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ABSTRACT

Most sequence sketching methods work by selecting specific k-mers from sequences so that the
similarity between two sequences can be estimated using only the sketches. Because estimating
sequence similarity is much faster using sketches than using sequence alignment, sketching
methods are used to reduce the computational requirements of computational biology software.
Applications using sketches often rely on properties of the k-mer selection procedure to ensure that
using a sketch does not degrade the quality of the results comparedwith using sequence alignment.
Two important examples of such properties are locality and window guarantees, the latter of
which ensures that no long region of the sequence goes unrepresented in the sketch. A sketching
method with a window guarantee, implicitly or explicitly, corresponds to a decycling set of the de
Bruijn graph, which is a set of unavoidable k-mers. Any long enough sequence, by definition, must
contain a k-mer from any decycling set (hence, the unavoidable property). Conversely, a decycling
set also defines a sketching method by choosing the k-mers from the set as representatives.
Although current methods use one of a small number of sketching method families, the space of
decycling sets is much larger and largely unexplored. Finding decycling sets with desirable
characteristics (e.g., small remaining path length) is a promising approach to discovering new
sketching methods with improved performance (e.g., with small window guarantee). The
Minimum Decycling Sets (MDSs) are of particular interest because of their minimum size. Only
two algorithms, by Mykkeltveit and Champarnaud, are previously known to generate two
particular MDSs, although there are typically a vast number of alternative MDSs. We provide a
simple method to enumerate MDSs. This method allows one to explore the space of MDSs and to
findMDSs optimized for desirable properties.We give evidence that theMykkeltveit sets are close
to optimal regarding one particular property, the remaining path length. A number of conjectures
and computational and theoretical evidence to support them are presented. Code available at
https://github.com/Kingsford-Group/mdsscope
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1. INTRODUCTION

S ketching methods, such as minimizers (Roberts et al., 2004a) or open-syncmers (Edgar, 2021), distill a
long sequence into a smaller “sketch,” a set of k-mers and their positions in the sequence. By comparing

these sketches, it is possible to quickly estimate whether two sequences are similar and may have a good qual-
ity alignment between them or not. Because sketching methods greatly reduce the computational needs in
many genomics algorithms with usually little impact on the quality of the result, they are used in many compu-
tational biology software packages [see Zheng et al. (2023) for a review].

For our purposes, a k-mer sketching method is modeled by a function w that takes a context as an input
(a substring of the input sequence of fixed length c) and outputs a set of positions within the context of the
selected k-mers. The output of w can be the empty set, meaning that nothing is selected in this context. The
sketchMw ðSÞ for a sequence S is the union of all selected positions over all the contexts of S (see Section 2).
This sketch contains a subset of all the k-mers in S as the function w might not pick any k-mer in a context or
adjacent contexts may pick the same locations.

The two properties of sketching methods that downstream applications rely on to prove correctness are as
follows:

1. Locality The property that similar sequences (i.e., that have reasonably long identical subsequences)
will have common elements in their sketches, and hence, long enough matches will be detected using
the sketches. This is naturally satisfied because the selection is done using a deterministic function (w );
therefore, two sequences that share an exact substring of length at least c will select the same k-mers in
that context.

2. Window guarantee The maximum distance w between two selected k-mers is the window size or guar-
antee. A small window size guarantees that no large part of a sequence is ignored. Equivalently, the win-
dow guarantee means that k-mers are selected at approximately regular intervals.

Sketching methods are usually optimized for two metrics, density (Schleimer et al., 2003) and conservation
(Edgar, 2021). The density is the relative size of the sketch, formally defined as jMw ðSÞj=jSj. A lower density
is desirable as a smaller sketch usually implies less computation and lower memory requirements. The conser-
vation is the proportion of elements that are common between a sketch of S and a sketch of a slightly mutated
sequence S0, where the common elements are either k-mers or subsequences covered by these k-mers. Higher
conservation is desirable because it usually correlates to higher sensitivity to detect sequence similarities in the
face of mutations and errors. For a fixed k, a smaller context size leads to higher conservation, as the presence
of a k-mer in the sketch of the mutated S0 may be affected by mutations in the entire context (Shaw and Yu,
2022).

Not all sketching methods satisfy the window guarantee property (i.e., for some sketching methods, there
are infinitely long sequences S with an empty sketch; see Section 3). However, sketching methods that do not
satisfy the window property are problematic in two ways. First, most algorithms using a sketching method do
not have a proof of correctness in cases without the window property (e.g., an aligner may miss arbitrarily
long, good quality alignments, preventing claims of sensitivity).

Second, the sketch optimization problem is ill-formed without the window property. The empty selection
function that returns the empty set for any input sequence satisfies vacuously the locality property, it has per-
fect conservation, and it has the lowest possible density. But of course, no information is preserved in an empty
sketch and this trivial solution is not useful. The existence of trivial solutions is not a purely theoretical con-
cern. When optimizing sketching methods using machine learning, almost empty (and not practically useful)
solutions are found if no window constraint is used in the loss function (Hoang et al., 2022a).

A set of k-mers M is unavoidable if any infinitely long sequence must have k-mers from M. Because any
sequence uniquely corresponds to a path in the de Bruijn graphDk of order k, an equivalent point of view is the
decycling sets (DSs):M is an unavoidable set of k-mers (and a decycling set) if and only ifDknM, the de Bruijn
graphDkwith the k-mers fromM removed, is a directed acyclic graph (DAG).

There is a strong two-way connection between such decycling sets and sketching methods with a window
guarantee. Consider the set Mw of possibly selected k-mers (the union of all k-mers selected over every
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possible context) for sketching method w . If the sketching method has a window guarantee, thenMw is a decy-
cling set. Moreover, the window size of w is equal to the remaining path length ofMw , that is, the length of the
longest path in the DAGDknMw .

The function w of a sketching method with the smallest possible context (c = k, aka context-free methods,
such as syncmers) must return an empty set for some input contexts, otherwise it would select every k-mer and
would be equivalent to no sketching. Consequently, in the context-free case, w is equivalent to the indicator
function of its setMw : as the input context contains only one k-mer, the output of w is not empty exactly when
the input k-mer is inMw . A sketching method with a larger context may not select every occurrence of k-mers
in Mw from S. For example, a context may contain multiple k-mers from Mw but the function w only selects
one of them (DeBlasio et al., 2019). In other words, given two sketching methods, one context-free and one
with a context, having the same set of possibly selected k-mers, the method with a context can lower its density
at the expense of having a lower conservation. Conversely, given a decycling setM, the indicator function of
M defines a context-free sketching method with a window guarantee.

This connection between decycling sets and sketching methods suggests, first, that the properties of the
decycling sets ultimately define the properties of the associated sketching method. In other words, by studying
the space of decycling sets we gain insights into the design space of sketching methods. Second, the space of
decycling sets is much larger than the decycling sets generated by the few families of sketching methods cur-
rently used. Rather than creating ad hoc sketching methods, a promising strategy is to find a decycling set with
desirable properties and use the sketchingmethod associated with this set.

In this study, we focus on minimum decycling sets (MDSs), i.e., deycling sets of minimum size. MDSs pro-
vide a logical starting point for the study of decycling sets. First, the MDSs are by definition as small as possi-
ble, therefore reducing as much as possible the cost of storing and querying such a set. Second, for context-free
case, a smallMw set corresponds, in expectation, to smaller sketches (aka low-density method). Finally, these
sets are likely to have short remaining path lengths (say polynomial in k), corresponding to sketching methods
with small window guarantee.

The connection between MDSs and sketching methods was already explored (Orenstein et al., 2017, 2016;
Ekim et al., 2020; Pellow et al., 2023), but mostly using one particular MDS construction by Mykkeltveit
(1972). In this study, we give new methods to explore the space of all MDSs as a way to define new sketching
methods with desirable properties.

