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Abstract 
Motivation: Sequences equivalent to their reverse complements (i.e. double-stranded DNA) have no analogue in text analysis and non- 
biological string algorithms. Despite this striking difference, algorithms designed for computational biology (e.g. sketching algorithms) are 
designed and tested in the same way as classical string algorithms. Then, as a post-processing step, these algorithms are adapted to work with 
genomic sequences by folding a k-mer and its reverse complement into a single sequence: The canonical representation (k-nonical space).
Results: The effect of using the canonical representation with sketching methods is understudied and not understood. As a first step, we use 
context-free sketching methods to illustrate the potentially detrimental effects of using canonical k-mers with string algorithms not designed to 
accommodate for them. In particular, we show that large stretches of the genome (“sketching deserts”) are undersampled or entirely skipped 
by context-free sketching methods, effectively making these genomic regions invisible to subsequent algorithms using these sketches. We pro
vide empirical data showing these effects and develop a theoretical framework explaining the appearance of sketching deserts. Finally, we pro
pose two schemes to accommodate for these effects: (i) a new procedure that adapts existing sketching methods to k-nonical space and (ii) an 
optimization procedure to directly design new sketching methods for k-nonical space.
Availability and implementation: The code used in this analysis is available under a permissive license at https://github.com/Kingsford- 
Group/mdsscope.

1 Introduction
Genomics sequence analysis shares many similarities with 
text analysis since they are both concerned with efficiently 
storing and searching long strings. Consequently, many algo
rithms are common between the two fields. The double- 
stranded nature of DNA brings a unique twist to genomics 
sequence analysis: A sequence and its reverse complement, in 
many cases, should be considered identical. For example, a 
sequencing read can represent either strand of a chromosome, 
and a read aligner attempts to find the best alignments of the 
read and its reverse complement against a genome. This con
cept has no equivalent in text analysis.

Sketching methods [e.g. minimizers (Roberts et al. 2004a, 
b), syncmers (Edgar 2021)] create a small representation of a 
sequence (a “sketch”) by selecting a subset of k-mers (sub
strings of fixed length k) from the original sequence. Because 
of their small size, sketches allow for efficient sequence simi
larity estimation that is much faster than comparing the origi
nal sequences. Thus, sketching is a common strategy to make 
bioinformatics algorithms more efficient (see Marçais et al. 
2019 and Zheng et al. 2023 for reviews). To handle reverse 
complements, sketches usually work with “canonical 
k-mers,” i.e. the smallest (lexicographically) of m and the 
reverse complement mr. By using this canonical representa
tion, denoted by mc, a k-mer and its reverse complement are 
treated equally.

More precisely, for our purposes, a sketching method is a 
function φ that takes as input one or more k-mers (the 

context) and outputs a (possibly empty) set of the indices of 
the k-mers to select. A sketch of a sequence S is constructed 
by collecting all the k-mers selected by φ over all the contexts 
of S. Sketching methods are usually designed and evaluated 
as string algorithms working on standard strings. Then, to 
handle reverse complements, implementations of sketching 
methods do not use φ directly but rather work in “k-nonical 
space:” the selection function is composed with the canonical 
function, i.e. instead of querying φðmÞ one queries φðmcÞ. See 
e.g. the minimap (Li 2016, Li and Birol 2018) aligner using 
minimizers and the modified version using parameterized 
syncmers (Dutta et al. 2022), or genome assembly de Bruijn 
graphs built with universe minimizers (Ekim et al. 2021).

There exist many sketching functions, and their perfor
mance has been studied in diverse settings; however, the ef
fect of using canonical k-mers has received little attention. 
This is surprising given the importance of reverse comple
ments to computational biology. Moving to k-nonical space 
has been primarily viewed as an implementation detail that is 
not likely to have an impact on downstream applications. 
Unfortunately, as we show, moving to canonical space can 
have a significant impact, in particular for context-free 
sketching methods.

An important property of sketching methods is the window 
guarantee, i.e. the assurance that the distance between two se
lected k-mers in an input sequence S is not too large. There 
are nuances to what this guarantee entails (e.g. if it is proba
bilistic, if some subsequences are excluded, etc) that we 
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discuss in Section 2.2. In essence, it means that k-mers are se
lected at approximately regular intervals from an input se
quence and that no large regions of the genome are ignored. 
Subsequent algorithms that use sketching typically require 
the window guarantee to prove their correctness.

This article has two main contributions. First, we show in 
Section 3 that using a sketching method in canonical space 
may not preserve the original method’s window guarantee. 
The lack of window guarantee can create “sketching 
deserts,” i.e. regions of the genome where few or no k-mers 
are selected. Consequently, these regions are ignored or 
under-represented in subsequent analysis (e.g. missing align
ments), which can create unexpected statistical biases.

As is seen in Section 3.3, this problem mainly affects 
“context-free” sketching methods (e.g. syncmers), while 
“context-aware” methods (e.g. minimizers) are by construc
tion not subject to this issue (see Section 2 for definitions). 
Consequently, we focus on context-free methods and Section 3 
gives theoretical reasons and empirical evidence for 
these sketching deserts when using context-free methods in 
k-nonical space.

The second contribution is two procedures to generate 
context-free methods that are robust (i.e. do not have new 
sketching deserts) in k-nonical space. The first is a greedy 
procedure that adapts an existing sketching method to use ca
nonical k-mers in a way that does not create new sketching 
desert. The second method is an integer linear program (ILP) 
optimization to generate de novo sketching methods that by 
construction handle m and mr identically. These methods are 
still computationally intensive and may not without further 
optimization scale to large values of k.

Using canonical k-mers is a common way to handle reverse 
complemented sequences. Furthermore, because of the desir
able properties [e.g. better conservation (Edgar 2021)] of 
context-free sketching methods, there is a surge in theoretical 
interest (Edgar 2021, Dutta et al. 2022, Shaw and Yu 2022) 
and these methods are increasingly used in bioinformatics 
tools [e.g. Ekim et al. 2021; Rautiainen et al. 2023; Shaw and 
Yu 2023]. To avoid creating undesirable behaviors with these 
tools, it is therefore important to ensure that the sketching 
method used is immune to the effects of using canonical 
k-mers, e.g. by using context-aware methods or context-free 
methods designed to be robust.

