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Abstract. Direct nanopore-based RNA sequencing can be used to detect post-transcriptional base mod-
ifications, such as m6A methylation, based on the electric current signals produced by the distinct chem-
ical structures of modified bases. A key challenge is the scarcity of adequate training data with known
methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct
methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation-based
experimental data in two steps. First, we generate data with more diverse modification combinations
through in silico cross-linking. Second, we use this dataset to train an end-to-end neural network base-
caller followed by fine-tuning on immunoprecipitation-based experimental data with label-smoothing. The
trained neural network basecaller outperforms existing methylation detection methods on both read-level
and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capa-
ble of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome

assembly.

Keywords: Nanopore sequencing - m6A RNA modification - Deep learning - hidden Markov model.

Introduction

RNA modification plays essential roles in various biological processes, including stem cell differentiation and
renewal, brain functions, immunity, aging, and cancer progression (Boulias & Greer 2023; Sun et al. 2019;
D’Aquila et al. 2017; Qin et al. 2020). Among the various types of RNA modifications, N6-Methyladenosine
(m6A) is one of the most abundant versions and is involved in various biological processes including mRNA

expression, splicing, nuclear exporting, translation efficiency, RNA stability, and miRNA processing (Boulias
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& Greer 2023). Accurate detection and quantification of m6A modifications is crucial for understanding their

impact on gene regulation and cellular processes (Murakami & Jaffrey 2022; Fu et al. 2014).

High-throughput sequencing from lllumina, also known as sequencing by synthesis (SBS), identifies nu-
cleotides through synthesis, leading to the loss of post-transcriptional information (Buermans & Den Dunnen
2014). Therefore, indirect methods are required to detect RNA modifications with SBS. These approaches
first isolate the modified RNA and then conduct reverse transcription and cDNA sequencing to reveal the
modifications. Two primary strategies are used to experimentally isolate RNA modifications. One type of ap-
proach involves immunoprecipitation. Examples of methods using this approach include MeRIP-Seq (Meyer
et al. 2012), m6A-Seq (Dominissini et al. 2012), PA-m6A-Seq (Chen et al. 2015), m6A-CLIP/IP (Ke et al.
2015), miCLIP (Linder et al. 2015), m6A-LAIC-Seq (Molinie et al. 2016), m6ACE-seq (Koh et al. 2019),
and m6A-Seqg2 (Dierks et al. 2021). These methods rely on antibodies that target the modified ribonu-
cleotide and enrich the RNA fragments with the target modified bases. The other type of approach is
chemical-based detection. Examples of methods using this approach are Pseudo-Seq (Carlile et al. 2014),
AlkAniline-Seq (Marchand et al. 2018), Mazter-Seq (Garcia-Campos et al. 2019), m6A-REF-Seq (Zhang et
al. 2019), DART-Seq (Meyer 2019), RBS-Seq (Khoddami et al. 2019), and m6A-SAC-seq (Hu et al. 2022).
These techniques use chemical compounds or enzymes that selectively interact with the modified ribonu-
cleotide, either cleaving or modifying the RNA reads to halt or disturb the reverse transcription process.
This is followed by short-read cDNA sequencing, which identifies the RNA modifications by comparing the
read ends of the cDNA or the base mismatches/deletions in cDNA. Although these methods were able to
generate detailed maps of RNA modification sites, they all use external compounds which makes it hard to
obtain the required single base resolution. They also face other challenges and shortcomings including the
limited availability of antibodies or compounds for specific modifications (Ryvkin et al. 2013), nonspecific
antibody binding (Helm et al. 2019; Mclntyre et al. 2020; Zhang et al. 2021), low single-nucleotide resolu-
tions (Meyer et al. 2012; Dominissini et al. 2012), and, importantly, an inability to identify the exact location

of a modification.

Direct RNA sequencing using nanopores offers a promising alternative (Garalde et al. 2018). An RNA
molecule can be sequenced by measuring the intensity of the current flowing through the pore as the RNA
molecules pass through it. Modified RNA nucleotides produce different signals than their unmodified coun-
terparts, providing information about the modifications at the single-molecule read resolution (Jenjaroen-

pun et al. 2021; Leger et al. 2021). However, to detect specific modifications from subtle signal changes
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we need an optimized algorithm, which is normally obtained through supervised learning or a comparative
approach (Wan et al. 2022). Unfortunately, current data are not immediately suitable for supervised learning

due to the lack of experimental techniques for identifying the methylation state at the single-read resolution.

In vitro transcription (IVT) data, which are transcribed from either experimentally synthesized DNA se-
quences or native DNA (Liu et al. 2019; Jenjaroenpun et al. 2021), can provide reads that are either
completely methylated or not methylated at all (all-or-none). However, the diversity of the sequence com-
positions in synthesized DNA datasets is limited due to constraints concerning the maximum DNA length
that can be synthesized and the associated costs. In addition, the IVT dataset lacks partially methylated
reads with known methylation states. Although partially methylated reads can be generated by introducing
a mixture of modified and canonical adenine during in vitro transcription, the location of methylation remains
unknown because in such mixtures the RNA polymerase randomly selects adenine from either type during
the transcription process. Models trained to identify modifications on all-or-none modified reads perform
poorly on biological reads, which are usually sparsely methylated, regardless of the training feature used,
such as basecalling error or signal difference (Liu et al. 2019; Zhong et al. 2023). Methods using such
synthesized datasets include training a classifier to predict sequence segments (5-mers) given their corre-
sponding nanopore raw signal segments (Gao et al. 2021) or features of these segments (Liu et al. 2019;
Jenjaroenpun et al. 2021; Leger et al. 2021; Pratanwanich et al. 2021). The signal segments are extracted
from raw signal after performing base-calling and alignment, using models trained on canonical data (data
with no methylation). As we show, the performance of such a classifier is limited since it is only trained
on isolated short segments, losing contextual information. In addition, these models are trained solely on
manually selected features including mean, standard deviation, and duration of isolated signal segments
corresponding to 5 bases, which can lead to the loss of more detailed signal information. Recently, a new
method, CHEUI, was trained using longer signal segments, yielding impressive results on IVT data (Mateos
et al. 2022). However, it suffers from overfitting when applied to real biological samples (Fig. 2, Hendra et al.

(2022)).

