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Abstract

Motivation: Sequences equivalent to their reverse complements (i.e. double-stranded DNA) have no analogue in text analysis and non-
biological string algorithms. Despite this striking difference, algorithms designed for computational biology (e.g. sketching algorithms) are
designed and tested in the same way as classical string algorithms. Then, as a post-processing step, these algorithms are adapted to work with
genomic sequences by folding a k-mer and its reverse complement into a single sequence: The canonical representation (k-nonical space).

Guillaume Marcais

Results: The effect of using the canonical representation with sketching methods is understudied and not understood. As a first step, we use
context-free sketching methods to illustrate the potentially detrimental effects of using canonical kmers with string algorithms not designed to
accommodate for them. In particular, we show that large stretches of the genome (“sketching deserts”) are undersampled or entirely skipped
by context-free sketching methods, effectively making these genomic regions invisible to subsequent algorithms using these sketches. We pro-
vide empirical data showing these effects and develop a theoretical framework explaining the appearance of sketching deserts. Finally, we pro-
pose two schemes to accommodate for these effects: (i) a new procedure that adapts existing sketching methods to k-nonical space and (i) an
optimization procedure to directly design new sketching methods for k-nonical space.

Availability and implementation: The code used in this analysis is available under a permissive license at https://github.com/Kingsford-

Group/mdsscope.

1 Introduction

Genomics sequence analysis shares many similarities with
text analysis since they are both concerned with efficiently
storing and searching long strings. Consequently, many algo-
rithms are common between the two fields. The double-
stranded nature of DNA brings a unique twist to genomics
sequence analysis: A sequence and its reverse complement, in
many cases, should be considered identical. For example, a
sequencing read can represent either strand of a chromosome,
and a read aligner attempts to find the best alignments of the
read and its reverse complement against a genome. This con-
cept has no equivalent in text analysis.

Sketching methods [e.g. minimizers (Roberts et al. 2004a,
b), syncmers (Edgar 2021)] create a small representation of a
sequence (a “sketch”) by selecting a subset of k-mers (sub-
strings of fixed length k) from the original sequence. Because
of their small size, sketches allow for efficient sequence simi-
larity estimation that is much faster than comparing the origi-
nal sequences. Thus, sketching is a common strategy to make
bioinformatics algorithms more efficient (see Margais et al.
2019 and Zheng et al. 2023 for reviews). To handle reverse
complements, sketches usually work with “canonical
k-mers,” i.e. the smallest (lexicographically) of 7 and the
reverse complement 7". By using this canonical representa-
tion, denoted by #1°, a k-mer and its reverse complement are
treated equally.

More precisely, for our purposes, a sketching method is a
function ¢ that takes as input one or more k-mers (the

context) and outputs a (possibly empty) set of the indices of
the k-mers to select. A sketch of a sequence S is constructed
by collecting all the k-mers selected by ¢ over all the contexts
of S. Sketching methods are usually designed and evaluated
as string algorithms working on standard strings. Then, to
handle reverse complements, implementations of sketching
methods do not use ¢ directly but rather work in “k-nonical
space:” the selection function is composed with the canonical
function, i.e. instead of querying ¢ () one queries ¢(m°). See
e.g. the minimap (Li 2016, Li and Birol 2018) aligner using
minimizers and the modified version using parameterized
syncmers (Dutta et al. 2022), or genome assembly de Bruijn
graphs built with universe minimizers (Ekim et al. 2021).

There exist many sketching functions, and their perfor-
mance has been studied in diverse settings; however, the ef-
fect of using canonical k-mers has received little attention.
This is surprising given the importance of reverse comple-
ments to computational biology. Moving to k-nonical space
has been primarily viewed as an implementation detail that is
not likely to have an impact on downstream applications.
Unfortunately, as we show, moving to canonical space can
have a significant impact, in particular for context-free
sketching methods.

An important property of sketching methods is the window
guarantee, i.e. the assurance that the distance between two se-
lected k-mers in an input sequence S is not too large. There
are nuances to what this guarantee entails (e.g. if it is proba-
bilistic, if some subsequences are excluded, etc) that we
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discuss in Section 2.2. In essence, it means that k-mers are se-
lected at approximately regular intervals from an input se-
quence and that no large regions of the genome are ignored.
Subsequent algorithms that use sketching typically require
the window guarantee to prove their correctness.

This article has two main contributions. First, we show in
Section 3 that using a sketching method in canonical space
may not preserve the original method’s window guarantee.
The lack of window guarantee can create “sketching
deserts,” i.e. regions of the genome where few or no k-mers
are selected. Consequently, these regions are ignored or
under-represented in subsequent analysis (e.g. missing align-
ments), which can create unexpected statistical biases.

As is seen in Section 3.3, this problem mainly affects
“context-free” sketching methods (e.g. syncmers), while
“context-aware” methods (e.g. minimizers) are by construc-
tion not subject to this issue (see Section 2 for definitions).
Consequently, we focus on context-free methods and Section 3
gives theoretical reasons and empirical evidence for
these sketching deserts when using context-free methods in
k-nonical space.

The second contribution is two procedures to generate
context-free methods that are robust (i.e. do not have new
sketching deserts) in k-nonical space. The first is a greedy
procedure that adapts an existing sketching method to use ca-
nonical k-mers in a way that does not create new sketching
desert. The second method is an integer linear program (ILP)
optimization to generate de novo sketching methods that by
construction handle 7 and 7" identically. These methods are
still computationally intensive and may not without further
optimization scale to large values of k.

Using canonical k-mers is a common way to handle reverse
complemented sequences. Furthermore, because of the desir-
able properties [e.g. better conservation (Edgar 2021)] of
context-free sketching methods, there is a surge in theoretical
interest (Edgar 2021, Dutta et al. 2022, Shaw and Yu 2022)
and these methods are increasingly used in bioinformatics
tools [e.g. Ekim et al. 2021; Rautiainen et al. 2023; Shaw and
Yu 2023]. To avoid creating undesirable behaviors with these
tools, it is therefore important to ensure that the sketching
method used is immune to the effects of using canonical
k-mers, e.g. by using context-aware methods or context-free
methods designed to be robust.