More generally, algorithms handling sequencing data must 
be designed to work properly in the presence of sequences 
and their reverse complements, and not only as classical 
string algorithms.

2 Preliminaries
2.1 Notations
All sequences are strings over the alphabet Σ of size σ ¼ jSj, 
and S¼ f0; . . . ;σ − 1g. For the sake of simplicity, we assume 
that σ is even (σ ¼ 2 or σ ¼ 4 in our examples). Moreover, 
every letter of the alphabet has a complement: a;b 2 S are 
complements of each other when aþb¼ σ −1. This is 
denoted as a¼ b or (equivalently) b¼ a. The genomic case 
corresponds to the mapping A¼ 0;C¼ 1;G¼ 2;T¼ 3. A se
quence is an element of S�, and S½i : c� is the substring of S 
starting at offset i and of length c.

Given a k-mer m¼m1 . . .mk, its reverse complement is the 
k-mer mr ¼mk . . .m1 . The set A

r 
contains the reverse com

plemented k-mers of set A. The canonical representation of m 

is mc ¼minðm;mrÞ, i.e. the lexicographically smallest of m 
and mr. The sets C and C

r 
denote canonical k-mers and their 

reverse complements, respectively. These sets cover the 
k-mers (i.e. Sk

¼ C[ C
r
) but may not be disjoint. Specifically, 

when k is even, the intersection C \ C
r 

is the set of self-reverse 
complement k-mers—e.g. k-mers such as 0011 in the bi
nary alphabet.

In general, a sketching method is a function 

φ : S
k × � � � ×S

k
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

c input k-mers

! Pð½1; c�Þ;

where P is the power set. That is, the sketching function takes 
c k-mers as input (the context) and returns a possibly empty 
list of k-mer positions to select from this context. The context 
of length c of S at position i is the list of the c consecutive 
k-mers starting at position i: CðS; c; iÞ ¼ ½S½i : k�; . . . ;

S½iþ c −1 : k��. The sketch associated with φ for an input 
sequence S is the set of the offsets of all selected k-mers from 
every context of S: MφðS; cÞ ¼ [ifiþo −1 j o 2 φðCðS; c; iÞÞg.

This general sketching definition can model methods with 
context [where c>1, e.g. minimizers (Roberts et al. 2004a,b) 
and minmers (Kille et al. 2023)], and context-free methods 
[where c¼1, e.g. syncmers (Edgar 2021, Dutta et al. 2022), 
fractional minimizers (Rouz�e et al. 2023)]. We focus on 
context-free methods, and the selection function makes a bi
nary decision: Do or do not select the one k-mer in the con
text. Such sketching selection function is defined by the set of 
all k-mers that it selects among all possible σk k-mers: 
Pφ ¼ fm 2 S

k
jφðmÞ 6¼ ;g. Equivalently, the function φ is the 

indicator function of the set Pφ. Thus, computing the sketch 
reduces to computing the intersection between the k-mers in 
the sequence and the set Pφ: 

MφðS; 1Þ ¼ fi 2 ½0; jSj− kþ1� j S½i : k� 2 Pφg:

Going forward, we do not differentiate between the selection 
function φ and the set Pφ, and we freely use φ with 
set notations.

2.2 Cycles of the de Bruijn graph and 
selection deserts
A scheme φ has a strong window guarantee of w if the maxi
mum distance between any two consecutively selected k-mers 
in any sequence is at most w. A scheme has a relaxed window 
guarantee if there exist only a small number of well- 
characterized repetitive sequences not intersecting φ. For ex
ample, the low-entropy sequences fAA . . . ;CC . . . ;GG . . . ;

TT . . .g may be used as a set of non-intersecting sequences. 
When neither holds, a scheme has no window guarantee.

These notions have graph theoretical equivalents using the 
de Bruijn graph. The de Bruijn graph Bk is the directed graph 
with σk nodes (one for each distinct k-mer) and an edge u !
v when the ðk −1Þ-suffix of u is equal to the ðk −1Þ-prefix of 
v. There is a one-to-one correspondence between the sequen
ces of S� and the walks in Bk, and a cycle in the de Bruijn 
graph corresponds to an infinitely long repetitive sequence.

An equivalent definition of the strong window guarantee 
of w is that the graph Bk nφ (the de Bruijn graph with the k- 
mers of Pφ removed) is a directed acyclic graph (DAG) and 
the longest path in this DAG is of length ≤w. In that case, φ 
is called a decycling set of the de Bruijn graph. When Bk nφ 
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has strongly connected components (SCCs; i.e. it contains 
cycles), φ does not have a window guarantee for any w. 
Similarly, φ has a relaxed window guarantee if the SCCs con
tain only cycles of sequences that we are willing to ignore 
(e.g. the low-entropy sequences shown previously). For a 
function φ; SCCðφÞ denotes the union of all the SCCs 
of Bk nφ.

Given a k-mer m¼m0m1 . . .mk − 1, its rotation k-mer is 
RðmÞ ¼m1 . . .mk −1m0, and there is an edge m ! RðmÞ in 
the de Bruijn graph. The cycle of all the rotations of m 
(m;RðmÞ;RðRðmÞÞ; . . .) is called, for historical reasons, a Pure 
Cycling Register (PCR). The PCRs partition the nodes of the 
de Bruijn graph and play a special role in describing decycling 
sets. In particular, a decycling set must contain one node 
from each PCR and the minimum size decycling sets (MDSs) 
contain exactly one node from each PCR. Note that the con
verse is not true: not all sets containing exactly one node 
from each PCR are decycling. The Mykkeltveit (Mykkeltveit 
1972) and Champarnaud (Champarnaud et al. 2004) sets are 
two examples of MDS constructions.

2.3 Sketching methods
The following sketching methods are commonly used by bio
informatics software packages and satisfy the sketching 
model described above.

