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Abstract. Direct nanopore-based RNA sequencing can be used to detect post-transcriptional base mod-9

ifications, such as m6A methylation, based on the electric current signals produced by the distinct chem-10

ical structures of modified bases. A key challenge is the scarcity of adequate training data with known11

methylation modifications. We present Xron, a hybrid encoder-decoder framework that delivers a direct12

methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation-based13

experimental data in two steps. First, we generate data with more diverse modification combinations14

through in silico cross-linking. Second, we use this dataset to train an end-to-end neural network base-15

caller followed by fine-tuning on immunoprecipitation-based experimental data with label-smoothing. The16

trained neural network basecaller outperforms existing methylation detection methods on both read-level17

and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capa-18

ble of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome19

assembly.20

Keywords: Nanopore sequencing · m6A RNA modification · Deep learning · hidden Markov model.21

Introduction22

RNA modification plays essential roles in various biological processes, including stem cell differentiation and23

renewal, brain functions, immunity, aging, and cancer progression (Boulias & Greer 2023; Sun et al. 2019;24

D’Aquila et al. 2017; Qin et al. 2020). Among the various types of RNA modifications, N6-Methyladenosine25

(m6A) is one of the most abundant versions and is involved in various biological processes including mRNA26

expression, splicing, nuclear exporting, translation efficiency, RNA stability, and miRNA processing (Boulias27
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& Greer 2023). Accurate detection and quantification of m6A modifications is crucial for understanding their28

impact on gene regulation and cellular processes (Murakami & Jaffrey 2022; Fu et al. 2014).29

High-throughput sequencing from Illumina, also known as sequencing by synthesis (SBS), identifies nu-30

cleotides through synthesis, leading to the loss of post-transcriptional information (Buermans & Den Dunnen31

2014). Therefore, indirect methods are required to detect RNA modifications with SBS. These approaches32

first isolate the modified RNA and then conduct reverse transcription and cDNA sequencing to reveal the33

modifications. Two primary strategies are used to experimentally isolate RNA modifications. One type of ap-34

proach involves immunoprecipitation. Examples of methods using this approach include MeRIP-Seq (Meyer35

et al. 2012), m6A-Seq (Dominissini et al. 2012), PA-m6A-Seq (Chen et al. 2015), m6A-CLIP/IP (Ke et al.36

2015), miCLIP (Linder et al. 2015), m6A-LAIC-Seq (Molinie et al. 2016), m6ACE-seq (Koh et al. 2019),37

and m6A-Seq2 (Dierks et al. 2021). These methods rely on antibodies that target the modified ribonu-38

cleotide and enrich the RNA fragments with the target modified bases. The other type of approach is39

chemical-based detection. Examples of methods using this approach are Pseudo-Seq (Carlile et al. 2014),40

AlkAniline-Seq (Marchand et al. 2018), Mazter-Seq (Garcia-Campos et al. 2019), m6A-REF-Seq (Zhang et41

al. 2019), DART-Seq (Meyer 2019), RBS-Seq (Khoddami et al. 2019), and m6A-SAC-seq (Hu et al. 2022).42

These techniques use chemical compounds or enzymes that selectively interact with the modified ribonu-43

cleotide, either cleaving or modifying the RNA reads to halt or disturb the reverse transcription process.44

This is followed by short-read cDNA sequencing, which identifies the RNA modifications by comparing the45

read ends of the cDNA or the base mismatches/deletions in cDNA. Although these methods were able to46

generate detailed maps of RNA modification sites, they all use external compounds which makes it hard to47

obtain the required single base resolution. They also face other challenges and shortcomings including the48

limited availability of antibodies or compounds for specific modifications (Ryvkin et al. 2013), nonspecific49

antibody binding (Helm et al. 2019; McIntyre et al. 2020; Zhang et al. 2021), low single-nucleotide resolu-50

tions (Meyer et al. 2012; Dominissini et al. 2012), and, importantly, an inability to identify the exact location51