More generally, algorithms handling sequencing data must
be designed to work properly in the presence of sequences
and their reverse complements, and not only as classical
string algorithms.

2 Preliminaries
2.1 Notations

All sequences are strings over the alphabet X of size o = |3,
and X ={0,...,6—1}. For the sake of simplicity, we assume
that ¢ is even (6 = 2 or 6 = 4 in our examples). Moreover,
every letter of the alphabet has a complement: a,b € X are
complements of each other when a+b=06-1. This is
denoted as a=b or (equivalently) b =a. The genomic case
corresponds to the mapping A=0,C=1,6=2,T=3. A se-
quence is an element of X", and S[i: ¢] is the substring of S
starting at offset i and of length c.

Given a k-mer m = m ...my, its reverse complement is the
k-mer m" =y, ... 717. The set A" contains the reverse com-
plemented k-mers of set A. The canonical representation of m
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is m® = min(m,m"), i.e. the lexicographically smallest of m
and 772", The sets C and C' denote canonical k-mers and their
reverse complements, respectively. These sets cover the
k-mers (i.e. 3* =CUC") but may not be disjoint. Specifically,
when £ is even, the intersection CNC' is the set of self-reverse
complement k-mers—e.g. k-mers such as 0011 in the bi-
nary alphabet.
In general, a sketching method is a function

¢ input k-mers
e N
p: 3% xSk P, ),

where P is the power set. That is, the sketching function takes
¢ k-mers as input (the context) and returns a possibly empty
list of k-mer positions to select from this context. The context
of length ¢ of S at position i is the list of the ¢ consecutive
k-mers starting at position iz C(S,c,i)=[S[i: k],...,
S[i+c—1:k]]. The sketch associated with ¢ for an input
sequence S is the set of the offsets of all selected k-mers from
every context of S: M,,(S,¢) =Ui{i+o-1] 0 € ¢(C(S,¢,i))}.

This general sketching definition can model methods with
context [where ¢ > 1, e.g. minimizers (Roberts et al. 2004a,b)
and minmers (Kille et al. 2023)], and context-free methods
[where c=1, e.g. syncmers (Edgar 2021, Dutta et al. 2022),
fractional minimizers (Rouzé et al. 2023)]. We focus on
context-free methods, and the selection function makes a bi-
nary decision: Do or do not select the one k-mer in the con-
text. Such sketching selection function is defined by the set of
all k-mers that it selects among all possible ¢* k-mers:
P,={me 3k|p(m) # 0}. Equivalently, the function ¢ is the
indicator function of the set P,. Thus, computing the sketch
reduces to computing the intersection between the k-mers in
the sequence and the set P,,:

M,(8,1) ={i €[0,]S| -k +1]|S[i: k] €P,}.

Going forward, we do not differentiate between the selection
function ¢ and the set P,, and we freely use ¢ with
set notations.

2.2 Cycles of the de Bruijn graph and
selection deserts

A scheme ¢ has a strong window guarantee of w if the maxi-
mum distance between any two consecutively selected k-mers
in any sequence is at most w. A scheme has a relaxed window
guarantee if there exist only a small number of well-
characterized repetitive sequences not intersecting ¢. For ex-
ample, the low-entropy sequences {AA...,CC...,GG...,
TT...} may be used as a set of non-intersecting sequences.
When neither holds, a scheme has no window guarantee.
These notions have graph theoretical equivalents using the
de Bruijn graph. The de Bruijn graph By, is the directed graph
with ¢* nodes (one for each distinct k-mer) and an edge # —
v when the (k- 1)-suffix of u is equal to the (k - 1)-prefix of
v. There is a one-to-one correspondence between the sequen-
ces of 3" and the walks in By, and a cycle in the de Bruijn
graph corresponds to an infinitely long repetitive sequence.
An equivalent definition of the strong window guarantee
of w is that the graph B, \ ¢ (the de Bruijn graph with the k-
mers of P, removed) is a directed acyclic graph (DAG) and
the longest path in this DAG is of length <w. In that case, ¢
is called a decycling set of the de Bruijn graph. When B, \ ¢
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has strongly connected components (SCCs; i.e. it contains
cycles), ¢ does not have a window guarantee for any w.
Similarly, ¢ has a relaxed window guarantee if the SCCs con-
tain only cycles of sequences that we are willing to ignore
(e.g. the low-entropy sequences shown previously). For a
function ¢, SCC(p) denotes the union of all the SCCs
of Bk \ Q.

Given a k-mer m =momy...my_q, its rotation k-mer is
R(m)=my ...my_ymyp, and there is an edge m — R(m) in
the de Bruijn graph. The cycle of all the rotations of m
(m,R(m),R(R(m)),...) is called, for historical reasons, a Pure
Cycling Register (PCR). The PCRs partition the nodes of the
de Bruijn graph and play a special role in describing decycling
sets. In particular, a decycling set must contain one node
from each PCR and the minimum size decycling sets (MDSs)
contain exactly one node from each PCR. Note that the con-
verse is not true: not all sets containing exactly one node
from each PCR are decycling. The Mykkeltveit (Mykkeltveit
1972) and Champarnaud (Champarnaud et al. 2004) sets are
two examples of MDS constructions.

2.3 Sketching methods

The following sketching methods are commonly used by bio-
informatics software packages and satisfy the sketching
model described above.

