
Effective Management of Time Series Data

Cristiano E. Caon

Addepar, Inc., USA

cristiano.caon@hotmail.com

Jie Li

Texas Tech University, USA

jie.li@ttu.edu

Yong Chen

Texas Tech University, USA

yong.chen@ttu.edu

Abstract—Cloud computing systems, consisting of numerous
nodes and components, require constant monitoring to satisfy the
Quality-of-Service (QoS), making the management of large-scale
time series data challenging. To address this issue, age threshold
retention policies have been implemented to remove historical
data, but this eliminates valuable information from older periods.
In this paper, we proposed an alternative approach that applies
time series deduplication with metric-based tolerance to discard
readings that stabilize within a calculated tolerance window. This
approach can reduce the data volume by 70.38% on average.
Once the data-reduced interval is queried, the readings can be
reconstructed to retrieve the original granularity with low query
runtime overhead and a Mean Absolute Percentage Error of
0.74%.

Index Terms—Cloud Computing, Cloud Management, System
Monitoring, Time Series Data Management.

I. INTRODUCTION

Time series data are used across a variety of scientific

areas, Internet of Things (IoT) devices, climate sciences, and

many others for communication and observation of changing

behaviors across different intervals of time. This is especially

true for cloud computing systems, which are powerful ma-

chines consisting of thousands of nodes and sub-components.

By continuously monitoring various metrics such as CPU

and memory usage, disk I/O, network traffic, and system

uptime, system administrators can identify and resolve issues

that could lead to system downtime, degraded performance,

or security breaches. Additionally, monitoring can provide

valuable insights into system usage patterns and trends, which

can inform future system design and optimization efforts.

Dedicated databases are developed specifically for man-

aging time series data due to their unique characteristics.

These databases optimize the storage, indexing, querying,

and other activities for time series, which are not optimal

in other database management systems (DBMS). Considering

the astonishing collection rate of time series data, time series

data volume can grow extraordinarily fast. Therefore, retention

policies are commonly implemented to reduce volume by

deleting data based on established criteria. However, this

method eliminates all valuable information that could be used

for analyses across different time intervals.

In this paper, we present a time series deduplication tech-

nique using metric-based tolerance to eliminate redundancy.

By analyzing time series readings collected from an data

center, we observed that they stabilize at different levels for

a given interval, producing close to constant readings. By

creating a tolerance window around the average reading, we

can ignore the redundant readings that remain constant within

the tolerance window and keep only the ones that demonstrate

significant changes to the system. This technique can reduce

database volume by 70.38% on average. Once the reduced

interval is queried, the readings can be reconstructed to retrieve

the original granularity with a small query runtime overhead

and a Mean Absolute Percentage Error (MAPE) of 0.74% on

average. This approach allows us to maintain valuable insights

while reducing the data volume size.

The contribution of this paper is mainly three-fold:

• We introduce time series deduplication as a means of re-

ducing database volume by eliminating data redundancy.

• We present the concept of metric-based tolerance, which

enhances deduplication by creating a tolerance window.

• We provide a reconstruction technique that can be applied

to the reduced datasets, allowing the retrieval of the

original granularity for more comprehensive analyses.

• Lastly, we propose a processing pipeline as an effective

approach to managing time series data.

The rest of this paper is organized as follows. In Sec-

tion II, we explain the research background and motivation.

In Section III, we discuss considerations, techniques, and the

processing pipeline architecture to effectively manage time

series data. In Section IV, we share the experimental results.

In Section V, we discuss the related works. Finally, we present

the conclusions and future directions in Section VI.

II. BACKGROUND & MOTIVATION

A. Time Series Data

A time series is a series composed of data points usually

sorted in increasing order of time, with time as its primary

index. Each data point should contain a timestamp value

(which distinguishes it from other data points in the time

series) along with some numerical value that reflects the nature

of the time series. The distance between two data points in the

time series (i.e., the occurring frequency) can be determined by

the collection rate of readings. This rate is usually configured

in advance by a component responsible for data collection.

B. Time Series Databases

In contrast to conventional data found in databases, which

have a one-to-one mapping to real-world objects, the signal

processing community assumes that the data are merely mea-

surements (samples) of the corresponding physical reality [1].