After describing the window guarantee of common sketching methods, we describe the structure of the
de Bruijn graph and of its cycles. We then give two simple graph operations that can be used to enumerate
MDSs. Provided Conjecture 1 is true (for which we provide ample theoretical and experimental evidence); all
MDSs can be reached with these operations. Using these operations, we design an optimization procedure to
find MDSs with short remaining path lengths. This optimization procedure gives further insight on the range
of possible window guarantees for sketching methods and of the well-knownMykkeltveit set.

The conjectures and optimization methods proposed here are the basis to further the understanding ofMDSs
and the design space of the sketching methods that are central to computational biology algorithms, in particu-
lar sketching methods with a small context and a strong window guarantee.

2. PRELIMINARIES AND NOTATIONS

An alphabet is a set R of size r = jRj. Although the results generalize to any alphabet size, we consider the
binary alphabetR = f0; 1g and the DNA alphabet fA;C;G; Tg of size 4. A sequence S is an element ofR�, and
sequences are indexed starting at 1. S½a : k� represents the subsequence starting at position a of length k, that is,
the ath k-mer of S. ½n� is the set of integers f1; . . . ; ng.

We assume that c � k. A sketching scheme is defined by its selection function w : Rc ! Pð½c - k + 1�Þ,
where P denotes the power set. A context is a subsequence of length c of S: S½i : c� with i 2 ½jSj - c + 1�. The
sketch of S is the set of the positions of the selected k-mers in S: Mw ðSÞ =[i2½jSj - c+ 1�fi + ojo 2 wðS½i : c�Þg.
The set of all possibly selected k-mers for the sketching method w isMw =[s2Rcfs½o : k�jo 2 wðsÞg.

The de Bruijn graph of order k is the directed graph Dk = ðRk;EkÞ, where each k-mer is a node and the edges
u ! v represent the suffix–prefix relationship u½2 : k - 1� = v½1 : k - 1�. The de Bruijn graph is r-regular, Eulerian,
andHamiltonian. For convenience, short strings, such as k-mers, are commonly represented as base-r numbers.
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3. WINDOW GUARANTEE OF EXISTING SKETCHING SCHEMES

We review sketchingmethods commonly used in computational biology and evaluate their window guarantee.
Hash-basedmethods.Hashmethods use a hash function h and select the k-mersm that satisfy, for example,

hðmÞ= 0 mod p or h(m) < t for some predefined constants p, t (Karp and Rabin, 1987; Ekim et al., 2021).
Effectively, the hash function randomizes the k-mers, and the criteria selects a subset of the k-mers. Other
approaches apply a sketching method like minimizers or syncmers and further down-sample the sketch using a
hash function (Rouzé et al., 2023; Edgar, 2021).

In general, these methods do not have a window guarantee and, historically, this was one of the motivations
for Schleimer et al. (2003) to introduce the winnowing scheme (which is equivalent to minimizers). Although
hash-based schemes can have low density and have a short context (c = k), it is achieved at the cost of having
no window guarantee. For example, by choosing low values of the threshold t, the density can be made arbitra-
rily low, but the number of distinct cyclic sequences not covered by the scheme increases dramatically.

Window-based methods. These methods always pick at least one k-mer in each context and therefore the
context and the window guarantee are closely linked.

The minimizer scheme has three parameters ðk;w;OÞ and in each window of w consecutive k-mers (i.e., the
context is a substring of length w + k - 1), the selection function returns the position of the smallest k-mer accord-
ing to the orderO (Roberts et al., 2004a,b). There are many ways to select the orderO (Zheng et al., 2021, 2020b;
Hoang et al., 2022b; Jain et al., 2020), for example to improve the density, but because the selection function never
returns the empty set, all thesemethods have a window guarantee ofw, independent of the choice ofO.

The density of minimizers schemes is usually between 1:5=ðw + 1Þ and 2=ðw + 1Þ (Marçais et al., 2017,
2018), and the context length is c=w + k - 1. Density can be lowered by increasing w, although this increases
the context length (hence weakens the locality and lowers the conservation). Having a coupling between the
window guarantee and the context length constrains the parameter choices for minimizer schemes.

Compared tominimizers, the minmers scheme (Kille et al., 2023) adds a fourth parameter d: in eachwindow
of dw consecutive k-mers the selection function returns the position of the d smallest k-mers according to O.
Minmers achieve a density closer to 1=wwhile having a significantly longer context of dw + k - 1.

Positional minimums.Under this generic name are methods such as open-syncmers (Edgar, 2021), masked
minimizers (Hoang et al., 2022a), and parameterized syncmers (Dutta et al., 2022).

Parameterized syncmers schemes have four parameters ðk; s;O;mÞ where s � k and m is a nonempty bit-
mask of length k. A context of length c = k is selected if the smallest s-mer in the context (choose left-most to
break ties) is at position i and bit i is set in the mask m. This is a generalization of the syncmers schemes: the
mask of syncmers has exactly one bit set to 1.

Masked minimizers have a two-step process as follows: the first step selects an element similarly to parame-
terized syncmers, and, second, a reporting function returns the final selection (which can be, e.g., the smallest
s-mer or the k-mer containing it). This two-step approach unifies syncmers and minimizers like schemes.

Whether these schemes have a window guarantee depends on whether the first bit of the maskm is set. If the
first bit is set and a k-mer is not selected, then this implies that an s-mer at position i > 1 is strictly smaller than
the s-mer at position 1, forming a decreasing list of s-mers. As the k-mers are shifted along the sequence, this
decreasing list of s-mers must eventually come to an end, hence there is a window guarantee. This window
guarantee is weak as the window can be as long asrk-1 as seen in the following construction.

Assume s � k - 1 and create an order on the s-mer using a de Bruijn sequence D of order s (D contains all
the s-mers once and only once) and by definition s1 < s2 if and only if the s-mer s1 appears after s2 in D. The
sequence D is a decreasing sequence of s-mers of length rs + s - 1. With s = k - 1, we created a sequence of
lengthXðrk - 1Þwithout a selected k-mer.

If the first bit is not set, because of the left-most tie breaking rule, there is no window guarantee. Hence, these
methods have a short context and a weak or missing window guarantee.

4. CYCLE STRUCTURE OF THE DE BRUIJN GRAPH

There exist two methods to generate decycling sets of minimum size by Mykkeltveit (1972) and Champar-
naud et al. (2004). These algorithms are of great theoretical importance as they settled a conjecture of Golomb
(1967) on the size of an MDS. They are also practical algorithms as membership in these MDSs is testable in
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time and memory polynomial in k (i.e., the entire set does not need to be precomputed and stored). But, as we
shall see, the space of all MDSs is much larger than these twoMDSs.

We provide a method that uses only two simple graph operations—called F-move and I-move—that trans-
form an MDS into another MDS. Furthermore, we conjecture that these two operations are sufficient to enu-
merate all MDSs. In other words, given a graph where the nodes are all the MDSs and the edges represent
these operations, Conjecture 1 states that this graph is strongly connected. We give theoretical and computa-
tional evidence to support this conjecture.

This section describes the structure of the cycles in the de Bruijn and how through these two operations
MDSs interact with the cycles. Although these two operations are similar in nature and together they might
enumerate all MDSs, we describe them separately as they have qualitatively distinct effects on the MDSs
(see Proposition 2 and Conjecture 2).

A pure cycling register (PCR), aka a conjugacy class, is a cycle in the de Bruijn graph made of the circu-
lar permutation of a k-mer. For example, the PCR of the 4-mer 1011 over the binary alphabet is
1011 ! 0111 ! 1110 ! 1101 ! 1011. The PCRs form a partition of the k-mers, and therefore, any
MDS must contain at least one k-mer from each PCR. We call a k-mer set with exactly one k-mer in each
PCR a PCR set. The theorems of Mykkeltveit (1972) and Champarnaud et al. (2004) show that every MDS
is a PCR set. In contrast, not every PCR set is an MDS.