Immunoprecipitation (IP) data from assays such as m6ACE-seq and m6A-CLIP-seq relies on the use of an-
tibodies (Linder et al. 2015; Ke et al. 2015; Schwartz et al. 2013). However, this strategy only provides the
modification proportion for each reference transcriptomic position, i.e., a site-level modification rather than
the modification state for each individual read (read-level). m6Anet (Hendra et al. 2022) employs multiple-

instance learning (Amores 2013) to train a classifier using IP data leading to improved site-level accu-
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racy. However, IP data misses many methylation sites, particularly in low-coverage regions (Mclntyre et al.
2020). Additionally, due to nonspecific antibody binding, the methylation detection results obtained through
immunoprecipitation experiments produced a false-positive rate of approximately 11%, which can vary be-
tween studies (Ke et al. 2017; Garcia-Campos et al. 2019). M6Anet also requires a minimum coverage level
of 20 reads for a site to be detected due to the way the model is trained. The training involves maximizing
the probability of detecting at least one methylated read among the reads covering a known methylated site.
Such coverage depth is not always available. Finally, as in the other existing models, m6Anet relies on a

basecaller and segmentation tools that are trained on nonmodified reads (canonical reads).

In summary, previous approaches try to identify m6A sites using basecalling errors (Liu et al. 2019; Jen-
jaroenpun et al. 2021; Leger et al. 2021; Pratanwanich et al. 2021), by comparing between control sam-
ples (Leger et al. 2021; Abebe et al. 2022), trained on IVT data (Gao et al. 2021; Mateos et al. 2022) or
trained on noisy labels from IP data (Hendra et al. 2022). As we will show, the fact that they are only trained
on one type of data limits their performance. This work aims to address these limitations by introducing
a framework that integrates multiple data types to improve the identification of m6A sites in direct RNA

Nanopore sequencing.

Results

We present a method that takes a different approach by detecting methylation during the basecalling phase.
We predict methylated bases directly from the current signal by training a methylation-distinguishing base-
caller. To achieve this, we developed Xron, a hybrid encoder-decoder framework (Fig. 1). The encoder is a
convolutional recurrent neural network (CRNN) encoding the observable signal into a k-mer representation.
After it has been trained and fine-tuned, the CRNN serves as a methylation-distinguishing basecaller for
new data. The decoder is a nonhomogeneous hidden Markov model (NHMM), which serves as a gener-
ative model for achieving signal segmentation and alignment when preparing the training dataset. Apply-
ing the NHMM, we created a partially methylated dataset to train the CRNN and produce a methylation-
distinguishing basecaller. The CRNN is then fine-tuned using IP data, further enhancing the basecaller’s
generalizability (Supplementary Fig. S2). This framework enables us to obtain a highly accurate methylation-
distinguishing basecaller by exploiting both IVT data and IP data, rather than using just one type of data

(Table S1). This approach outperforms all previous methods on synthesized and biological samples and
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provides a comprehensive, end-to-end solution for methylation base detection (Table 1, Fig. 2A,B and Sup-

plementary Fig. S4).

Table 1. Reported Performance of m6A Modification Identification Achieved by Existing Works

AUC ROC

Method *Read-level *Site-level Yeast KO' Human?
Epinano (2019) (Liu et al. 2019) - 0.90 0.680 -

ELIGOS (2021) (Jenjaroenpun et al. 2021) — 0.756 0.287 (F1) —

Nanocompore (2021) (Leger et al. 2021) - - 0.18 (F1) -

nanom6A (2021) (Gao et al. 2021) - 0.97 0.71 -

CHEUI (2022) (Mateos et al. 2022) 0.806 0.92 - -

m6Anet (2022) (Hendra et al. 2022) 0.90 0.94 - 0.83

Xron (this work) 0.93 >0.99 0.90 0.91

*These results were reported on the IVT dataset (Liu et al. 2019), in which single-read m6A modifications

were known.
Yeast ime4A knockout dataset from Liu et al. (2019)
2Human HEK293T cell dataset from Chen et al. 2021

Applying Xron to identify m6A methylation on direct RNA sequencing datasets

Xron performs methylation-distinguishing basecalling, outputting methylated bases directly from the raw
sequencing signal emitted from the nanopore. Its neural network basecaller is trained on an augmented
partially methylated dataset and then fine-tuned using IP data. We tested Xron on three public direct RNA
sequencing datasets: an IVT dataset (Liu et al. 2019), a yeast dataset (Liu et al. 2019), and a human

embryonic kidney cells (HEK293T) dataset (Hendra et al. 2022).

The IVT dataset (Liu et al. 2019) was synthesized from artificially designed sequences followed by in
vitro transcription. The dataset contains either fully methylated or fully unmethylated reads. Signal intensity
shows differences around the center base of the k-mer between modified and unmodified sites (Fig. 3A and
Supplementary Fig. S1). The sequences are designed to contain all 5-mers, including the most common

k-mer (GGACT) and all 18 DRACH motifs (Fig. 3A,B).

The yeast dataset (Liu et al. 2019) contains direct RNA sequencing reads from two strains, a wild-type strain,
and a “ime4A” knockout strain, in which IME4 was deleted. The deletion of IME4 results in the complete
elimination of m6A bases, making it a negative control. The yeast dataset contains three independent
biological replicates for each strain. Two were used in this study; the first replicate was used for training,

and the second was used for evaluation.
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Fig.1. Schematics of Xron model and the data augmentation process through crosslinking and sampling.
(A) Xron consists of two parts: a nonhomogeneous hidden Markov model (NHMM) and a convolutional recurrent neu-
ral network (CRNN) with a connectionist temporal classification (CTC) decoder. (B) Comparison between HMM and
NHMM. The transition matrix of a HMM (yellow) encodes the whole Markov chain of k-mers, while the transition matrix
of the NHMM (blue) at time ¢ only encodes the Markov chain of the five nearby k-mers given the predicted k£-mer (shown
in red) at time ¢. The Markov chain is also expanded to include the k-mers with all combinations of the A and M (m6A)
bases. We create partially methylated reads using data augmentation, first segmenting the signal and then cross-linking
the reads and their corresponding signal in silico. To achieve this, we design a novel nonhomogeneous hidden Markov
model (NHMM) that can be trained to conduct signal segmentation in a semi-supervised fashion on modified reads,
even when lacking methylation labels. The NHMM is trained using the forward-backward algorithm with its transition
matrix conditioned on a canonical baseaclled sequence and its alignment, thus giving the maximum likelihood estima-
tion of the model parameters regarding methylation base. The Viterbi path of the NHMM gives the alignment between
the current signal and sequence. Following the signal segmentation process performed with the NHMM, the NHMM was
used to create a training dataset with partially methylated reads and their true labels for methylation detection training by
augmenting all-or-none modified reads. (C) The transition process of the NHMM is constrained by the neural network’s
output, leading to a smaller probability space and making it easier for the model to find the optimal alignment. (D) The
NHMM is trained in a semi-supervised manner on IVT datasets, including fully modified, unmodified, and partially mod-
ified reads. It provides accurate signal segmentation results for both unmodified and modified sequences. (E) In-silico
read crosslinking. The fully modified or unmodified reads are first broken into segments at the invariant k-mers to form
a signal-k-mer graph, whose nodes are k-mers and whose edges are signal segments. Then, a partially methylated
read is sampled from the k-mer signal graph.
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The human HEK293T cell dataset (Hendra et al. 2022) contains direct RNA-seq data from the HEK293T
cell line (Pratanwanich et al. 2021), with methylation sites identified by m6ACE-seq (Koh et al. 2019) and
miCLIP data (Linder et al. 2015) on the same cell line. The dataset contains three replicates, and we used
the first replicate to evaluate the method. (See Methods for details about replicates and datasets used for

