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Abstract—Cloud computing systems, consisting of numerous
nodes and components, require constant monitoring to satisfy the
Quality-of-Service (QoS), making the management of large-scale
time series data challenging. To address this issue, age threshold
retention policies have been implemented to remove historical
data, but this eliminates valuable information from older periods.
In this paper, we proposed an alternative approach that applies
time series deduplication with metric-based tolerance to discard
readings that stabilize within a calculated tolerance window. This
approach can reduce the data volume by 70.38% on average.
Once the data-reduced interval is queried, the readings can be
reconstructed to retrieve the original granularity with low query
runtime overhead and a Mean Absolute Percentage Error of
0.74%.

Index Terms—Cloud Computing, Cloud Management, System
Monitoring, Time Series Data Management.

I. INTRODUCTION

Time series data are used across a variety of scientific
areas, Internet of Things (IoT) devices, climate sciences, and
many others for communication and observation of changing
behaviors across different intervals of time. This is especially
true for cloud computing systems, which are powerful ma-
chines consisting of thousands of nodes and sub-components.
By continuously monitoring various metrics such as CPU
and memory usage, disk I/O, network traffic, and system
uptime, system administrators can identify and resolve issues
that could lead to system downtime, degraded performance,
or security breaches. Additionally, monitoring can provide
valuable insights into system usage patterns and trends, which
can inform future system design and optimization efforts.

Dedicated databases are developed specifically for man-
aging time series data due to their unique characteristics.
These databases optimize the storage, indexing, querying,
and other activities for time series, which are not optimal
in other database management systems (DBMS). Considering
the astonishing collection rate of time series data, time series
data volume can grow extraordinarily fast. Therefore, retention
policies are commonly implemented to reduce volume by
deleting data based on established criteria. However, this
method eliminates all valuable information that could be used
for analyses across different time intervals.

In this paper, we present a time series deduplication tech-
nique using metric-based tolerance to eliminate redundancy.
By analyzing time series readings collected from an data
center, we observed that they stabilize at different levels for
a given interval, producing close to constant readings. By
creating a tolerance window around the average reading, we
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can ignore the redundant readings that remain constant within
the tolerance window and keep only the ones that demonstrate
significant changes to the system. This technique can reduce
database volume by 70.38% on average. Once the reduced
interval is queried, the readings can be reconstructed to retrieve
the original granularity with a small query runtime overhead
and a Mean Absolute Percentage Error (MAPE) of 0.74% on
average. This approach allows us to maintain valuable insights
while reducing the data volume size.

The contribution of this paper is mainly three-fold:

o We introduce time series deduplication as a means of re-

ducing database volume by eliminating data redundancy.

o We present the concept of metric-based tolerance, which

enhances deduplication by creating a tolerance window.

o We provide a reconstruction technique that can be applied

to the reduced datasets, allowing the retrieval of the
original granularity for more comprehensive analyses.

o Lastly, we propose a processing pipeline as an effective

approach to managing time series data.

The rest of this paper is organized as follows. In Sec-
tion II, we explain the research background and motivation.
In Section III, we discuss considerations, techniques, and the
processing pipeline architecture to effectively manage time
series data. In Section IV, we share the experimental results.
In Section V, we discuss the related works. Finally, we present
the conclusions and future directions in Section VI.

II. BACKGROUND & MOTIVATION
A. Time Series Data

A time series is a series composed of data points usually
sorted in increasing order of time, with time as its primary
index. Each data point should contain a timestamp value
(which distinguishes it from other data points in the time
series) along with some numerical value that reflects the nature
of the time series. The distance between two data points in the
time series (i.e., the occurring frequency) can be determined by
the collection rate of readings. This rate is usually configured
in advance by a component responsible for data collection.

B. Time Series Databases

In contrast to conventional data found in databases, which
have a one-to-one mapping to real-world objects, the signal
processing community assumes that the data are merely mea-
surements (samples) of the corresponding physical reality [1].
Due to the unique nature of time series data, dedicated
databases have been developed for their management. Time
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series databases address specific issues related to time series
management and operations that are not optimal in relational
databases, such as queries for historical data and time zone
conversions. They also offer data transformations for time
series and automatic calculation of basic statistics [2].

C. Age Threshold Retention Policy

Retention policies determine which data should be removed
from the database according to predefined criteria, in order
to eliminate unnecessary data and free up space for newer
and more relevant data. There are many factors that can go
into defining a retention policy criterion, but it usually directly
relates to the business needs that dictate data relevance. For
time series data, it is common practice to set up retention poli-
cies based on an age threshold, due to its natural relationship
with time. These policies remove data that has been stored for
longer than a predefined amount of time.