4.1. F-moves

The left-companions (respectively right-companions) is the set of k-mers that have the same suffix (respec-
tively prefix). Given f 2 Rk - 1, then lcðf Þ≜ faf ja 2 Rg are the left companions sharing the suffix f and
rcðf Þ≜ ffaja 2 Rg are the right companions. See Figure 1 for examples. If f = ak - 1, then the k-mers af and fa
are equal (homopolymer ak), and this k-mer is in both the left- and right-companion sets for f. The homopoly-
mers are the only such k-mers. Every other k-mer is a left companion for exactly one suffix and a right com-
panion for a different prefix.

Proposition 1. (Existence of F-moves). In any MDS M, there exists f ; f 0 2 Rk - 1 such that M contains the
left companions of f and the right companions of f 0.

Proof. By contradiction, assume that there is no such f 0. Color all the nodes of the graph blue and do a ran-
dom walk in the graph, starting from any node not inM, avoiding the nodes inM. Color in red the nodes trav-
ersed. Any k-mer m is the left companion of a suffix, say fm, and every outgoing edge from m is an incoming
edge to a right companion of fm (see Fig. 1). Because no right-companion set is in M, it is always possible to
continue the walk avoidingM from any m. Given that the graph is finite, the red nodes will eventually create a

FIG. 1. For f 2 Rk - 1, the left-companions (k-mers 0f and 1f for the binary alphabet) and right-companions (f0 and f1)
induce a directed complete bipartite Kr;r. (a) When the left-companions are in the set (left subgraph, highlighted in gray),
an F-move replaces these nodes with the right-companions (right subgraph). An RF-move is the reverse operation, replac-
ing the right-companions with the left-companions. (b) When one k-mer is a homopolymer (shown here with f = 0k - 1, so
0f = f0), the induced subgraph is slightly different, but the F-moves and RF-moves are defined analogously. (c) One of the
possible I-moves, f j1, where a mixture of left- and right-companions is in the set. (d) The other possible I-move, f j2. For
any f 2 Rk - 1 there are 1F-move, 1 RF-move, and 2r - 2 I-moves possible, unless f is a homopolymer.
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cycle, contradictingM being a decycling set. The same reasoning applies for the existence of f traversing edges
in the reverse direction. w

AnF-move [named after Fredricksen (1992)] inM for f 2 Rk - 1 is the operation of exchanging the set of left com-
panions of f for the set of right companions, as shown in Figure 1.We use the functional notation fM to designate the
set obtained by the valid F-move f fromM: fM ≜M [ rcðf Þnlcðf Þ. This is a valid operation only whenM contains
lc(f). As a consequence of Proposition 1 there always exists a valid F-move in an MDS. The RF-move (reverse
F-move) is the inverse operation, validwhenM contains rc(f), f rM ≜M [ lcðf Þnrcðf Þ, satisfying f rfM = ff rM =M.

Proposition 2. (F-moves preserve decycling sets). Let M be anMDS such that lcðf Þ � M, then fM is also an
MDS.

Proof. If there is a cycle that avoids fM, then it must use one of the nodes in lc(f), otherwise it was already a
cycle avoidingM. Any cycle using a node in lc(f) thenmust use a node in rcðf Þ � fM. w

An analogous statement holds for RF-moves. F-moves give a procedure to enumerate some MDSs, starting,
for example, from either the Mykkeltveit or Champarnaud set and repeatedly applying a (guaranteed-to-exist by
Prop. 1) F-move. Unfortunately, not all MDSs are reachable using only F-moves. The MDS graph GMDSðr; kÞ
has all the MDSs as nodes and edges that represent F-moves operations between MDSs. GMDS is not connected,
as seen in Figure 2, but its components have a well characterized structure (proof in Section 8.1).

Proposition 3. (GMDS component structure). For any r and k, the components of GMDSðr; kÞ satisfy the
following:

1. Every component is strongly connected.
2. The length of every cycle is a multiple of rk - 1, that is, for every cycle C, there exists aC 2 N� such that

C is of length aCrk - 1.
3. In a cycle of length ark - 1, every possible F-move f 2 Rk - 1 occurs exactly a times.
4. Every node is in a cycle of length rk - 1 (hence the girth is rk - 1).
5. Each component is a rk - 1-partite directed graph.

4.2. I-moves

An I-move, as in an “incomplete F-move,” is valid whenM contains a mixture of left- and right-companions:
for some f 2 Rk - 1 and 8a 2 R, either af or fa is inM. See Figure 1 for an example. For a given f 2 Rk - 1, there
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are 2r - 2 distinct I-moves as follows: one for each possible choice of left-companion nodes inM, excluding the
F-move [all of lc(f)] and the RF-move [none of lc(f)]. There is one exception as follows: when f = ak - 1 is a homo-
polymer, af = fa is both in lc(f) and rc(f), and the number of possible I-moves for f is 2r - 1 - 2.

An I-move is denoted by f jm where m 2 ½1; 2r - 2� is interpreted as a bit mask giving the nodes from lc(f)
(i.e., the ath bit ma = 1 if af 2 M and mb = 0 if fb 2 M). With this notation, the F-move f would be equivalent
to f j0, whereas the RF-movewould be f j2r - 1. By definition the notation f jm implicitly implies that it is a poten-
tial I-move and thatm is neither the empty nor the full mask (m 6¼ 0 andm 6¼ 2r - 1). An identical argument as
for Proposition 2 shows that applying a valid I-move to anMDS also gives anMDS.

Although F-moves and I-moves seem like similar operations and both preserve MDSs, they have dis-
tinct effect on MDSs. First, empirically we observe that I-moves, unlike F-moves, are not always possi-
ble. MDSs always have a valid F-move (Proposition 1), whereas an MDS may not have any valid I-move.
All of the rk - 1 F-moves are represented by an edge in every component of the MDS graph. By contrast,
out of the rk - 1�ð2r - 2Þ potential I-moves, only a subset of those are valid operations. r = 2 and k = 5 is an
extreme case where no MDS has any valid I-move. Moreover, some I-moves can be a valid operation in
one component and not in another.

Second, F-moves not only preserve the decycling property of MDSs, but they also preserve the “coverage” of
every cycle by anMDS. Tomake this notion precise, define the hitting number of a cycleC ofDk by theMDSM as
the size of their intersection:HMðCÞ = jM \ Cj. BecauseM is a decycling set, necessarilyHMðCÞ � 1. PCRs, for
example, have a hitting number of 1, whereas anyHamiltonian cycle has a hitting number equal to jMj.

Furthermore, the cycle signature of MDS M is the vector of all hitting numbers for all possible cycles:
SðMÞ= hHMðCÞiC cycle ofDk

. Per the following proposition, F-moves preserve hitting numbers and signatures,

whereas I-moves do not.

Proposition 4.

1. Let M be an MDS and f a valid F-move in M, then for any cycle C,HMðCÞ =HfMðCÞ.
2. For every valid I-move f jm in MDS M, there exists a cycle C of Dk such thatHMðCÞ 6¼ Hf jmMðCÞ.
3. For any MDS M1, M2 from the same component of GMDS; SðM1Þ=SðM2Þ.
4. For any MDS M1, M2 from different components of GMDS; SðM1Þ 6¼ SðM2Þ.
Proof. Let f be a valid F-move in MDSM and C be a cycle ofDk. Because every outgoing edge of a node in

lc(f) is an incoming edge to a node in rc(f), C must contain as many nodes from lc(f) as from rc(f) (which can
be 0). Before the F-move, all the nodes from lc(f) and none from rc(f) are inM, whereas the opposite is true for
fM. Hence the hitting number is unaffected by the F-move, proving 1.

