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Sketching Methods with Small Window Guarantee
Using Minimum Decycling Sets

GUILLAUME MARCAIS, DAN DEBLASIO, and CARL KINGSFORD

ABSTRACT

Most sequence sketching methods work by selecting specific k-mers from sequences so that the
similarity between two sequences can be estimated using only the sketches. Because estimating
sequence similarity is much faster using sketches than using sequence alignment, sketching
methods are used to reduce the computational requirements of computational biology software.
Applications using sketches often rely on properties of the k-mer selection procedure to ensure that
using a sketch does not degrade the quality of the results compared with using sequence alignment.
Two important examples of such properties are locality and window guarantees, the latter of
which ensures that no long region of the sequence goes unrepresented in the sketch. A sketching
method with a window guarantee, implicitly or explicitly, corresponds to a decycling set of the de
Bruijn graph, which is a set of unavoidable k-mers. Any long enough sequence, by definition, must
contain a k-mer from any decycling set (hence, the unavoidable property). Conversely, a decycling
set also defines a sketching method by choosing the k-mers from the set as representatives.
Although current methods use one of a small number of sketching method families, the space of
decycling sets is much larger and largely unexplored. Finding decycling sets with desirable
characteristics (e.g., small remaining path length) is a promising approach to discovering new
sketching methods with improved performance (e.g., with small window guarantee). The
Minimum Decycling Sets (MDSs) are of particular interest because of their minimum size. Only
two algorithms, by Mykkeltveit and Champarnaud, are previously known to generate two
particular MDSs, although there are typically a vast number of alternative MDSs. We provide a
simple method to enumerate MDSs. This method allows one to explore the space of MDSs and to
find MDSs optimized for desirable properties. We give evidence that the Mykkeltveit sets are close
to optimal regarding one particular property, the remaining path length. A number of conjectures
and computational and theoretical evidence to support them are presented. Code available at
https://github.com/Kingsford-Group/mdsscope
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1. INTRODUCTION

ketching methods, such as minimizers (Roberts et al., 2004a) or open-syncmers (Edgar, 2021), distill a

long sequence into a smaller “sketch,” a set of k-mers and their positions in the sequence. By comparing
these sketches, it is possible to quickly estimate whether two sequences are similar and may have a good qual-
ity alignment between them or not. Because sketching methods greatly reduce the computational needs in
many genomics algorithms with usually little impact on the quality of the result, they are used in many compu-
tational biology software packages [see Zheng et al. (2023) for a review].

For our purposes, a k-mer sketching method is modeled by a function ¢ that takes a confext as an input
(a substring of the input sequence of fixed length ¢) and outputs a set of positions within the context of the
selected k-mers. The output of ¢ can be the empty set, meaning that nothing is selected in this context. The
sketch M, (S) for a sequence S is the union of all selected positions over all the contexts of S (see Section 2).
This sketch contains a subset of all the k-mers in S as the function ¢ might not pick any k-mer in a context or
adjacent contexts may pick the same locations.

The two properties of sketching methods that downstream applications rely on to prove correctness are as
follows:

1. Locality The property that similar sequences (i.e., that have reasonably long identical subsequences)
will have common elements in their sketches, and hence, long enough matches will be detected using
the sketches. This is naturally satisfied because the selection is done using a deterministic function (¢);
therefore, two sequences that share an exact substring of length at least ¢ will select the same k-mers in
that context.

2. Window guarantee The maximum distance w between two selected k-mers is the window size or guar-
antee. A small window size guarantees that no large part of a sequence is ignored. Equivalently, the win-
dow guarantee means that k-mers are selected at approximately regular intervals.

Sketching methods are usually optimized for two metrics, density (Schleimer et al., 2003) and conservation
(Edgar, 2021). The density is the relative size of the sketch, formally defined as | M, (S)|/|S|. A lower density
is desirable as a smaller sketch usually implies less computation and lower memory requirements. The conser-
vation is the proportion of elements that are common between a sketch of S and a sketch of a slightly mutated
sequence S, where the common elements are either k-mers or subsequences covered by these k-mers. Higher
conservation is desirable because it usually correlates to higher sensitivity to detect sequence similarities in the
face of mutations and errors. For a fixed k, a smaller context size leads to higher conservation, as the presence
of a k-mer in the sketch of the mutated S’ may be affected by mutations in the entire context (Shaw and Yu,
2022).

Not all sketching methods satisfy the window guarantee property (i.e., for some sketching methods, there
are infinitely long sequences S with an empty sketch; see Section 3). However, sketching methods that do not
satisfy the window property are problematic in two ways. First, most algorithms using a sketching method do
not have a proof of correctness in cases without the window property (e.g., an aligner may miss arbitrarily
long, good quality alignments, preventing claims of sensitivity).

Second, the sketch optimization problem is ill-formed without the window property. The empty selection
function that returns the empty set for any input sequence satisfies vacuously the locality property, it has per-
fect conservation, and it has the lowest possible density. But of course, no information is preserved in an empty
sketch and this trivial solution is not useful. The existence of trivial solutions is not a purely theoretical con-
cern. When optimizing sketching methods using machine learning, almost empty (and not practically useful)
solutions are found if no window constraint is used in the loss function (Hoang et al., 2022a).

A set of k-mers M is unavoidable if any infinitely long sequence must have k-mers from M. Because any
sequence uniquely corresponds to a path in the de Bruijn graph D, of order k, an equivalent point of view is the
decycling sets (DSs): M is an unavoidable set of k-mers (and a decycling set) if and only if D\ M, the de Bruijn
graph D, with the k-mers from M removed, is a directed acyclic graph (DAG).

There is a strong two-way connection between such decycling sets and sketching methods with a window
guarantee. Consider the set M, of possibly selected k-mers (the union of all k-mers selected over every
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possible context) for sketching method ¢. If the sketching method has a window guarantee, then M, is a decy-
cling set. Moreover, the window size of ¢ is equal to the remaining path length of M, that is, the length of the
longest path in the DAG D\ M.

The function ¢ of a sketching method with the smallest possible context (c = k, aka context-free methods,
such as syncmers) must return an empty set for some input contexts, otherwise it would select every k-mer and
would be equivalent to no sketching. Consequently, in the context-free case, ¢ is equivalent to the indicator
function of its set M, : as the input context contains only one k-mer, the output of ¢ is not empty exactly when
the input k-mer is in M. A sketching method with a larger context may not select every occurrence of k-mers
in M, from S. For example, a context may contain multiple k-mers from M, but the function ¢ only selects
one of them (DeBlasio et al., 2019). In other words, given two sketching methods, one context-free and one
with a context, having the same set of possibly selected k-mers, the method with a context can lower its density
at the expense of having a lower conservation. Conversely, given a decycling set M, the indicator function of
M defines a context-free sketching method with a window guarantee.

This connection between decycling sets and sketching methods suggests, first, that the properties of the
decycling sets ultimately define the properties of the associated sketching method. In other words, by studying
the space of decycling sets we gain insights into the design space of sketching methods. Second, the space of
decycling sets is much larger than the decycling sets generated by the few families of sketching methods cur-
rently used. Rather than creating ad hoc sketching methods, a promising strategy is to find a decycling set with
desirable properties and use the sketching method associated with this set.

In this study, we focus on minimum decycling sets (MDSs), i.e., deycling sets of minimum size. MDSs pro-
vide a logical starting point for the study of decycling sets. First, the MDSs are by definition as small as possi-
ble, therefore reducing as much as possible the cost of storing and querying such a set. Second, for context-free
case, a small M, set corresponds, in expectation, to smaller sketches (aka low-density method). Finally, these
sets are likely to have short remaining path lengths (say polynomial in k), corresponding to sketching methods
with small window guarantee.