of a modification.52

Direct RNA sequencing using nanopores offers a promising alternative (Garalde et al. 2018). An RNA53

molecule can be sequenced by measuring the intensity of the current flowing through the pore as the RNA54

molecules pass through it. Modified RNA nucleotides produce different signals than their unmodified coun-55

terparts, providing information about the modifications at the single-molecule read resolution (Jenjaroen-56

pun et al. 2021; Leger et al. 2021). However, to detect specific modifications from subtle signal changes57
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we need an optimized algorithm, which is normally obtained through supervised learning or a comparative58

approach (Wan et al. 2022). Unfortunately, current data are not immediately suitable for supervised learning59

due to the lack of experimental techniques for identifying the methylation state at the single-read resolution.60

In vitro transcription (IVT) data, which are transcribed from either experimentally synthesized DNA se-61

quences or native DNA (Liu et al. 2019; Jenjaroenpun et al. 2021), can provide reads that are either62

completely methylated or not methylated at all (all-or-none). However, the diversity of the sequence com-63

positions in synthesized DNA datasets is limited due to constraints concerning the maximum DNA length64

that can be synthesized and the associated costs. In addition, the IVT dataset lacks partially methylated65

reads with known methylation states. Although partially methylated reads can be generated by introducing66

a mixture of modified and canonical adenine during in vitro transcription, the location of methylation remains67

unknown because in such mixtures the RNA polymerase randomly selects adenine from either type during68

the transcription process. Models trained to identify modifications on all-or-none modified reads perform69

poorly on biological reads, which are usually sparsely methylated, regardless of the training feature used,70

such as basecalling error or signal difference (Liu et al. 2019; Zhong et al. 2023). Methods using such71

synthesized datasets include training a classifier to predict sequence segments (5-mers) given their corre-72

sponding nanopore raw signal segments (Gao et al. 2021) or features of these segments (Liu et al. 2019;73

Jenjaroenpun et al. 2021; Leger et al. 2021; Pratanwanich et al. 2021). The signal segments are extracted74

from raw signal after performing base-calling and alignment, using models trained on canonical data (data75

with no methylation). As we show, the performance of such a classifier is limited since it is only trained76

on isolated short segments, losing contextual information. In addition, these models are trained solely on77

manually selected features including mean, standard deviation, and duration of isolated signal segments78

corresponding to 5 bases, which can lead to the loss of more detailed signal information. Recently, a new79

method, CHEUI, was trained using longer signal segments, yielding impressive results on IVT data (Mateos80

et al. 2022). However, it suffers from overfitting when applied to real biological samples (Fig. 2, Hendra et al.81

(2022)).82

Immunoprecipitation (IP) data from assays such as m6ACE-seq and m6A-CLIP-seq relies on the use of an-83

tibodies (Linder et al. 2015; Ke et al. 2015; Schwartz et al. 2013). However, this strategy only provides the84

modification proportion for each reference transcriptomic position, i.e., a site-level modification rather than85

the modification state for each individual read (read-level). m6Anet (Hendra et al. 2022) employs multiple-86

instance learning (Amores 2013) to train a classifier using IP data leading to improved site-level accu-87
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racy. However, IP data misses many methylation sites, particularly in low-coverage regions (McIntyre et al.88

2020). Additionally, due to nonspecific antibody binding, the methylation detection results obtained through89

immunoprecipitation experiments produced a false-positive rate of approximately 11%, which can vary be-90

tween studies (Ke et al. 2017; Garcia-Campos et al. 2019). M6Anet also requires a minimum coverage level91

of 20 reads for a site to be detected due to the way the model is trained. The training involves maximizing92

the probability of detecting at least one methylated read among the reads covering a known methylated site.93

Such coverage depth is not always available. Finally, as in the other existing models, m6Anet relies on a94

basecaller and segmentation tools that are trained on nonmodified reads (canonical reads).95