training and evaluation.)

The Arabidopsis dataset (Parker et al. 2020) contains direct RNA sequencing reads from wild-type Ara-
bidopsis (Col-0), mutants (vir-1) defective in m6A writer, and VIR-complemented lines. We used the three

replicates of the wild-type line to evaluate the method.

Xron accurately identifies m6A sites

To evaluate the performance of Xron, we applied Xron that is finetuned on yeast data to direct RNA se-
quencing data derived from the human HEK293T cell line (Pratanwanich et al. 2021). Although Xron is
pre-trained using human IVT reads (Methods), no human methylation information is used during training
since all human reads are canonical. To validate the model, we used the m6A sites detected by m6ACE-
seq and miCLIP from the human HEK293T cell line as the true labels during evaluation, following previous
work (Hendra et al. 2022). We used the m6A sites identified by m6ACE-seq and miCLIP as positive sam-
ples and the other sites with the same 5-mer as negative samples. Xron achieved the best ROC AUC of
0.91 (Fig. 2A and Supplementary Fig. S5A) compared with those of Epinano (0.69) and m6Anet (0.83) and
the best precision-recall (PR) AUC of 0.456 (Fig. 2A and Supplementary Fig. S5B) compared to m6Anet
(0.342) and MINES (0.256).

Xron is sensitive to IME4 knockouts

In addition, we also evaluated Xron on a yeast dataset using a ime4A knockout S. cerevisiae strain where
the m6A modification was completely eliminated (Schwartz et al. 2013) as the control dataset, following a
previous study (Liu et al. 2019). We used the second replicate sample of the dataset for evaluation, as we
had fine-tuned Xron on a subset of the first replicate. We treated the m6A sites in the wild-type strain as
modified sites and the same sites in the ime4 A knockout strain as unmodified sites. We compared Xron with
other models for predicting modified/unmodified sites. Xron achieved an AUC-ROC score of 0.90 (Fig. 2B)
on this task, providing a 21% increase over the second-best model, Epinano (0.72). To fairly compare with

other models that may not have been exposed to the yeast dataset, we evaluated the performance of
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Fig.2. Comparison of Xron models across two different species. (A) ROC and PR curves of m6A prediction on
human HEK293T cell line, produced by Xron and other models. (B) ROC curves produced by Xron and other models
on yeast data. (C,D) Venn diagram showing the overlapping sites predicted by Xron and other methods on Yeast (C)
and HEK293T (D) data. (E) ROC curves produced by Xron for detecting m6A methylation in yeast data under different
minimum sequence coverage thresholds. (F) ROC curves generated by Xron for detecting m6A methylation in down-
sampled yeast data with different coverage. (G) Distribution of AUC score of Xron on down-sampled yeast data.

an Xron model fine-tuned on the human HEK293T cell line on yeast data and obtained similar accuracy

(Supplementary Fig. S3A).
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Xron detects more methylation sites and achieves high accuracy under low coverage settings

As m6Anet intrinsically requires a minimum coverage of at least 20 to obtain site methylation predictions.
This results in a much smaller sample size (11 sites detected). In the same setting, Xron yields 171 sites
with a minimum coverage of 20 on the yeast dataset, which results in higher AUC-ROC accuracy than
m6Anet (0.90 versus 0.69). In total, Xron detects 272 sites reported in the IP data, compared to the 156
sites detected by Epinano and the 93 sites detected by CHEUI (Fig. 2C). Sites detected by Xron also show
higher support from the IP technique (124) compared to m6Anet (107) in the HEK293T cell line (Fig. 2D).
While different methods identify various m6A methylation sites, many sites are detected exclusively by one

method. This observation aligns with previous reports (Koh et al. 2019; Hendra et al. 2022).

We next tested if including more low-coverage sites by setting different minimum sequencing coverage
thresholds would influence the prediction accuracy of Xron (Fig. 2E). We found that increasing the read
coverage yielded superior site-level methylation prediction accuracy, increasing from a 0.825 AUC-ROC
score for a minimum read coverage level of 4 to a 0.930 AUC-ROC score with a minimum read coverage
level of 28. This suggests that with higher sequencing depth, Xron can further enhance the precision and
accuracy of methylation detection. Meanwhile, Xron outperforms other models by a large margin even
when setting the minimum read coverage level to 4, with AUC 14% more than the second best model,
Epinano (0.825 versus 0.72). Furthermore, to evaluate Xron’s performance in low-coverage regions, we
down-sampled the reads to limit the maximum coverage at each site to a range of 10 to 70. Xron achieved

an accuracy of 0.725 with maximum coverage of 10, outperforming other models with full data (Fig. 2F,G).