The connection between MDSs and sketching methods was already explored (Orenstein et al., 2017, 2016;
Ekim et al., 2020; Pellow et al., 2023), but mostly using one particular MDS construction by Mykkeltveit
(1972). In this study, we give new methods to explore the space of all MDSs as a way to define new sketching
methods with desirable properties.

After describing the window guarantee of common sketching methods, we describe the structure of the
de Bruijn graph and of its cycles. We then give two simple graph operations that can be used to enumerate
MDS:s. Provided Conjecture 1 is true (for which we provide ample theoretical and experimental evidence); all
MDSs can be reached with these operations. Using these operations, we design an optimization procedure to
find MDSs with short remaining path lengths. This optimization procedure gives further insight on the range
of possible window guarantees for sketching methods and of the well-known Mykkeltveit set.

The conjectures and optimization methods proposed here are the basis to further the understanding of MDSs
and the design space of the sketching methods that are central to computational biology algorithms, in particu-
lar sketching methods with a small context and a strong window guarantee.

2. PRELIMINARIES AND NOTATIONS

An alphabet is a set X of size o =|Z| Although the results generalize to any alphabet size, we consider the
binary alphabet X ={0, 1} and the DNA alphabet {A, C, G, T} of size 4. A sequence S is an element of X*, and
sequences are indexed starting at 1. S[a : k] represents the subsequence starting at position a of length k, that is,
the ath k-mer of S. [n] is the set of integers {1, ...,n}.

We assume that ¢ > k. A sketching scheme is defined by its selection function ¢ : X¢ — P([c—k+1]),
where P denotes the power set. A context is a subsequence of length ¢ of S: S[i : ¢] with i € [|S|—c+1]. The
sketch of S is the set of the positions of the selected k-mers in S: M, (S) =Ujc|js|-c+1j{i+0lo € @(S[i : c])}.
The set of all possibly selected k-mers for the sketching method ¢ is M, =U,es<{s[o : k]|o € ¢(s)}.

The de Bruijn graph of order & is the directed graph Dy = (Z*, E;), where each k-mer is a node and the edges
u — v represent the suffix—prefix relationship u[2 : k—1]=v[1 : k— 1]. The de Bruijn graph is g-regular, Eulerian,
and Hamiltonian. For convenience, short strings, such as k-mers, are commonly represented as base-o numbers.
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3. WINDOW GUARANTEE OF EXISTING SKETCHING SCHEMES

We review sketching methods commonly used in computational biology and evaluate their window guarantee.

Hash-based methods. Hash methods use a hash function / and select the k-mers m that satisfy, for example,
h(m)=0 modp or h(m) < t for some predefined constants p, ¢ (Karp and Rabin, 1987; Ekim et al., 2021).
Effectively, the hash function randomizes the k-mers, and the criteria selects a subset of the k-mers. Other
approaches apply a sketching method like minimizers or syncmers and further down-sample the sketch using a
hash function (Rouzé et al., 2023; Edgar, 2021).

In general, these methods do not have a window guarantee and, historically, this was one of the motivations
for Schleimer et al. (2003) to introduce the winnowing scheme (which is equivalent to minimizers). Although
hash-based schemes can have low density and have a short context (c = k), it is achieved at the cost of having
no window guarantee. For example, by choosing low values of the threshold ¢, the density can be made arbitra-
rily low, but the number of distinct cyclic sequences not covered by the scheme increases dramatically.

Window-based methods. These methods always pick at least one k-mer in each context and therefore the
context and the window guarantee are closely linked.

The minimizer scheme has three parameters (k, w, O) and in each window of w consecutive k-mers (i.e., the
context is a substring of length w4+ k — 1), the selection function returns the position of the smallest k-mer accord-
ing to the order O (Roberts et al., 2004a,b). There are many ways to select the order O (Zheng et al., 2021, 2020b;
Hoang et al., 2022b; Jain et al., 2020), for example to improve the density, but because the selection function never
returns the empty set, all these methods have a window guarantee of w, independent of the choice of O.

The density of minimizers schemes is usually between 1.5/(w+1) and 2/(w+1) (Margais et al., 2017,
2018), and the context length is c=w+k— 1. Density can be lowered by increasing w, although this increases
the context length (hence weakens the locality and lowers the conservation). Having a coupling between the
window guarantee and the context length constrains the parameter choices for minimizer schemes.

Compared to minimizers, the minmers scheme (Kille et al., 2023) adds a fourth parameter d: in each window
of dw consecutive k-mers the selection function returns the position of the d smallest k-mers according to O.
Minmers achieve a density closer to 1/w while having a significantly longer context of dw +k — 1.

Positional minimums. Under this generic name are methods such as open-syncmers (Edgar, 2021), masked
minimizers (Hoang et al., 2022a), and parameterized syncmers (Dutta et al., 2022).

Parameterized syncmers schemes have four parameters (k, s, O, m) where s < k and m is a nonempty bit-
mask of length k. A context of length ¢ = k is selected if the smallest s-mer in the context (choose left-most to
break ties) is at position i and bit 7 is set in the mask m. This is a generalization of the syncmers schemes: the
mask of syncmers has exactly one bit set to 1.

Masked minimizers have a two-step process as follows: the first step selects an element similarly to parame-
terized syncmers, and, second, a reporting function returns the final selection (which can be, e.g., the smallest
s-mer or the k-mer containing it). This two-step approach unifies syncmers and minimizers like schemes.

Whether these schemes have a window guarantee depends on whether the first bit of the mask m is set. If the
first bit is set and a k-mer is not selected, then this implies that an s-mer at position i > 1 is strictly smaller than
the s-mer at position 1, forming a decreasing list of s-mers. As the k-mers are shifted along the sequence, this
decreasing list of s-mers must eventually come to an end, hence there is a window guarantee. This window
guarantee is weak as the window can be as long as 6*~! as seen in the following construction.

Assume s < k— 1 and create an order on the s-mer using a de Bruijn sequence D of order s (D contains all
the s-mers once and only once) and by definition s; < s, if and only if the s-mer s; appears after s, in D. The
sequence D is a decreasing sequence of s-mers of length ¢°+s5—1. With s=k— 1, we created a sequence of
length Q(c*~!) without a selected k-mer.

If the first bit is not set, because of the left-most tie breaking rule, there is no window guarantee. Hence, these
methods have a short context and a weak or missing window guarantee.

4. CYCLE STRUCTURE OF THE DE BRUIJN GRAPH

There exist two methods to generate decycling sets of minimum size by Mykkeltveit (1972) and Champar-
naud et al. (2004). These algorithms are of great theoretical importance as they settled a conjecture of Golomb
(1967) on the size of an MDS. They are also practical algorithms as membership in these MDSs is testable in



SKETCHING METHODS WITH MINIMUM DECYCLING SETS 601

time and memory polynomial in k (i.e., the entire set does not need to be precomputed and stored). But, as we
shall see, the space of all MDSs is much larger than these two MDSs.

We provide a method that uses only two simple graph operations—called F-move and I-move—that trans-
form an MDS into another MDS. Furthermore, we conjecture that these two operations are sufficient to enu-
merate all MDSs. In other words, given a graph where the nodes are all the MDSs and the edges represent
these operations, Conjecture 1 states that this graph is strongly connected. We give theoretical and computa-
tional evidence to support this conjecture.

This section describes the structure of the cycles in the de Bruijn and how through these two operations
MDSs interact with the cycles. Although these two operations are similar in nature and together they might
enumerate all MDSs, we describe them separately as they have qualitatively distinct effects on the MDSs
(see Proposition 2 and Conjecture 2).