Let f jm be a valid I-move inM, a; b 2 R, such thatma = 1 andmb = 0 (i.e., both af and fb are inM). BecauseDk is
ðr - 1Þ-vertex connected (Sridhar, 1988), there exists a path P from fb to af that avoids cf ; c 2 Rnfag. Path P fol-
lowed by edge af ! fb form a cycleC such thatHMðCÞ=HfMðCÞ+ 1 (af is inM but not in fM). By the same con-
struction, there exists a “complementary” cycleC0 using bf and fa such thatHMðC0Þ =HfMðC0Þ - 1. This proves 2.

As a component ofGMDS is strongly connected by F-moves, statement 3 is a direct consequence of 1. A proof
for 4 is given in Section 8.2. w

As a consequence of this proposition, the hitting number and signature are constant over a component of the
MDS graph, and the hitting numberHvðCÞ and the signature SðvÞ are well defined for a component v. Because
an I-move changes the signature, every I-move links MDSs from different components. Consider now the
component graph Gcompðr; kÞ with one node for each component of GMDS and a directed edge from compo-
nent v1 ! v2 if there is an I-move from anMDSM1 2 v1 toM2 2 v2. In fact, as stated in the following Propo-
sition,Gcomp is an undirected graph (proof in Section 8.3).

Proposition 5. (Gcomp is undirected). Let f jm be a valid I-move from MDS M1 in component v1 to M2 in v2.
Then there exists M0

2;M0
1 in v2; v1, respectively, such that f jm (where m is the bit-complement of m) is a valid I-

move fromM0
2 toM0

1.

4.3. Enumerating All MDSs

Wemake the following two conjectures regarding the use of I-moves to enumerate all MDSs.
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Conjecture 1 (Connectivity by I-moves). The Gcomp graph is connected. Equivalently, every MDS is reach-
able from theMykkeltveit MDS using a sequence of F-moves and I-moves.

This conjecture is supported by the previous theoretical results, in particular that all the components have a
different signature and that an I-move always changes the signatures. For reasonable values of k (r = 2,
k � 7), it is computationally feasible to enumerate all PCR sets and check which of them are also decycling
sets. Using this brute force method we can confirm thatGcompð2; kÞ is connected up to k = 7.

The following conjecture is computationally also verified up to k = 7 and exposes another fundamental dif-
ference between F-moves and I-moves. Every F-move is always valid in every component, whereas the valid
I-moves identify a component (similar to the cycle signature). For a component v, let the list of I-moves be
IðvÞ= ff jmj9M 2 v where f jm is a valid I�move inMg.

Conjecture 2 (I-move signature).Every component in GMDS has a distinct list of valid I-moves.

The validity of this second conjecture is likely related to the previous one. To prove Conjecture 1, one needs to
show that for any two components v1; v2 there is a path of I-moves to go from v1 to v2. Conjecture 2 can be used
as a guide to find that path: because Iðv1Þ 6¼ Iðv2Þ, then there exists a valid I-move in either Iðv1ÞnIðv2Þ or
Iðv2ÞnIðv1Þ (note that it is possible to have, for example, Iðv1Þ � Iðv2Þ). Do that I-move and repeat with the
new components. Although in our testing Conjecture 2 is useful to find a path from v1 to v2, it is not sufficient as it
does not guarantee that the size of the difference between the I-move lists is decreasing.

To create Table 1 we use both conjectures as follows: one to traverse the graph and the other to avoid enu-
merating a component more than once. The results in this table empirically show that, independent of the valid-
ity of the two preceding conjectures, the space of MDSs reachable using F-moves and I-moves is very large.
The ability to traverse that previously unexplored space of MDSs allows us to create optimizing methods to
create new sketching methods.

4.4. Nondecycling PCR Sets

Nondecycling PCR sets may also have valid F-moves and I-moves, but there are significant differences with
MDSs. Unlike MDSs (see Proposition 1), a nondecycling set is not guaranteed to contain sets of left- and
right-companions. Even more, the analog graph to GMDS with nondecycling PCR sets as nodes and F-moves
for edges is a nonconnected graph where each component is a DAG (see Fig. 2 and Section 8.4). There cannot
be any F-moves between an MDS and a nondecycling set. In contrast, there can be an I-move from a nondecy-
cling set to anMDS (but not the other way around).

5. REMAINING PATH LENGTH AND WINDOW GUARANTEE

By traversing the component graphs and the MDS graph, one can search for MDSs with desirable properties.
Unfortunately, as seen in Table 1, every aspect of these graphs (i.e., number of MDS, number of components,
layer size, and so on) seems to have super-exponential growth. Enumerating all MDSs for k � 9 with the binary

TABLE 1. GCOMP AND GMDS PROPERTIES FOR r = 2

Method Exhaustive I-moves

k 2 3 4 5 6 7 8 9 10

# components 1 1 3 1 273 4 194,133 4,318,173 195,740,496
# MDSs 2 4 30 28 68,288 18,432 	 3:1 � 1011 > 1:3 � 1017 —

Layer range 1–1 1–1 1–2 1–2 1–48 28–153 	 2:5 � 103–29 � 103 > 1:2 � 108 —

“Layer range” gives, when possible, the range of the number of Minimum Decycling Sets (MDSs) in each layer of GMDS. The num-
bers for k � 7 are exact, computed from the exhaustive list of MDSs. For columns k 2 ½8; 10�, the number of components is correct
provided the conjectures are correct, otherwise the numbers provided are under-estimations. For k = 8, the layer size and number of
MDSs are estimated by sampling 100 random components. For k = 9, the numbers are likely severe under-estimations. For k = 10,
computation is too expansive. For the DNA alphabet r = 4, these numbers would grow even more quickly
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alphabet is likely not reasonable, and for the DNA alphabet it is even more difficult. In this section, we provide
somemethods to explore the space ofMDSsmore efficiently and study the window guarantee ofMDSs.

5.1. Efficiently Traversing the Component Graph

As is seen in Table 1, the number of MDSs and components is increasing quickly with k, although an actual
estimate of the growth as a function of k is not known. The memory used to traverse a component can be
reduced by noticing that each component is partitioned into rk - 1 layers with edges only from one layer to the
next (see Fig. 2). Therefore, it is only necessary to keep in memory the MDSs of the current and next layer to
exhaustively enumerate everyMDS in the component.

As each component contains at least one cycle of length rk - 1, the number of MDSs grows by at least a fac-
tor of rk - 1 faster compared with components. In fact, it grows much faster as each of the rk - 1 layers has a
size that grows fast with k as well (see Table 1). While the number of MDSs and the size of the layers varies
significantly between components, in general it is not efficient to traverse an entire component to find all the
valid I-moves. Using the following proposition, it is possible to find all the valid I-moves in a component by
considering only oneMDS.

Given an MDSM, any cycle C satisfies HMðCÞ � 1. The cycles with a hitting number of exactly 1, called
constrained cycles, play an important role in the existence or not of a valid I-move: an I-move is only valid if
there is no constrained cycle using edges of the I-move.

Proposition 6. Let f 2 Rk - 1;m 2 ½1; 2r - 2�, and let v be a component of GMDS. Then f jm is not a valid
I-move in any MDS of v if and only if 9a; b such that ma = 1;mb = 0 and there exists a constrained cycle using
the edge af ! fb.

This proposition, proved in Section 8.5, shows that to find the list of valid I-moves in the entire component it
is sufficient to find the edges not covered by a constrained cycle in just one of the MDSs of the component.
This holds, as by Proposition 1, that the list of constrained cycles is constant across the MDSs of a component.
Moreover, tagging the edges covered by constrained cycle can be done with one depth first search for each k-
mer in the MDS. The main advantage of this method is that its run time is independent of the number of MDSs
in the component.