With the ability of Xron to detect methylation in low-coverage regions or even at the single-read level, we
were able to check the read-level statistics of methylated k-mers. A comparison of the read-wise and site-
wise relative frequency of methylated k-mers in yeast, human, and Arabidopsis shows differences in k-mer
profiles across species. Site-wise counting treats multiple reads at one site as a single occurrence, while
read-wise counts k—mer occurrence for each read and each site separately (Supplementary Fig. S7A-
E). For yeast, the most frequently used motifs AGACA, GGACA, AGACT, and GGACT from the read-wise
counting are also the most widely used motifs from the site-wise counting. But in human cell lines and
Arabidopsis, read-wise counting indicates the most frequently used motif is different than the previously
reported site-wise most “frequently” used motif, which is indicated by the site-wise counting. Motif GAACA in
human cell lines has the highest (>17%) relative frequency in the read-wise count, exceeding the previously

reported most methylated motif GGACT (~12%), but it only possesses <8% relative frequency in the site-
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wise count while GGACT has >12% relative frequency. Motif TAACT in Arabidopsis has the highest (=15%)
relative frequency in the read-wise count, but drops to <10% in the site-wise count. The variation in k-mer
profiles across different species offers an ideal scenario for assessing the generalizability of Xron. When
comparing the Xron model finetuned on yeast and human datasets with different k-mer profiles, we found
they give similar accuracy on yeast, human, and Arabidopsis datasets (Fig. 2A,B, Supplementary Fig. S3A-

0).

Xron achieves nearly optimal site-level prediction on a synthesized RNA dataset

We evaluated Xron on a synthesized RNA IVT dataset (Liu et al. 2019) obtained from a different replicate
than the training dataset (see the Methods section). In this dataset, the true methylation modifications were
known for each position in each read, as the reads were either from a fully modified or a fully unmodified
run. Our model achieved an AUC ROC of 0.93 on the single-read-level prediction task (Fig. 3C), in which the
model has to predict m6A bases or A bases for each read at DRACH sites identified by previous antibody
immuno-precipitation experiments (Schwartz et al. 2013). Our model outperforms the second-best read-
level model (mBAnet) by 3% (0.93 versus 0.90) and achieves an almost optimal AUC ROC of >0.99 for
site-level prediction (Fig. 3D), outperforming the second-best site-level model (CHEUI) by nearly 2% (=1

versus 0.98).

Xron provides m6A stoichiometry

By aligning the reads to the reference genome and piling up the single-read m6A modification predictions
for different sites, Xron can predict site-level m6A modification stoichiometry, i.e., the fraction of modified

bases at a site. We evaluated this ability using a synthetic dataset.

The dataset was a mixture created by randomly sampling reads from fully modified or unmodified IVT
datasets (Liu et al. 2019) with specific mixture proportions, which included 0%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 100%. We calculated the model-predicted m6A proportion as the number
of m6A bases called per site divided by the total number of reads aligned to this site. The median rela-
tive modification proportion followed the same trend as the expected methylation proportion. The trend in

stoichiometry level was successfully recovered (Fig. 3E).
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Fig. 3. Evaluation of the m6A detection results obtained for synthesized IVT RNA reads and stoichiometry
prediction. (A) Box plot comparing the distribution of the mean, standard deviation, and length for the signal segmented
by NHMM with 5, 232 modified sites and 18, 464 unmodified sites for the GGACT motif. Horizontal lines show the median,
the box denotes the interquartile range, and the whiskers extend to 1.5 times the interquartile range. Points beyond this
range are considered outliers and are removed from the plot. (B,C) ROC curves of Xron against m6Anet and CHEUI for
read-level (B) and site-level (C) m6A modification predictions. (D) Bar plot showing the relative proportion of DRACH
5-mer motif for 84,919 modified and 179, 717 unmodified positions. (E) Box plot showing the m6A ratio predicted by
Xron with different proportions of IVT control and IVT m6A RNA mixing.

Xron achieved high-accuracy on SQK-RNA004 data

We trained an Xron model on a HEK293T cell line dataset from the SG-NEXx project, generated using the
SQK-RNA004 direct RNA sequencing chemistry, a recently released sequencing kit that offers a higher
sequencing rate and presumably better accuracy. Xron achieved an AUC of 0.91 and a PR-AUC of 0.438
for all sites (Fig. 4A), and an AUC of 0.92 and a PR-AUC of 0.578 for dense sites (Fig. 4B), surpassing the
Oxford Nanopore m6A basecaller Dorado and other methods tested on the SQK-RNA002 dataset in the
same HEK293T cell line. A larger number of detected sites were mutually agreed upon by Xron and Dorado
and were also supported by immunoprecipitation methods compared to the SQK-RNA002 dataset on the

same cell line, where most of the sites are detected by only one method (Fig. 4C, Fig. 2C,D). Modified sites
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Fig.4. m6A detection on SQK-RNA004 dataset. (A) ROC and PR curve of Xron on SQK-RNAQ04 data against
Dorado. Results of m6Anet and MINES from SQK-RNAQO2 data on the same HEK293T cell line are also plotted for
comparison. (B) Comparison of ROC and PR curves for Xron and Dorado on 2070 dense sites where neighboring
modification sites exist within 5 bases. (C) Venn diagram showing the overlapping sites predicted by Xron and other
methods on HEK293T cell line. (D) Coordinate distribution of the m6A methylated sites predicted by 5 methods against
the background distribution of all DRACH sites. Only sites with at least 20 coverage were chosen. (E) Clustering plot
showing the modification of the TSR3 (ENSG00000007520) mRNA transcript over 780 reads. A modification is called
if the predicted probability is greater than 0.9 and is marked with a green dot.

detected from SQK-RNAO004 data are enriched in the 3’ end of the coding sequence along the transcript

coordinates, as expected for m6A (Fig. 4D).

Clustering analysis show asynchronous modification

Xron enables direct access to read-level modification information, allowing us to examine the modification
states across multiple sites within each read. Genes that have at least 2 m6A modification sites and with
at least 500 coverage reads were selected. We found asynchronous modification states around the end of
CDS and in the 3 UTR region among these reads (Fig. 4E, Supplementary Fig. S8), where m6A methyla-
tion does not occur synchronously but in a combinatory pattern. For instance, in the TSR3 gene transcript
(ENST00000007390.2) at positions 1041, 1096, 1105, and 1151, all 16 possible combinations of modifi-
cation status at these four sites were observed with varying frequencies. This pattern suggests a complex

regulatory mechanism based on m6A methylation.
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Xron performs consistent basecalling on m6A-modified datasets

To compare the performance of Xron as a basecaller with a canonical basecaller, we evaluated the basecall-
ing accuracy of Xron and compared it with that of the Guppy ONT basecaller (Table 2 and Supplementary
Table S2). We evaluated the basecall quality achieved on three datasets: the synthesized IVT RNA dataset,
the S. cerevisiae yeast dataset, and the human HEK293T cell line dataset, considering both modified and
unmodified reads. When comparing the identity rate, only reads with potential modified sites are taken into
account. For the synthesized IVT RNA and yeast datasets, we used the second replicate, which was not
used as training data. Xron suffers less (or no) accuracy drop on datasets with m6A modifications. It exhib-
ited no performance loss on datasets with methylation compared to the control dataset. On the other hand,
Guppy showed performance decreases on all three datasets with methylation compared to its performance
on the unmodified control datasets, including a 14.47% drop in the identity rate on the synthesized reads
and a 7.55% drop in the identity rate on the HEK293T reads. Guppy also shows a larger context bias for
k-mers from DRACH motifs, comparing to Xron on the HEK293T reads (Supplementary Fig. S6), explaining
the identity rate drop on basecalling m6A-modified reads.