A pure cycling register (PCR), aka a conjugacy class, is a cycle in the de Bruijn graph made of the circu-
lar permutation of a k-mer. For example, the PCR of the 4-mer 1011 over the binary alphabet is
1011 — 0111 — 1110 — 1101 — 1011. The PCRs form a partition of the k-mers, and therefore, any
MDS must contain at least one k-mer from each PCR. We call a k-mer set with exactly one k-mer in each
PCR a PCR set. The theorems of Mykkeltveit (1972) and Champarnaud et al. (2004) show that every MDS
is a PCR set. In contrast, not every PCR set is an MDS.

4.1. F-moves

The left-companions (respectively right-companions) is the set of k-mers that have the same suffix (respec-
tively prefix). Given f € Z¥~!, then Ic(f) £ {af|a € T} are the left companions sharing the suffix f and
rc(f) £ {fala € L} are the right companions. See Figure 1 for examples. If f =a*~!, then the k-mers af and fa
are equal (homopolymer a*), and this k-mer is in both the left- and right-companion sets for f. The homopoly-
mers are the only such k-mers. Every other k-mer is a left companion for exactly one suffix and a right com-
panion for a different prefix.

Proposition 1. (Existence of F-moves). In any MDS M, there exists f,f € ZX~! such that M contains the
left companions of f and the right companions of f'.

Proof. By contradiction, assume that there is no such f’. Color all the nodes of the graph blue and do a ran-
dom walk in the graph, starting from any node not in M, avoiding the nodes in M. Color in red the nodes trav-
ersed. Any k-mer m is the left companion of a suffix, say f;,, and every outgoing edge from m is an incoming
edge to a right companion of f,, (see Fig. 1). Because no right-companion set is in M, it is always possible to
continue the walk avoiding M from any m. Given that the graph is finite, the red nodes will eventually create a
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e ) 0y 0 0%y fo
) Fomoye b) e
R.\Evae RF-move
- -
1\f f1 1f g }f f1 1f 11
0 10 of [0 of 10 of f0
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) s Q) ey
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1f f1 1f f1 1f f1 1f f1

FIG.1. Forf e X¥! the left-companions (k-mers Of and 1f for the binary alphabet) and right-companions (f0 and f1)
induce a directed complete bipartite K, ;. (a) When the left-companions are in the set (left subgraph, highlighted in gray),
an F-move replaces these nodes with the right-companions (right subgraph). An RF-move is the reverse operation, replac-
ing the right-companions with the left-companions. (b) When one k-mer is a homopolymer (shown here with f=0f"" so
0f =£0), the induced subgraph is slightly different, but the F-moves and RF-moves are defined analogously. (¢) One of the
possible I-moves, f|,, where a mixture of left- and right-companions is in the set. (d) The other possible I-move, f|,. For
any f € ¥~ there are 1F-move, 1 RF-move, and 2% —2 I-moves possible, unless f is a homopolymer.
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cycle, contradicting M being a decycling set. The same reasoning applies for the existence of ftraversing edges
in the reverse direction. O

An F-move [named after Fredricksen (1992)] in M for f € Z*~! is the operation of exchanging the set of left com-
panions of ffor the set of right companions, as shown in Figure 1. We use the functional notation fM to designate the
set obtained by the valid F-move ffrom M: fM £ M U rc(f)\lc(f). This is a valid operation only when M contains
le(f). As a consequence of Proposition 1 there always exists a valid F-move in an MDS. The RF-move (reverse
F-move) is the inverse operation, valid when M contains rc(f), /"M = M U lc(f) \rc(f), satisfying f"fM = ff"M = M.

Proposition 2. (F-moves preserve decycling sets). Let M be an MDS such that 1c(f) C M, then fM is also an
MDS.

Proof. If there is a cycle that avoids fM, then it must use one of the nodes in Ic(f), otherwise it was already a
cycle avoiding M. Any cycle using a node in Ic(f) then must use a node in re(f) C fM. |

An analogous statement holds for RF-moves. F-moves give a procedure to enumerate some MDSs, starting,
for example, from either the Mykkeltveit or Champarnaud set and repeatedly applying a (guaranteed-to-exist by
Prop. 1) F-move. Unfortunately, not all MDSs are reachable using only F-moves. The MDS graph Gups (o, k)
has all the MDSs as nodes and edges that represent F-moves operations between MDSs. Gyps is not connected,
as seen in Figure 2, but its components have a well characterized structure (proof in Section 8.1).

Proposition 3. (Gyps component structure). For any o and k, the components of Gups (0, k) satisfy the
following:

1. Every component is strongly connected.

2. The length of every cycle is a multiple of 6*=1, that is, for every cycle C, there exists o € N* such that
C is of length aco*=".

. In a cycle of length 06"~ ", every possible F-move f € Z*=1 occurs exactly o times.

. Every node is in a cycle of length ¢*~" (hence the girth is ¢*=').

. Each component is a ¢*~-partite directed graph.

B W

4.2. I-moves

An I-move, as in an “incomplete F-move,” is valid when M contains a mixture of left- and right-companions:
for some f € ¥~ ! and Va € X, either af or fa is in M. See Figure 1 for an example. For a given f € Z*~!, there

a’)l 2 > : E 6

D N 0

FIG. 2. (a) MDS graph Gyps(2,4) with edge labels as numbers in [0, a""] representing the F-moves. There are
3 components. Each component is strongly connected and can be partitioned into ¢*~!=8 layers with edges only
from one layer to the next. The gray vertical boxes in the middle component highlight the layers, numbered from
0 to ¢*~!. Each layer in the middle component has size 1 or 2. An example of a cycle of length 8 with every
F-move done exactly once is highlighted with dashed edges. (b) Example of 2 components of nondecycling PCR
sets. The components are DAGs with a longest path less than 8 edges.
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are 2° —2 distinct I-moves as follows: one for each possible choice of left-companion nodes in M, excluding the
F-move [all of Ic(f)] and the RF-move [none of Ic(f)]. There is one exception as follows: when f =a*~! is a homo-
polymer, af = fa is both in lc(f) and re(f), and the number of possible I-moves for fis 2°~! —2.

An I-move is denoted by f/|,, where m € [1,2° —2] is interpreted as a bit mask giving the nodes from /c(f)
(i.e., the ath bit m, = 1 if af € M and m;, = 0 if fb € M). With this notation, the F-move f would be equivalent
to f|,, whereas the RF-move would be f |, _, . By definition the notation f|,, implicitly implies that it is a poten-
tial I-move and that m is neither the empty nor the full mask (m # 0 and m # 2° — 1). An identical argument as
for Proposition 2 shows that applying a valid I-move to an MDS also gives an MDS.

Although F-moves and I-moves seem like similar operations and both preserve MDSs, they have dis-
tinct effect on MDSs. First, empirically we observe that I-moves, unlike F-moves, are not always possi-
ble. MDSs always have a valid F-move (Proposition 1), whereas an MDS may not have any valid I-move.
All of the *~! F-moves are represented by an edge in every component of the MDS graph. By contrast,

out of the o*~!-(2° —2) potential I-moves, only a subset of those are valid operations. ¢ =2 and k=5 is an
extreme case where no MDS has any valid I-move. Moreover, some I-moves can be a valid operation in
one component and not in another.

Second, F-moves not only preserve the decycling property of MDSs, but they also preserve the “‘coverage” of
every cycle by an MDS. To make this notion precise, define the hitting number of a cycle C of D by the MDS M as
the size of their intersection: H,,(C) =|M N C|. Because M is a decycling set, necessarily H,,(C) > 1.PCRs, for
example, have a hitting number of 1, whereas any Hamiltonian cycle has a hitting number equal to |M].

