motion capture 
systems (e.g., OptiTrack or Vicon). The quadrotor is 
equipped with an embedded real-time flight controller 
running the PX4 Autopilot [42] combined with a more 
capable computer (the Intel Aero Compute Board) dedicated 
to running ROS. The quadrotor is equipped with an Inertial 
Measurement Unit (IMU), and a RealSense depth camera. 
The drone, which has been recently discontinued, costed 
around $2,500. We are currently working on developing a 
custom platform, with similar sensing and actuation, but 
using a more powerful NVIDIA Xavier NX [44] computer. 
An interesting alternative is the PiDrone platform [18]. 

After the COVID-19 outbreak, VNAV’s labs have 
transitioned to use a photo-realistic Unity-based simulator, 
named TESSE, which has been developed in collaboration 
with MIT Lincoln Laboratory and has been also released 
open-source at github.com/MIT-TESSE. In the context of 
VNAV, we have adapted TESSE to model realistic drone 
dynamics, simulate sensor data found on typical quadrotors 
(i.e., IMU and depth cameras), and re-create challenging 
testing scenarios based on a drone racing application. Figure 
I(b) reports a snapshot from the simulator, showcasing the 
drone and the gates (in red) used for drone racing. The 



simulator has enabled a virtual offering of VNAV during the 
COVID-19 pandemic and may be also used in future (larger-
scale) online offerings of the course.  

II. Software Infrastructure 

The VNAV software infrastructure relies on GNU/Linux as 
an operating system (Ubuntu distribution), and uses ROS 
(the Robot Operating System) [30] as a middleware. Version 
control and software distribution is based on Git [29]. These 
tools are commonly adopted in robotics research and 
development. All coding assignments are based on C++.  

Within this environment, we make use of popular open-
source libraries to support the different VNAV modules. The 
2D computer vision algorithms rely on OpenCV [31]. The 
3D geometric computer vision algorithms (from RANSAC 
to on-manifold optimization) rely on OpenGV [45] and 
GTSAM [32]. The trajectory optimization module relies on 
an open-source library from ETH [46]. The place 
recognition lab uses DBoW2 [36], which implements a bag-
of-visual-words approach for place recognition. Finally, the 
SLAM lab relies on ORB-SLAM3 [35] as a library for 
visual and visual-inertial localization and mapping. 

ASSESSMENT AND DISCUSSION 

This section provides an assessment of VNAV’s learning 
outcomes and discusses potential improvements. 

I. Quantitative Assessment 

Figure III reports aggregate statistics obtained from the 
student responses to the end-of-semester course evaluations.  
Figure III focuses on the evaluations measuring VNAV’s 
impact in increasing the students’ (i) interest on the subject 
(blue bars), (ii) knowledge spectrum (magenta bars), and 
(iii) ability to perform research (orange and yellow bars).  
Data are cumulative across all the course’s offerings at MIT 
and the University of Michigan.  The MIT data spans the 
period 2018-2021 (4 offerings), including 60 student 
evaluations (average response rate was 70%); the University 
of Michigan data was collected in 2021 (1 offering), 
including 36 student evaluations (response rate was 85%). 
The students responded with either Strongly Agree (SA), 
Agree (A), Neutral (N), Disagree (D), or Strongly Disagree 
(D). We observe that across all 4 subject questions (A to D 
above), at least 87-92% of the students responded with SA 
or A, at most 1-4% of the students responded with D or SD, 
and the rest 3-8% of the students responded with N. 

Several observations are in order. First, VNAV 
increased the students’ interest on the topic of vision-based 
autonomous navigation (cf. blue bars in Figure III).  The 
students quoted in their written evaluations their excitement 
for being introduced to a whole new field. We believe that 
the dual focus of the course on theory and practice was one 
of the major reasons that helped increase the students’ 
interest in the subject; we also believe that connecting labs 
and final projects to real-world applications, ranging from 
the DARPA Subterranean Challenge [43], to Mars rovers 

and autonomous drones’ applications has contributed to 
increasing the students’ interest.  
 

 
FIGURE III 

END-OF-SEMESTER COURSE EVALUATIONS: SUMMARY STATISTICS 
 
Second, VNAV largely increased the students’ 

knowledge spectrum on autonomous navigation (cf. magenta 
bars in Figure III). We believe that the course’s focus on 
teaching the entire visual-navigation pipeline allowed the 
students to acquire a holistic perspective of how real-world 
robots can perceive and navigate their surroundings. The 
students frequently quoted the valuable experience of both 
working on theory exercises and, at the same time, 
implementing software to enable real-time perception 
capabilities in real-world navigation scenarios.   