Due to the unique nature of time series data, dedicated

databases have been developed for their management. Time

408

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00055

20
23

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

UD
) |

 9
79

-8
-3

50
3-

04
81

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
LO

UD
60

04
4.

20
23

.0
00

55

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

series databases address specific issues related to time series

management and operations that are not optimal in relational

databases, such as queries for historical data and time zone

conversions. They also offer data transformations for time

series and automatic calculation of basic statistics [2].

C. Age Threshold Retention Policy

Retention policies determine which data should be removed

from the database according to predefined criteria, in order

to eliminate unnecessary data and free up space for newer

and more relevant data. There are many factors that can go

into defining a retention policy criterion, but it usually directly

relates to the business needs that dictate data relevance. For

time series data, it is common practice to set up retention poli-

cies based on an age threshold, due to its natural relationship

with time. These policies remove data that has been stored for

longer than a predefined amount of time.

D. Data Source

We utilized time series monitoring data collected from an

academic data center [3]. One of the partitions in the data

center comprises 467 nodes, each of which includes Integrated

Dell Remote Access Controller (iDRAC) components in their

architecture to capture time series monitoring readings from

sensors. iDRAC generates 12 metrics per node with a poll

frequency of 60 seconds. We selected fan speeds, CPU and

Inlet temperatures, and system power consumption for exper-

imentation from the available metrics. The readings are then

stored in the time series database TimescaleDB [4], which is

hosted on a single-node machine.

E. Motivation

Simply discarding historical data in an attempt to save

storage space is not a wise approach, since this data often

contains valuable information that can be used to analyze the

system behavior across different time periods. Many future

design and configuration decisions are based on historical

data, making it an important resource. Therefore, instead of

applying retention policies to time series data, we seek a more

sound solution that preserves the valuable data while reducing

the data volume.

Our analysis of the monitoring data revealed that time series

readings often remain stable and oscillate around a constant

value. For example, we found that the fan speed usually

remained around 9,200 rpm, with only a few cases where it

reached over 10,000 rpm due to high CPU usage. From a

data analytics perspective, small oscillations in such readings

are not significant and can be considered the same or as

duplicated values. We can take advantage of this observation

by using a tolerance window to identify close readings. We

can discard readings that remain relatively constant within the

tolerance window and only keep the first one as representative.

For consecutive readings that have differences exceeding the

tolerance window, they record significant changes and should

be kept. Since the monitoring data is collected at a pre-defined

frequency, we can easily determine if a specific timestamp’s

reading has been removed and reconstruct it based on its

preceding values. By carefully selecting the tolerance window

and discarding loosely duplicated values, we may significantly

reduce the volume of time series data.

III. TIME SERIES MANAGEMENT

In this Section, we first address some design considerations.

Next, we provide an architectural overview of the time series

workflow and dive into the data management techniques.

Lastly, we propose a processing pipeline to effectively manage

the time series data.

A. Considerations

1) Deduplication: The main technique we utilized to re-

duce database volume is deduplication. In general, a typical

chunk-level data deduplication system splits the input data

stream into multiple data “chunks” that are each uniquely

identified and duplicate-detected by a cryptographically secure

hash signature (e.g., SHA-1) [5]. Data deduplication identifies

the duplication and similarity of data at the chunk level and

stores only one copy or part of data physically [6]. However,

the definition of deduplication in our research is different than

the traditional sense. Deduplication is commonly applied to

entire files comparing identical chunks [7], whereas our time

series deduplication focuses on the metric reading level. We

provide more detail about the time series deduplication in

Section III-B.

2) Cheap Storage Medium: The current trend of decreasing

storage costs and the possibility of archiving the entire dataset

has prompted questions about the necessity of storing subsets

of the original dataset. While it may seem doable to store the

entire dataset in the time series database, the performance of

databases with large tables can significantly drop. This issue

has been noted in previous research [8]. Even if storage costs

are considered negligible, many of the cheapest solutions for

storing large amounts of data are not suitable for frequent read-

and-write operations of time series data, particularly when

dealing with high IOPS (input/output operations per second).

3) Use Cases: We would like to address use case variations

for the techniques and architecture proposed in this study

since they could be tailored in many ways to best fit different

scenarios.