Furthermore, the cycle signature of MDS M is the vector of all hitting numbers for all possible cycles:
S(M)=(Hm(C))ceyereof p, - Per the following proposition, F-moves preserve hitting numbers and signatures,

whereas I-moves do not.
Proposition 4.

1. Let M be an MDS and f a valid F-move in M, then for any cycle C, Hy (C)=Hm (C).

2. For every valid I-move f|,, in MDS M, there exists a cycle C of Dy such that Hy (C) # Hy m(C).
3. For any MDS My, M, from the same component of Gyps, S(M)=8(M>).

4. For any MDS M,, M, from different components of Gups, S(My) # S(M>).

Proof. Let fbe a valid F-move in MDS M and C be a cycle of D,. Because every outgoing edge of a node in
lc(f) is an incoming edge to a node in rc(f), C must contain as many nodes from Ic(f) as from rc(f) (which can
be 0). Before the F-move, all the nodes from Ic(f) and none from rc(f) are in M, whereas the opposite is true for
/M. Hence the hitting number is unaffected by the F-move, proving 1.

Letf|,, be a valid I-move in M, a, b € Z, such that m, = 1 and m;, =0 (i.e., both af and fb are in M). Because Dy is
(o —1)-vertex connected (Sridhar, 1988), there exists a path P from fb to af that avoids ¢f, ¢ € Z\{a}. Path P fol-
lowed by edge af — fb form a cycle C such that Hy, (C) =Hps (C) + 1 (af is in M but not in fM). By the same con-
struction, there exists a “complementary” cycle C’ using bf and fa such that H,,(C") = Hp,(C") — 1. This proves 2.

As a component of Gyps is strongly connected by F-moves, statement 3 is a direct consequence of 1. A proof
for 4 is given in Section 8.2. O

As a consequence of this proposition, the hitting number and signature are constant over a component of the
MDS graph, and the hitting number 7, (C) and the signature S(y) are well defined for a component y. Because
an I-move changes the signature, every I-move links MDSs from different components. Consider now the
component graph Geomp (0, k) with one node for each component of Gyps and a directed edge from compo-
nent x; — Y, if there is an I-move from an MDS M, € y, to M, € y,. In fact, as stated in the following Propo-
sition, Geomp is an undirected graph (proof in Section 8.3).

Proposition 5. (Geomp is undirected). Let f|,, be a valid I-move from MDS M, in component y, to M, in j,.
Then there exists M'y, M’y in ¥, ¥, respectively, such that | (where i is the bit-complement of m) is a valid I-
move from M’ to M.

4.3. Enumerating All MDSs

We make the following two conjectures regarding the use of I-moves to enumerate all MDSs.
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Conjecture 1 (Connectivity by I-moves). The G, graph is connected. Equivalently, every MDS is reach-
able from the Mykkeltveit MDS using a sequence of F-moves and I-moves.

This conjecture is supported by the previous theoretical results, in particular that all the components have a
different signature and that an I-move always changes the signatures. For reasonable values of k (¢ = 2,
k < 7), it is computationally feasible to enumerate all PCR sets and check which of them are also decycling
sets. Using this brute force method we can confirm that Gomp (2, k) is connected up to k=7.

The following conjecture is computationally also verified up to k = 7 and exposes another fundamental dif-
ference between F-moves and [-moves. Every F-move is always valid in every component, whereas the valid
I-moves identify a component (similar to the cycle signature). For a component g, let the list of I-moves be
Z(x)=A{fl,,|3M € y where f|, isavalid] — movein M}.

Conjecture 2 (I-move signature). Every component in Gyps has a distinct list of valid I-moves.

The validity of this second conjecture is likely related to the previous one. To prove Conjecture 1, one needs to
show that for any two components y, %, there is a path of I-moves to go from y; to y,. Conjecture 2 can be used
as a guide to find that path: because Z(y,;) # Z (%), then there exists a valid I-move in either Z (y,)\Z (y,) or
Z(%2)\Z () (note that it is possible to have, for example, Z(y,) C Z(y,)). Do that I-move and repeat with the
new components. Although in our testing Conjecture 2 is useful to find a path from y; to y», it is not sufficient as it
does not guarantee that the size of the difference between the I-move lists is decreasing.

To create Table 1 we use both conjectures as follows: one to traverse the graph and the other to avoid enu-
merating a component more than once. The results in this table empirically show that, independent of the valid-
ity of the two preceding conjectures, the space of MDSs reachable using F-moves and I-moves is very large.
The ability to traverse that previously unexplored space of MDSs allows us to create optimizing methods to
create new sketching methods.

4.4. Nondecycling PCR Sets

Nondecycling PCR sets may also have valid F-moves and I-moves, but there are significant differences with
MDSs. Unlike MDSs (see Proposition 1), a nondecycling set is not guaranteed to contain sets of left- and
right-companions. Even more, the analog graph to G,;ps with nondecycling PCR sets as nodes and F-moves
for edges is a nonconnected graph where each component is a DAG (see Fig. 2 and Section 8.4). There cannot
be any F-moves between an MDS and a nondecycling set. In contrast, there can be an I-move from a nondecy-
cling set to an MDS (but not the other way around).

5. REMAINING PATH LENGTH AND WINDOW GUARANTEE

By traversing the component graphs and the MDS graph, one can search for MDSs with desirable properties.
Unfortunately, as seen in Table 1, every aspect of these graphs (i.e., number of MDS, number of components,
layer size, and so on) seems to have super-exponential growth. Enumerating all MDSs for & > 9 with the binary

TABLE 1. G.oup AND Gyyps PROPERTIES FOR o= 2

Method Exhaustive I-moves

k 2 3 4 5 6 7 8 9 10
#components 1 1 3 1 273 4 194,133 4318,173 195,740,496
# MDSs 2 4 30 28 68288 18,432 ~3.1-10" >1.3-10"7 —

Layerrange  1-1 1-1 1-2 12 1-48 28-153 ~25.10°29-10° >12-10° —

“Layer range” gives, when possible, the range of the number of Minimum Decycling Sets (MDSs) in each layer of Gysps. The num-
bers for k < 7 are exact, computed from the exhaustive list of MDSs. For columns & € [8, 10], the number of components is correct
provided the conjectures are correct, otherwise the numbers provided are under-estimations. For k = 8, the layer size and number of
MDSs are estimated by sampling 100 random components. For k = 9, the numbers are likely severe under-estimations. For k = 10,
computation is too expansive. For the DNA alphabet ¢ = 4, these numbers would grow even more quickly
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alphabet is likely not reasonable, and for the DNA alphabet it is even more difficult. In this section, we provide
some methods to explore the space of MDSs more efficiently and study the window guarantee of MDSs.

5.1. Efficiently Traversing the Component Graph

As is seen in Table 1, the number of MDSs and components is increasing quickly with k, although an actual
estimate of the growth as a function of k is not known. The memory used to traverse a component can be
reduced by noticing that each component is partitioned into o*~! layers with edges only from one layer to the
next (see Fig. 2). Therefore, it is only necessary to keep in memory the MDSs of the current and next layer to
exhaustively enumerate every MDS in the component.

As each component contains at least one cycle of length 6*~!, the number of MDSs grows by at least a fac-
tor of ¥~ ! faster compared with components. In fact, it grows much faster as each of the c*~! layers has a
size that grows fast with k as well (see Table 1). While the number of MDSs and the size of the layers varies
significantly between components, in general it is not efficient to traverse an entire component to find all the
valid I-moves. Using the following proposition, it is possible to find all the valid I-moves in a component by
considering only one MDS.