The original window-based sketching methods are the min
imizers (Roberts et al. 2004a,b). The input to the minimizers 
function is a context of w k-mers (originally called a win
dow), and the function returns the index of the lexicographi
cally smallest k-mer among the input, which is defined by 
some pre-determined order on the k-mers. Various refine
ments of minimizers exist such as local schemes (Schleimer 
et al. 2003) and minmers (Kille et al. 2023). These methods 
share the important property that they have a context or win
dow length > 1, and they always select at least one k-mer in 
each input window. Consequently, these methods have a 
strong window guarantee of length equal to the input win
dow length. In some applications, post-processing is applied 
to not select two identical homopolymer k-mers (say AA . . .A) 
in a row, to avoid selecting too many k-mers in low-entropy 
regions of the genome. This effectively gives a relaxed win
dow guarantee.

Positional minimums methods such as syncmers (Edgar 
2021) have a context of length 1. They have extra parameters 
s and t, where a k-mer m is selected if the smallest s-mer 
among the k − sþ1 s-mers of m starts at position t. As before, 
the smallest s-mer is defined by some pre-determined order 
on s-mers. A notable generalization of syncmers is the param
eterized syncmers (Dutta et al. 2022) that use a bit mask of 
locations for the smallest s-mer instead of the parameter t.

When s-mers are tied, these methods use a left-most tie 
breaking rule. This rule has an interesting consequence on the 
window property. If t¼ 0 (i.e. the first base), then syncmers 
have a strong window guarantee, though the length might be 
as long as σs (Marçais et al. 2024). When 0< t≤ s=2 and the 
s-mer ms at position t is minimal but not selected because an 
identical s-mer starts at position 0≤ i< t, then ms must be a 
“sesqui-power,” i.e. a word of the form ms ¼ xny where x is 
of length t−i and y is a prefix of x (see Fig. 1). Effectively this 
skips low-entropy genome regions that are repetitive with re
peat lengths at most t, giving a relaxed window guarantee. 
When t≥ s, there is no longer a window guarantee. Similarly, 

parameterized syncmers have a strong window guarantee if 
the bit 0 is set and either a relaxed guarantee or no guarantee 
for any other value of the mask.

Hash-based sketching methods are context-free functions 
that select a random subset of k-mers using a hash function. 
Examples include when the hash value is equal to 0modp or 
when it is less than or equal to f for a pre-determined modu
lus p or fraction f. In general, these sketching methods do not 
have any window guarantee.

3 Decycling in k-nonical space
In this section, unless specified otherwise, we assume that the 
sketching function φ is context-free.

3.1 Symmetric selection function
Compared to classic string algorithms, bioinformatics algo
rithms must take into account the double-stranded nature of 
DNA. In particular, when DNA is sequenced it is usually un
known which strands of the DNA are actually sequenced. In 
other words, the sequence of a read r and its reverse comple
ment sequence rr carry the same information. Consequently, 
in algorithms using sketching, it is required to have 
“symmetric” selection functions, where the same decision is 
applied to a k-mer and its reverse complement. Formally, a 
selection function is defined to be symmetric when φðmÞ ¼
φðmrÞ for every k-mer m.

Sketching schemes are designed as classical string algo
rithms, ignoring the required symmetry. Then, in practice, 
software programs use canonical k-mers rather than k-mers. 
Effectively, instead of using the selection function φ they use 
the canonicalized function φc defined by φcðmÞ ¼ φðmcÞ. φc 

is guaranteed to be symmetric.
It is often assumed that the canonicalized function φc es

sentially has the same properties as φ, and if anything, φc 

would select more k-mers than φ. In particular, a commonly 
held belief is that, if the selection function φ has a (relaxed) 
window guarantee, then so too does φc. Unfortunately this 
does not always hold, especially for the usual context-free 
methods. Even if a selection function φ has a strong window 
guarantee, the corresponding φc may not have any win
dow guarantee.

3.2 Canonicalized decycling set
In the context-free case, a selection function is equivalent to a 
set of k-mers, and the canonicalized function is obtained via a 
simple set operation. Using this point of view, we clearly 

Figure 1. The left-most tie breaking rule implies a relaxed window 
guarantee for syncmers when t≤s=2. In this example, k ¼ 9; t ¼ 2;s ¼ 5, 
and the alphabetic order on 5-mers is used. The 9-mer is not selected 
because the 5-mer at position 2 is equal to the 5-mer at position 0 and the 
left-most tie breaking rule. Because this 5-mer overlaps with itself, it is 
“almost” repetitive: It is a sesqui-power xny with x ¼ AC;y¼ A;n¼ 2. 
Repetitive sequences of length t¼2 are skipped over.
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show in the next two Lemmas why φc may not have the same 
decycling property as φ.

Lemma 1 (Canonicalized function). The canonicalized 
selection function φc of φ is defined by the 
following set:   

φc ¼ ðφ \ CÞ [ ðφ \ Cr
Þ:

Proof. By definition of φc, for any k-mer m, 
m 2 φc()mc 2 φ. We consider two cases:

� When m 2 C: m 2 φc()m 2 φ. That is, φc \C ¼ φ\C. 
� when m 2 C

r
: m 2 φc()mr 2 φ()m 2 φr. That 

is, φc \ C
r
¼ φr \C

r
¼ φ\Cr

. 

Because C [ C
r
¼ S

k covers all the k-mers, the union of 
these two cases gives the desired result. w

Lemma 2. Let x1 ! x2 ! . . . ! xn ! x1 be a PCR. Then 
the reverse complemented k-mers form the 
PCR x1

r ! xn
r ! . . . ! x2

r ! x1
r. These two 

PCRs may not be disjoint, in which case they are the 
same PCR.   

Proof. The second part comes from the fact that PCRs parti
tion the nodes of the de Bruijn graph.