5.2. Remaining Path Length

The remaining path length of anMDS,M, is the length of the longest path in the DAGobtained by removing
the k-mers ofM fromDk. Given a selection scheme that selects in a sequence the k-mers fromM, the remaining
path length is precisely the window guarantee of the scheme. The following proposition gives bounds on the
effect of an F-move or I-move on the remaining path length (see Fig. 3).

Proposition 7. An F-move or RF-move can increase or decrease the remaining path length by at most 1.
An I-move can increase the remaining path length by at most 1 or decrease it by at most half.

Proof. First, notice that the longest path in DknM must start at a valid F-move and end at a valid RF-move.
Let P = ðm1; . . . ;mnÞ be a longest path. The k-mer m1 is the right companion of some suffix f. Suppose there
exists a 2 R such that af =2M, then the path P0 = ðaf ;m1; . . . ;mnÞ avoidsM and is longer than P, contradicting
its maximality. Therefore lcðf Þ � M and f is a valid F-move inM. The proof is symmetrical for mn as the left-
companion of some prefix f 0 with rcðf 0Þ � M.

Becausem1 2 fM, the path P is shortened by 1 by the F-move f, which may shorten the longest path if there
were no other paths of that length. In addition, rcðf Þ � fM (i.e., f is a valid RF-move in fM but it was not inM);
hence, there might be maximal path P0 ending at a left-companion of f with jP0j > n. Because the F-move
only moved nodes forward by one edge, jP0j � n+ 1 and the longest path may have increased by 1. The same
argument applies to an RF-move.

For a valid I-move f 00jm inM, the same reasoning applies for increasing by 1. In contrast, a longest path may
have used an edge af 00 ! f 00b where ma = 0;mb = 1. That is, P = ðm1; . . . ;mi = af 00;mi + 1 = f 00b; . . . ;mnÞ. After
the I-move, fb 2 f 00jmM, and the path is now broken in up to two parts as follows: ðm1; . . . ;miÞ and
ðmi+ 2; . . . ;mnÞ. Therefore, the remaining path length could be halved if i = n=2. w
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Based on this, we implemented a simulated annealing algorithm to find the smallest and largest remaining
path lengths among MDSs. The longest path for the MDSM is computed using a modified topological sort of
the DAG DknM. Suppose that we are computing the smallest remaining path length. Starting from a compo-
nent of the MDS graph, the program performs a fixed number of random F-moves (2k by default) and com-
putes the remaining path length for each MDS and keeps the minimum. Then, it finds all the valid I-moves in
the current component as explained in Section 5.1, and it picks one at random.

After performing the I-move, in the new component, the remaining path length is computed for 2kMDSs reach-
able by F-moves and a newminimum is computed. If this newminimum is lower than the previousminimum, then
the new component becomes the current component. Otherwise, it becomes the current component only with some
small probability. Then the process is repeated from the current component for a fixed number of iterations. As is
traditional with simulated annealing, the probability to jump to “worse” components decreases over time.

Table 2 shows the remaining path length for the two previously known algorithms to generate MDSs and
the range of remaining path length. These ranges are either exact when an exhaustive list of MDSs is comput-
able and approximated using simulated annealing otherwise. Based on the pattern that the Mykkeltveit set is

A

B

FIG. 3. Left: If a longest path does not start at a valid F-
move f, i.e., one of the left-companion of f in solid gray is
missing, then it could be extended to the left, contradicting
maximality. Doing F-move f (changing solid gray for dashed
nodes) can shorten the longest path by 1 node. Also, after
doing F-move f, a path now ending in one of the solid gray
nodes could be the longest and was extended by 1 node. If the
path goes through an I-move f 00jm, then doing the I-move cuts
the path in two possibly equal parts. Right: Comparison of the
minimum and maximum remaining longest path for compo-
nents of GMDSð2; kÞ for 4 � k � 8. Each point represents one
connected component of the graph. The minimum and maxi-
mum remaining path lengths are computed over all the MDSs
of a component. Therefore, the vertical distance of a point
from the diagonal y = x (in yellow) shows the variation of
remaining path length within a component. For k = 8, a sub-
sample of 500 components was examined, as the total number
of components is exceedingly large. The lines are drawn to
depict the bounds of the increase between components. In all
cases seen, the difference between the minimum and maximum
remaining length within a component is in some range ½a; a+ k�
for an alpha that is less than k.

TABLE 2. THE REMAINING PATH LENGTH FOR THE MYKKELTVEIT AND CHAMPARNAUD SETS COMPARED WITH THE

RANGE OF REMAINING PATH LENGTH

r Algorithm

k

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

Mykkeltveit 5 11 21 27 39 55 74 89 119 143 194 219 253 299 408 437 539
Champarnaud 7 11 21 27 47 57 94 112 190 209 367 415 683 756 1343 1393 2560
SA Min 5 11 13 25 32 48 70 89 119 143 194
SA Max 7 12 26 32 55 80 116 158 257 288 387

4

Mykkeltveit 21 41 77 111 145 231 330 403 616
Champarnaud 27 39 119 141 429 520 1601 1765 6180
SA Min 20 41 77 111 145
SA Max 34 66 149 270 530

For r = 2 and k � 7, the range of remaining path length is computed exactly from the exhaustive list of MDSs. The other values in
the simulated annealing (SA) Min and SA Max rows are estimated using an SA algorithm and are underlined.
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always at or close to the minimum remaining path length, we conjecture that it holds for all parameters k and r.

Conjecture 3. For a given r, let ‘minðkÞ; ‘maxðkÞ; ‘MykkðkÞ, respectively, be the smallest, largest, and Myk-
keltveit set remaining path lengths. Then ‘MykkðkÞ- ‘minðkÞ = oð‘maxðkÞ - ‘minðkÞÞ asymptotically in k.

5.3. Per-Component Remaining Path Length

Proposition 7 gives a bound on the change in the remaining path length as the MDS graph is traversed using
F-moves and I-moves. Within one component, given that every MDS is in a cycle of length rk, the remaining
path length along this cycle could change by up to rk=2. In other words, this proposition only gives an expo-
nential bound on the range of remaining path length within a component.

The graph in Figure 3 has a point for each component at the coordinate ðmPðvÞ;MPðvÞÞ where mPðvÞ is the
minimum of the remaining path length over all the MDSs of the component v, and MPðvÞ is the maximum.
The vertical distance from the diagonal y = x represents the range of remaining path lengths within a compo-
nent. We observe for k � 8 on the binary alphabet that the range is bounded byO(k).

Conjecture 4.Within a component of GMDS, the range of remaining path length is O(k).

There are plausible reasons for having such a small range. Consider the following two extremes: (1) there
are many F-moves and RF-moves valid at the same time in an MDS M, (2) there is only 1 F-move and 1
RF-move valid inM. In the first case, doing one of these F-moves or RF-moves affects the maximal paths that
start or end at these moves. Consequently, many of these moves change the length of paths that are not the lon-
gest. In other words, these moves have no effect on the remaining path length. In the second case, it is possible
to show that doing the 1 valid F-move does not change the remaining path length (the longest path is truncated
by its first node and extending by one node, hence not changing in length). This type of situation is likely to
happen when there are few F-moves and RF-moves possible. In both cases, most F-moves do not affect the
remaining path length.

This conjecture partially justifies only exploringO(k) MDSs within one component in the simulated anneal-
ing algorithm in Section 5.2.