Table 2. Accuracy comparison between Xron and Guppy on three different datasets and their control datasets.

The identity rate (%) was defined as the number of matched bases in the query sequence divided by the number of
bases in the reference sequence (the higher the better). All reported rates are mean values among the aligned reads.

Condition Model Identity rate (%)(1) Identity rate change (%)
Xron 87.35 —
IVT Control Guppy 9975 o
Xron 88.48 1.13
IVT m6A Guppy 78.28 —14.47
, Xron 83.42 —
Yeast ime4A KO GuppY 92.50 .
Yeast Xron 83.96 0.54
Guppy 91.94 —0.56
Xron 85.91 —
HEK293T METTL3 KO GuppY 93.19 .
Xron 87.12 1.21
HEK293T Guppy 85.64 —7.55

Discussion

Several computational methods (Liu et al. 2019; Jenjaroenpun et al. 2021; Leger et al. 2021; Gao et al.

2021; Mateos et al. 2022) have been used to detect m6A methylation. These methods require accurate train-

13


http://genome.cshlp.org/
http://www.cshlpress.com

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Downloaded from genome.cshlp.org on February 18, 2025 - Published by Cold Spring Harbor Laboratory Press

ing data, usually obtained using synthesized RNA reads containing the modification of interest, obtained
through experimental methods such as m6ACE-seq or miCLIP, or from a comparative analysis against con-
trol data. However, these methods exhibit a performance drop when they are applied to other datasets,
implying the existence of overfitting. In addition, these methods usually can only provide site-level methy-
lation, losing read-level resolution. We developed an end-to-end m6A modification detection system for
nanopore direct RNA sequencing and were among the first to create a m6A-distinguishing base caller. Our
system, Xron, includes an NHMM model for k-mer decoding and a neural network basecaller. By employing
data augmentation and semi-supervised learning, we constructed an NHMM that is capable of performing
accurate signal sequence alignment and introduced a novel training dataset for m6A methylation detection.
The training pipeline established in our work facilitates supervised basecaller training without necessitating

complex feature engineering and using both IVT and IP data available to overcome overfitting.

Quantifying the transcriptome-wide modification rates is one of the key challenges in methylation detection.
From the read-level methylation states given by Xron, the modification stoichiometry for each site can be
obtained. Meanwhile, our method does not require a high minimum coverage depth, which is essential
for detecting methylation in low-expression regions. Comparative methods detect methylation by analyzing
data from different conditions (Leger et al. 2021; Pratanwanich et al. 2021). While Xron does not require a
control sample to detect methylation, it can facilitate the use of a control sample by comparing the same
site across samples. In addition, compared to other methods where the model performance is influenced
by aspects such as base-calling algorithms, accuracy in the alignment of the reference sequence to signal,
and segmentation of the raw signal, Xron reads out methylation information directly from the raw signal.
More training data on different experimental protocols and different organisms will likely further improve the
accuracy of Xron and other supervised approaches, while the training framework of Xron can easily adopt

these additional training data into the finetuning pipeline.

As a basecaller, Xron achieves a consistent identity rate among methylation and unmethylation datasets.
Although there is a performance gap in terms of identity rate between Xron and the basecaller Guppy,
this is likely due to the different neural network architecture used. In future research, it would be bene-
ficial to investigate various neural network structures since previous studies have shown that alterations
to the convolutional-recurrent neural network architecture can yield enhanced basecalling accuracy. For

example, Guppy uses QuartzNet (Kriman et al. 2020), a neural network designed initially for speech recog-
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nition. SACall (Huang et al. 2020) employs an attention mechanism, while RODAN (Neumann et al. 2022)

integrated squeeze-and-excitation (Hu et al. 2018) layers into a base CNN.

Currently, the NHMM takes only raw signal as its input. This has several advantages, including being easy
to train and having a closed-form solution for parameter estimation. However, additional input features can
be added to the NHMM, including the encoded representation from the neural network base caller. The
strategy used by NHMM can also help provide more accurate signal segmentation in other downstream
current-based applications, such as post-basecalled sequence correction (e.g., Nanopolish by Simpson et
al. (2017)). We leave this as future work. Xron was used to detect m6A modification, however, our framework
is suitable for training a basecaller for detecting any natural post-transcription modification, including DNA
methylation such as 5mC and other types of RNA modification. Xron can also be retrained to detect artificial
modifications at a single-molecule level, such as detecting modifications introduced in small non-coding

RNA (Shi et al. 2022).

Methods

Xron is trained using both IVT and IP datasets to obtain better performance. It was first trained on a sur-
rogated IVT dataset and then fine-tuned on IP data. To make efficient finetuning and to avoid overfitting to
the all-or-none methylated reads in IVT data when training with the long current signal, we create partially
methylated reads using data augmentation, first segmenting the signal and then cross-linking the reads
and its corresponding signal in silico. To achieve this, we design a novel nonhomogeneous hidden Markov
model (NHMM) that can be trained to conduct signal segmentation in a semi-supervised fashion on modified
reads, even when lacking methylation labels. The NHMM is trained using the forward-backward algorithm
with its transition matrix conditioned on a canonical basecalled sequence and its alignment, thus giving the
maximum a posteriori estimation of the model parameters regarding methylation base. The Viterbi path of
the NHMM gives the alignment between the current signal and sequence. Following the signal segmentation
process with the NHMM, we prepared a partially methylated dataset through data augmentation, splicing
the fully methylated and unmethylated segments. Training on this augmented dataset diminishes the induc-
tive bias of the model on partially methylated reads when training with entirely methylated or nonmethylated
reads. We then trained an end-to-end methylation-detection basecaller on the augmented dataset, and it
achieved high-accuracy methylation base detection at a single-read resolution. We further improved the

basecaller by applying a fine-tuning procedure on IP data with label smoothing to obtain a more accurate
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basecalling model. Finally, we benchmarked different m6A detection methods on three datasets, including
a synthetic IVT dataset, a yeast dataset, and a human HEK293T cell line, demonstrating that Xron yields

accurate methylation-aware basecalls and generalizes to different species.