For the first part, it is sufficient to show that for any k-mer 
m there is an edge RðmÞ

r
! mr where R(m) is the rotation of 

m. With m¼m0m1 . . .mk− 1; RðmÞ ¼m1 . . .mk− 1m0, then 
RðmÞ

r
¼m0mk− 1 . . .m1 has an edge to mk − 1 . . .m1m0 ¼

RðRðmÞ
r
Þ ¼mr. w

Figure 2 shows examples of PCRs for the binary alphabet 
and k¼6. In this representation, the dashed vertical line acts 
as a “line of symmetry,” where canonical k-mers are on the 

left and non-canonical k-mers are on the right. Cases (a) and 
(c) are when the PCR and the reverse complement PCR are 
disjoint. Case (a) is when the PCR is entirely contained in C
or C

r
, i.e. neither the PCR nor the reverse complement cross 

the dashed line. In case (c), both the PCR and the reverse 
complement cross the dashed line. Case (b) is when the same 
PCR contains k-mers and their reverse complements. k-mers 
on the dashed line are self-reverse complements.

The set φc is constructed from φ in two steps: (i) only the 
k-mers of φ on the left of the line are selected, and (ii) the 
symmetrical k-mers are added. Consequently, in the cases 
where the k-mers of φ for a PCR and its reverse complement 
are in C

r 
(on the right side of the plane), they are not selected 

in step 1 and φc does not cover these PCRs (see Fig. 2b and  
c). Hence φc does not necessarily contain a k-mer from every 
PCR, and it is therefore “less decycling” than the original 
function φ: the SCCs in SCCðφcÞ are super-sets of SCCðφÞ as 
SCCðφcÞ also contain, at least, the uncovered PCRs.

Table 1 shows the number of SCCs and their cumulative 
size as a percent of the total number of k-mers (k¼15) for a 
variety of context-free schemes. The Mykkeltveit and 
Champarnaud sets are two known construction methods for 
MDSs. Although these sets are not used on their own as 
sketching methods, the Mykkeltveit set in particular has been 
used as a starting point to define sketching methods 
(Orenstein et al. 2017, 2016, Ekim et al. 2020, Pellow et al. 
2023). By construction, these sets are decycling.

The syncmer methods use s¼ 6 and values of t 2 f0;1;7g, 
along with a random ordering of the s-mers. For t¼0 and t¼1, 
the syncmers have a strong and relaxed window guarantee (four 
SCCs corresponding to the hompolymer sequences), respec
tively. For t¼7, because t> s, there is no window guarantee, 
and this set leaves many small SCCs. The value t � k=2 is an of
ten recommended setting for syncmers (Shaw and Yu 2022).

The fractional set selects a fraction of k-mers f ¼
1=ðk− sþ1Þ (i.e. the fractional set is expected to be of the 
same size as the syncmer sets, as is observed in Table 1) and 
uses a random permutation of k-mers. This method selects a 
random subset of all k-mers, has no window guarantee, and 
leaves one very large strongly connected component. It shows 
that a random set of k-mers does not approximate a set with 
a window guarantee.

After canonicalization, the window guarantees (whether 
strong or relaxed) do not hold anymore, and the sizes of the 
SCCs range from 83% to 95% of the de Bruijn graph. The 
Champarnaud set leads to a much larger component than the 
Mykkeltveit set, showing that the effect of canonicalization 
can vary significantly between methods, even with strong 
window guarantee. Canonicalization does not have a visible 
effect on the fractional set as it has no guarantee and a large 
SCC even before canonicalization.

3.3 Context-free vs. context-aware methods
Although it is not a requirement of the definition of φ, every 
sketching method with a context used in practice always 
selects at least one k-mer from their context (e.g. minimizers, 
minmers). As a consequence, for these sketching methods, the 
canonicalized function φc defined by φcðm1; . . . ;mnÞ ¼

φðm1
r; . . . ;mn

rÞ also always select at least one k-mer from its 
context. In other words, both φ and φc have, by construction, 
a strong window guarantee that is equal to the number of 
k-mers in the context.

(a)

(b)

(c)

Figure 2. For k¼6 and σ ¼ 2, examples of PCRs. Every k-mer on the left 
side is a canonical k-mer (2 C), and k-mers symmetrical compared to the 
vertical line are reverse complement of each other. The k-mers inside gray 
boxes are an example of set φ, and the k-mers in dashed boxes are the 
corresponding φc set. 000010 is in both φ and φc (case a). Not every PCR is 
covered by φc, and consequently φc is not decycling (cases b and c).
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Many k-mer orders have been designed (e.g. Zheng et al. 
2020, Hoang et al. 2024, Pissis and Sung 2024) to improve 
various properties of minimizers. These orders may be only 
partially defined using a decycling set (aka “compatible 
orders,” Marçais et al. 2018) such as in (Orenstein et al. 2017, 
DeBlasio et al. 2019, Ekim et al. 2020, Zheng et al. 2021, 
Pellow et al. 2023), or implicitly like in the “windowed syn
cmers” (Dutta et al. 2022). The robustness to canonicalization 
of minimizers is independent of the chosen order; therefore, ev
ery one of these schemes is robust and is consequently not part 
of the following analysis on sketching deserts.

The situation is very different with context-free methods: 
Any non-trivial context-free sketching method must not al
ways select a k-mer from the context. In fact, there is only 
one context-free method that always select the one k-mer 
from every context: It is the function that selects every k-mer 
from any input sequence and is equivalent to no sketching at 
all. Therefore, as seen in the previous section, a context-free 
method is not guaranteed to be a decycling set before or after 
canonicalization.

Context-free and context-aware methods with a window 
(like minimizers) have different trade-offs. Minimizers have a 
strong window guarantee that extends to k-nonical space. On 
the other hand, because of this window, finding low density 
minimizers schemes (i.e. minimizers with sparse sketches) is a 
difficult problem (Marçais et al. 2017, Zheng et al. 2020).

A context-free method is defined by a set and its density 
can be made arbitrarily small by using a small set or using 
sub-sampling (Edgar 2021, Rouz�e et al. 2023). This comes at 
the cost of not having any built-in window guarantee. To en
force such a guarantee the set must be carefully chosen (i.e. it 
must be a decycling set). Finding a set that is also decycling in 
k-nonical space adds another difficulty and new trade-offs. 
This problem is tackled in Section 5.