• Streaming vs. historical data: We refer to the man-

agement of time series data in general, which can be

more specific to either streaming or historical data. In

other words, our techniques are not limited to streaming

data but can also effectively reduce the data volume of

historical data.

• Data sources: The techniques are applicable to various

time series data sources beyond data centers. As an exper-

iment, we integrated our techniques into the MonSTer [9],

a monitoring and data management system for an HPC

data center.

• Tolerance calculation formulas: We experimented with

three formulas to calculate the metrics’ tolerances, but

409

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

����

������
	
� ����
�� ����
��

��

�

������

���� �
��
�

�������
���
� �
�����
� ���
�����
�

���� ��
����

���� ������ ��������

���������
�

�
�������
�

���� �����

��

�����
��
�

���

���� ������ ���� �� ��

Figure 1. Architecture.

they should be tailored based on the characteristics of

each time series dataset to achieve the best results.

• Reconstruction error: The algorithms presented in this

study aim to achieve the lowest possible error, but there

may be cases where more accurate reconstruction is

necessary or where a higher level of error is acceptable.

B. Architecture

We start this sub-section by providing an architectural

overview of the time series workflow. We then discuss our

Deduplication Simple (DS) algorithm for time series data.

Next, we talk about several formulas used for calculating the

metric-based tolerance. Following that, we are able to expand

the DS into the Deduplication & Tolerance (DT) algorithm

by applying tolerance to it. We also discuss our time series

reconstruction algorithm to recover the original granularity

from a reduced dataset. Lastly, we talk about how to combine

all the techniques into a processing pipeline to effectively

manage time series data.

1) Overview: Figure 1 depicts the position of our tech-

niques within a standard time series data management system.

In this system, streaming monitoring data is first sent to a

buffer before being processed and stored in a database. The

buffer is designed to hold a chunk of data points, which

undergoes tolerance calculation and deduplication. Specifi-

cally, the Tolerance Calculation component determines the

metric-based tolerance, deciding which readings to keep or

discard in the buffer chunk. Meanwhile, the Deduplication

component removes redundant readings from the time series

data and stores the remaining data points in the time series

database, grouped by data schema and table. Alternatively,

these components can process historical data to eliminate

duplicated data points. To retrieve data, the Reconstruction

component acts as a proxy for the real query to the time series

database, reconstructing data points based on user queries. It’s

worth noting that data volume can be further reduced through

aggregation and compression techniques. However, as these

techniques are widely used in database management, we will

not be discussing them in detail in this study.

Algorithm 1 Deduplication Simple (DS)

Input: records array

Output: deduplicated array

1: previous ← stores node-label readings

2: for i = 0, 1, . . ., length of records do

3: extract node, label, and value from records[i]
4: if previous[node][label] is empty or

value �= previous[node][label] then

5: previous[node][label] ← value

6: append records[i] to deduplicated

7: end if

8: end for

2) Deduplication Simple: The Deduplication Simple (DS)

algorithm receives as input a records array from a given

metric sorted by timestamp in ascending order. We first ini-

tialize a dictionary variable called previous which stores the

previous readings of each combination of node and label (i.e.

the readings from the same sensor). We refer to this combina-

tion as “node-label” moving forward. Next, we start iterating

through the entire records array. In the first instance at time T,

the previous of each node-label will be empty; therefore,

we simply assign the first value reading to previous of that

node-label and append the record to our deduplicated

array. Moving forward, when we encounter the same node-

label combination at time T+1, T+2, . . . , T+k, where k is

the integer reflecting the length of unique timestamps. We

compare the current reading to the one stored at previous

for the given node-label. If the values are the same, we simply

ignore the current reading; otherwise, we update previous

and append the record to our deduplicated array. Once we

are done iterating through the entire records array, we return

its subset deduplicated array. The pseudocode for DS is

given in Algorithm 1.