D. Data Source

We utilized time series monitoring data collected from an
academic data center [3]. One of the partitions in the data
center comprises 467 nodes, each of which includes Integrated
Dell Remote Access Controller (iDRAC) components in their
architecture to capture time series monitoring readings from
sensors. iDRAC generates 12 metrics per node with a poll
frequency of 60 seconds. We selected fan speeds, CPU and
Inlet temperatures, and system power consumption for exper-
imentation from the available metrics. The readings are then
stored in the time series database TimescaleDB [4], which is
hosted on a single-node machine.

E. Motivation

Simply discarding historical data in an attempt to save
storage space is not a wise approach, since this data often
contains valuable information that can be used to analyze the
system behavior across different time periods. Many future
design and configuration decisions are based on historical
data, making it an important resource. Therefore, instead of
applying retention policies to time series data, we seek a more
sound solution that preserves the valuable data while reducing
the data volume.

Our analysis of the monitoring data revealed that time series
readings often remain stable and oscillate around a constant
value. For example, we found that the fan speed usually
remained around 9,200 rpm, with only a few cases where it
reached over 10,000 rpm due to high CPU usage. From a
data analytics perspective, small oscillations in such readings
are not significant and can be considered the same or as
duplicated values. We can take advantage of this observation
by using a tolerance window to identify close readings. We
can discard readings that remain relatively constant within the
tolerance window and only keep the first one as representative.
For consecutive readings that have differences exceeding the
tolerance window, they record significant changes and should
be kept. Since the monitoring data is collected at a pre-defined
frequency, we can easily determine if a specific timestamp’s
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reading has been removed and reconstruct it based on its
preceding values. By carefully selecting the tolerance window
and discarding loosely duplicated values, we may significantly
reduce the volume of time series data.

ITII. TIME SERIES MANAGEMENT

In this Section, we first address some design considerations.
Next, we provide an architectural overview of the time series
workflow and dive into the data management techniques.
Lastly, we propose a processing pipeline to effectively manage
the time series data.

A. Considerations

1) Deduplication: The main technique we utilized to re-
duce database volume is deduplication. In general, a typical
chunk-level data deduplication system splits the input data
stream into multiple data “chunks” that are each uniquely
identified and duplicate-detected by a cryptographically secure
hash signature (e.g., SHA-1) [5]. Data deduplication identifies
the duplication and similarity of data at the chunk level and
stores only one copy or part of data physically [6]. However,
the definition of deduplication in our research is different than
the traditional sense. Deduplication is commonly applied to
entire files comparing identical chunks [7], whereas our time
series deduplication focuses on the metric reading level. We
provide more detail about the time series deduplication in
Section III-B.

2) Cheap Storage Medium: The current trend of decreasing
storage costs and the possibility of archiving the entire dataset
has prompted questions about the necessity of storing subsets
of the original dataset. While it may seem doable to store the
entire dataset in the time series database, the performance of
databases with large tables can significantly drop. This issue
has been noted in previous research [8]. Even if storage costs
are considered negligible, many of the cheapest solutions for
storing large amounts of data are not suitable for frequent read-
and-write operations of time series data, particularly when
dealing with high IOPS (input/output operations per second).

3) Use Cases: We would like to address use case variations
for the techniques and architecture proposed in this study
since they could be tailored in many ways to best fit different
scenarios.

o Streaming vs. historical data: We refer to the man-
agement of time series data in general, which can be
more specific to either streaming or historical data. In
other words, our techniques are not limited to streaming
data but can also effectively reduce the data volume of
historical data.

Data sources: The techniques are applicable to various
time series data sources beyond data centers. As an exper-
iment, we integrated our techniques into the MonSTer [9],
a monitoring and data management system for an HPC
data center.

Tolerance calculation formulas: We experimented with
three formulas to calculate the metrics’ tolerances, but
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they should be tailored based on the characteristics of
each time series dataset to achieve the best results.

Reconstruction error: The algorithms presented in this
study aim to achieve the lowest possible error, but there
may be cases where more accurate reconstruction is
necessary or where a higher level of error is acceptable.

B. Architecture

We start this sub-section by providing an architectural
overview of the time series workflow. We then discuss our
Deduplication Simple (DS) algorithm for time series data.
Next, we talk about several formulas used for calculating the
metric-based tolerance. Following that, we are able to expand
the DS into the Deduplication & Tolerance (DT) algorithm
by applying tolerance to it. We also discuss our time series
reconstruction algorithm to recover the original granularity
from a reduced dataset. Lastly, we talk about how to combine
all the techniques into a processing pipeline to effectively
manage time series data.