3.4 Canonicalized sketching deserts
The existence of large SCCs for a given sketching method 
implies that there exist long—even infinitely long—sequences 
without any selected k-mers. Moreover, the full set of sequen
ces spelled out by these SCCs is usually not known due to the 
complexity of the components. We call a sufficiently long re
gion of a genome that does not contain any k-mers from a 
sketching method a sketching deserts. These regions are ei
ther undersampled or skipped by the sketching method. 
Thus, they are ignored by analyses using these sketch
ing methods.

What precisely constitutes a sketching desert depends on 
the particular bioinformatics application and the type of data 
analyzed. Consider an application using k-mers from a sketch 
as anchors for alignment against a genome (Li and Birol 
2018, Jain et al. 2022) or using the sketches in an alignment- 

free method to characterize bacterial strands [e.g. Kraken 
(Wood and Salzberg 2014)]. In such applications, a minimum 
number of selected k-mers may be needed to (i) pass quality 
filters and (ii) have significant statistical power. For example, 
with short-read sequencing (200 or fewer bases) and requiring 
a minimum of four selected k-mers per read, gaps of 50 bases 
or more between selected k-mers are problematic. Thus, 
regions of the genome of 50 bases or more without selected k- 
mers are considered sketching deserts for these applications.

Table 2 shows the cumulative size of the sketching deserts 
for three k-mer sizes in the human genome (GRCh38) (per- 
chromosome tables are available in Supplementary Appendix 
“Chromosome resolution sketching deserts” and full histo
grams are available as Supplementary data). For the k¼15 
case, when switching to k-nonical k-mers, the size of sketch
ing deserts jumps by two order of magnitude, from a tiny 
part of the genome to a more sizeable chunk. For example, 
for syncmer with t¼ 0 and k¼15 the cumulative desert cu
mulative size goes from 80 kb to 19.51 Mb. Even though it is 
still relatively small compared to the genome size (� 0:6%), 
as is shown below, it is large enough to contain complete 
exons, and therefore to introduce systematic biases in down
stream analysis. The full histograms (provided as 
Supplementary data) show gaps between selected k-mers of 
up to 1000 bases in k-nonical space, compared to at most 70 
bases otherwise. The potential size of sketching deserts 
increases with the length of the k-mers, as seen with k¼31, 
63 compared to k¼15.

Similar effects are observed on the sequence of protein- 
coding genes. For example, with syncmers 
(k¼ 15; s¼ 6; t ¼ 0), one random order on s-mers leaves 
>20% of the sequence of MIER2 (transcript MIER2-201 
with 7084 bases) in sketching deserts, with multiple gaps of 
> 100 bases, when using canonicalization. Without canonic
alization and the same order, there is no gap of 50 bases or 
more, hence no sketching deserts. Even more pronounced 
effects are observed with longer k-mers: Gene RBBP9 (tran
script RBBP9-203 with 1121 bases) has >90% of its sequence 
in sketching deserts for syncmers (k¼ 31; s¼ 10; t ¼ 1) in k- 
nonical space while having no desert before canonicalization.

This also illustrates the impact of the random choice of the 
order on s-mers. For the same syncmers parameters, while for 
all tested orders there exist transcripts with sketching deserts 
of >20% of their length, the MIER2 gene has sketching 
deserts for only one of the tested orders.

3.5 SCCs and desert sizes
The relationship between the size of the SCCs with φc 

(>80% of the k-mers) and the length of the sketching deserts 
(<1% of the sequence) may seem surprising. Two opposite 
phenomena are at play here.

Table 1. For σ ¼ 4 and k¼15, the table gives the number of SCCs, the percent of k-mers of the de Bruijn graph that are in an SCC, and the size of the k- 
mer sets relative to the total number of k-mers (415). Syncmers use s¼ 6 and t 2 f0;1;7g. Because Mykkeltveit, Champarnaud, and Syncmers with t¼0 
are decycling, there are no SCCs. Syncmers with t¼1 have a relaxed window guarantee that allows the homopolymer sequences, and hence this 
Syncmer method has only σ ¼ 4 SCCs and 4 nodes in these SCCs. In every case, the canonicalized set leaves large SCCs in Bk nφc. The relative set size 
is equal to the expected density (i.e. the percentage of selected k-mers in a long random sequence).

mykkeltveit champarnaud fractional syncmer 0 syncmer 1 syncmer 7

φ φc φ φc φ φc φ φc φ φc φ φc

Number of SCCs 0 1 0 1 1 1 0 1 4 3 1337 1
SCC cumulative size (%) 0.00 84.35 0.00 95.94 89.98 89.98 0.00 87.23 0.00 84.19 0.01 83.74
Set relative size (%) 6.67 10.73 6.67 4.06 10.00 10.00 10.12 9.95 10.00 10.00 9.99 9.98

k-nonical space                                                                                                                                                                                                                              5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/11/btae629/7829143 by guest on 18 February 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae629#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae629#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae629#supplementary-data


First, the de Bruijn graph has a high connectivity (σ, except 
for the homopolymers), and a small diameter (k). It also has 
a very large number of cycles (e.g. there are ðσ!Þ

σk − 1
=σk 

Hamiltonian cycles) (Maurer 1992). Intuitively, a slight 
change to a decycling set can create large SCCs.

Second, for a context-free method, the relative size of its k- 
mer set is equal to the expected density. As is seen in Table 1 
for the syncmer methods, the canonicalized set φc has ap
proximately the same relative size as φ. Hence, the expected 
density is the same in both cases, and therefore the expected 
distance between selected k-mers (which is equal to the in
verse of the density) also remains the same.

Despite having the same density, the lack of window guar
antee with the canonicalized set implies that long sequences 
not intersecting φc exist, and these sequences create sketching 
deserts. See the histograms of distances between selected k- 
mers in Supplementary data having a long tail for the canoni
calized set φc.

The Mykkeltveit and Champarnaud sets are the only two 
MDSs for which we have an explicit construction algorithm. 
There exists a very large collection of MDSs (Marçais et al. 
2024) for any parameter k. Although the Champarnaud set 
probably has not been used in practice, the different behavior 
between the Mykkeltveit and Champarnaud sets shows the 
dramatic effect canonicalization can have, and the difficulty 
to predict the canonicalization effect for a given decycling set 
and target sequence combination.