The original window-based sketching methods are the min-
imizers (Roberts et al. 2004a,b). The input to the minimizers
function is a context of w k-mers (originally called a win-
dow), and the function returns the index of the lexicographi-
cally smallest k-mer among the input, which is defined by
some pre-determined order on the k-mers. Various refine-
ments of minimizers exist such as local schemes (Schleimer
et al. 2003) and minmers (Kille et al. 2023). These methods
share the important property that they have a context or win-
dow length > 1, and they always select at least one k-mer in
each input window. Consequently, these methods have a
strong window guarantee of length equal to the input win-
dow length. In some applications, post-processing is applied
to not select two identical homopolymer k-mers (say AA...3)
in a row, to avoid selecting too many k-mers in low-entropy
regions of the genome. This effectively gives a relaxed win-
dow guarantee.

Positional minimums methods such as syncmers (Edgar
2021) have a context of length 1. They have extra parameters
s and ¢, where a k-mer m is selected if the smallest s-mer
among the k — s+ 1 s-mers of m starts at position #. As before,
the smallest s-mer is defined by some pre-determined order
on s-mers. A notable generalization of syncmers is the param-
eterized syncmers (Dutta et al. 2022) that use a bit mask of
locations for the smallest s-mer instead of the parameter ¢.

When s-mers are tied, these methods use a left-most tie
breaking rule. This rule has an interesting consequence on the
window property. If £=0 (i.e. the first base), then syncmers
have a strong window guarantee, though the length might be
as long as ¢° (Marqais et al. 2024). When 0 <#<s/2 and the
s-mer 1, at position ¢ is minimal but not selected because an
identical s-mer starts at position 0<i<¢, then m, must be a
“sesqui-power,” i.e. a word of the form m, = x"y where x is
of length t—i and y is a prefix of x (see Fig. 1). Effectively this
skips low-entropy genome regions that are repetitive with re-
peat lengths at most ¢, giving a relaxed window guarantee.
When ¢ > s, there is no longer a window guarantee. Similarly,

3
1=0 t=2
| I I I N I R I A |
I 1T 1T 1T 1T 1T 1T 1T"1
A C A C A C A T C
0 1 2 3 4 5 6 7 8

Figure 1. The left-most tie breaking rule implies a relaxed window
guarantee for syncmers when t<s/2. In this example, k =9,t=2,5=5,
and the alphabetic order on 5-mers is used. The 9-mer is not selected
because the 5-mer at position 2 is equal to the 5-mer at position 0 and the
left-most tie breaking rule. Because this 5-mer overlaps with itself, it is
"almost” repetitive: It is a sesqui-power x7y with x =AC,y =A,n = 2.
Repetitive sequences of length t=2 are skipped over.

parameterized syncmers have a strong window guarantee if
the bit 0 is set and either a relaxed guarantee or no guarantee
for any other value of the mask.

Hash-based sketching methods are context-free functions
that select a random subset of k-mers using a hash function.
Examples include when the hash value is equal to Omodp or
when it is less than or equal to f for a pre-determined modu-
lus p or fraction f. In general, these sketching methods do not
have any window guarantee.

3 Decycling in k-nonical space

In this section, unless specified otherwise, we assume that the
sketching function ¢ is context-free.

3.1 Symmetric selection function

Compared to classic string algorithms, bioinformatics algo-
rithms must take into account the double-stranded nature of
DNA. In particular, when DNA is sequenced it is usually un-
known which strands of the DNA are actually sequenced. In
other words, the sequence of a read r and its reverse comple-
ment sequence 7 carry the same information. Consequently,
in algorithms using sketching, it is required to have
“symmetric” selection functions, where the same decision is
applied to a k-mer and its reverse complement. Formally, a
selection function is defined to be symmetric when ¢(m) =
@(m") for every k-mer m.

Sketching schemes are designed as classical string algo-
rithms, ignoring the required symmetry. Then, in practice,
software programs use canonical k-mers rather than k-mers.
Effectively, instead of using the selection function ¢ they use
the canonicalized function ¢° defined by ¢°(m) = p(m°). ¢°
is guaranteed to be symmetric.

It is often assumed that the canonicalized function ¢° es-
sentially has the same properties as ¢, and if anything, ¢¢
would select more k-mers than ¢. In particular, a commonly
held belief is that, if the selection function ¢ has a (relaxed)
window guarantee, then so too does ¢°. Unfortunately this
does not always hold, especially for the usual context-free
methods. Even if a selection function ¢ has a strong window
guarantee, the corresponding ¢° may not have any win-
dow guarantee.

3.2 Canonicalized decycling set

In the context-free case, a selection function is equivalent to a
set of k-mers, and the canonicalized function is obtained via a
simple set operation. Using this point of view, we clearly
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show in the next two Lemmas why ¢ may not have the same
decycling property as ¢.

Lemma 1 (Canonicalized function). The canonicalized
selection function ¢° of ¢ is defined by the
following set:

"= (pNC)U(pnC).

Proof. By definition of ¢¢ for any k-mer m,
m € ¢° < m° € p. We consider two cases:

* Whenm € C: m € ¢° <= m € ¢. Thatis, p°NC=¢pNC.
e when meC: meg-<—=m cp<mecp'. That
. —r _ —r r
15, pNC =9"'NC =¢pNnC.

Because CUC =3* covers all the k-mers, the union of
these two cases gives the desired result.

Lemma2. Let x1 — x» — ... — x, — x1 be a PCR. Then
the reverse complemented k-mers form the
PCRx1" — %, — ... = x3" — x1". These two
PCRs may not be disjoint, in which case they are the
same PCR.

Proof. The second part comes from the fact that PCRs parti-
tion the nodes of the de Bruijn graph.