In summary, previous approaches try to identify m6A sites using basecalling errors (Liu et al. 2019; Jen-96

jaroenpun et al. 2021; Leger et al. 2021; Pratanwanich et al. 2021), by comparing between control sam-97

ples (Leger et al. 2021; Abebe et al. 2022), trained on IVT data (Gao et al. 2021; Mateos et al. 2022) or98

trained on noisy labels from IP data (Hendra et al. 2022). As we will show, the fact that they are only trained99

on one type of data limits their performance. This work aims to address these limitations by introducing100

a framework that integrates multiple data types to improve the identification of m6A sites in direct RNA101

Nanopore sequencing.102

Results103

We present a method that takes a different approach by detecting methylation during the basecalling phase.104

We predict methylated bases directly from the current signal by training a methylation-distinguishing base-105

caller. To achieve this, we developed Xron, a hybrid encoder-decoder framework (Fig. 1). The encoder is a106

convolutional recurrent neural network (CRNN) encoding the observable signal into a k-mer representation.107

After it has been trained and fine-tuned, the CRNN serves as a methylation-distinguishing basecaller for108

new data. The decoder is a nonhomogeneous hidden Markov model (NHMM), which serves as a gener-109

ative model for achieving signal segmentation and alignment when preparing the training dataset. Apply-110

ing the NHMM, we created a partially methylated dataset to train the CRNN and produce a methylation-111

distinguishing basecaller. The CRNN is then fine-tuned using IP data, further enhancing the basecaller’s112

generalizability (Supplementary Fig. S2). This framework enables us to obtain a highly accurate methylation-113

distinguishing basecaller by exploiting both IVT data and IP data, rather than using just one type of data114

(Table S1). This approach outperforms all previous methods on synthesized and biological samples and115
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provides a comprehensive, end-to-end solution for methylation base detection (Table 1, Fig. 2A,B and Sup-116

plementary Fig. S4).117

Table 1. Reported Performance of m6A Modification Identification Achieved by Existing Works

AUC ROC

Method *Read-level *Site-level Yeast KO1 Human2

Epinano (2019) (Liu et al. 2019) – 0.90 0.680 –
ELIGOS (2021) (Jenjaroenpun et al. 2021) – 0.756 0.287 (F1) –
Nanocompore (2021) (Leger et al. 2021) – – 0.18 (F1) –
nanom6A (2021) (Gao et al. 2021) – 0.97 0.71 –
CHEUI (2022) (Mateos et al. 2022) 0.806 0.92 – –
m6Anet (2022) (Hendra et al. 2022) 0.90 0.94 – 0.83
Xron (this work) 0.93 >0.99 0.90 0.91

*These results were reported on the IVT dataset (Liu et al. 2019), in which single-read m6A modifications
were known.

1Yeast ime4∆ knockout dataset from Liu et al. (2019)
2Human HEK293T cell dataset from Chen et al. 2021

Applying Xron to identify m6A methylation on direct RNA sequencing datasets118

Xron performs methylation-distinguishing basecalling, outputting methylated bases directly from the raw119

sequencing signal emitted from the nanopore. Its neural network basecaller is trained on an augmented120

partially methylated dataset and then fine-tuned using IP data. We tested Xron on three public direct RNA121

sequencing datasets: an IVT dataset (Liu et al. 2019), a yeast dataset (Liu et al. 2019), and a human122

embryonic kidney cells (HEK293T) dataset (Hendra et al. 2022).123

The IVT dataset (Liu et al. 2019) was synthesized from artificially designed sequences followed by in124

vitro transcription. The dataset contains either fully methylated or fully unmethylated reads. Signal intensity125

shows differences around the center base of the k-mer between modified and unmodified sites (Fig. 3A and126