The effect on the syncmer methods for these random 
choices of orders on the s-mers is less dramatic, although still 
quite large, especially for large k-mers. On the other hand, 
the relationship between the order used on s-mers and the 
size of the sketching desert is completely unknown and noth
ing in the method a priori prevents similarly large effects 
when using an order on s-mers that interacts poorly with the 
human genome.

The fractional set method has the weakest guarantee, with 
significant sketching deserts before and after 
canonicalization.

4 Canonicalizing sketching methods
In the formula of Lemma 1, the intersection with the set of 
canonical k-mers C is the reason why φc intersects with fewer 
cycles of the de Bruijn graph, creating larger SCCs and larger 
sketching deserts. By avoiding this initial intersection, the fol
lowing simple method creates a symmetric selection function 
from a given selection function φ:

Definition 1 (Union function). As a set, the “union” 
selection function is defined by: φu¢φ[φr.   

That is a k-mer m is selected by φu if either m or its reverse 
complement mr is selected by φ. Because φu is a super-set of 
φ, using φu does not introduce any new SCCs or sketching 
deserts. This scheme can be implemented by using the effi
cient encoding of (Wittler 2023) where a k-mer and its re
verse complement are indistinguishable.

This union function is not entirely new. Although motivated 
by a different goal, it is suggested in Pellow et al. (2023) to use 
an order for minimizers (the “double decycling set order”) 
which is based on the set φu, where φ is the Mykkeltveit set.

On the other hand, the union selection function is not tra
ditionally used with sketching methods, because the size of 
the set φu is likely about double that of φ, which could 
change the behavior of the sketching method. For example, 
the number of selected k-mers in a sequence S—approxi
mately jφu \KðSÞj—is likely to double as well, reducing the 
sparsity of sketches created by the union sketching function 
compared to that of the original function [i.e. it affects the 
density (Marçais et al. 2017, 2018) of the sketching method]. 
By comparison, the canonicalized function, thanks to the in
tersection with C which contains slightly over half of all the 
k-mers, is expected to have a size similar to that of the origi
nal sketching function.

We therefore propose the following optimization problem of 
finding a function which is as close as possible to the canonicali
zation function while not increasing the number of SCCs.

Problem 1  (Sparse canonicalization). Given a set φ, find the 
smallest set A such that φc � A and SCCðAÞ � SCCðφÞ.   

The union set of Definition 1 satisfies the two conditions of 
Problem 1, but it is not necessarily of smallest size. We use 
the following greedy procedure to reduce its size: Starting 
from a union set φu, each k-mer is examined one by one, in a 
random order. If a k-mer and its reverse complement can be 
removed from the set without creating a strongly connected 
component, they both are removed from the set. Otherwise, 
the set remains unchanged.

This randomized heuristic is not guaranteed to return the 
optimal solution. Because the strongly connected component 
are computed to test whether a k-mer can be removed, the 
runtime is exponential in k.

Performance of this procedure is shown in Section 6.

5 Symmetric sketching function design
The previous sections focused on the effect of using canonical 
k-mers with existing sketching methods and how to adapt 
these methods. An alternative approach is to directly design 
context-free sketching methods in k-nonical space, i.e. 

Table 2. Cumulative size in mega-bases of the sketching desert of length ≥50; ≥75 and ≥150, respectively, for k¼15, 31, 63 in the human genome 
GRCh38. For methods using a random order (fractional, syncmers), the values are averages over three independent runs. The syncmer method 
parameters are s ¼ bk=2c and t 2 f0;1; bk=2cg. The fractional parameter f is set to match the number of selected k-mers of the syncmer methods (i.e. 
f ¼ 1=ðk −sþ1Þ). In every method, except fractional, the canonicalized set has sketching desert orders of magnitude larger than the original method.

Mykkeltveit Champarnaud fractional syncmer 0 syncmer 1 syncmer k=2

φ φc φ φc φ φc φ φc φ φc φ φc

k¼ 15; ≥50 0.28 15.97 0.81 1009.22 60.45 61.36 0.08 19.51 0.04 13.23 1.73 14.60
k¼ 31; ≥75 26.13 139.54 37.33 1320.33 176.76 176.75 3.29 81.15 1.55 70.67 1.95 71.70
k¼ 63; ≥150 36.22 241.06 41.10 1252.49 165.66 165.38 2.79 76.57 1.90 70.23 2.14 72.69
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finding selection functions φ that satisfy φðmÞ ¼ φðmrÞ by de
sign. In this section, we develop an efficient ILP procedure 
that finds a set of k-mers of smallest size under the con
straints that it satisfies the symmetry condition and has a 
strong window guarantee of the desired length (i.e. it is decy
cling, and the longest path in the DAG Bk nφ is less than 
some specified parameters).

To do this, we recall preliminary definitions related to feed
back vertex sets (FVSs) and nilpotent matrices in the next sec
tion. We then define the Maximum Nilpotent Submatrix 
Problem (MNSP) and show that this problem is NP-hard 
through a reduction from a problem related to decycling. The 
connection used by this reduction is an algebraic condition 
on adjacency matrices that leads to an ILP formulation for 
the MNSP (the proof of correctness for this formulation is in 
Supplementary Appendix “Circuit Construction”). We spe
cialize this ILP to find symmetric sketching functions by 
changing the basis on the adjacency matrix used in the con
struction, which allows us to find a symmetric function that 
minimizes in order (i) cardinality, (ii) maximum remaining 
path length, and (iii) expected remaining path length. We 
conclude with a test of our algorithm on a binary alphabet 
with k ranging from 5 to 8.

5.1 FVSs and nilpotency
A FVS of a digraph G is a set of vertices W � V such that the 
digraph G nW induced by the deletion of W is a directed acy
clic graph. The Minimum Feedback Vertex Set (MFVS) prob
lem is to find the minimum cardinality FVS and was one of 
the original 21 problems shown to be NP-hard (Karp 
et al. 1972).