Third, VNAV increased the students’ ability to apply 
mathematical and scientific knowledge, formulate, and solve 
complex engineering problems (cf. yellow and orange bars 
in Figure III), which are key prerequisites for research. This 
observation is also supported by the fact that in the first 3 
offerings of VNAV (from 2018 to 2020), students' final 
projects led to 12 peer-reviewed publications in top robotics 
conferences (such as ICRA, IROS, ACC, and ISER) and 
journals (IEEE Transactions on Robotics and IEEE Robotics 
and Automation Letters). VNAV students also developed 
and released two major open-source software libraries. The 
anonymous feedback provided in the subject evaluations 
suggests that VNAV has been successful in assisting young 
robotics researchers to further hone their research skills and 
ideas. That being said, additional data and further analysis 
are needed to formally establish a causal link between our 
approach in VNAV and students' research results, which is 
clearly impacted by factors external to VNAV and is biased 
by the fact that the student sample already includes research-
inclined students with interest towards robotics. 

II. Potential Improvements 

Improving the software and hardware infrastructure. 
The VNAV software infrastructure has been developed and 
refined over the 4 years the course has been offered at MIT. 
While the feedback from the students has been increasingly 
positive about the labs, it might be desirable to streamline 
the software installation and setup process. For instance, 
some students might spend time trying to compile specific 
pieces of software on their machines and, while we believe 
this is an important experience towards robotics research, it 
might detract from the time spent towards the key learning 
goals. A potential solution is to use Docker [49] to improve 
software portability across platforms. Regarding the 



hardware infrastructure, it would be desirable to develop 
cheaper drone platforms to broaden access to the course. An 
interesting effort in this direction is the PiDrone [18]. 

Undergraduate offerings and outreach. Currently, 
VNAV targets first-year graduate students and senior 
undergraduates with prior exposure to robotics. However, it 
would be interesting to broaden participation and adapt the 
course to be offered to undergraduates and high-school 
students with no robotics experience. In future offerings, we 
plan to open the MIT offering of VNAV to undergraduate 
students with background in control theory, linear algebra, 
optimization, and programming. We already had good 
success with the seniors attending VNAV and we believe 
that splitting the labs into baseline goals (targeting 
undergraduates) and advanced goals (targeting graduate 
students) might be an effective way to be more inclusive 
towards undergraduate students. Redesigning a selected 
portion of the course to support high-school outreach 
activities is more challenging but feasible. For instance, 
BWSI [26] has offered courses involving visual-navigation 
with drones, using a platform (similar to the one in Figure 
I(a)) designed in collaboration with the VNAV staff in 2018.  

Creating an open-source VNAV community. VNAV 
has been offered in multiple universities, including MIT, the 
University of Michigan, and TUM. In the future, it would be 
desirable to establish bridges across the different offerings. 
A potential starting point is to create a joint repository of 
final projects, to increase the options the students can choose 
from and to avoid duplicating efforts in developing the 
project ideas and background material. For instance, the 
2021 offering at the University of Michigan included a novel 
project on perception-aware Model Predictive Control 
(including description and background material) that might 
be useful for future offerings at other universities 

Visualization, visualization, visualization. In past 
VNAV offerings, we used GeoGebra [50] to visualize key 
ideas when discussing optimization on manifolds. Students 
were able to interact with our tool through the GeoGebra 
web interface. This tool allowed students to visualize and 
interact with abstract mathematical concepts such as tangent 
spaces, tangent vectors, retractions, and geodesics. 
Additionally, we also used g2o [51] (and its GUI) in the 
classroom to visualize the behavior of various optimization 
methods for solving SLAM. The feedback provided by the 
students indicate that these visualization tools helped them 
grasp and internalize key concepts quickly, accurately, and 
intuitively. In future offerings of VNAV, we plan to further 
explore mathematical visualization, interactive learning, and 
live demonstrations using tools such as GeoGebra [50], 
Manim [52], and g2o [51]. 

CONCLUSION 

This paper reported on the development, execution, and 
open-sourcing of the course “Visual Navigation for 
Autonomous Vehicles” (VNAV) offered at MIT in the Falls 
of 2018-2021, which has also been adopted (with 
modifications) in the curricula at the University of Michigan 

and the Technical University of Munich. The course targets 
first-year graduate students and senior undergraduates with 
prior exposure to robotics. VNAV has the goal of preparing 
the students to perform research in robotics and vision-based 
navigation, with emphasis on drones and self-driving cars. 
The lectures cover a broad set of theoretical topics, including 
geometric control and trajectory optimization, 2D and 3D 
computer vision, visual and visual-inertial odometry, place 
recognition, simultaneous localization and mapping, and 
geometric deep learning for perception. The labs provide 
hands-on activities to ground the theoretical concepts and 
expose the students to advanced robotics platforms, 
simulators, and open-source software libraries. The course 
culminates in an open-ended final project. The course 
material is now publicly available on MIT OpenCourseWare 
and at vnav.mit.edu/. 
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