3) Tolerance Calculation: In the DS algorithm, we only

ignore the current readings of each node-label that are identical

to their previous reading, deduplicating exactly the same

readings. However, to further reduce volume, we may add

a metric-based tolerance window that deduplicates readings

falling within it. The Tolerance Calculation (TC) algorithm

receives as input the records array from a given metric

and the formula selected to calculate the tolerance. As

shown in Algorithm 2, we first initialize a dictionary variable

called readings. Next, we start iterating through the entire

records array to save the readings in separate arrays for

each node-label in the readings dictionary. Once they are

clustered, we pass each reading array for each node-label to

the formula to calculate its tolerance and store each in the

tolerances dictionary that gets returned.

4) Tolerance Formulas: To calculate the tolerance, we need

a formula that relates to the dataset’s nature and produces

a relatively small number in magnitude; otherwise, it might

create a tolerance window so large that could cover every

reading.

First, we used the standard deviation as our tolerance

410

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Tolerance Calculation (TC)

Input: records array, formula function

Output: tolerances map

1: readings ← stores arrays of node-label readings

2: for i = 0, 1, . . ., length of records do

3: extract node, label, and value from records[i]
4: append value to readings[node][label]
5: end for

6: for i = 0, 1, . . ., nodes in readings do

7: for j = 0, 1, . . ., labels in readings[i] do

8: tolerances[i][j] ← formula(readings[i][j])
9: end for

10: end for

formula since it directly relates to the dataset and it produces a

relatively small value. However, even if the standard deviation

of the dataset is low, we found that it is still not small enough

to subtract and add to reading values to create a feasible

tolerance window. Therefore, we compute the square root of

the standard deviation to reduce its magnitude:

Tolerance =
√
σ =

√

√

Σn
i=1(xi − μ)2

n
(1)

where σ is the standard deviation of the sensor readings within

a time window, xi represents each reading, μ is the average

reading, and n is the total number of readings of the sensor. In

addition, we crafted another tolerance formula using the square

root of the mean from the dataset, as shown in formula 2.

Tolerance =
√
μ =

√

Σn
i=1xi

n
(2)

Both formula 1 and formula 2 return a relatively low value

in magnitude that is related to the dataset and that we can

subtract and add to a previous reading to create the tolerance

window.

Lastly, we combined σ and μ and calculated the coefficient

of variation (CV) as the tolerance formula:

Tolerance =
σ

μ
=

√

Σn

i=1
(xi−µ)2

n

Σn

i=1
xi

n

(3)

However, the value calculated from this formula returns a

result between 0 and 1 because the standard deviation is often

smaller than the mean. Consequently, adding and subtracting

the tolerance to the previous reading, as we did with the other

two formulas, would result in a tolerance window that is too

narrow. To create a suitable tolerance window, we multiply the

tolerance by the reading, then add and subtract the resulting

value from the reading.

5) Deduplication & Tolerance: We are now able to expand

DS into the Deduplication & Tolerance (DT) algorithm. The

tolerance window is calculated by buckets for each node-label.

For example, if we are processing a historical data span of one

day, we may set the bucket size to one hour. Deduplication

Algorithm 3 Deduplication & Tolerance (DT)

Input: records array, formula function, gap hours

Output: deduplicated array

1: previous ← stores node-label readings

2: start ← first records timestamp

3: finish ← start+ gap

4: while True do

5: bucket ← records[start, finish]
6: if length of bucket ≤ 0 then

7: finished processing, exit...

8: end if

9: tolerances ← TC(bucket, formula)
10: for i = 0, 1, . . ., length of bucket do

11: if previous is empty or

value < previous− tolerances or

value > previous+ tolerances then

12: previous ← value

13: append bucket[i] to deduplicated

14: end if

15: end for

16: start ← finish

17: finish ← finish+ gap

18: end while

and tolerance calculations are then applied to each one-hour

interval. The pseudocode for DT is provided in Algorithm 3. In

this algorithm, the records variable holds the whole dataset

to be processed, formula represents the tolerance formula,

and gap denotes the bucket size in terms of time.

6) Reconstruction: The reconstruction process begins by

querying the deduplicated data from the time-scale database,

based on user-specified criteria such as time range and node-

label. Similar to the Deduplication & Tolerance (DT) process

discussed earlier, the deduplicated data is organized into

buckets according to the time interval. Within each bucket,

if a timestamp is missing, we simply repeat the previous

value since the value corresponding to that timestamp has been

deduplicated by the tolerance window. It is important to note

that the data collection frequency is known, allowing us to

easily identify which time-value pairs have been discarded.