6. DISCUSSION

Proportion of MDSs. A simple algorithm to generate a random MDS, sampling the space of MDSs uni-
formly, is to select at random k-mer from each PCR and check whether it is decycling, and to resample if not.
Even though the space of MDSs is (maybe surprisingly) large, it is nonetheless only a tiny fraction of the PCR
sets. The number of PCR sets is easily computable (Fredricksen and Kessler, 1986), and asymptotically, there

are Xðkrk=kÞ PCR sets. There is no formula for the number of MDSs, but based on the numbers from Table 1,
for k = 8, of the 2 � 1029 PCR sets the proportion that are MDSs is only 2 � 10- 18. For k = 9 that proportion is
essentially 0. Thus, the random sampling method is not of any practical use.

In that sense Conjecture 1, provided it is true, is an efficient method to enumerate all MDSs as only MDSs
are ever considered without the need to filter out an overwhelming number of nondecycling sets. Even if this
conjecture is eventually proven wrong, the F-moves and I-moves allow us to explore a large subspace of
MDSs and, using simulated annealing or more advanced machine learning methods, to findMDSs with desira-
ble properties.

Moreover, on the theoretical side, providing evidence for this conjecture lead us to a deeper understanding
of the space ofMDSs and to formulate the other conjectures.

Mykkeltveit set and short windows. It is surprising (or lucky) that the first algorithm for constructing
MDSs byMykkeltveit (1972) gives a set with close to the shortest remaining path length. This fact may explain
retrospectively the success of previous methods using this set as the starting point to design minimizers
schemes (Orenstein et al., 2016, 2017; Ekim et al., 2020; Pellow et al., 2023). The growth of the remaining
path length for theMykkeltveit set is well characterized (Zheng et al., 2020a): it isXðk2Þ andOðk3Þ. Fitting the
data from Table 2 we obtain an exponent of 3.12 – 0.14, suggesting an actual growth ofHðk3Þ. Provided that
Conjecture 3 holds, this would answer the question of the shortest window guarantee that is possible using an
MDS. For comparison, fitting the Champarnaud data gives an exponent of 6.1 – 0.59.
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Longest remaining path length. Conjecture 4 only suggests a bound on the range of remaining path length
within a component of GMDS. A legitimate question is what is the bound of the range in GMDS as a whole.
Figure 3 could suggest that this range is polynomial in k, although the trend in this figure is much too short to
elevate this statement to a conjecture. Given the known results bounding the longest remaining path of the
Mykkeltveit set byOðk3Þ, this would mean a polynomial bound on the remaining path length ofMDSs.

This statement seems counterintuitive at first (and is, of course, not proven). We saw in Section 3 that syn-
cmers have a window guarantee of rk - 1; hence, there exists DSs that are not of minimum size that have expo-
nentially long remaining paths. How then can sets with fewer k-mers (MDSs) have a shorter remaining path
length? The intuition is as follows. In the syncmers construction, we chose one exponentially long path (length
rk - 1 - 1) through the graph, whereas every node not on this path is added to the DS M. The size of the DS
jMj =rkð1 - 1=rÞ is exponential as well: it takes many nodes, guiding that long path, to prevent cycles. In con-
trast, the size of an MDS is 
 rk=k, which is oðrkÞ. The average remaining path length is k and there are too
few k-mers in anMDS to guide an exponentially long path to prevent it from creating cycles (i.e., to have back
edges).

In practice, even a Oðk3Þ window guarantee may be too long, and an MDS may need to be extended to a
decycling set with even shorter remaining path length [as done in Orenstein et al. (2017)]. Hence starting with
an MDS with the shortest possible remaining path length is advantageous. Even if Conjecture 3 is true, it does
not prevent the existence of decycling sets with smaller remaining path lengths than the Mykkeltveit set.
Whether MDSswith remaining path length of oðk3Þ exist is still an open question.

7. CONCLUSION

The window guarantee is an important requirement, theoretically and practically, to define and optimize
sketching methods. As discussed, an underlying concept that can be extracted from the definition of this guar-
antee in any local sketching method is a set of nodes in the de Bruijn graph which are unavoidable (i.e., decy-
cling). While many such sets exist, the minimum-sized sets have important properties that can be exploited
and examined. In this work, we described some of the first theoretical findings on properties of these sets, as
well as a method to traverse many (if perhaps not all) MDSs for a given k-mer length. We also showed that the
choice of MDS, whether direct or as an implication of the design of the sketching method, does have an impact
on the strength of the window guarantee. Althoughwe provide our major results as conjectures, we present sig-
nificant evidence to support these claims.

8. EXTENDED PROOFS

8.1. MDS Graph Structure

Lemma 1 (Commutative property). Let M be an MDS and f1; f2 2 Rk - 1 be two valid F-moves in M, then f1
is a valid F-move in f2M, f2 is valid in f1M, and f1f2M = f2f1M.

Proof. The left companions of f1 and f2 are all in different PCRs. Hence, after doing the F-move f1 or f2, the
other F-move is still valid. Moreover, regardless of the order in which the F-moves are performed, the resulting
set is the same.

There is no equivalent statement to Lemma 1 for I-moves: if f1jm1
; f2jm2

are two valid I-moves in M, then
f2jm2

may not be valid in f1jm1
M.

Lemma 1 applies to a sequence of F-moves ðf1; . . . ; fi - 1; fi; fi + 1; . . . ; fnÞ. Suppose that this is a valid
sequence of F-moves starting from MDS M and that both fi and fi+ 1 are valid F-moves in fi - 1 . . . f1M, then
fi + 1fifi - 1 . . . f1M = fifi + 1fi - 1 . . . f1M and fn . . . fi + 1fifi - 1 . . . f1M = fn . . . fifi + 1fi - 1 . . . f1M.

In the following proofs, we use the simplified representation for PCRs, F- and I-moves given in Figure 4.
For simplicity, the figure shows an example with the binary alphabet. When r > 2, an F-move f represents a
hyperedge between r PCRs rather than a simple edge as shown.

Proposition 3. (GMDS component structure). For any r and k, the components of GMDSðr; kÞ satisfy the
following:

1. Every component is strongly connected.
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2. The length of every cycle is a multiple of rk - 1, that is, for every cycle C, there exists aC 2 N� such that
C is of length aCrk - 1.

3. In a cycle of length ark - 1, every possible F-move f 2 Rk - 1 occurs exactly a times.
4. Every node is in a cycle of length rk - 1 (hence the girth is rk - 1).
5. Each component is a rk - 1-partite directed graph.

Proof of points 2 and 3, length of cycles. Every PCR is a cycle inDk, and anMDSM is seen as pebbles sitting on
the k-mers (see Fig. 4b). There is one pebble per PCR. An F-move involves r distinct PCRs (edges af ! fa; a 2 R
are each in their own PCR). Hence, an F-move is a hyperedge connecting r PCRs. An F-move is like moving the
pebbles along r PCRs at a time, from left-companions to right-companions, and this move is legal only if
lcðf Þ � M. In that sense, an F-move is like a semaphore: pebbles canmove only if all their left-companions are pres-
ent in the set.

First, because every MDS has a valid F-move and a component of GMDS is finite, a component must have a
cycle. Let C = ðM0; . . . ;Mn- 1Þ be a cycle of MDSs in GMDS, and equivalently C = ðf0; . . . ; fn - 1Þ is a list of
F-moves such that Mi + 1 = fiMi (indices taken modulo n). After doing F-move f0, the pebble on at least one
PCR, say P0, has moved. BecauseC is a cycle, by the time fn- 1 is done, all pebbles are back on their respective
starting spot. Meaning the pebble on P0 went all the way around (possibly multiple times) P0. To move around
P0 with F-moves, the pebbles in the PCRs adjacent to P0 must have moved as well. By the time fn- 1 is done,
every pebble in the PCRs adjacent to P0 has moved around its respective PCR. By transitivity, and because the
de Bruijn graph is strongly connected, every pebble on every PCR has gone around its PCR after fn- 1 is done.
Because every pebble went around its PCR, this means that every one of the rk - 1 F-moves was done and
n � rk - 1.