For the first part, it is sufficient to show that for any k-mer
m there is an edge R(m)r — " where R(m) is the rotation of
m. With m=momy...my_y, R(m) =my...my_ymp, then
R(m)r = Moy .. T has an edge to w_;... 7y my =

R(R(m) )=m".0

Figure 2 shows examples of PCRs for the binary alphabet
and k = 6. In this representation, the dashed vertical line acts
as a “line of symmetry,” where canonical k-mers are on the

010000 _»111101
001000 100000 = 111110
(@) T l T l

000100_ _ 000001 ~ 011111 _ 110111
foooo16 '3:;101111%]_/

Q

000111
001110
(b) T l

011100 110001

“11000¢”
011000 — 110000 111100 —{111001]
7 \
011110  |100001

000110 <— 000011 001111 «— 100111

001100 110011

Figure 2. For k=6 and ¢ = 2, examples of PCRs. Every kmer on the left
side is a canonical kmer (€ C), and k-mers symmetrical compared to the
vertical line are reverse complement of each other. The k-mers inside gray
boxes are an example of set ¢, and the k-mers in dashed boxes are the
corresponding ¢ set. 000010 is in both ¢ and ¢° (case a). Not every PCR is
covered by ¢°, and consequently ¢° is not decycling (cases b and c).

Margais et al.

left and non-canonical k-mers are on the right. Cases (a) and
(c) are when the PCR and the reverse complement PCR are
disjoint. Case (a) is when the PCR is entirely contained in C
or C', i.e. neither the PCR nor the reverse complement cross
the dashed line. In case (c), both the PCR and the reverse
complement cross the dashed line. Case (b) is when the same
PCR contains k-mers and their reverse complements. k-mers
on the dashed line are self-reverse complements.

The set ¢° is constructed from ¢ in two steps: (i) only the
k-mers of ¢ on the left of the line are selected, and (ii) the
symmetrical k-mers are added. Consequently, in the cases
where the k-mers of ¢ for a PCR and its reverse complement
are in C' (on the right side of the plane), they are not selected
in step 1 and ¢° does not cover these PCRs (see Fig. 2b and
¢). Hence ¢¢ does not necessarily contain a k-mer from every
PCR, and it is therefore “less decycling” than the original
function ¢: the SCCs in SCC(¢°) are super-sets of SCC(gp) as
SCC(¢°) also contain, at least, the uncovered PCRs.

Table 1 shows the number of SCCs and their cumulative
size as a percent of the total number of k-mers (k =15) for a
variety of context-free schemes. The Mykkeltveit and
Champarnaud sets are two known construction methods for
MDSs. Although these sets are not used on their own as
sketching methods, the Mykkeltveit set in particular has been
used as a starting point to define sketching methods
(Orenstein et al. 2017, 2016, Ekim et al. 2020, Pellow et al.
2023). By construction, these sets are decycling.

The syncmer methods use s=6 and values of t € {0,1,7},
along with a random ordering of the s-mers. For t=0 and t=1,
the syncmers have a strong and relaxed window guarantee (four
SCCs corresponding to the hompolymer sequences), respec-
tively. For =7, because t>s, there is no window guarantee,
and this set leaves many small SCCs. The value # ~ k/2 is an of-
ten recommended setting for syncmers (Shaw and Yu 2022).

The fractional set selects a fraction of k-mers f=
1/(k—=s+1) (i.e. the fractional set is expected to be of the
same size as the syncmer sets, as is observed in Table 1) and
uses a random permutation of k-mers. This method selects a
random subset of all k-mers, has no window guarantee, and
leaves one very large strongly connected component. It shows
that a random set of k-mers does not approximate a set with
a window guarantee.

After canonicalization, the window guarantees (whether
strong or relaxed) do not hold anymore, and the sizes of the
SCCs range from 83% to 95% of the de Bruijn graph. The
Champarnaud set leads to a much larger component than the
Mykkeltveit set, showing that the effect of canonicalization
can vary significantly between methods, even with strong
window guarantee. Canonicalization does not have a visible
effect on the fractional set as it has no guarantee and a large
SCC even before canonicalization.

3.3 Context-free vs. context-aware methods

Although it is not a requirement of the definition of ¢, every
sketching method with a context used in practice always
selects at least one k-mer from their context (e.g. minimizers,
minmers). As a consequence, for these sketching methods, the
canonicalized function ¢° defined by ¢°(my,...,m,)=
@(mi",...,m,") also always select at least one k-mer from its
context. In other words, both ¢ and ¢ have, by construction,
a strong window guarantee that is equal to the number of
k-mers in the context.
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Table 1. For ¢ = 4 and k=15, the table gives the number of SCCs, the percent of k-mers of the de Bruijn graph that are in an SCC, and the size of the k-
mer sets relative to the total number of k-mers (4'°). Syncmers use s=6and t € {0, 1,7}. Because Mykkeltveit, Champarnaud, and Syncmers with t=0
are decycling, there are no SCCs. Syncmers with t=1 have a relaxed window guarantee that allows the homopolymer sequences, and hence this
Syncmer method has only ¢ = 4 SCCs and 4 nodes in these SCCs. In every case, the canonicalized set leaves large SCCs in By \ ¢°. The relative set size
is equal to the expected density (i.e. the percentage of selected k-mers in a long random sequence).

mykkeltveit champarnaud fractional syncmer 0 syncmer 1 syncmer 7

@ ¥* @ o ¥* @ o @ o° @ o°
Number of SCCs 0 1 0 1 1 0 1 4 3 1337 1
SCC cumulative size (%)  0.00 84.35 0.00 95.94 89.98  89.98 0.00 87.23 0.00 84.19 0.01 83.74
Set relative size (%) 6.67 10.73 6.67 4.06 10.00 10.00 10.12 9.95 10.00 10.00 9.99 9.98

Many k-mer orders have been designed (e.g. Zheng et al.
2020, Hoang et al. 2024, Pissis and Sung 2024) to improve
various properties of minimizers. These orders may be only
partially defined using a decycling set (aka “compatible
orders,” Margais et al. 2018) such as in (Orenstein et al. 2017,
DeBlasio et al. 2019, Ekim et al. 2020, Zheng et al. 2021,
Pellow et al. 2023), or implicitly like in the “windowed syn-
cmers” (Dutta et al. 2022). The robustness to canonicalization
of minimizers is independent of the chosen order; therefore, ev-
ery one of these schemes is robust and is consequently not part
of the following analysis on sketching deserts.