7) Processing Pipeline: To maximize the effectiveness of

the techniques, we recommend using them in combination.

Therefore, we propose a processing pipeline for managing

time series data. The first step is to determine whether to

reduce historical data or handle streaming data. If historical

data reduction is chosen, we need to establish a threshold for

triggering the deduplication of time series data. For example,

we can execute DS/DT on tables that have timestamps older

than 7 days from the current time. On the other hand, if stream-

ing data deduplication is desired, we should apply DS/DT

before inserting records into the database. Additionally, it is

important to define the buffer size, such as grouping 1 hour’s

worth of time series data for deduplication prior to insertion.

Our deduplication techniques complement existing data

volume reduction methods like aggregation and compression,

411

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

commonly employed in time-series databases. By combining

these techniques, a substantial reduction in data volume can

be achieved while preserving data granularity to the greatest

extent possible. The deduplication approach described in this

paper can be implemented as a data management policy. For

instance, we could establish a policy to deduplicate historical

records older than 30 days. Alternatively, the deduplication

policy could be applied to aggregated data to further reduce

its volume. These flexible policies offer valuable options for

optimizing storage and maintaining efficient data management

in various scenarios.

IV. EXPERIMENTAL RESULTS

In this Section, we demonstrate the deduplication rates

achieved while executing the DS and DT algorithms, re-

construction errors, and query runtime for the techniques

proposed.

A. Deduplication Rates

In Figure 2, we present the deduplication rates (volume

reduction) achieved by increasing the data volume for both the

DS algorithm and DT with our three formulas, across different

metrics. A notable observation is the significant variation in

deduplication rates for the same technique across different

metric types. Among the formulas used, the Coefficient of

Variation (CV) (Algorithm 3) produced the most consistent

deduplication results across various tables and reduce the data

volume by 70.38% on average.

Furthermore, for the RPM Reading data, we observed that

the Square Root of Standard Deviation formula (Algorithm 1)

resulted in a tolerance window that was so small that it

performed similarly to the DS algorithm. This observation

suggests that the standard deviation for that particular dataset

is very low and may not be suitable for tolerance calculation.

However, this observation does not hold true for other datasets,

as the same formula achieved significantly higher deduplica-

tion rates compared to DS. It is worth noting that only for the

RPM Reading data did the CV formula outperform the Square

Root of Mean formula (Algorithm 2).

Lastly, we observed that there is no direct relationship

between the deduplication rate and the increasing data volume.

Instead, the deduplication rate is determined by the variability

of values within the dataset, which causes the values to

fall within or outside of the tolerance window with varying

frequency.

B. Reconstruction Error

In addition to analyzing volume reduction, it is equally

important to evaluate the accuracy of the reconstruction by

examining the errors. If the reconstructed records deviate too

much from the original data, the analysis would yield incorrect

conclusions. Therefore, we computed the Mean Average Per-

centage Error (MAPE) between the original and reconstructed

records for each metric after applying DT with the CV

formula. To ensure accurate comparisons, we performed the

MAPE calculation for each node-label within each metric.

Figure 2. Volume reduction using different tolerance functions. In the RPM
Reading dataset, the DS line and the Sqrt Stddev line are overlapped.

Subsequently, we present the maximum and average MAPE

values across all node-labels in Figure 3.

Upon analysis, we observed that, in some instances, the

error for System Power Consumption was relatively higher

compared to the other two metrics. However, the average

MAPE values for all three metrics exhibited consistently low

and closely uniform error rates (0.74% on average). This

indicates that the reconstruction process, utilizing the CV

formula, generally resulted in accurate and reliable records,

with minimal divergence from the original dataset.

C. Query Performance

As per our processing pipeline proposal, we conducted

performance measurements to compare the query times of the

original records (without any technique applied) against the

query times of tables containing only deduplicated records,

along with the additional runtime required for reconstruction.

The results, depicted in Figure 4, illustrate the performance

across different metrics with increasing data volumes.