Conversely, because the F-move/hyperedge act as semaphores, it is not possible for a pebble on a PCR to do
more rotations around its own PCR than the pebbles on the adjacent (by hyperedge) PCRs. To see this, con-
sider the starting position of the pebble on PCR P0. For this pebble to start a second turn around P0, all of its

FIG. 4. Simplified representation of PCRs, F-moves, and I-moves when r = 2. (a) shows two PCRs from the de
Bruijn graph Dk. Every PCR is a circle, and they are all oriented counterclockwise (see PCR P1 and P2 here). Let
f be an F-move that involves P1, P2. Here P1 has the edge 0f ! f0, and P2 has 1f ! f1: these are the PCR edges.
The cross-PCR edges 0f ! f1 and 1f ! f0 form antiparallel edges between P1 and P2. (b) The simplified PCR/
pebbles representation shows PCRs as large cycles without representing individual k-mers and only representing
the F-move edges of interest. The elements from the MDS in each PCR (the pebbles) are small black circles that
can travel only counterclockwise around the PCR. An F-move is an edge between P1 and P2 and acts as a sema-
phore: a pebble can move one step around the PCR and across the edge of f only when the other pebbles are pres-
ent next to the edge in the other PCR [i.e., lc(f) is in the MDS], as shown in b), and all pebbles move across the
edge at the same time. (c) The position of the pebbles for the I-move f j1: bit 0 is set but not bit 1, so the pebbles
are on 0f and f1 (left side of the edge of f). The top pebble can move across the edge, counterclockwise, whereas
the lower one stays still. For I-move f j2 with bit 0 unset and bit 1 set, the pebbles would be on 1f and f0, on the
right side of the edge of f. (d) If F-moves f and g have a PCR P in common, then, because F-moves act like sema-
phores, it is not possible to do the F-move f twice before g is done once. For the pebble to go around P to do f a
second time, necessarily the F-move g was done as well. PCR, pure cycling register.
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left-companions must be back on their starting spot and also start a second turn around their own PCRs. This
holds for all PCRs by transitivity.

Hence, in a cycle of theMDS graph, the pebbles of all PCRs go around the same number of times, say a, and
the number of F-moves in the cycleC is n = ark - 1. w

Proof of point 1, strongly connected. As in the previous proof, there exists a cycle C = ðM0; . . . ;Mn - 1Þ in
GMDS, and its edges are ðf0; . . . ; fn- 1ÞwithMi + 1 = fiMi.

We show that for any nodeMi of this cycle and any neighbor M of Mi, reachable by an F-move or RF-move
fromMi,M andMi are in a cycle. If this holds, by transitivity of the relation “being in the same strongly-connected
component”, any pair of nodes in the component are in a cycle and the component is strongly connected.

Without loss of generality, we prove this property for the neighbors ofM0 (see Fig. 5). It is a consequence of
the commutativity of the F-moves (Lemma 1). LetM = fM0 be a neighbor ofM0 for some f 6¼ f0. Because in a
cycle all F-moves occur, there exists a first j 2 ½1; n- 1� such that fj = f (and f 6¼ fi; i 2 ½0; j- 1�). f is valid in
M0; hence, it is also valid in M1, and recursively in M2; . . . ;Mj. Therefore, f commutes with f0; . . . ; fj - 1, and
the sequence of F-move ðfj; f0; . . . ; fj - 1Þ is another path fromM0 toMj + 1 that is going throughM. This path fol-
lowed by the remainder ofC fromMj + 1 back toM0 is a cycle that includes bothM0 andM. w

Proof of point 4, cycle lengthrk - 1. LetM be aMDS on a cycleC inGMDS. It is of length a � rk - 1, with a � 1
by point 2. Suppose that a > 1. Let C = ðf1; . . . ; fa�rk - 1Þ be the sequence of F-moves representing that cycle.
Every distinct F-move occurs exactly a times in that sequence. We show that the sequence can be reordered so
that therk - 1 different F-moves occur at the firstrk - 1 positions of the sequence.

If it is not already the case that the first rk - 1 F-moves are distinct, there must be an F-move f that occurs
twice in the list before an F-move g occurs for the first time. Let i < j be two indices which are the first two
occurrences of f in the sequence (i.e., fi = fj = f ) and such that j + 1 is the first occurrence of g (fj + 1 = g). If any of
the PCRs involved in the F-move f are also involved in the F-move g, then it is not possible to use f twice in C
before using g (see Fig. 4d). Therefore the PCRs involved in the F-moves f and g are distinct, and gmust be a
valid F-move just before the second use of f as well. In other words, fj and fj + 1 commute.

Repeated swapping of F-moves leads to the desired sequence of F-moves with all rk - 1 distinct F-moves in
the first positions, which induces a cycle of lengthrk - 1 containingM. w

Proof of point 5, rk - 1-partite. Partition the nodes of a component of GMDS as follows. We create rk - 1 sets:
P0; . . . ;Prk - 1 - 1. Let M0 be an arbitrary MDS of the component and assign it to the set P0. For every other
MDSM, take a shortest path PðMÞ=M0 ! M inGMDS. AssignM to the partition with index jPjmodrk - 1.

BecauseM0 is in a cycle of length rk - 1, every set Pi has at least one MDS assigned to it. Moreover, every
MDS is assigned to exactly one set. Hence the setsPi form a partition of theMDSs in the component.

An edge betweenMDSs in setsPi andPj with j > i+ 1 would imply the existence of a cycle containingM0

of length < rk - 1, which is not possible. w

FIG. 5. Example of a cycle in GMDSð2; 4Þ. The outer circle is C = ðf0; . . . ; f7Þ, a cycle of length rk - 1. M = fM0 is
a neighbor of M0 not on C. Because f must occur in C, here f = f3, then f commutes with f0; f1; f2. Hence
ðf = f3; f0; f1; f2; f4; . . . ; f7Þ is also a cycle in GMDSð2; 4Þ, and it contains M0 and M.
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8.2. Cycle Signature Is Unique per Component

AnMDSM is called f-terminal if the only valid F-move inM is f.

Lemma 2. For any f 2 Rk - 1 and in any component of GMDS, there exists an f-terminal MDS.

Proof. From Proposition 3, in any component there exists an MDS M0 where f is a valid F-move. If there
exists other valid F-moves than f inM0, do them recursively. That is, we do every possible F-move inM0 but
refuse to do f. This creates a path P ofMDSs inGMDS starting atM0 that does not contain f as an edge.

Because every cycle inGMDS contains every possible F-move, P cannot induce a cycle, and it must terminate
at anMDSM. By constructionM is f-terminal. w

An f-terminal MDSM has a useful property: every maximal path in Dk that avoidsM (as created by a walk
like in Proposition 1) must start at a k-mer m 2 rcðf Þ. Equivalently, any walk in Dk that avoids M following
edges backward ends at somem 2 rcðf Þ.

Proposition 4.

1. Let M be an MDS and f a valid F-move in M, then for any cycle C,HMðCÞ =HfMðCÞ.
2. For every valid I-move f jm in MDS M, there exists a cycle C of Dk such thatHMðCÞ 6¼ Hf jmMðCÞ.
3. For any MDS M1, M2 from the same component of GMDS; SðM1Þ =SðM2Þ.
4. For any MDS M1, M2 from different components of GMDS; SðM1Þ 6¼ SðM2Þ.
Points 1–3 were proven in Section 4.2.
Proof of point 4, different signatures. Fix f 2 Rk - 1. Because the signature is constant in a component by

point 1, and because by Lemma 2 there always exists an f-terminal MDS in a component, it suffices to show
that the signatures are different for two f-terminal MDSsM1,M2 from different components. We will construct
a cycleC inDk that has different hitting numbers between the components:HM1ðCÞ 6¼ HM2ðCÞ.