Given an MDS M, any cycle C satisfies Hy (C) > 1. The cycles with a hitting number of exactly 1, called
constrained cycles, play an important role in the existence or not of a valid I-move: an I-move is only valid if
there is no constrained cycle using edges of the I-move.

Proposition 6. Let f € 7' m € [1,2° 2], and let y be a component of Gyps. Then f|,, is not a valid

I-move in any MDS of y if and only if 3a, b such that m,=1,m;, =0 and there exists a constrained cycle using
the edge af — fb.

This proposition, proved in Section 8.5, shows that to find the list of valid I-moves in the entire component it
is sufficient to find the edges not covered by a constrained cycle in just one of the MDSs of the component.
This holds, as by Proposition 1, that the list of constrained cycles is constant across the MDSs of a component.
Moreover, tagging the edges covered by constrained cycle can be done with one depth first search for each k-
mer in the MDS. The main advantage of this method is that its run time is independent of the number of MDSs
in the component.

5.2. Remaining Path Length

The remaining path length of an MDS, M, is the length of the longest path in the DAG obtained by removing
the k-mers of M from D,. Given a selection scheme that selects in a sequence the k-mers from M, the remaining
path length is precisely the window guarantee of the scheme. The following proposition gives bounds on the
effect of an F-move or I-move on the remaining path length (see Fig. 3).

Proposition 7. An F-move or RF-move can increase or decrease the remaining path length by at most 1.
An I-move can increase the remaining path length by at most I or decrease it by at most half.

Proof. First, notice that the longest path in D;\M must start at a valid F-move and end at a valid RF-move.
Let P=(my,...,m,) be a longest path. The k-mer m; is the right companion of some suffix f. Suppose there
exists @ € X such that af ¢ M, then the path P’ = (af ,m;, . .., m,) avoids M and is longer than P, contradicting
its maximality. Therefore Ic(f) C M and fis a valid F-move in M. The proof is symmetrical for m,, as the left-
companion of some prefix f’ with re(f') C M.

Because m; € fM, the path P is shortened by 1 by the F-move f, which may shorten the longest path if there
were no other paths of that length. In addition, rc(f) C fM (i.e., fis a valid RF-move in fM but it was not in M);
hence, there might be maximal path P’ ending at a left-companion of f with |P'| > n. Because the F-move
only moved nodes forward by one edge, |P'| < n+ 1 and the longest path may have increased by 1. The same
argument applies to an RF-move.

For a valid I-move f”'|,, in M, the same reasoning applies for increasing by 1. In contrast, a longest path may
have used an edge af”’ — f”’b where m, =0, m;,=1. Thatis, P=(my,...,m;=af”" ,mi1=f"b, ..., my,). After
the I-move, fb € f”|,,M, and the path is now broken in up to two parts as follows: (my,...,m;) and
(mj2,...,my,). Therefore, the remaining path length could be halved ifi=n/2. m]
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A n . FMove
FIG. 3. Left: If a longest path does not start at a valid F- Longest Pat = 4
move f, i.e., one of the left-companion of f in solid gray is Oi 0]
missing, then it could be extended to the left, contradicting
maximality. Doing F-move f (changing solid gray for dashed
nodes) can shorten the longest path by 1 node. Also, after
doing F-move f, a path now ending in one of the solid gray
nodes could be the longest and was extended by 1 node. If the
path goes through an I-move f”|,,, then doing the I-move cuts
the path in two possibly equal parts. Right: Comparison of the
minimum and maximum remaining longest path for compo-
nents of Guvps(2,k) for 4 < k < 8. Each point represents one
connected component of the graph. The minimum and maxi-
mum remaining path lengths are computed over all the MDSs
of a component. Therefore, the vertical distance of a point
from the diagonal y = x (in yellow) shows the variation of
remaining path length within a component. For k = 8, a sub-
sample of 500 components was examined, as the total number
of components is exceedingly large. The lines are drawn to
depict the bounds of the increase between components. In all
cases seen, the difference between the minimum and maximum
remaining length within a component is in some range [x, o+ k] : : : : :
for an alpha that is less than k. 10 20 30 40 50
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Based on this, we implemented a simulated annealing algorithm to find the smallest and largest remaining
path lengths among MDSs. The longest path for the MDS M is computed using a modified topological sort of
the DAG D, \M. Suppose that we are computing the smallest remaining path length. Starting from a compo-
nent of the MDS graph, the program performs a fixed number of random F-moves (2k by default) and com-
putes the remaining path length for each MDS and keeps the minimum. Then, it finds all the valid I-moves in
the current component as explained in Section 5.1, and it picks one at random.

After performing the I-move, in the new component, the remaining path length is computed for 2k MDSs reach-
able by F-moves and a new minimum is computed. If this new minimum is lower than the previous minimum, then
the new component becomes the current component. Otherwise, it becomes the current component only with some
small probability. Then the process is repeated from the current component for a fixed number of iterations. As is
traditional with simulated annealing, the probability to jump to “worse”” components decreases over time.

Table 2 shows the remaining path length for the two previously known algorithms to generate MDSs and
the range of remaining path length. These ranges are either exact when an exhaustive list of MDSs is comput-
able and approximated using simulated annealing otherwise. Based on the pattern that the Mykkeltveit set is

TABLE 2. THE REMAINING PATH LENGTH FOR THE MYKKELTVEIT AND CHAMPARNAUD SETS COMPARED WITH THE
RANGE OF REMAINING PATH LENGTH

k

o Algoritm 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mykkeltveit 5 11 21 27 39 55 74 89 119 143 194 219 253 299 408 437 539
o Champarnaud 7 11 21 27 47 57 94 112 190 209 367 415 683 756 1343 1393 2560

SA Min 5 11 13 25 32 48 70 89 119 143 194

SA Max 7 12 26 32 55 80 116 158 257 288 387

Mykkeltveit 21 41 77 111 145 231 330 403 616
4 Champarnaud 27 39 119 141 429 520 1601 1765 6180

SA Min 20 41 77 111 145

SA Max 34 66 149 270 530

For 0 =2 and k < 7, the range of remaining path length is computed exactly from the exhaustive list of MDSs. The other values in
the simulated annealing (SA) Min and SA Max rows are estimated using an SA algorithm and are underlined.
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always at or close to the minimum remaining path length, we conjecture that it holds for all parameters k and o.

Conjecture 3. For a given o, let Ly (k), lmax (k), Imyki (k), respectively, be the smallest, largest, and Myk-
keltveit set remaining path lengths. Then Iy (k) = €min (k) = 0(bmax (k) — lmin (k) ) asymptotically in k.

5.3. Per-Component Remaining Path Length

Proposition 7 gives a bound on the change in the remaining path length as the MDS graph is traversed using
F-moves and I-moves. Within one component, given that every MDS is in a cycle of length ¢, the remaining
path length along this cycle could change by up to ¥ /2. In other words, this proposition only gives an expo-
nential bound on the range of remaining path length within a component.

The graph in Figure 3 has a point for each component at the coordinate (mp(y), Mp(y)) where mp(y) is the
minimum of the remaining path length over all the MDSs of the component y, and Mp(y) is the maximum.
The vertical distance from the diagonal y = x represents the range of remaining path lengths within a compo-
nent. We observe for k < 8 on the binary alphabet that the range is bounded by O(k).

Conjecture 4. Within a component of Gyps, the range of remaining path length is O(k).