The situation is very different with context-free methods:
Any non-trivial context-free sketching method must not al-
ways select a k-mer from the context. In fact, there is only
one context-free method that always select the one k-mer
from every context: It is the function that selects every k-mer
from any input sequence and is equivalent to no sketching at
all. Therefore, as seen in the previous section, a context-free
method is not guaranteed to be a decycling set before or after
canonicalization.

Context-free and context-aware methods with a window
(like minimizers) have different trade-offs. Minimizers have a
strong window guarantee that extends to k-nonical space. On
the other hand, because of this window, finding low density
minimizers schemes (i.e. minimizers with sparse sketches) is a
difficult problem (Margais et al. 2017, Zheng et al. 2020).

A context-free method is defined by a set and its density
can be made arbitrarily small by using a small set or using
sub-sampling (Edgar 2021, Rouzé et al. 2023). This comes at
the cost of not having any built-in window guarantee. To en-
force such a guarantee the set must be carefully chosen (i.e. it
must be a decycling set). Finding a set that is also decycling in
k-nonical space adds another difficulty and new trade-offs.
This problem is tackled in Section 5.

3.4 Canonicalized sketching deserts

The existence of large SCCs for a given sketching method
implies that there exist long—even infinitely long—sequences
without any selected k-mers. Moreover, the full set of sequen-
ces spelled out by these SCCs is usually not known due to the
complexity of the components. We call a sufficiently long re-
gion of a genome that does not contain any k-mers from a
sketching method a sketching deserts. These regions are ei-
ther undersampled or skipped by the sketching method.
Thus, they are ignored by analyses using these sketch-
ing methods.

What precisely constitutes a sketching desert depends on
the particular bioinformatics application and the type of data
analyzed. Consider an application using k-mers from a sketch
as anchors for alignment against a genome (Li and Birol
2018, Jain et al. 2022) or using the sketches in an alignment-

free method to characterize bacterial strands [e.g. Kraken
(Wood and Salzberg 2014)]. In such applications, a minimum
number of selected k-mers may be needed to (i) pass quality
filters and (ii) have significant statistical power. For example,
with short-read sequencing (200 or fewer bases) and requiring
a minimum of four selected k-mers per read, gaps of 50 bases
or more between selected k-mers are problematic. Thus,
regions of the genome of 50 bases or more without selected k-
mers are considered sketching deserts for these applications.

Table 2 shows the cumulative size of the sketching deserts
for three k-mer sizes in the human genome (GRCh38) (per-
chromosome tables are available in Supplementary Appendix
“Chromosome resolution sketching deserts” and full histo-
grams are available as Supplementary data). For the k=15
case, when switching to k-nonical k-mers, the size of sketch-
ing deserts jumps by two order of magnitude, from a tiny
part of the genome to a more sizeable chunk. For example,
for syncmer with t=0 and k=15 the cumulative desert cu-
mulative size goes from 80 kb to 19.51 Mb. Even though it is
still relatively small compared to the genome size (= 0.6%),
as is shown below, it is large enough to contain complete
exons, and therefore to introduce systematic biases in down-
stream analysis. The full histograms (provided as
Supplementary data) show gaps between selected k-mers of
up to 1000 bases in k-nonical space, compared to at most 70
bases otherwise. The potential size of sketching deserts
increases with the length of the k-mers, as seen with k=31,
63 compared to k=15.

Similar effects are observed on the sequence of protein-
coding  genes. For  example, with syncmers
(k=15,s=6,t=0), one random order on s-mers leaves
>20% of the sequence of MIER2 (transcript MIER2-201
with 7084 bases) in sketching deserts, with multiple gaps of
> 100 bases, when using canonicalization. Without canonic-
alization and the same order, there is no gap of 50 bases or
more, hence no sketching deserts. Even more pronounced
effects are observed with longer k-mers: Gene RBBPY (tran-
script RBBP9-203 with 1121 bases) has > 90% of its sequence
in sketching deserts for syncmers (k=31,s=10,¢=1) in k-
nonical space while having no desert before canonicalization.

This also illustrates the impact of the random choice of the
order on s-mers. For the same syncmers parameters, while for
all tested orders there exist transcripts with sketching deserts
of >20% of their length, the MIER2 gene has sketching
deserts for only one of the tested orders.

3.5 SCCs and desert sizes

The relationship between the size of the SCCs with ¢°
(>80% of the k-mers) and the length of the sketching deserts
(< 1% of the sequence) may seem surprising. Two opposite
phenomena are at play here.
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Table 2. Cumulative size in mega-bases of the sketching desert of length >50, >75 and > 150, respectively, for k=15, 31, 63 in the human genome
GRCh38. For methods using a random order (fractional, syncmers), the values are averages over three independent runs. The syncmer method

parameters are s = | k/2| and t € {0, 1, | k/2]}. The fractional parameter fis set to match the number of selected kmers of the syncmer methods (i.e.
f=1/(k—s+1)). In every method, except fractional, the canonicalized set has sketching desert orders of magnitude larger than the original method.

Mykkeltveit Champarnaud fractional syncmer 0 syncmer 1 syncmer k/2

® o ® ¥ ® »° ® »* ® »* ® »*
k=15,>50 0.28 15.97 0.81 1009.22 60.45 61.36 0.08 19.51 0.04 13.23 1.73 14.60
k=31,>75 26.13 139.54 37.33 1320.33 176.76 176.75 3.29 81.15 1.55 70.67 1.95 71.70
k=163,>150 36.22 241.06 41.10 1252.49 165.66 165.38 2.79 76.57 1.90 70.23 2.14 72.69

First, the de Bruijn graph has a high connectivity (o, except
for the homopolymers), and a small diameter (k). It also has
a very large number of cycles (e.g. there are (o-!)“ki]/ak
Hamiltonian cycles) (Maurer 1992). Intuitively, a slight
change to a decycling set can create large SCCs.