Every MDS solves the MFVS problem on the de Bruijn 
graph, yet unlike the general problem, there are efficient algo
rithms to find MDSs (i.e. the Mykkeltveit (1972) and 
Champarnaud et al. (2004) algorithms). However, the space 
of MDSs is empirically observed to offer substantial diversity 
over optimization metrics like the maximum remaining path 
length, with efficiently selected sets falling short of global op
tima (Marçais et al. 2024). Moreover, there are no known 
algorithms to create symmetric MDSs, i.e. sets M such 
that m 2M()mr 2M.

To optimize MDSs over both the standard and canonical 
de Bruijn graph, we develop an ILP formulation for a variant 
of the MFVS problem that (a) accepts a maximum remaining 
path length constraint, (b) works with symmetries such as the 
reverse complement, and (c) minimizes the expected remain
ing path length after decycling.

Our formulation uses a connection between DAGs and nil
potent matrices to enforce a maximum path length and com
pute the expected path length. A matrix A 2 Rn×n is nilpotent 
when At ¼ 0 for some t 2 N. The minimal t is called the nilpo
tent index of the matrix and is always less than or equal to n 
when it exists (Axler 2015). When A is nonnegative (i.e. it 
has no negative entries), there is a convenient equivalent con
dition to nilpotence defined with the vector e of all 1’s.

Lemma 3. A nonnegative matrix A is nilpotent if and only 
if Ate¼ 0 for some t≤n. The smallest such t is the 
nilpotent index of A.   

Proof. If A is nilpotent, we have for some t≤n that 
Ate¼ 0ðeÞ ¼ 0. If A is nonnegative and Ate¼ 0, it follows 
that At is the zero matrix because (i) Ate is the vector of row 

sums, (ii) a nonnegative vector sums to zero if and only if it is 
the zero vector, and (iii) nonnegative matrices are closed un
der matrix multiplication. In both directions, t can be taken 
to be minimal with no change, so the smallest such t is pre
cisely the nilpotent index. w

Suppose G¼ ðV;EÞ is a digraph with V ¼ f1;2; . . . ;ng. Let 
A 2 Rn×n be the adjacency matrix of G, defined as Aij ¼ 1 if 
ði; jÞ 2 E and 0 otherwise. A walk in G is a string of vertices 
v0v1 . . .vt such that consecutive vertices are adjacent, i.e. 
ðvi;viþ1Þ 2 E. A path is a walk with no repeated vertices. 
Recall that At

ij is the number of distinct walks of length t 
between nodes i and j.

Lemma 4. G is a DAG if and only if A is nilpotent. 
Moreover, when G is a DAG, the nilpotent index is 
one more than the longest path length.   

Proof. Suppose G is a DAG. Every walk in G is a path be
cause a walk with a repeated vertex would imply the exis
tence of a cycle. As the vertex set is finite, there is a longest 
path of length t�<n. Thus, At� þ1 ¼ 0 since a non-zero entry 
would indicate a path longer than the longest path. This is 
the nilpotent index because there are sub-paths of the longest 
path for every length less than or equal to t�.

Now suppose G has a cycle. Then G also has a walk of every 
length constructed by starting at any vertex in the cycle and tra
versing it until reaching the desired length. Thus, At 6¼ 0 for any 
t because at least one entry must be greater than zero to count 
the walks around the cycle, showing that A is not nilpotent. w

The maximum t-nilpotent submatrix (t-MNS or MNS) 
problem is to find a nilpotent submatrix of A that maximizes 
selection with respect to a weight vector w, while ensuring 
the submatrix has a nilpotent index no larger than t. Stated 
differently, the MNS problem is to select a nilpotent subma
trix of maximum value, where the value is scored by the sum 
of fixed weights assigned to each index. The general version 
of this problem has not been studied, but it is equivalent to 
MFVS when A is an adjacency matrix and t¼n. Moreover, 
the nonnegative case of t-MNS is equivalent to MFVS with 
an additional max path length constraint for values of t<n.

Lemma 5. MNS is NP-hard via a reduction from MFVS.   

Proof. Let G be a digraph represented by its adjacency matrix 
A, and let G� ½n� be the indices of a nilpotent submatrix of 
A. By Lemma 4, the induced subgraph GG is a DAG, so the 
complement ½n�−G is a FVS. The same argument taken in re
verse shows that a FVS corresponds to a nilpotent submatrix. 
Thus, every FVS is the complement of an index set for a nil
potent submatrix of A. This shows that solutions to MNS for 
A are equivalent to solutions to MFVS for G up to a comple
ment. w

5.2 MDS-selection ILP
From the proof of Lemma 5, we see that finding a minimum 
FVS is equivalent to solving n-MNS with an adjacency ma
trix. Moreover, if we constrain the nilpotent index, we con
strain the maximum remaining path length of the selected 
vertices. Thus, we now develop a formulation for the MNS 
problem over nonnegative matrices that we will use to find 
path-constrained MDSs. (See Corollary 1 in Supplementary 
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Appendix “ILP Circuit” for an extension of our formulation 
to the general case.)

For the following, A is an n×n matrix, Γ is an index set, 
AG is the submatrix with rows and columns indexed by Γ, eG 

is the vector of all 1 s indexed by Γ, and ½n� is the set of indices 
from 1 to n. Theorem 1 is proved in Supplementary 
Appendix “Circuit Construction.”

Theorem 1. The following formulation solves for a ðtþ1Þ- 
nilpotent submatrix, maximizing selection with 
respect to a weight vector w:   

arg max
G�½n�

X

k2G

wk (1) 

subject to Atþ1
G eG ¼ 0 (2) 

Moreover, it can be formulated as a mixed-ILP with OðnÞ bi
nary variables, Oðt � nÞ continuous variables, and Oðt � nÞ
constraints.

When A is an adjacency matrix, this formulation solves 
MFVS with respect to the weights given by w. This frame
work can also model the expected path length of a uniform 
random walk that stops once a removed vertex is hit.

To do this, we use the random-walk adjacency matrix de
fined as ~Aij ¼ Aij=outðiÞ, where outðiÞ is the number edges 
originating at vertex i. The entry ~A

t
ij is the probability that a 

random walk starting at vertex i is at vertex j during time t 
when uniformly sampling an outgoing edge. For an index set 
Γ, ~A

t
G is also the probability that a random walk starting at 

vertex i is at vertex j during time t, with the caveat that some 
states are absorbing, i.e. a random walk stops once a state in 
½n�−G is hit. This leads to two expectation identities given by 
the random walk.