As depicted in the figure, the data fetch time demonstrates a

substantial reduction for all metrics across various time ranges,

thanks to the reduced data volume achieved through our

proposed deduplication techniques. However, it is important

to note that the reconstruction process, aimed at restoring

the original data granularity, introduces additional runtime

overhead, particularly for longer data ranges. In contrast,

for shorter time ranges and certain metrics (such as the

Temperature Reading metrics), the total overhead is negligible.

V. RELATED WORKS

A comprehensive review of the literature reveals a wide-

ranging perspective on the management and analysis of tempo-

412

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Reconstruction error using the Coefficient of Variation (CV)
tolerance formula.

ral big data. Several state-of-the-art methodologies addressing

various aspects, such as modeling, mining, indexing, storage,

compression, and querying, are covered in surveys [10]–[13].

Furthermore, there exist several surveys specifically dedicated

to the processing and analysis of streaming data [14]–[17].

The need for efficient archiving of hierarchical data is

addressed in Wang et al. [18]. The authors propose an XML

archiving system that combines compact data and timestamp

storage with optimization techniques for evaluating queries

with temporal constraints. Vestergaard et al. instantiate a

generalized deduplication approach to introduce a novel prin-

ciple for on-the-fly compression of large volumes of time

series data [19]. Gil et al. [20] present improvements to

index construction for distortion-free subsequence matching in

time series databases using dynamic programming techniques.

The work by Yu et al. [21] introduces a cloud-computing

approach for managing peta- and exa-scale time series data

from large sensor networks. They leverage well-established

data storage and processing paradigms such as Bigtable [22]

and MapReduce [23].

The foundational aspects of data stream management are

discussed in Golab et al. [24]. The paper addresses various

aspects including application requirements, data models, con-

tinuous query languages, etc. Liu et al. [14] present a com-

prehensive survey of existing real-time processing systems.

These systems offer advantages in handling uninterrupted data

streams and enable real-time data analytics. Bai et al. [25] in-

troduce a time stamp memory and a mechanism for generating

enabling time stamps on demand. This approach effectively

reduces both memory usage and query latency in data stream

management systems that involve union and join operations.

Figure 4. Runtime in seconds for deduplicated data fetching & reconstruction.

VI. CONCLUSIONS & FUTURE DIRECTIONS

In this paper, we investigated the techniques of Dedupli-

cation Simple (DS), metric-based Tolerance Calculation (TC),

Deduplication & Tolerance (DT), and Reconstruction to reduce

the volume of time series databases while preserving fine

granularity. Additionally, we proposed a processing pipeline

that effectively manages time series data. The benchmarks

conducted in this study demonstrated the efficacy of these

volume reduction techniques in eliminating redundant time

series data, while maintaining low reconstruction errors and

minimal query runtime overhead.

Several avenues for future research and development are

worth considering. Firstly, exploring different tolerance calcu-

lation formulas could enhance the adaptability of the dedu-

plication and tolerance calculation techniques. Furthermore,

applying these techniques to diverse datasets would provide

valuable insights into their generalizability and potential im-

provements. Additionally, investigating the potential of par-

allelization to optimize the deduplication and reconstruction

processes holds promise for achieving even greater efficiency

in time series data management.

VII. ACKNOWLEDGEMENT

We would like to express our gratitude to the anonymous

reviewers for their insightful comments and suggestions. This

research is supported in part by the National Science Foun-

dation under grants OAC-1835892, CNS-1817094, and CNS-

1939140. We are also very grateful to the High-Performance

Computing Center of Texas Tech University for providing

HPC resources for this project.

413

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Katsis, Y. Freund, and Y. Papakonstantinou, “Combining databases
and signal processing in plato.” in CIDR, 2015.

[2] J. Ronkainen and A. Iivari, “Designing a data management pipeline for
pervasive sensor communication systems,” Procedia Computer Science,
vol. 56, pp. 183–188, 2015.

[3] HPCC. (2021) High Performance Computing Center. [Online].
Available: http:www.depts.ttu.edu/hpcc/

[4] TimescaleDB. (2023) TimescaleDB. [Online]. Available:
https://www.timescale.com/

[5] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past, present,
and future of data deduplication,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1681–1710, 2016.