NHMM trained using semisupervised learning

We design a hybrid framework to conduct signal segmentation and alignment when methylated bases are
present. A homogeneous HMM (we refer to this model as an HMM throughout the remainder of this paper
for convenience), as employed in the Nanopolish preprocessing tool (Simpson et al. 2017), faces challenges
when applied to sequences with methylation bases. The absence of ground truth for the methylation states
in each basecalled sequence prevents supervised HMM training. However, training the HMM unsupervised,
using only signal and reference genome, is difficult due to the high noise contained in nanopore sequencing
signals, the long lengths of the electrical signals, and the similar signal levels between certain k-mers and
their methylated counterparts. Additionally, totally unsupervised training is not necessary as we already
have the canonical basecalled sequence with alignment given by the canonical basecaller and the refer-
ence genome. Although the signals are error-prone in the methylated region, they still provide a general
sketch of the sequence. Thus, instead of performing unsupervised learning with the HMM, we develop a
semi-supervised training process using an NHMM, where we use the basecalled canonical sequence as a
prior when building the transition chain backbone in the NHMM. In contrast with an HMM possessing a ho-
mogeneous transition matrix that remains constant over time ¢, an NHMM possesses a nonhomogeneous
transition matrix that depends on the external variables and varies over time ¢, allowing the use of dynamic
control for the transition process. Various NHMMs have been used in meteorology (Hughes et al. 1999)
and economics (Netzer et al. 2008; Meligkotsidou & Dellaportas 2011) by constructing transition matrices
that depend on time-varying covariates, such as seasonality (Hughes et al. 1999) or economic cycle indi-
cators (Meligkotsidou & Dellaportas 2011). In our case, the base probabilities along time ¢ predicted by an
existing canonical basecaller (a base caller trained to predict only canonical bases) are used as the time
covariates of the transition matrix. This approach enables the model to concentrate on the section of the
Markov chain guided by the predicted base probability (Fig. 1C), rather than dealing with the entire chain

as is required in unsupervised learning using HMM, which is more challenging and error-prone.
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NHMM for methylated sequence segmentation and alignment

The NHMM represents the input sequence of raw current signals as X = (z1,...,z7) for a given k-mer
sequence Z = (z1,...,27) inside a nanopore over the sequencing duration T'. Each signal point x; repre-
sents a normalized current value, while z; is a variable indicating the k-mer at time ¢. The transition matrix of
the NHMM is constrained on the basecalled sequence and its alignment given by the canonical basecaller.
More specifically, suppose we are given the base probability matrix H = (hq,...,hr) € REXT where B is
the number of bases and 1! is the probability of base b at time ¢, which is obtained from an existing canon-
ical neural network basecaller (Fig. 1A) (Graves et al. 2006; Teng et al. 2018). From the base probability
matrix H, we extract the most probable basecalled sequence Y = {y,} and its corresponding alignment
A(t) which aligns the signal point time ¢ to sequence index , giving t — 7. After correcting the basecalled
sequence with the reference genome, we construct a reference k-mer sequence C by sliding a window of
size k (in our case, k = 5) across the basecalled sequence, moving one base at a time. Each windowed
segment forms a k-mer and is added to the sequence C' = {c,}. From now on, to simplify the notation,
we use c; to denote the corresponding k-mer at time ¢ after transitioning through alignment c 4. All time
offsets of the k-mer sequence reside in the sequence domain, meaning c;; refers to c4(;)—;. Finally, we
derived the k-mer transition matrix ¥ from k-mer sequence C'; for details, see the next section. Then, the

likelihood of observing an electrical signal X is given by:

T T
P(X|C)=> |TIP@:|2) ] PGt | 21, compmpz)s- s Coxpm)) | - (1)
t=1

Z Lt=1

Here, Z is the hidden state representing the underlying k-mer sequence, z; is the k-mer at time ¢, and
ca() is the corrected k-mer representation at time ¢ acquired from the canonical neural network output H
(Fig. 1A). T is the maximum time stamp for a given sequence segment. m is the window size for the k-mers
to be considered. P(x | z) is the emission probability of the signal = given the k-mer 2, as modeled by a

Gaussian distribution.

Constructing a transition matrix from the base-called sequence and its alignment

We loosely constrain the transition matrix at time ¢ in the nonhomogeneous HMM by using the base pre-
diction output H derived from a canonical basecaller, thereby using the segmentation results provided by
the basecaller in an error-tolerant manner (Fig. 1B). By calculating the most probable path from H, we can

obtain both the basecalled sequence and the alignment between each base within the most probable path
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and the sequencing time ¢. Following this, we correct the basecalled sequence using the reference genome,
and we also make appropriate revisions to the alignment to address the deletion or insertion errors in the
basecalled sequence. We transform the corrected sequence into a k-mer sequence C' = {c; : t = 1,...,T},
incorporating the k bases surrounding each base in the basecalled sequence; then, this k-mer sequence is
reformatted into transition matrices ¥ = {¢, : t = 1,..., T} by including at most m transitions, where each
1y is the temporal transition matrix at time ¢. During the process of constructing the k-mer sequence C from
H, the basecalled RNA sequence is corrected by aligning it to a reference genome through the following

steps:
— For mismatched bases, we replace the bases in the k-mer with the reference bases.

— For insertions/deletions in the base-called sequences that are smaller than five bases, we determine
the new signal alignment boundary of the inserted/deleted bases by evenly merging/splitting the signal
boundaries of nearby bases; i.e., we redistribute the occupancy of the inserted bases to the nearby

bases and allocate occupancy for the deleted bases from the nearby bases.

— We skip the sequence segments with insertions and deletions that are larger than five bases for quality

control purposes.