Second, for a context-free method, the relative size of its k-
mer set is equal to the expected density. As is seen in Table 1
for the syncmer methods, the canonicalized set ¢¢ has ap-
proximately the same relative size as ¢. Hence, the expected
density is the same in both cases, and therefore the expected
distance between selected k-mers (which is equal to the in-
verse of the density) also remains the same.

Despite having the same density, the lack of window guar-
antee with the canonicalized set implies that long sequences
not intersecting ¢° exist, and these sequences create sketching
deserts. See the histograms of distances between selected k-
mers in Supplementary data having a long tail for the canoni-
calized set ¢°.

The Mykkeltveit and Champarnaud sets are the only two
MDSs for which we have an explicit construction algorithm.
There exists a very large collection of MDSs (Margais et al.
2024) for any parameter k. Although the Champarnaud set
probably has not been used in practice, the different behavior
between the Mykkeltveit and Champarnaud sets shows the
dramatic effect canonicalization can have, and the difficulty
to predict the canonicalization effect for a given decycling set
and target sequence combination.

The effect on the syncmer methods for these random
choices of orders on the s-mers is less dramatic, although still
quite large, especially for large k-mers. On the other hand,
the relationship between the order used on s-mers and the
size of the sketching desert is completely unknown and noth-
ing in the method a priori prevents similarly large effects
when using an order on s-mers that interacts poorly with the
human genome.

The fractional set method has the weakest guarantee, with
significant  sketching  deserts  before  and  after
canonicalization.

4 Canonicalizing sketching methods

In the formula of Lemma 1, the intersection with the set of
canonical k-mers C is the reason why ¢° intersects with fewer
cycles of the de Bruijn graph, creating larger SCCs and larger
sketching deserts. By avoiding this initial intersection, the fol-
lowing simple method creates a symmetric selection function
from a given selection function ¢:

Definition 1 (Union function). As a set, the “union”
selection function is defined by: ¢ £ ¢ Ug".

That is a k-mer m is selected by ¢" if either 7 or its reverse
complement 77" is selected by ¢. Because ¢" is a super-set of
@, using ¢" does not introduce any new SCCs or sketching
deserts. This scheme can be implemented by using the effi-
cient encoding of (Wittler 2023) where a k-mer and its re-
verse complement are indistinguishable.

This union function is not entirely new. Although motivated
by a different goal, it is suggested in Pellow et al. (2023) to use
an order for minimizers (the “double decycling set order”)
which is based on the set ¢", where ¢ is the Mykkeltveit set.

On the other hand, the union selection function is not tra-
ditionally used with sketching methods, because the size of
the set ¢" is likely about double that of ¢, which could
change the behavior of the sketching method. For example,
the number of selected k-mers in a sequence S—approxi-
mately |¢p" NKC(S)|—is likely to double as well, reducing the
sparsity of sketches created by the union sketching function
compared to that of the original function [i.e. it affects the
density (Margais et al. 2017, 2018) of the sketching method].
By comparison, the canonicalized function, thanks to the in-
tersection with C which contains slightly over half of all the
k-mers, is expected to have a size similar to that of the origi-
nal sketching function.

We therefore propose the following optimization problem of
finding a function which is as close as possible to the canonicali-
zation function while not increasing the number of SCCs.

Problem 1 (Sparse canonicalization). Given a set ¢, find the
smallest set A such that ¢¢ C A and SCC(A) C SCC(g).

The union set of Definition 1 satisfies the two conditions of
Problem 1, but it is not necessarily of smallest size. We use
the following greedy procedure to reduce its size: Starting
from a union set ¢", each k-mer is examined one by one, in a
random order. If a k-mer and its reverse complement can be
removed from the set without creating a strongly connected
component, they both are removed from the set. Otherwise,
the set remains unchanged.

This randomized heuristic is not guaranteed to return the
optimal solution. Because the strongly connected component
are computed to test whether a k-mer can be removed, the
runtime is exponential in k.

Performance of this procedure is shown in Section 6.

5 Symmetric sketching function design

The previous sections focused on the effect of using canonical
k-mers with existing sketching methods and how to adapt
these methods. An alternative approach is to directly design
context-free sketching methods in k-nonical space, i.e.
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finding selection functions ¢ that satisfy ¢(m) = @(71") by de-
sign. In this section, we develop an efficient ILP procedure
that finds a set of k-mers of smallest size under the con-
straints that it satisfies the symmetry condition and has a
strong window guarantee of the desired length (i.e. it is decy-
cling, and the longest path in the DAG B, \ ¢ is less than
some specified parameters).

To do this, we recall preliminary definitions related to feed-
back vertex sets (FVSs) and nilpotent matrices in the next sec-
tion. We then define the Maximum Nilpotent Submatrix
Problem (MNSP) and show that this problem is NP-hard
through a reduction from a problem related to decycling. The
connection used by this reduction is an algebraic condition
on adjacency matrices that leads to an ILP formulation for
the MNSP (the proof of correctness for this formulation is in
Supplementary Appendix “Circuit Construction”). We spe-
cialize this ILP to find symmetric sketching functions by
changing the basis on the adjacency matrix used in the con-
struction, which allows us to find a symmetric function that
minimizes in order (i) cardinality, (ii) maximum remaining
path length, and (iii) expected remaining path length. We
conclude with a test of our algorithm on a binary alphabet
with k ranging from § to 8.

5.1 FVSs and nilpotency

A FVS of a digraph G is a set of vertices W C V such that the
digraph G \ W induced by the deletion of W is a directed acy-
clic graph. The Minimum Feedback Vertex Set (MFVS) prob-
lem is to find the minimum cardinality FVS and was one of
the original 21 problems shown to be NP-hard (Karp
etal. 1972).