Supplementary Fig. S1). The sequences are designed to contain all 5-mers, including the most common127

k-mer (GGACT) and all 18 DRACH motifs (Fig. 3A,B).128

The yeast dataset (Liu et al. 2019) contains direct RNA sequencing reads from two strains, a wild-type strain,129

and a “ime4∆” knockout strain, in which IME4 was deleted. The deletion of IME4 results in the complete130

elimination of m6A bases, making it a negative control. The yeast dataset contains three independent131

biological replicates for each strain. Two were used in this study; the first replicate was used for training,132

and the second was used for evaluation.133
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Fig. 1. Schematics of Xron model and the data augmentation process through crosslinking and sampling.
(A) Xron consists of two parts: a nonhomogeneous hidden Markov model (NHMM) and a convolutional recurrent neu-
ral network (CRNN) with a connectionist temporal classification (CTC) decoder. (B) Comparison between HMM and
NHMM. The transition matrix of a HMM (yellow) encodes the whole Markov chain of k-mers, while the transition matrix
of the NHMM (blue) at time t only encodes the Markov chain of the five nearby k-mers given the predicted k-mer (shown
in red) at time t. The Markov chain is also expanded to include the k-mers with all combinations of the A and M (m6A)
bases. We create partially methylated reads using data augmentation, first segmenting the signal and then cross-linking
the reads and their corresponding signal in silico. To achieve this, we design a novel nonhomogeneous hidden Markov
model (NHMM) that can be trained to conduct signal segmentation in a semi-supervised fashion on modified reads,
even when lacking methylation labels. The NHMM is trained using the forward-backward algorithm with its transition
matrix conditioned on a canonical baseaclled sequence and its alignment, thus giving the maximum likelihood estima-
tion of the model parameters regarding methylation base. The Viterbi path of the NHMM gives the alignment between
the current signal and sequence. Following the signal segmentation process performed with the NHMM, the NHMM was
used to create a training dataset with partially methylated reads and their true labels for methylation detection training by
augmenting all-or-none modified reads. (C) The transition process of the NHMM is constrained by the neural network’s
output, leading to a smaller probability space and making it easier for the model to find the optimal alignment. (D) The
NHMM is trained in a semi-supervised manner on IVT datasets, including fully modified, unmodified, and partially mod-
ified reads. It provides accurate signal segmentation results for both unmodified and modified sequences. (E) In-silico
read crosslinking. The fully modified or unmodified reads are first broken into segments at the invariant k-mers to form
a signal-k-mer graph, whose nodes are k-mers and whose edges are signal segments. Then, a partially methylated
read is sampled from the k-mer signal graph.
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The human HEK293T cell dataset (Hendra et al. 2022) contains direct RNA-seq data from the HEK293T134

cell line (Pratanwanich et al. 2021), with methylation sites identified by m6ACE-seq (Koh et al. 2019) and135

miCLIP data (Linder et al. 2015) on the same cell line. The dataset contains three replicates, and we used136

the first replicate to evaluate the method. (See Methods for details about replicates and datasets used for137

training and evaluation.)138

The Arabidopsis dataset (Parker et al. 2020) contains direct RNA sequencing reads from wild-type Ara-139

bidopsis (Col-0), mutants (vir-1) defective in m6A writer, and VIR-complemented lines. We used the three140

replicates of the wild-type line to evaluate the method.141

Xron accurately identifies m6A sites142

To evaluate the performance of Xron, we applied Xron that is finetuned on yeast data to direct RNA se-143

quencing data derived from the human HEK293T cell line (Pratanwanich et al. 2021). Although Xron is144

pre-trained using human IVT reads (Methods), no human methylation information is used during training145

since all human reads are canonical. To validate the model, we used the m6A sites detected by m6ACE-146

seq and miCLIP from the human HEK293T cell line as the true labels during evaluation, following previous147

work (Hendra et al. 2022). We used the m6A sites identified by m6ACE-seq and miCLIP as positive sam-148

ples and the other sites with the same 5-mer as negative samples. Xron achieved the best ROC AUC of149