[6] Z. Xue, H. Qian, L. Shen, and X. Wu, “A comprehensive study of
present data deduplication,” in 2021 IEEE 23rd Int Conf on High

Performance Computing & Communications; 7th Int Conf on Data

Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on

Dependability in Sensor, Cloud & Big Data Systems & Application

(HPCC/DSS/SmartCity/DependSys). IEEE, 2021, pp. 1748–1754.
[7] A. Venish and K. Siva Sankar, “Study of chunking algorithm in data

deduplication,” in Proceedings of the International Conference on Soft

Computing Systems: ICSCS 2015, Volume 2. Springer, 2016, pp. 13–20.
[8] J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, and X. Zhou, “Big

data challenge: a data management perspective,” Frontiers of computer

Science, vol. 7, pp. 157–164, 2013.
[9] J. Li, G. Ali, N. Nguyen, J. Hass, A. Sill, T. Dang, and Y. Chen,

“Monster: an out-of-the-box monitoring tool for high performance
computing systems,” in 2020 IEEE International Conference on Cluster

Computing (CLUSTER). IEEE, 2020, pp. 119–129.
[10] A. Cuzzocrea, “Temporal aspects of big data management: state-of-the-

art analysis and future research directions,” in 2015 22nd International

Symposium on Temporal Representation and Reasoning (TIME). IEEE,
2015, pp. 180–185.

[11] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time series manage-
ment systems: A survey,” IEEE Transactions on Knowledge and Data

Engineering, vol. 29, no. 11, pp. 2581–2600, 2017.
[12] S. Mazumdar, D. Seybold, K. Kritikos, and Y. Verginadis, “A survey on

data storage and placement methodologies for cloud-big data ecosys-
tem,” Journal of Big Data, vol. 6, no. 1, pp. 1–37, 2019.

[13] G. Chiarot and C. Silvestri, “Time series compression survey,” ACM

Computing Surveys, vol. 55, no. 10, pp. 1–32, 2023.
[14] X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing

systems for big data,” in Proceedings of the 18th International Database

Engineering & Applications Symposium, 2014, pp. 356–361.
[15] M. Ghesmoune, M. Lebbah, and H. Azzag, “State-of-the-art on cluster-

ing data streams,” Big Data Analytics, vol. 1, pp. 1–27, 2016.
[16] B. Yadranjiaghdam, N. Pool, and N. Tabrizi, “A survey on real-time big

data analytics: applications and tools,” in 2016 international conference

on computational science and computational intelligence (CSCI). IEEE,
2016, pp. 404–409.

[17] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan,
“A survey of distributed data stream processing frameworks,” IEEE

Access, vol. 7, pp. 154 300–154 316, 2019.
[18] H. Wang, R. Liu, D. Theodoratos, and X. Wu, “Efficient storage and

temporal query evaluation in hierarchical data archiving systems,” in
Scientific and Statistical Database Management: 23rd International

Conference, SSDBM 2011, Portland, OR, USA, July 20-22, 2011.

Proceedings 23. Springer, 2011, pp. 109–128.
[19] R. Vestergaard, Q. Zhang, and D. E. Lucani, “Lossless compression of

time series data with generalized deduplication,” in 2019 IEEE Global

Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.
[20] M.-S. Gil, B.-S. Kim, M.-J. Choi, and Y.-S. Moon, “Fast index construc-

tion for distortion-free subsequence matching in time-series databases,”
in 2015 International Conference on Big Data and Smart Computing

(BIGCOMP). IEEE, 2015, pp. 130–135.
[21] B. Yu, A. Cuzzocrea, D. Jeong, and S. Maydebura, “On managing

very large sensor-network data using bigtable,” in 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid

2012). IEEE, 2012, pp. 918–922.
[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer

Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.
[23] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[24] L. Golab and M. T. Özsu, “Issues in data stream management,” ACM

Sigmod Record, vol. 32, no. 2, pp. 5–14, 2003.
[25] Y. Bai, H. Thakkar, H. Wang, and C. Zaniolo, “Time-stamp management

and query execution in data stream management systems,” IEEE Internet

Computing, vol. 12, no. 6, pp. 13–21, 2008.

414

Authorized licensed use limited to: Texas Tech University. Downloaded on January 04,2025 at 17:39:39 UTC from IEEE Xplore. Restrictions apply.