Every MDS solves the MFVS problem on the de Bruijn
graph, yet unlike the general problem, there are efficient algo-
rithms to find MDSs (i.e. the Mykkeltveit (1972) and
Champarnaud et al. (2004) algorithms). However, the space
of MDSs is empirically observed to offer substantial diversity
over optimization metrics like the maximum remaining path
length, with efficiently selected sets falling short of global op-
tima (Margais et al. 2024). Moreover, there are no known
algorithms to create symmetric MDSs, i.e. sets M such
that m e M < m" € M.

To optimize MDSs over both the standard and canonical
de Bruijn graph, we develop an ILP formulation for a variant
of the MFVS problem that (a) accepts a maximum remaining
path length constraint, (b) works with symmetries such as the
reverse complement, and (c) minimizes the expected remain-
ing path length after decycling.

Our formulation uses a connection between DAGs and nil-
potent matrices to enforce a maximum path length and com-
pute the expected path length. A matrix A € R"*” is nilpotent
when A’ = 0 for some ¢ € N. The minimal ¢ is called the nilpo-
tent index of the matrix and is always less than or equal to n
when it exists (Axler 2015). When A is nonnegative (i.e. it
has no negative entries), there is a convenient equivalent con-
dition to nilpotence defined with the vector e of all 1’s.

Lemma 3. A nonnegative matrix A is nilpotent if and only
if A'e =0 for some t <n. The smallest such t is the
nilpotent index of A.

Proof. If A is nilpotent, we have for some #<#n that
A'e=0(e) =0. If A is nonnegative and A’e =0, it follows
that A’ is the zero matrix because (i) A’e is the vector of row

sums, (ii) a nonnegative vector sums to zero if and only if it is
the zero vector, and (iii) nonnegative matrices are closed un-
der matrix multiplication. In both directions, # can be taken
to be minimal with no change, so the smallest such ¢ is pre-
cisely the nilpotent index. 0

Suppose G = (V,E) is a digraph with V ={1,2,...,n}. Let
A € R"*" be the adjacency matrix of G, defined as A; = 1 if
(i,7) € E and 0 otherwise. A walk in G is a string of vertices
vovy ...v; such that consecutive vertices are adjacent, i.e.
(vi,vit1) € E. A path is a walk with no repeated vertices.
Recall that Af is the number of distinct walks of length ¢
between nodes 7 and ;.

Lemma 4. G is a DAG if and only if A is nilpotent.
Moreover, when G is a DAG, the nilpotent index is
one more than the longest path length.

Proof. Suppose G is a DAG. Every walk in G is a path be-
cause a walk with a repeated vertex would imply the exis-
tence of a cycle. As the vertex set is finite, there is a longest
path of length #* <. Thus, A" *! = 0 since a non-zero entry
would indicate a path longer than the longest path. This is
the nilpotent index because there are sub-paths of the longest
path for every length less than or equal to #*.

Now suppose G has a cycle. Then G also has a walk of every
length constructed by starting at any vertex in the cycle and tra-
versing it until reaching the desired length. Thus, A’ # 0 for any
t because at least one entry must be greater than zero to count
the walks around the cycle, showing that A is not nilpotent.

The maximum t-nilpotent submatrix (--MNS or MNS)
problem is to find a nilpotent submatrix of A that maximizes
selection with respect to a weight vector w, while ensuring
the submatrix has a nilpotent index no larger than ¢. Stated
differently, the MNS problem is to select a nilpotent subma-
trix of maximum value, where the value is scored by the sum
of fixed weights assigned to each index. The general version
of this problem has not been studied, but it is equivalent to
MFVS when A is an adjacency matrix and #=#n. Moreover,
the nonnegative case of -MNS is equivalent to MFVS with
an additional max path length constraint for values of t < 7.

Lemma 5. MNS is NP-hard via a reduction from MFVS.

Proof. Let G be a digraph represented by its adjacency matrix
A, and let I' C [n] be the indices of a nilpotent submatrix of
A. By Lemma 4, the induced subgraph Gr is a DAG, so the
complement [#] —T" is a FVS. The same argument taken in re-
verse shows that a FVS corresponds to a nilpotent submatrix.
Thus, every FVS is the complement of an index set for a nil-
potent submatrix of A. This shows that solutions to MNS for
A are equivalent to solutions to MFVS for G up to a comple-
ment. [

5.2 MDS-selection ILP

From the proof of Lemma 5, we see that finding a minimum
FVS is equivalent to solving #-MNS with an adjacency ma-
trix. Moreover, if we constrain the nilpotent index, we con-
strain the maximum remaining path length of the selected
vertices. Thus, we now develop a formulation for the MNS
problem over nonnegative matrices that we will use to find
path-constrained MDSs. (See Corollary 1 in Supplementary
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Appendix “ILP Circuit” for an extension of our formulation
to the general case.)

For the following, A is an 7 X n matrix, I" is an index set,
Ar is the submatrix with rows and columns indexed by I', er
is the vector of all 1s indexed by I', and [#] is the set of indices
from 1 to n. Theorem 1 is proved in Supplementary
Appendix “Circuit Construction.”

Theorem 1. The following formulation solves for a (¢+1)-
nilpotent submatrix, maximizing selection with
respect to a weight vector w:

argmax y w (1)
8 rcly] ; ¢
subject to AL ler =0 (2)

Moreover, it can be formulated as a mixed-ILP with O(n) bi-
nary variables, O(¢-n) continuous variables, and O(t-n)
constraints.

When A is an adjacency matrix, this formulation solves
MFVS with respect to the weights given by w. This frame-
work can also model the expected path length of a uniform
random walk that stops once a removed vertex is hit.