0.91 (Fig. 2A and Supplementary Fig. S5A) compared with those of Epinano (0.69) and m6Anet (0.83) and150

the best precision-recall (PR) AUC of 0.456 (Fig. 2A and Supplementary Fig. S5B) compared to m6Anet151

(0.342) and MINES (0.256).152

Xron is sensitive to IME4 knockouts153

In addition, we also evaluated Xron on a yeast dataset using a ime4∆ knockout S. cerevisiae strain where154

the m6A modification was completely eliminated (Schwartz et al. 2013) as the control dataset, following a155

previous study (Liu et al. 2019). We used the second replicate sample of the dataset for evaluation, as we156

had fine-tuned Xron on a subset of the first replicate. We treated the m6A sites in the wild-type strain as157

modified sites and the same sites in the ime4∆ knockout strain as unmodified sites. We compared Xron with158

other models for predicting modified/unmodified sites. Xron achieved an AUC-ROC score of 0.90 (Fig. 2B)159

on this task, providing a 21% increase over the second-best model, Epinano (0.72). To fairly compare with160

other models that may not have been exposed to the yeast dataset, we evaluated the performance of161
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Fig. 2. Comparison of Xron models across two different species. (A) ROC and PR curves of m6A prediction on
human HEK293T cell line, produced by Xron and other models. (B) ROC curves produced by Xron and other models
on yeast data. (C,D) Venn diagram showing the overlapping sites predicted by Xron and other methods on Yeast (C)
and HEK293T (D) data. (E) ROC curves produced by Xron for detecting m6A methylation in yeast data under different
minimum sequence coverage thresholds. (F ) ROC curves generated by Xron for detecting m6A methylation in down-
sampled yeast data with different coverage. (G) Distribution of AUC score of Xron on down-sampled yeast data.

an Xron model fine-tuned on the human HEK293T cell line on yeast data and obtained similar accuracy162

(Supplementary Fig. S3A).163
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Xron detects more methylation sites and achieves high accuracy under low coverage settings164

As m6Anet intrinsically requires a minimum coverage of at least 20 to obtain site methylation predictions.165

This results in a much smaller sample size (11 sites detected). In the same setting, Xron yields 171 sites166

with a minimum coverage of 20 on the yeast dataset, which results in higher AUC-ROC accuracy than167

m6Anet (0.90 versus 0.69). In total, Xron detects 272 sites reported in the IP data, compared to the 156168

sites detected by Epinano and the 93 sites detected by CHEUI (Fig. 2C). Sites detected by Xron also show169

higher support from the IP technique (124) compared to m6Anet (107) in the HEK293T cell line (Fig. 2D).170

While different methods identify various m6A methylation sites, many sites are detected exclusively by one171

method. This observation aligns with previous reports (Koh et al. 2019; Hendra et al. 2022).172

We next tested if including more low-coverage sites by setting different minimum sequencing coverage173

thresholds would influence the prediction accuracy of Xron (Fig. 2E). We found that increasing the read174

coverage yielded superior site-level methylation prediction accuracy, increasing from a 0.825 AUC-ROC175

score for a minimum read coverage level of 4 to a 0.930 AUC-ROC score with a minimum read coverage176

level of 28. This suggests that with higher sequencing depth, Xron can further enhance the precision and177

accuracy of methylation detection. Meanwhile, Xron outperforms other models by a large margin even178

when setting the minimum read coverage level to 4, with AUC 14% more than the second best model,179

Epinano (0.825 versus 0.72). Furthermore, to evaluate Xron’s performance in low-coverage regions, we180

down-sampled the reads to limit the maximum coverage at each site to a range of 10 to 70. Xron achieved181

an accuracy of 0.725 with maximum coverage of 10, outperforming other models with full data (Fig. 2F,G).182