The transition matrix ¥ is then constrained by C, masking out the irrelevant transition paths so that only
transition paths that are likely to occur at time ¢ are retained. To more clearly see what these temporal tran-
sition matrices stand for, let z/;;j =Pr(z =i | 221 = j,Ci—|my2)>-- - Ce|m/2)) D€ the transition probability
from k-mer i to k-mer j given constraint k-mers ¢; from a time window with a width of at most m, i.e., from
t —|m/2] to t + |m/2]. At the start and end of sequence, the window size is less than & due to boundary
constraints. In comparison with the transition matrix ¢; ; = P(z; = i | z,—1 = j) of a homogeneous HMM,
the transition matrix now changes over time ¢:

t+|m/2]

wf,j = Z €e,r ® Cepryy © ¢i,j7 @)

t/=t—|m/2]

where ® is the tensor product operation, ® denotes elementwise multiplication, ¢; is a one-hot vector where
only the i*" element is 1, and ¢; ; is the transition matrix in which ¢; ; = 1 if the transition from k-mer i
to k-mer j is valid (otherwise, it is 0). For example, AAACT to AACTA is valid, while AAACT to ACTCC is

not, as we only allow 1 base step. ¢! ; is the k-mer transition matrix from the k-mer sequence described

18


http://genome.cshlp.org/
http://www.cshlpress.com

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

Downloaded from genome.cshlp.org on February 18, 2025 - Published by Cold Spring Harbor Laboratory Press

above; it is a binary value matrix indicating the k-mer transition i — j at time ¢, where 1 denotes a possible

transition and 0 represents an impossible transition.

We construct the transition matrix from m nearby k-mers instead of only the k-mer at time ¢ from k-mer
sequence C because the base probability predicted by the canonical basecaller is not exact due to the
connectionist temporal classification (CTC) loss used (Graves et al. 2006; Teng et al. 2018) and the inser-
tion/deletion errors in the sequence, nor is it totally correct due to the previously unseen modified bases.
Thus, we allow the NHMM to explore the alignment space in two ways. First, at each time point, the transition
matrix of the NHMM is restricted to the current transition probability and the m nearby transition probabili-
ties, where m is a hyperparameter (Eq. 2). This is done to make sure that the final alignment output by the
NHMM is not too far away from the given the alignment from canonical basecalling but still allows for explo-
ration within the m-base window. Second, the transition path of the underlying Markov chain is broadened
to encompass all possible modified counterparts for each k-mer along the path (Fig. 1C). As an example,
AACGT is extended to include four alternative k-mers with modified bases, AACGT (the original k-mer),
AMCGT, MACGT, and MMCGT, leading to expanded paths. After the transition matrix is constructed for all
the time points, the NHMM is then trained using the expectation-maximization (EM) algorithm (Baum et al.

1970) until it converges (Fig. S2B).

Preparing the training data with data augmentation and read sampling

All-or-none methylated reads exhibit either complete methylation of all adenine (A) bases or none at all,
whereas in actual biological samples, methylation typically occurs less frequently and is more sporadically
distributed. To prevent the neural network from overfitting to all-or-none methylation reads, we create a
training dataset containing partially methylated reads with labels. This is accomplished by dividing the sig-
nals from the all-or-none modified reads into smaller segments and subsequently splicing them together.
The corresponding sequences are recombined according to their alignment with the signal, as provided by
the NHMM. Merging the signals generated from distinct k-mers at their junction points can result in sub-
stantial discrepancies between the combined signal and the actual signal obtained from a real sequencing
run. To avoid such deviations caused by k-mer mismatches, we ensure that the preceding and succeeding
k-mers at the joint sections are identical. For instance, we can merge the signal segments with base-called
sequences such as GGMCGTTCXXX and XXXCGTTCTAG to form GGMCGTTCTAG. To achieve this, we
define nonmethylatable k-mers as k-mers without adenine (CGTTC in the example). They have the same

sequencing signal distributions in both modified and unmodified reads, making them suitable for use as
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joint anchors. We employ the trained NHMM to decode both the canonical and fully modified reads in the
training IVT dataset, using the base probability prediction from the canonical basecaller as described be-
fore. The alignment between the sequence and signal is established through a Viterbi path, which assigns
each signal point to its corresponding k-mer (Fig. 1D). Each read is subsequently divided into segments at
nonmethylatable k-mers. These segments are used to construct a k-mer signal graph, where each node
represents an invariant k-mer. Each edge corresponds to a signal segment whose aligned sequence be-
gins and ends at the respective k-mers of the connected nodes (Fig. 1E). We then perform a random walk
on the graph, choosing the next edge via an e-greedy sampling strategy with an upper confidence bound
(UCB) (Sutton & Barto 2018), as used in the multi-armed bandit algorithm, to ensure maximum diversity in

the sampling sequence (see Algorithm 1 in the supplementary materials).

Data processing

Acquisition and processing of direct RNA sequencing datasets All datasets used in this study are
acquired from references Liu et al. (2019), Jenjaroenpun et al. (2021), Workman et al. (2019), Hendra
et al. (2022), and Chen et al. (2021). We obtained both replicates (replicate 1 and 2) from the Epinano
synthesized IVT RNA dataset (Liu et al. 2019) and the only single replicate from the ELIGOS synthe-
sized IVT RNA dataset (Jenjaroenpun et al. 2021). Both of these datasets contain fully modified reads and
unmodified control reads. We also obtained all the NA12878 IVT RNA reads from the Oxford Nanopore
human reference dataset repository: https://github.com/nanopore-wgs-consortium/NA12878/blob/master/
RNA.md (Workman et al. 2019). For the yeast dataset, we obtained all three replicates of the wild strain
and ime4-knockout strain (ime4A) (Liu et al. 2019). Reads are extracted if mapped to m6A-modified RRACH
sites previously identified by antibody immunoprecipitation (Schwartz et al. 2013). For the human HEK293T
cell line, we obtained two replicates (replicate 1 and 2) of the wild-type human HEK293T cell (Hendra
et al. 2022) to evaluate models. Following a previous study (Hendra et al. 2022), we used the refer-
ence transcriptome and its genome annotation provided by SG-NEXx project: https://github.com/GoekelLab/
sg-nex-data (Chen et al. 2021). We used the same m6A DRACH sites in the m6Anet paper (Hendra et al.
2022), which were originally identified by m6ACE-seq and miCLIP experiments (Koh et al. 2019; Linder
et al. 2015). We also obtained the first replicate of the wild-type cell line, generated using the SQK-RNA004
sequencing kit from the SG-NEx data repository v5.0.1 (Chen et al. 2021). Currently, there is only one
replicate of this dataset available. Therefore, we split the dataset randomly by reads for training and eval-

uation purposes. For the Arabidopsis dataset, we obtained 3 wild-type replicates (Col0-1 to Col0-3) from
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Parker et al. (2020). We used the TAIR10 reference transcriptome (cDNA) and genome from Ensembil:
https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index. All replicates in the datasets are biological repli-
cates, which are independent biological samples sequenced using the same direct RNA nanopore sequenc-
ing protocol. As for synthesized IVT reads, RNA replicates were transcribed from synthesized DNA reads
with different sequences. See the sections below for details on replicates used for training and evaluating.
All SQK-RNA002 samples were generated using the Nanopore R9.4.1 flow cell, except for the human IVT
data, which came from the R9.4 flow cell. The only significant difference between the two flow cells is the
slightly improved yield in the R9.4.1. SQK-RNA004 samples were generated using the FLO-PRO004RA
flow cell (Chen et al. 2021).