1) Overview: Figure 1 depicts the position of our tech-
niques within a standard time series data management system.
In this system, streaming monitoring data is first sent to a
buffer before being processed and stored in a database. The
buffer is designed to hold a chunk of data points, which
undergoes tolerance calculation and deduplication. Specifi-
cally, the Tolerance Calculation component determines the
metric-based tolerance, deciding which readings to keep or
discard in the buffer chunk. Meanwhile, the Deduplication
component removes redundant readings from the time series
data and stores the remaining data points in the time series
database, grouped by data schema and table. Alternatively,
these components can process historical data to eliminate
duplicated data points. To retrieve data, the Reconstruction
component acts as a proxy for the real query to the time series
database, reconstructing data points based on user queries. It’s
worth noting that data volume can be further reduced through
aggregation and compression techniques. However, as these
techniques are widely used in database management, we will
not be discussing them in detail in this study.
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Algorithm 1 Deduplication Simple (DS)
Input: records array
Output: deduplicated array

1: previous <— stores node-label readings
2: for i =0,1,..., length of records do

3: extract node, label, and value from records|i]
4: if previous[node][label] is empty or
value # previousnode][label] then
5 previous[node][label] « value
6: append recordsli] to deduplicated
7: end if
8: end for

2) Deduplication Simple: The Deduplication Simple (DS)
algorithm receives as input a records array from a given
metric sorted by timestamp in ascending order. We first ini-
tialize a dictionary variable called previous which stores the
previous readings of each combination of node and label (i.e.
the readings from the same sensor). We refer to this combina-
tion as “node-label” moving forward. Next, we start iterating
through the entire records array. In the first instance at time 7,
the previous of each node-label will be empty; therefore,
we simply assign the first value reading to previous of that
node-label and append the record to our deduplicated
array. Moving forward, when we encounter the same node-
label combination at time 7+, T+2, ..., T+k, where k is
the integer reflecting the length of unique timestamps. We
compare the current reading to the one stored at previous
for the given node-label. If the values are the same, we simply
ignore the current reading; otherwise, we update previous
and append the record to our deduplicated array. Once we
are done iterating through the entire records array, we return
its subset deduplicated array. The pseudocode for DS is
given in Algorithm 1.

3) Tolerance Calculation: In the DS algorithm, we only
ignore the current readings of each node-label that are identical
to their previous reading, deduplicating exactly the same
readings. However, to further reduce volume, we may add
a metric-based tolerance window that deduplicates readings
falling within it. The Tolerance Calculation (TC) algorithm
receives as input the records array from a given metric
and the formula selected to calculate the tolerance. As
shown in Algorithm 2, we first initialize a dictionary variable
called readings. Next, we start iterating through the entire
records array to save the readings in separate arrays for
each node-label in the readings dictionary. Once they are
clustered, we pass each reading array for each node-label to
the formula to calculate its tolerance and store each in the
tolerances dictionary that gets returned.

4) Tolerance Formulas: To calculate the tolerance, we need
a formula that relates to the dataset’s nature and produces
a relatively small number in magnitude; otherwise, it might
create a tolerance window so large that could cover every
reading.

First, we used the standard deviation as our tolerance
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Algorithm 2 Tolerance Calculation (TC)

Algorithm 3 Deduplication & Tolerance (DT)

Input: records array, formula function
QOutput: tolerances map
: readings <— stores arrays of node-label readings
. for i =0,1,..., length of records do
extract node, label, and value from recordsii]
append value to readings[node][label]
: end for
. for i =0,1,..., nodes in readings do
for j =0,1,..., labels in readings[i] do
tolerances[i|[j] «+ formula(readings[i][j])
end for
. end for

R A A S o e

—_
(=}

formula since it directly relates to the dataset and it produces a
relatively small value. However, even if the standard deviation
of the dataset is low, we found that it is still not small enough
to subtract and add to reading values to create a feasible
tolerance window. Therefore, we compute the square root of
the standard deviation to reduce its magnitude:
P (zi — p)?

n

Tolerance = /o = )
where o is the standard deviation of the sensor readings within
a time window, x; represents each reading, p is the average
reading, and n is the total number of readings of the sensor. In
addition, we crafted another tolerance formula using the square
root of the mean from the dataset, as shown in formula 2.

n .
D

Tolerance = \/u =
n

(@)

Both formula 1 and formula 2 return a relatively low value
in magnitude that is related to the dataset and that we can
subtract and add to a previous reading to create the tolerance
window.