There are plausible reasons for having such a small range. Consider the following two extremes: (1) there
are many F-moves and RF-moves valid at the same time in an MDS M, (2) there is only 1 F-move and 1
RF-move valid in M. In the first case, doing one of these F-moves or RF-moves affects the maximal paths that
start or end at these moves. Consequently, many of these moves change the length of paths that are not the lon-
gest. In other words, these moves have no effect on the remaining path length. In the second case, it is possible
to show that doing the 1 valid F-move does not change the remaining path length (the longest path is truncated
by its first node and extending by one node, hence not changing in length). This type of situation is likely to
happen when there are few F-moves and RF-moves possible. In both cases, most F-moves do not affect the
remaining path length.

This conjecture partially justifies only exploring O(k) MDSs within one component in the simulated anneal-
ing algorithm in Section 5.2.

6. DISCUSSION

Proportion of MDSs. A simple algorithm to generate a random MDS, sampling the space of MDSs uni-
formly, is to select at random k-mer from each PCR and check whether it is decycling, and to resample if not.
Even though the space of MDSs is (maybe surprisingly) large, it is nonetheless only a tiny fraction of the PCR
sets. The number of PCR sets is easily computable (Fredricksen and Kessler, 1986), and asymptotically, there
are Q(k“k/ k) PCR sets. There is no formula for the number of MDSs, but based on the numbers from Table 1,
for k=8, of the 2 - 10?° PCR sets the proportion that are MDSs is only 2 - 10~ '3, For k = 9 that proportion is
essentially 0. Thus, the random sampling method is not of any practical use.

In that sense Conjecture 1, provided it is true, is an efficient method to enumerate all MDSs as only MDSs
are ever considered without the need to filter out an overwhelming number of nondecycling sets. Even if this
conjecture is eventually proven wrong, the F-moves and I-moves allow us to explore a large subspace of
MDSs and, using simulated annealing or more advanced machine learning methods, to find MDSs with desira-
ble properties.

Moreover, on the theoretical side, providing evidence for this conjecture lead us to a deeper understanding
of the space of MDSs and to formulate the other conjectures.

Mykkeltveit set and short windows. It is surprising (or lucky) that the first algorithm for constructing
MDSs by Mykkeltveit (1972) gives a set with close to the shortest remaining path length. This fact may explain
retrospectively the success of previous methods using this set as the starting point to design minimizers
schemes (Orenstein et al., 2016, 2017; Ekim et al., 2020; Pellow et al., 2023). The growth of the remaining
path length for the Mykkeltveit set is well characterized (Zheng et al., 2020a): it is Q(k?) and O(k*). Fitting the
data from Table 2 we obtain an exponent of 3.12 + 0.14, suggesting an actual growth of ® (k). Provided that
Conjecture 3 holds, this would answer the question of the shortest window guarantee that is possible using an
MDS. For comparison, fitting the Champarnaud data gives an exponent of 6.1 £ 0.59.
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Longest remaining path length. Conjecture 4 only suggests a bound on the range of remaining path length
within a component of Gy;ps. A legitimate question is what is the bound of the range in Gy;ps as a whole.
Figure 3 could suggest that this range is polynomial in k, although the trend in this figure is much too short to
elevate this statement to a conjecture. Given the known results bounding the longest remaining path of the
Mykkeltveit set by O(k?), this would mean a polynomial bound on the remaining path length of MDSs.

This statement seems counterintuitive at first (and is, of course, not proven). We saw in Section 3 that syn-
cmers have a window guarantee of o~ hence, there exists DSs that are not of minimum size that have expo-
nentially long remaining paths. How then can sets with fewer k-mers (MDSs) have a shorter remaining path
length? The intuition is as follows. In the syncmers construction, we chose one exponentially long path (Iength
%=1~ 1) through the graph, whereas every node not on this path is added to the DS M. The size of the DS
|M|=c*(1-1/0) is exponential as well: it takes many nodes, guiding that long path, to prevent cycles. In con-
trast, the size of an MDS is ~ ¥ /k, which is o(c*). The average remaining path length is k and there are too
few k-mers in an MDS to guide an exponentially long path to prevent it from creating cycles (i.e., to have back
edges).

In practice, even a O(k®) window guarantee may be too long, and an MDS may need to be extended to a
decycling set with even shorter remaining path length [as done in Orenstein et al. (2017)]. Hence starting with
an MDS with the shortest possible remaining path length is advantageous. Even if Conjecture 3 is true, it does
not prevent the existence of decycling sets with smaller remaining path lengths than the Mykkeltveit set.
Whether MDSs with remaining path length of o(k®) exist is still an open question.

7. CONCLUSION

The window guarantee is an important requirement, theoretically and practically, to define and optimize
sketching methods. As discussed, an underlying concept that can be extracted from the definition of this guar-
antee in any local sketching method is a set of nodes in the de Bruijn graph which are unavoidable (i.e., decy-
cling). While many such sets exist, the minimum-sized sets have important properties that can be exploited
and examined. In this work, we described some of the first theoretical findings on properties of these sets, as
well as a method to traverse many (if perhaps not all) MDSs for a given k-mer length. We also showed that the
choice of MDS, whether direct or as an implication of the design of the sketching method, does have an impact
on the strength of the window guarantee. Although we provide our major results as conjectures, we present sig-
nificant evidence to support these claims.

8. EXTENDED PROOFS
8.1. MDS Graph Structure

Lemma 1 (Commutative property). Let M be an MDS and fi,f> € X*~! be two valid F-moves in M, then f,
is avalid F-move in oM, f> is valid in fiM, and fifrM =f,fiM.

Proof. The left companions of f; and f are all in different PCRs. Hence, after doing the F-move f; or f>, the
other F-move is still valid. Moreover, regardless of the order in which the F-moves are performed, the resulting
set is the same.

There is no equivalent statement to Lemma 1 for I-moves: if fj |ml , f2|m2 are two valid I-moves in M, then
f2l,,, may not be valid in f; |, M.

Lemma 1 applies to a sequence of F-moves (fi,...,fi—1,/i,fi+1,---,/u). Suppose that this is a valid
sequence of F-moves starting from MDS M and that both f; and f;,, are valid F-moves in f;_; ... f{M, then
firrfifi-rv - M =ffirifior - iMandf, . fiaififior - fiM=fu . fificifior - M.

In the following proofs, we use the simplified representation for PCRs, F- and I-moves given in Figure 4.
For simplicity, the figure shows an example with the binary alphabet. When ¢ > 2, an F-move f represents a
hyperedge between o PCRs rather than a simple edge as shown.

Proposition 3. (Gyvps component structure). For any ¢ and k, the components of Gups (0, k) satisfy the
following:

1. Every component is strongly connected.
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2. The length of every cycle is a multiple of ¢*~', that is, for every cycle C, there exists ac € N* such that
C is of length oaca*~ 1.

3. In a cycle of length ac*~!, every possible F-move f € Z*~! occurs exactly o times.

4. Every node is in a cycle of length 6*=! (hence the girth is ¢*=1).

5. Each component is a ¢~ -partite directed graph.

Proof of points 2 and 3, length of cycles. Every PCR is a cycle in Dy, and an MDS M is seen as pebbles sitting on
the k-mers (see Fig. 4b). There is one pebble per PCR. An F-move involves ¢ distinct PCRs (edges af — fa,a € X
are each in their own PCR). Hence, an F-move is a hyperedge connecting ¢ PCRs. An F-move is like moving the
pebbles along ¢ PCRs at a time, from left-companions to right-companions, and this move is legal only if
le(f) € M. In that sense, an F-move is like a semaphore: pebbles can move only if all their left-companions are pres-
ent in the set.