M1 andM2 are in different components, so they are distinct MDSs and there exists a PCR Rwhere the selected
k-mer is different. That is, R \M1≜m1 6¼ m2≜R \M2. Take a path P inDk following edges backward from node
0f (which is in bothM1 andM2 because they are f-terminal) tom1 that avoids nodes af ; a 2 Rnf0g. Path P exists
becauseDk is ðr - 1Þ-connected. Becausem1 2 M1DM2, there must exist a first nodem 2 Pwhich is inM1DM2.

Let P1 be the restriction of the path P from 0f to m and, without loss of generality, assume that m 2 M1. By
construction, jP1 \M1j = jP1 \M2j + 1.

Let P2 be a path created by a maximal random walk in Dk, following edges backward, starting from m and
that avoids M2. Because M2 is f-terminal, the walk ends at a node fa 2 rcðf Þ; a 2 R. By construction, jP2 \
M1j � jP2 \M2j = 0 (P2 avoids nodes fromM2 but may contain nodes fromM1).

Two cases can happen. First case, there exists a first node m0 2 P1 \ P2. Then define the cycle C as the
restriction of P1 from m0 to m followed by the restriction of P2 from m to m0. Second case, P1 \ P2 = ; and
define the cycleC as the concatenation of P1, P2 and backward edge fa ! 0f .

In both cases,C satisfies by constructionHM1ðCÞ > HM2ðCÞ. w

8.3. Gcomp Is Undirected

Proposition 5. (Gcomp is undirected). Let f jm be a valid I-move from MDS M1 in component v1 to M2 in v2.
Then there exists M0

2;M0
1 in v2; v1, respectively, such that f jm (where m is the bit-complement of m) is a valid

I-move fromM0
2 to M0

1.

Proof. See Figure 6. In component v1, by Proposition 3, there is a cycle C1 of length rk - 1 that contains

MDSM1, and this cycle has f that has an F-move. Hence, C1 = ðM1; . . . ;M
f
1;M

0
1; . . . ;Mrk - 1Þ, whereMf

1 is the

MDS where f is a valid I-move and M0
1 = fMf

1. Equivalently, looking at the edges, C1 = ðFm ; f ;FmÞ, where
Fm ;Fm are sequences of F-moves.

By hypothesis f jm is a valid I-move inM1, which means that ifma = 1, then af 2 M1 and fa 2 M1 otherwise.
Let’s call Pm the set of PCRs that contain af when ma = 1 and Pm the PCRs containing af when ma = 0 (Pm

contains only the top PCR in Fig. 6 and Pm the bottom PCR).

InMf
1, f is a valid F-move, which means that af 2 Mf

1 for all a 2 R. In other words, the sequence of F-moves
Fm made by the pebbles in the PCRs in Pm goes around from fa to af, whereas the pebbles in the PCRs in Pm
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did not move. (The only way for the pebbles in the PCRs in Pm to move is to do F-move f, which by construc-
tion is not in Fm ).

Similarly, the sequence of F-moves Fm made by the pebbles in the PCRs in Pm goes around from fa to af,
whereas the pebbles in the PCRs of Pm did not move.

Now fromM1 do the valid I-move f jm. This advances the pebbles in the PCRs of Pm from af to fa (forward
by 1 edge), to get toM2 in component v2, where rcðf Þ � M2. The position of the pebbles inM1 andM2 agrees
everywhere except on the PCRs of Pm. Because the F-moves in Fm do not affect the PCRs of Pm, the sequence
Fm is a valid sequence of F-moves inM2 as well.

fa 2 M2 for all a 2 R. Applying Fm toM2 leads to MDSM0
2 where af 2 M0

2 if ma = 0 and fa 2 M0
2 other-

wise. In other words, I-move f jm is valid inM0
2. It is easy to check that doing the I-move f jm gets back toM0

1.
For completion, one can check that the sequence of F-moves Fm applies to M0

2 becauseM0
2 and M0

1 only

differ on the pebbles on the PCRs of Pm and Fm does not affect those PCRs. Applying Fm to get toMf
2 where f

is a valid F-move andM2 = fMf
2.

Therefore, the cycle C1 = ðFm ; f ;FmÞ is a valid cycle in v1 and contains M1 and M0
1, whereas

C2 = ðFm; f ;FmÞ is valid in v2 and containsM2 andM0
2. w

8.4. Nondecycling PCR Sets

Proposition 8. Let GPCR be the graph with nondecycling PCR sets as nodes and F-moves as edges. Then
each component of G is a DAG.

Proof. Suppose there exists a cycle C = fM1; . . . ;Mng in GPCR, whereMi + 1 = fiMi. BecauseM1 is not decy-
cling, then there exists a cycle C in DknM1. Because RF-moves preserve the hitting number, C is also a cycle
in Dknf1M1, and by induction a cycle in DknMi; i 2 ½1; n�. From the proof Proposition 3, any cycle C must do
every rk - 1 F-move to return to the starting set, and the union of all the left-companions of the F-moves is the
set of all k-mers. This is a contradiction. w

8.5. I-moves and Constrained Cycles

Proposition 6. Let f 2 Rk - 1;m 2 ½1; 2r - 2�, and let v be a component of GMDS. Then f jm is not a valid I-
move in any MDS of v if and only if 9a; b such that ma = 1;mb = 0, and there exists a constrained cycle using
the edge af ! fb.

FIG. 6. Simplified example for finding the complementary I-moves, when r = 2. On the left box, component v1
and component v2 on the right of GMDS. The cycles C1, C2 are cycles in v1 and v2, respectively. The simplified
PCR/pebble drawings represent the position of the pebbles on the PCRs of Pm (top PCR) and Pm (bottom PCR).
The edge between these PCRs represents f. The PCR/pebbles drawings next to the MDS nodes represent the state
of the PCRs for these MDSs, whereas the drawings next to the dotted line (sequences of F-moves) represent the
action of the sequence of F-moves on the pebbles. From the cycle C1 in v1, we construct cycle C2 in v2 by swap-
ping the order of the F-moves: ðFm ; f ;FmÞ ! ðFm; f ;FmÞ. These cycles go through the desired MDSs M0

2 and M0
1

that are linked by the complementary I-move f jm .
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Proof. Let f jm be a potential I-move withma = 1 andmb = 0 (a; b 2 R; a 6¼ b).
Suppose there exists a constrained cycle C in the de Bruijn graphDk using the edge af ! fb andHvðCÞ= 1.

If f jm is a valid I-move in an MDSM 2 v, then by definition af ; fb 2 M, hence HMðCÞ � 2. This contradicts
thatC is constrained (see Fig. 7a).

Conversely, suppose that f jm is not a valid I-move in any MDS of v. Let Mf 2 v be an MDS where f is a
valid F-move andM = fMf . Then rcðf Þ � M. Define gc ≜ f ½2 : k - 2�c; c 2 R, that is, for all right-companion of
f, fc 2 lcðgcÞ.

FromM recursively do all valid F-moves except for the F-moves gc where mc = 0 to obtain M0 2 v where
the only valid F-moves are exactly those that we refused to do. There must exist a 2 R such that ma = 1 and
af=2M0, otherwise f jm is a valid I-move inM0 (see Fig. 7b). From af do a walk that avoidsM0 using backward
edges. This walk must end at one of the right-companions of the valid F-moves in M0, that is, there exists b
such that walk ends at m0 2 rcðgbÞ. By construction there is a backward edge m0 ! fb. Then follow the back-
ward edge fb ! af to create a cycle C. By construction the only node from M0 in cycle C is fb, hence
HM0 ðCÞ = 1 andC uses the edge af ! fbwithma = 1 andmb = 0. w
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