Lastly, we combined o and p and calculated the coefficient
of variation (CV) as the tolerance formula:

3

o
Tolerance = — =
1

n .
Tl

n

However, the value calculated from this formula returns a
result between 0 and 1 because the standard deviation is often
smaller than the mean. Consequently, adding and subtracting
the tolerance to the previous reading, as we did with the other
two formulas, would result in a tolerance window that is too
narrow. To create a suitable tolerance window, we multiply the
tolerance by the reading, then add and subtract the resulting
value from the reading.

5) Deduplication & Tolerance: We are now able to expand
DS into the Deduplication & Tolerance (DT) algorithm. The
tolerance window is calculated by buckets for each node-label.
For example, if we are processing a historical data span of one
day, we may set the bucket size to one hour. Deduplication
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Input: records array, formula function, gap hours
Output: deduplicated array

1: previous <— stores node-label readings

2: start < first records timestamp

3: finish < start + gap

4: while True do

5 bucket <+ records|start, finish]

6: if length of bucket < 0 then

7: finished processing, exit...

8: end if

9: tolerances < TC(bucket, formula)

10: for i =0,1,..., length of bucket do

11: if previous is empty or
value < previous — tolerances or
value > previous + tolerances then

12: previous < value

13: append bucket[i] to deduplicated

14: end if

15: end for

16: start < finish

17: finish < finish + gap

18: end while

and tolerance calculations are then applied to each one-hour
interval. The pseudocode for DT is provided in Algorithm 3. In
this algorithm, the records variable holds the whole dataset
to be processed, formula represents the tolerance formula,
and gap denotes the bucket size in terms of time.

6) Reconstruction: The reconstruction process begins by
querying the deduplicated data from the time-scale database,
based on user-specified criteria such as time range and node-
label. Similar to the Deduplication & Tolerance (DT) process
discussed earlier, the deduplicated data is organized into
buckets according to the time interval. Within each bucket,
if a timestamp is missing, we simply repeat the previous
value since the value corresponding to that timestamp has been
deduplicated by the tolerance window. It is important to note
that the data collection frequency is known, allowing us to
easily identify which time-value pairs have been discarded.

7) Processing Pipeline: To maximize the effectiveness of
the techniques, we recommend using them in combination.
Therefore, we propose a processing pipeline for managing
time series data. The first step is to determine whether to
reduce historical data or handle streaming data. If historical
data reduction is chosen, we need to establish a threshold for
triggering the deduplication of time series data. For example,
we can execute DS/DT on tables that have timestamps older
than 7 days from the current time. On the other hand, if stream-
ing data deduplication is desired, we should apply DS/DT
before inserting records into the database. Additionally, it is
important to define the buffer size, such as grouping 1 hour’s
worth of time series data for deduplication prior to insertion.

Our deduplication techniques complement existing data
volume reduction methods like aggregation and compression,
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commonly employed in time-series databases. By combining
these techniques, a substantial reduction in data volume can
be achieved while preserving data granularity to the greatest
extent possible. The deduplication approach described in this
paper can be implemented as a data management policy. For
instance, we could establish a policy to deduplicate historical
records older than 30 days. Alternatively, the deduplication
policy could be applied to aggregated data to further reduce
its volume. These flexible policies offer valuable options for
optimizing storage and maintaining efficient data management
in various scenarios.

IV. EXPERIMENTAL RESULTS

In this Section, we demonstrate the deduplication rates
achieved while executing the DS and DT algorithms, re-
construction errors, and query runtime for the techniques
proposed.

A. Deduplication Rates

In Figure 2, we present the deduplication rates (volume
reduction) achieved by increasing the data volume for both the
DS algorithm and DT with our three formulas, across different
metrics. A notable observation is the significant variation in
deduplication rates for the same technique across different
metric types. Among the formulas used, the Coefficient of
Variation (CV) (Algorithm 3) produced the most consistent
deduplication results across various tables and reduce the data
volume by 70.38% on average.

Furthermore, for the RPM Reading data, we observed that
the Square Root of Standard Deviation formula (Algorithm 1)
resulted in a tolerance window that was so small that it
performed similarly to the DS algorithm. This observation
suggests that the standard deviation for that particular dataset
is very low and may not be suitable for tolerance calculation.
However, this observation does not hold true for other datasets,
as the same formula achieved significantly higher deduplica-
tion rates compared to DS. It is worth noting that only for the
RPM Reading data did the CV formula outperform the Square
Root of Mean formula (Algorithm 2).

Lastly, we observed that there is no direct relationship
between the deduplication rate and the increasing data volume.
Instead, the deduplication rate is determined by the variability
of values within the dataset, which causes the values to
fall within or outside of the tolerance window with varying
frequency.