First, because every MDS has a valid F-move and a component of G,py is finite, a component must have a
cycle. Let C=(My,...,M,_1) be a cycle of MDSs in Gyps, and equivalently C=(fp, ...,f,—1) is a list of
F-moves such that M;, | =f;M; (indices taken modulo n). After doing F-move f;, the pebble on at least one
PCR, say Py, has moved. Because C'is a cycle, by the time f,,_ | is done, all pebbles are back on their respective
starting spot. Meaning the pebble on P, went all the way around (possibly multiple times) P,. To move around
Py with F-moves, the pebbles in the PCRs adjacent to Py must have moved as well. By the time f,,_; is done,
every pebble in the PCRs adjacent to Py has moved around its respective PCR. By transitivity, and because the
de Bruijn graph is strongly connected, every pebble on every PCR has gone around its PCR after f,_ is done.
Because every pebble went around its PCR, this means that every one of the c*~! F-moves was done and
n > o1,

Conversely, because the F-move/hyperedge act as semaphores, it is not possible for a pebble on a PCR to do
more rotations around its own PCR than the pebbles on the adjacent (by hyperedge) PCRs. To see this, con-
sider the starting position of the pebble on PCR P,,. For this pebble to start a second turn around P, all of its

b) c) d)
Y gy

| | % %f
eV

FIG. 4. Simplified representation of PCRs, F-moves, and I-moves when ¢ = 2. (a) shows two PCRs from the de
Bruijn graph D,. Every PCR is a circle, and they are all oriented counterclockwise (see PCR P, and P, here). Let
fbe an F-move that involves P, P,. Here P, has the edge Of — f0, and P, has 1f — f1: these are the PCR edges.
The cross-PCR edges 0f — f1 and 1f — fO form antiparallel edges between P; and P,. (b) The simplified PCR/
pebbles representation shows PCRs as large cycles without representing individual k-mers and only representing
the F-move edges of interest. The elements from the MDS in each PCR (the pebbles) are small black circles that
can travel only counterclockwise around the PCR. An F-move is an edge between P; and P, and acts as a sema-
phore: a pebble can move one step around the PCR and across the edge of f only when the other pebbles are pres-
ent next to the edge in the other PCR [i.e., lc(f) is in the MDS], as shown in b), and all pebbles move across the
edge at the same time. (¢) The position of the pebbles for the I-move f|;: bit 0 is set but not bit 1, so the pebbles
are on Of and f1 (left side of the edge of f). The top pebble can move across the edge, counterclockwise, whereas
the lower one stays still. For I-move f|, with bit O unset and bit 1 set, the pebbles would be on 1f and f0, on the
right side of the edge of f. (d) If F-moves f and g have a PCR P in common, then, because F-moves act like sema-
phores, it is not possible to do the F-move f twice before g is done once. For the pebble to go around P to do f a
second time, necessarily the F-move g was done as well. PCR, pure cycling register.
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left-companions must be back on their starting spot and also start a second turn around their own PCRs. This
holds for all PCRs by transitivity.

Hence, in a cycle of the MDS graph, the pebbles of all PCRs go around the same number of times, say o, and
the number of F-moves in the cycle Ciis n=oc*"!. ]

Proof of point 1, strongly connected. As in the previous proof, there exists a cycle C=(My,...,M,_1) in
Gups, and its edges are (fy, . . ., fu—1) With M; 1 =f;M;.

We show that for any node M, of this cycle and any neighbor M of M,, reachable by an F-move or RF-move
from M;, M and M; are in a cycle. If this holds, by transitivity of the relation “being in the same strongly-connected
component”, any pair of nodes in the component are in a cycle and the component is strongly connected.

Without loss of generality, we prove this property for the neighbors of M, (see Fig. 5). It is a consequence of
the commutativity of the F-moves (Lemma 1). Let M =fM, be a neighbor of M, for some f # f;. Because in a
cycle all F-moves occur, there exists a first j € [1,n—1] such that f;=f (and f # f;,i € [0,j—1]). fis valid in

My; hence, it is also valid in M, and recursively in M5, ..., M;. Therefore, f commutes with fy, ..., fj_1, and
the sequence of F-move (f;, /o, . . . ,f;—1) is another path from M, to M; ., thatis going through M. This path fol-
lowed by the remainder of C from M, | back to M, is a cycle that includes both M, and M. o

Proof of point 4, cycle length ¥~ 1. Let M be aMDS on a cycle Cin Gyps. Itis of length o - ¥~ 1, with ot > 1
by point 2. Suppose that o > 1. Let C=(fi, ..., f,.c+-1) be the sequence of F-moves representing that cycle.
Every distinct F-move occurs exactly o times in that sequence. We show that the sequence can be reordered so
that the ¥~ different F-moves occur at the first 5%~ ! positions of the sequence.

If it is not already the case that the first c*~! F-moves are distinct, there must be an F-move f that occurs
twice in the list before an F-move g occurs for the first time. Let i < j be two indices which are the first two
occurrences of fin the sequence (i.e., f; =f;=f) and such that j + 1 is the first occurrence of g (f;+ 1 = g). If any of
the PCRs involved in the F-move f are also involved in the F-move g, then it is not possible to use ftwice in C
before using g (see Fig. 4d). Therefore the PCRs involved in the F-moves fand g are distinct, and g must be a
valid F-move just before the second use of f as well. In other words, f; and f; ; | commute.

Repeated swapping of F-moves leads to the desired sequence of F-moves with all *~! distinct F-moves in
the first positions, which induces a cycle of length 6*~! containing M. m

Proof of point 5, *~'-partite. Partition the nodes of a component of Gy;ps as follows. We create ¥~ ! sets:
Po, ..., Ps-1_1. Let My be an arbitrary MDS of the component and assign it to the set Py. For every other
MDS M, take a shortest path P(M) =My — M in Gyps. Assign M to the partition with index |P| mod c*~!.

Because M, is in a cycle of length %!, every set P; has at least one MDS assigned to it. Moreover, every
MDS is assigned to exactly one set. Hence the sets P; form a partition of the MDSs in the component.

An edge between MDSs in sets P; and P; withj > i+ 1 would imply the existence of a cycle containing M
oflength < &*~!, which is not possible. a)

FIG. 5. Example of a cycle in Gyps(2,4). The outer circle is C=(fy,...,f7), a cycle of length ¢*~'. M=fM, is
a neighbor of M, not on C. Because f must occur in C, here f=f;, then f commutes with fy,fi,f>. Hence
(f=f3,00:/1.12,f4, - - -, f7) is also a cycle in Gyps(2,4), and it contains M and M.
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8.2. Cycle Signature Is Unique per Component
An MDS M is called f-terminal if the only valid F-move in M is f.
Lemma 2. Foranyf € ¥~ and in any component of GMPS, there exists an f-terminal MDS.

Proof. From Proposition 3, in any component there exists an MDS M’ where fis a valid F-move. If there
exists other valid F-moves than fin M’, do them recursively. That is, we do every possible F-move in M’ but
refuse to do f. This creates a path P of MDSs in Gy;pg starting at M that does not contain f as an edge.

Because every cycle in G);pg contains every possible F-move, P cannot induce a cycle, and it must terminate
atan MDS M. By construction M is f~terminal. o

An f~terminal MDS M has a useful property: every maximal path in D, that avoids M (as created by a walk
like in Proposition 1) must start at a k-mer m € rc(f). Equivalently, any walk in Dy that avoids M following
edges backward ends at some m € rc(f).

Proposition 4.

1. Let M be an MDS and f a valid F-move in M, then for any cycle C, Hy(C) =Hum (C).

2. For every valid I-move f|,, in MDS M, there exists a cycle C of Dy such that Hy(C) # Hy| m(C).
3. For any MDS M, M, from the same component of Gyps, S(M;)=S(M>).

4. For any MDS M, M, from different components of Gyps, S(M;) # S(M5).

Points 1-3 were proven in Section 4.2.