For random-walk matrix ~A, index set G� ½n�, and proba
bility vector p 2 Rn, the expected time before a random walk 
X is absorbed by Γ satisfies 

Ep½X� ¼ e>
X1

k¼1

~A
k
G

 !

pG;

which is equal to infinity when the subset Γ does not asymp
totically halt random walks (i.e. it does not represent a decy
cling set). When Γ induces a submatrix of nilpotent index 

tþ1 or smaller (i.e. it represents a decycling set), the summa
tion is finite and stops at k¼ t.

Thus, using the construction of Supplementary Appendix 
“ILP Circuit,” we can represent all the vectors used in these 
expectation formulas. We combine this with Theorem 1 to 
find a MFVS that secondarily minimizes the expected hitting 
time of a uniformly random walk using a rescaled uniform 
probability vector. In Supplementary Appendix Fig. A.1, we 
visualize this process as a probabilistic circuit over the de 
Bruijn graph with σ ¼ 2 and k¼5.

To work with symmetries, we use a change of basis that 
considers all equivalent vertices to be the same. For example, 
if node v is equivalent to w (e.g. v¼wr), we simply replace 
both respective vectors with a new basis vector ðvþwÞ=2 in 
the adjacency matrix construction.

6 Results
We tested our ILP formulation against our greedy union algo
rithm with the σ ¼ 2;4 de Bruijn graph for various values of 
k. For σ ¼ 2, the ILP solved these instances in 2, 10, 30, and 
58minutes, respectively, and required 1 GB of memory. The 
ILP did not solve the k¼9 instance after 3hours and peaked 
at 5 GB of memory, and similarly cannot solve the instances 
for σ ¼ 4. Because of the exponential growth of the problem 
size, further optimizations or algorithmic insights are neces
sary to be able to tackle the larger instances necessary for 
practical uses. eg, for σ ¼ 4 and k¼15 the de Bruijn graph 
has over a billion nodes and even smaller values of k lead to 
large ILP formulations with σ ¼ 4 that are out of reach for 
the current ILP.

Table 3 shows the results of our experiment. The ILP opti
mized selections have, as expected, a smaller cardinality than 
the greedy selections. The maximum path lengths of the 
greedy optimizer are occasionally shorter because the ILP 
optimizes first for the cardinality of the set.

Being a symmetric decycling set is a strong condition that is 
still not well understood theoretically (e.g. the minimum size 
of a symmetric decycling set is unknown). Similarly to having 
a window guarantee for sketching methods (see the discus
sion in Section 3.3), having a window guarantee in k-nonical 
space involves trade-offs (e.g. increased density). Whether the 
existence of sketching deserts, these deserts actual lengths 
and locations in the sequence, or the increase in density (or 
other metrics) is the most important issue is application 

Table 3. Statistics on the solution of the greedy procedure of Section “Canonicalizing sketching methods” and the ILP method. Results are for the de 
Bruijn graph with σ ¼ 2;5≤k≤8 and σ ¼ 4;7≤k≤9. The ILP method and the expected path length are only reported for σ ¼ 2 as it is too computationally 
expensive for σ ¼ 4. The columns show the cardinality of the selected sets, maximum path length after removing the sets from Bk , and the rounded 
expected path length after removing the sets. The Mykkeltveit (labeled Mykk.) and Champarnaud (labeled Champ.) sets are used as the starting points of 
the greedy procedure. The ILP procedure minimizes (in order) for cardinality, maximum path length, and expected path length.

σ k Cardinality Maximum path length Expected path length

Mykk. Champ. ILP Mykk. Champ. ILP Mykk. Champ. ILP

φ φu φg φ φu φg φ φu φg φ φu φg

2 5 8 14 12 8 14 12 12 11 6 6 11 6 6 6 1.16 1.17 1.36
6 14 23 19 14 23 19 16 21 15 15 21 15 15 9 1.66 1.72 1.53
7 20 38 30 20 38 30 28 27 16 16 27 16 16 20 2.12 2.08 1.62
8 36 69 51 36 65 45 44 39 19 27 47 27 35 23 2.97 2.45 2.0

4 7 2344 4684 3126 2344 4672 2818 111 62 206 141 50 292
8 8230 16 440 10 812 8240 16 068 9730 145 89 547 429 109 735
9 29 144 28 272 38 546 29 144 58 148 34 538 231 118 1128 520 124 1196
10 104 968 209 883 142 681 104 968 207 336 126 502 330 191 2899 1601 289 3317
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dependent. These trade-offs should be clearly evaluated when 
using a sketching method in k-nonical space.

7 Conclusion
The use of canonical k-mers is the standard modification that 
allows sketching methods for standard text to work with bio
logical sequences. We have shown this has a previously 
unrecognized flaw when applied to context-free sketching 
methods. This approach creates sketching deserts that make 
some sequences effectively invisible to downstream algo
rithms that use the sketch, potentially creating biases in the 
analysis. We described the theoretical mechanism behind the 
creation of these sketching deserts and provided two different 
options to designing sketching methods that properly handle 
sequences that are equivalent to their reverse complements. 
The first method modifies existing sketching methods, but 
unlike canonical k-mers, this modification does not create 
sketching deserts. The second designs de novo symmetric 
sketching methods that are of minimum size while having 
small window guarantee.

The proposed methods may not scale to values of k large 
enough for some practical applications. The size of the ILP 
grows very fast for the DNA alphabet (σ¼4) and is unlikely to 
return an exact solution in a reasonable time. Efficient meth
ods to design symmetrical decycling sets and robust sketching 
methods is still an open and interesting research avenue.

In general, sketching methods that are used with genomics 
data must be explicitly designed and validated to handle the 
equivalence between a sequence and its reverse complement. 
This must be an intentional step in the design process, not an 
afterthought.
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Supplementary data are available at Oxford Bioinformatics.
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