The IVT RNA datasets were obtained from Epinano project (Liu et al. 2019) through the GEO database
(GSE124309). The ELIGOS IVT RNA datasets were obtained from ELIGOS project (Jenjaroenpun et al.
2021) through the SRA database (SRP166020). The yeast datasets (wild and ime4-knockout) were ob-
tained from Epinano Project (Liu et al. 2019) through the GEO database (GSE126213). The HEK293T cell
lines data were obtained from the SG-NEx Project (Chen et al. 2021) through ENA (PRJEB40872). The
Arabidopsis data were obtained through ENA (PRJEB32782). The SQK-RNAO004 data was an early-access

dataset obtained from the SG-NEx data repository v5.0.1.

Canonical basecalling and mapping All reads in the training dataset were basecalled using the Guppy
5.0.11 ONT basecaller (Oxford Nanopore Technologies 2021) and then mapped to the reference genome
using minimap2 v2.24 (Li 2018) with the settings “~ax map-ont -uf --secondary=no --MD". The mapped
reads were then transferred to the BAM format using SAMtools 1.11.0 (Li et al. 2009). A canonical neural
network basecaller with the same structure as the CRNN was then trained using the NA12878 IVT reads,
and this basecaller was then used to produce the base probability prediction. This canonical basecaller is
used as a starting model when we retrain it on the augmented IVT data and subsequently fine-tune it on

the yeast data (Liu et al. 2019).

Training datasets We randomly selected 300,000 canonical (unmodified) read chunks and 300,000 fully-
modified read chunks from replicate 1 of each of the two synthesized IVT RNA datasets (Liu et al. 2019;
Jenjaroenpun et al. 2021), as well as the first 300,000 canonical read chunks from the Oxford Nanopore Hu-
man IVT reference dataset (Workman et al. 2019) to construct the k-mer signal graph we described above.

Reads were filtered out if the corresponding basecalled sequence was shorter than three bases, if the signal
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had a dwell time (the putative duration a k-mer remains in the pore) exceeding 2000 signal time points, if the
basecalled sequence could not be aligned to the reference genome, or if a single base type comprised more
than 60% of the basecalled sequence. This filtering process resulted in 228,983 canonical read chunks and
204,822 methylated read chunks from the first synthesized IVT dataset (Liu et al. 2019), 195,161 canonical
read chunks and 213,085 methylated read chunks from the second synthesized IVT dataset (Jenjaroenpun
et al. 2021), and 188,004 canonical read chunks from the Human IVT reference dataset (Workman et al.
2019). Methylation sites identified by antibody immunoprecipitation (Schwartz et al. 2013), derived from the
first replicate of the wild-type and the first replicate of the ime4A from the yeast dataset (Liu et al. 2019)
were used to create the fine-tuning dataset. We regarded all sites from the wild-type strain as methylated
and all sites from the ime4A strain as unmethylated. However, we considered these classifications noisy
labels and used label smoothing during fine-tuning. Human HEK293T cell dataset (Hendra et al. 2022) was

not used for training and only used in the evaluation.

Evaluation datasets All the accuracy evaluation datasets we used are sourced from previously published
resources. These include a synthesized IVT dataset (Liu et al. 2019), a yeast dataset (Liu et al. 2019), and a
human HEK293T cell dataset (Hendra et al. 2022). We used the second replicate from both the synthesized
IVT and yeast datasets, as we had already used the first replicate of these two datasets for training and
fine-tuning, and we used the first replicate of the human HEK293T cell dataset as it was not included in
training. A subset of the human HEK293T cell dataset containing 500 genes was randomly sampled from
the original dataset. For the yeast data, we assessed model performance based on the sites identified by
m6A-seq (Schwartz et al. 2013) for the wild-type strain, and the ime4A strains where no methylation should
be observed. For evaluation on human data, following previous work (Hendra et al. 2022), we regarded the
combined sites identified by m6ACE-seq (Koh et al. 2019) and miCLIP (Linder et al. 2015) as methylated

sites, and other randomly selected sites with the DRACH motif as unmethylated sites.

Training and fine-tuning a m6A methylation-sensitive neural network basecaller

We used the partially modified reads sampled from the signal k-mer graph to retrain a canonical basecaller.
Before performing retraining on the pre-trained canonical basecaller, we reinitialized the parameters of
the last fully connected hidden layer with random weights but kept the same standard deviation. We then
retrained the model using a smaller learning rate (0.00001) than the usual learning rate (0.001). We fine-

tuned our model on biological samples with m6BA sites identified by antibody experiments (Liu et al. 2019),
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labeling the A base at each modified site as an m6A base for every read (Fig. S2B). Since the bases
at methylation sites are usually not methylated in every read, this approach would introduce many false-
positive labels. To address this issue, we applied label-smoothing to the connectionist temporal classification
(CTC) loss that was used to train the basecaller. A label sequence of length L was defined as S = {s; : i =
1,2,...,L}, and each s; belonged to the set { A, C, G, T, M'}. The base probability logit output H € RT/K*N
was a (T'/K)-by-N matrix derived from the basecaller's CRNN, where K is the total number of strides (i.e.,
the number of steps the convolutional filter moves across the input at each operation), and N is the number
of bases used for prediction plus 1 (a blank symbol). The altered CTC loss with label smoothing under a

strength factor represented by ¢ was then defined as:

L =e€eLere(Sv—a, H) + (1 —¢€)Lere(S, H), )

where M stands for the m6A base, Lo is the usual CTC loss, and Sy, 4 is the sequence in which
every m6A base is replaced with an A base. We set ¢ = 0.1 empirically for the fine-tuning process, with an

expectation that the methylation label is correct with probability 1 — e.

Software Availability

Code is hosted at GitHub repository https://github.com/haotianteng/xron. Xron is available under a GNU
GENERAL PUBLIC LICENSE v3.0. Xron is built with Python 3.8 and PyTorch 1.12, and has been tested on
PyTorch 1.13 and 2.0.
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