Proof of point 4, different signatures. Fix f € X*~!. Because the signature is constant in a component by
point 1, and because by Lemma 2 there always exists an f~terminal MDS in a component, it suffices to show
that the signatures are different for two f~terminal MDSs M, M, from different components. We will construct
acycle Cin Dy that has different hitting numbers between the components: Hyy, (C) # Hay, (C).

M, and M, are in different components, so they are distinct MDSs and there exists a PCR R where the selected
k-mer is different. That is, R N M 2m; # my=R N M,. Take a path P in D; following edges backward from node
0f (which is in both M, and M, because they are f~terminal) to m; that avoids nodes af ,a € X\{0}. Path P exists
because Dy is (o — 1)-connected. Because m; € M;AM,, there must exist a first node m € P which is in M AM,.

Let P; be the restriction of the path P from 0f to m and, without loss of generality, assume that m € M;. By
construction, [Py N M, |=|P; N M,|+1.

Let P, be a path created by a maximal random walk in Dy, following edges backward, starting from m and
that avoids M,. Because M, is f-terminal, the walk ends at a node fa € rc(f),a € X. By construction, [P, N
M| > |P, N M;|=0 (P, avoids nodes from M, but may contain nodes from M).

Two cases can happen. First case, there exists a first node m’ € P; N P,. Then define the cycle C as the
restriction of P; from m’ to m followed by the restriction of P, from m to m’. Second case, P; N P, =) and
define the cycle C as the concatenation of Py, P, and backward edge fa — 0f.

In both cases, C satisfies by construction Hyy, (C) > Ha, (C). m

8.3. Geomp Is Undirected

Proposition 5. (Geonp is undirected). Let f |,, be a valid I-move from MDS M, in component y, to My in y.
Then there exists M'y, M'y in x,, %, respectively, such that f|— (where i is the bit-complement of m) is a valid
I-move from M’y to M.

m

Proof. See Figure 6. In component 7;, by Proposition 3, there is a cycle C, of length o*~! that contains
MDS M, and this cycle has f that has an F-move. Hence, C; = (M1, . .. ,MJ;, My, ..., Mg-1), where M{ is the
MDS where fis a valid I-move and M’ = ﬂVIJ; . Equivalently, looking at the edges, C| = (F,f, F,n), where
F3;, F,, are sequences of F-moves.

By hypothesis f|,, is a valid I-move in M, which means that if m, = 1, then af € M, and fa € M, otherwise.

Let’s call P, the set of PCRs that contain af when m,, = 1 and Py; the PCRs containing af when m, =0 (P,
contains only the top PCR in Fig. 6 and Pj; the bottom PCR).

In M{., fis a valid F-move, which means that af € Mflb forall a € . In other words, the sequence of F-moves
F3 made by the pebbles in the PCRs in P;; goes around from fa to af, whereas the pebbles in the PCRs in P,,
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FIG. 6. Simplified example for finding the complementary I-moves, when ¢ = 2. On the left box, component y;
and component y, on the right of Gyps. The cycles C;, C, are cycles in y; and y,, respectively. The simplified
PCR/pebble drawings represent the position of the pebbles on the PCRs of P,, (top PCR) and P; (bottom PCR).
The edge between these PCRs represents f. The PCR/pebbles drawings next to the MDS nodes represent the state
of the PCRs for these MDSs, whereas the drawings next to the dotted line (sequences of F-moves) represent the
action of the sequence of F-moves on the pebbles. From the cycle C, in y;, we construct cycle C; in y, by swap-
ping the order of the F-moves: (Fy,f, Fy) — (Fu.f, Fa). These cycles go through the desired MDSs M’; and M,
that are linked by the complementary I-move f|.

did not move. (The only way for the pebbles in the PCRs in P,, to move is to do F-move f, which by construc-
tionis not in F3;).

Similarly, the sequence of F-moves F,, made by the pebbles in the PCRs in P,, goes around from fa to af,
whereas the pebbles in the PCRs of P7; did not move.

Now from M| do the valid I-move f],,,. This advances the pebbles in the PCRs of P,, from af to fa (forward
by 1 edge), to get to M, in component y,, where rc(f) C M,. The position of the pebbles in M, and M, agrees
everywhere except on the PCRs of P,,. Because the F-moves in F do not affect the PCRs of P,,, the sequence
F; s a valid sequence of F-moves in M, as well.

fa € M, for all a € X. Applying F5; to M, leads to MDS M', where af € M’ if m, =0 and fa € M, other-
wise. In other words, I-move f|- is valid in M’,. It is easy to check that doing the I-move f | gets back to M.

For completion, one can check that the sequence of F-moves F,, applies to M’, because M’ and M’ only

differ on the pebbles on the PCRs of Py and F,, does not affect those PCRs. Applying F,, to get to Mg where f
is a valid F-move and M, = fMJ;

Therefore, the cycle Cy=(Fg,f,Fy,) is a valid cycle in y; and contains M; and M’;, whereas
Cy=(F,,,f, F5) is valid in y, and contains M, and M’;. O

8.4. Nondecycling PCR Sets

Proposition 8. Let Gpcg be the graph with nondecycling PCR sets as nodes and F-moves as edges. Then
each component of G is a DAG.

Proof. Suppose there exists a cycle C={M,,...,M,} in Gpcr, where M;, | =f;M;. Because M is not decy-
cling, then there exists a cycle C in D;\M;. Because RF-moves preserve the hitting number, C is also a cycle
in D \fiM;, and by induction a cycle in D \M;, i € [1,n]. From the proof Proposition 3, any cycle C must do
every 6¥~! F-move to return to the starting set, and the union of all the left-companions of the F-moves is the
set of all k-mers. This is a contradiction. a

8.5. I-moves and Constrained Cycles

Proposition 6. Let f € 7! m € [1,2°~2], and let y be a component of Gups. Then f|, is not a valid I-

m
move in any MDS of y if and only if Ja, b such that m,=1,m;, =0, and there exists a constrained cycle using

the edge af — fb.
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FIG. 7. A) The f|,, with m, = 1 and m,, = 0 is not possible because H;(C)=1. When the I-move f],, is valid,
necessarily C’s hitting number must be at least 2. B) Suppose f]|,, is never valid, then a backward walk creates a
cycle with hitting number 1 using the edge af — fb.

Proof. Let f|,, be a potential I-move with m,= 1 and m, =0 (a,b € X,a # b).

Suppose there exists a constrained cycle C in the de Bruijn graph D, using the edge af — fb and H, (C)=1.
If f|,, is a valid I-move in an MDS M € ¥y, then by definition af, fb € M, hence Hy(C) > 2. This contradicts
that C is constrained (see Fig. 7a).

Conversely, suppose that f| is not a valid I-move in any MDS of z. Let M/ € y be an MDS where fis a
valid F-move and M =fM’. Then rc(f) C M. Define g. =f[2 : k—2]c, ¢ € X, thatis, for all right-companion of
ffe €le(ge).

From M recursively do all valid F-moves except for the F-moves g. where m, = 0 to obtain M" € y where
the only valid F-moves are exactly those that we refused to do. There must exist a € X such that m, = 1 and
af¢M’, otherwise f|,, is a valid I-move in M’ (see Fig. 7b). From af do a walk that avoids M’ using backward
edges. This walk must end at one of the right-companions of the valid F-moves in M’, that is, there exists b
such that walk ends at m’ € rc(g,). By construction there is a backward edge m’ — fb. Then follow the back-
ward edge fb — af to create a cycle C. By construction the only node from M’ in cycle C is fb, hence
Hyr (C) =1 and C uses the edge af — fb withm, =1 and m;, =0. O
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