To do this, we use the random-walk adjacency matrix de-
fined as A; = A;/out(i), where o~utt(z') is the number edges
originating at vertex 7. The entry A, is the probability that a
random walk starting at vertex i is at vertex j during time #
whgr} uniformly sampling an outgoing edge. For an index set
I', Ay is also the probability that a random walk starting at
vertex  is at vertex j during time ¢, with the caveat that some
states are absorbing, i.e. a random walk stops once a state in
[#] =T is hit. This leads to two expectation identities given by
the random walk.

For random-walk matrix A, index set ' C [1], and proba-
bility vector p € R”, the expected time before a random walk
X is absorbed by I satisfies

E, X =e" (i Aﬁ)pr,
k=1

which is equal to infinity when the subset I" does not asymp-
totically halt random walks (i.e. it does not represent a decy-
cling set). When I' induces a submatrix of nilpotent index
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t+ 1 or smaller (i.e. it represents a decycling set), the summa-
tion is finite and stops at k =t¢.

Thus, using the construction of Supplementary Appendix
“ILP Circuit,” we can represent all the vectors used in these
expectation formulas. We combine this with Theorem 1 to
find a MFVS that secondarily minimizes the expected hitting
time of a uniformly random walk using a rescaled uniform
probability vector. In Supplementary Appendix Fig. A.1, we
visualize this process as a probabilistic circuit over the de
Bruijn graph with 6 = 2 and k=35.

To work with symmetries, we use a change of basis that
considers all equivalent vertices to be the same. For example,
if node v is equivalent to w (e.g. v=1w"), we simply replace
both respective vectors with a new basis vector (v+w)/2 in
the adjacency matrix construction.

6 Results

We tested our ILP formulation against our greedy union algo-
rithm with the 6 = 2,4 de Bruijn graph for various values of
k. For 6 = 2, the ILP solved these instances in 2, 10, 30, and
58 minutes, respectively, and required 1 GB of memory. The
ILP did not solve the k=9 instance after 3 hours and peaked
at 5 GB of memory, and similarly cannot solve the instances
for ¢ = 4. Because of the exponential growth of the problem
size, further optimizations or algorithmic insights are neces-
sary to be able to tackle the larger instances necessary for
practical uses. eg, for 6 = 4 and k=15 the de Bruijn graph
has over a billion nodes and even smaller values of k lead to
large ILP formulations with ¢ = 4 that are out of reach for
the current ILP.

Table 3 shows the results of our experiment. The ILP opti-
mized selections have, as expected, a smaller cardinality than
the greedy selections. The maximum path lengths of the
greedy optimizer are occasionally shorter because the ILP
optimizes first for the cardinality of the set.

Being a symmetric decycling set is a strong condition that is
still not well understood theoretically (e.g. the minimum size
of a symmetric decycling set is unknown). Similarly to having
a window guarantee for sketching methods (see the discus-
sion in Section 3.3), having a window guarantee in k-nonical
space involves trade-offs (e.g. increased density). Whether the
existence of sketching deserts, these deserts actual lengths
and locations in the sequence, or the increase in density (or
other metrics) is the most important issue is application

Table 3. Statistics on the solution of the greedy procedure of Section “Canonicalizing sketching methods” and the ILP method. Results are for the de
Bruijn graph with 6 =2,5<k<8and 6 =4,7<k<9. The ILP method and the expected path length are only reported for ¢ = 2 as it is too computationally
expensive for 6 = 4. The columns show the cardinality of the selected sets, maximum path length after removing the sets from By, and the rounded
expected path length after removing the sets. The Mykkeltveit (labeled Mykk.) and Champarnaud (labeled Champ.) sets are used as the starting points of
the greedy procedure. The ILP procedure minimizes (in order) for cardinality, maximum path length, and expected path length.

¢ k Cardinality Maximum path length Expected path length
Mykk. Champ. ILP Mykk. Champ. ILP Mykk. Champ. ILP
® @ " @ o " » 9" ¢f v 9"t
25 8 14 12 8 14 12 12 11 6 6 11 6 6 6 1.16 1.17 1.36
6 14 23 19 14 23 19 16 21 15 15 21 15 1§ 9 1.66 1.72 1.53
7 20 38 30 20 38 30 28 27 16 16 27 16 16 20 2.12 2.08 1.62
8 36 69 51 36 65 45 44 39 19 27 47 27 35 23 297 2.45 2.0
4 7 2344 4684 3126 2344 4672 2818 111 62 206 141 50 292
8 8230 16440 10812 8240 16 068 9730 145 89 547 429 109 735
9 29144 28272 38546 29144 58148 34538 231 118 1128 520 124 1196
10 104968 209883 142681 104968 207336 126502 330 191 2899 1601 289 3317
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dependent. These trade-offs should be clearly evaluated when
using a sketching method in k-nonical space.

7 Conclusion

The use of canonical k-mers is the standard modification that
allows sketching methods for standard text to work with bio-
logical sequences. We have shown this has a previously
unrecognized flaw when applied to context-free sketching
methods. This approach creates sketching deserts that make
some sequences effectively invisible to downstream algo-
rithms that use the sketch, potentially creating biases in the
analysis. We described the theoretical mechanism behind the
creation of these sketching deserts and provided two different
options to designing sketching methods that properly handle
sequences that are equivalent to their reverse complements.
The first method modifies existing sketching methods, but
unlike canonical k-mers, this modification does not create
sketching deserts. The second designs de novo symmetric
sketching methods that are of minimum size while having
small window guarantee.

The proposed methods may not scale to values of k large
enough for some practical applications. The size of the ILP
grows very fast for the DNA alphabet (6 =4) and is unlikely to
return an exact solution in a reasonable time. Efficient meth-
ods to design symmetrical decycling sets and robust sketching
methods is still an open and interesting research avenue.

In general, sketching methods that are used with genomics
data must be explicitly designed and validated to handle the
equivalence between a sequence and its reverse complement.
This must be an intentional step in the design process, not an
afterthought.

Supplementary data

Supplementary data are available at Oxford Bioinformatics.
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