B. Reconstruction Error

In addition to analyzing volume reduction, it is equally
important to evaluate the accuracy of the reconstruction by
examining the errors. If the reconstructed records deviate too
much from the original data, the analysis would yield incorrect
conclusions. Therefore, we computed the Mean Average Per-
centage Error (MAPE) between the original and reconstructed
records for each metric after applying DT with the CV
formula. To ensure accurate comparisons, we performed the
MAPE calculation for each node-label within each metric.
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Figure 2. Volume reduction using different tolerance functions. In the RPM
Reading dataset, the DS line and the Sqrt Stddev line are overlapped.

Subsequently, we present the maximum and average MAPE
values across all node-labels in Figure 3.

Upon analysis, we observed that, in some instances, the
error for System Power Consumption was relatively higher
compared to the other two metrics. However, the average
MAPE values for all three metrics exhibited consistently low
and closely uniform error rates (0.74% on average). This
indicates that the reconstruction process, utilizing the CV
formula, generally resulted in accurate and reliable records,
with minimal divergence from the original dataset.

C. Query Performance

As per our processing pipeline proposal, we conducted
performance measurements to compare the query times of the
original records (without any technique applied) against the
query times of tables containing only deduplicated records,
along with the additional runtime required for reconstruction.
The results, depicted in Figure 4, illustrate the performance
across different metrics with increasing data volumes.

As depicted in the figure, the data fetch time demonstrates a
substantial reduction for all metrics across various time ranges,
thanks to the reduced data volume achieved through our
proposed deduplication techniques. However, it is important
to note that the reconstruction process, aimed at restoring
the original data granularity, introduces additional runtime
overhead, particularly for longer data ranges. In contrast,
for shorter time ranges and certain metrics (such as the
Temperature Reading metrics), the total overhead is negligible.

V. RELATED WORKS

A comprehensive review of the literature reveals a wide-
ranging perspective on the management and analysis of tempo-
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Figure 3. Reconstruction error using the Coefficient of Variation (CV)
tolerance formula.

ral big data. Several state-of-the-art methodologies addressing
various aspects, such as modeling, mining, indexing, storage,
compression, and querying, are covered in surveys [10]-[13].
Furthermore, there exist several surveys specifically dedicated
to the processing and analysis of streaming data [14]-[17].

The need for efficient archiving of hierarchical data is
addressed in Wang et al. [18]. The authors propose an XML
archiving system that combines compact data and timestamp
storage with optimization techniques for evaluating queries
with temporal constraints. Vestergaard et al. instantiate a
generalized deduplication approach to introduce a novel prin-
ciple for on-the-fly compression of large volumes of time
series data [19]. Gil et al. [20] present improvements to
index construction for distortion-free subsequence matching in
time series databases using dynamic programming techniques.
The work by Yu et al. [21] introduces a cloud-computing
approach for managing peta- and exa-scale time series data
from large sensor networks. They leverage well-established
data storage and processing paradigms such as Bigtable [22]
and MapReduce [23].

The foundational aspects of data stream management are
discussed in Golab et al. [24]. The paper addresses various
aspects including application requirements, data models, con-
tinuous query languages, etc. Liu et al. [14] present a com-
prehensive survey of existing real-time processing systems.
These systems offer advantages in handling uninterrupted data
streams and enable real-time data analytics. Bai et al. [25] in-
troduce a time stamp memory and a mechanism for generating
enabling time stamps on demand. This approach effectively
reduces both memory usage and query latency in data stream
management systems that involve union and join operations.
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VI. CONCLUSIONS & FUTURE DIRECTIONS

In this paper, we investigated the techniques of Dedupli-
cation Simple (DS), metric-based Tolerance Calculation (TC),
Deduplication & Tolerance (DT), and Reconstruction to reduce
the volume of time series databases while preserving fine
granularity. Additionally, we proposed a processing pipeline
that effectively manages time series data. The benchmarks
conducted in this study demonstrated the efficacy of these
volume reduction techniques in eliminating redundant time
series data, while maintaining low reconstruction errors and
minimal query runtime overhead.

Several avenues for future research and development are
worth considering. Firstly, exploring different tolerance calcu-
lation formulas could enhance the adaptability of the dedu-
plication and tolerance calculation techniques. Furthermore,
applying these techniques to diverse datasets would provide
valuable insights into their generalizability and potential im-
provements. Additionally, investigating the potential of par-
allelization to optimize the deduplication and reconstruction
processes holds promise for achieving even greater efficiency
in time series data management.
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