With the ability of Xron to detect methylation in low-coverage regions or even at the single-read level, we183

were able to check the read-level statistics of methylated k -mers. A comparison of the read-wise and site-184

wise relative frequency of methylated k -mers in yeast, human, and Arabidopsis shows differences in k -mer185

profiles across species. Site-wise counting treats multiple reads at one site as a single occurrence, while186

read-wise counts k−mer occurrence for each read and each site separately (Supplementary Fig. S7A-187

E). For yeast, the most frequently used motifs AGACA, GGACA, AGACT, and GGACT from the read-wise188

counting are also the most widely used motifs from the site-wise counting. But in human cell lines and189

Arabidopsis, read-wise counting indicates the most frequently used motif is different than the previously190

reported site-wise most “frequently” used motif, which is indicated by the site-wise counting. Motif GAACA in191

human cell lines has the highest (>17%) relative frequency in the read-wise count, exceeding the previously192

reported most methylated motif GGACT (∼12%), but it only possesses <8% relative frequency in the site-193
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wise count while GGACT has >12% relative frequency. Motif TAACT in Arabidopsis has the highest (≈15%)194

relative frequency in the read-wise count, but drops to <10% in the site-wise count. The variation in k -mer195

profiles across different species offers an ideal scenario for assessing the generalizability of Xron. When196

comparing the Xron model finetuned on yeast and human datasets with different k -mer profiles, we found197

they give similar accuracy on yeast, human, and Arabidopsis datasets (Fig. 2A,B, Supplementary Fig. S3A-198

C).199

Xron achieves nearly optimal site-level prediction on a synthesized RNA dataset200

We evaluated Xron on a synthesized RNA IVT dataset (Liu et al. 2019) obtained from a different replicate201

than the training dataset (see the Methods section). In this dataset, the true methylation modifications were202

known for each position in each read, as the reads were either from a fully modified or a fully unmodified203

run. Our model achieved an AUC ROC of 0.93 on the single-read-level prediction task (Fig. 3C), in which the204

model has to predict m6A bases or A bases for each read at DRACH sites identified by previous antibody205

immuno-precipitation experiments (Schwartz et al. 2013). Our model outperforms the second-best read-206

level model (m6Anet) by 3% (0.93 versus 0.90) and achieves an almost optimal AUC ROC of >0.99 for207

site-level prediction (Fig. 3D), outperforming the second-best site-level model (CHEUI) by nearly 2% (≈1208

versus 0.98).209

Xron provides m6A stoichiometry210

By aligning the reads to the reference genome and piling up the single-read m6A modification predictions211

for different sites, Xron can predict site-level m6A modification stoichiometry, i.e., the fraction of modified212

bases at a site. We evaluated this ability using a synthetic dataset.213

The dataset was a mixture created by randomly sampling reads from fully modified or unmodified IVT214

datasets (Liu et al. 2019) with specific mixture proportions, which included 0%, 10%, 20%, 30%, 40%,215

50%, 60%, 70%, 80%, 90%, and 100%. We calculated the model-predicted m6A proportion as the number216

of m6A bases called per site divided by the total number of reads aligned to this site. The median rela-217

tive modification proportion followed the same trend as the expected methylation proportion. The trend in218

stoichiometry level was successfully recovered (Fig. 3E).219
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Fig. 3. Evaluation of the m6A detection results obtained for synthesized IVT RNA reads and stoichiometry
prediction. (A) Box plot comparing the distribution of the mean, standard deviation, and length for the signal segmented
by NHMM with 5, 232 modified sites and 18, 464 unmodified sites for the GGACT motif. Horizontal lines show the median,
the box denotes the interquartile range, and the whiskers extend to 1.5 times the interquartile range. Points beyond this
range are considered outliers and are removed from the plot. (B,C) ROC curves of Xron against m6Anet and CHEUI for
read-level (B) and site-level (C) m6A modification predictions. (D) Bar plot showing the relative proportion of DRACH
5-mer motif for 84, 919 modified and 179, 717 unmodified positions. (E) Box plot showing the m6A ratio predicted by
Xron with different proportions of IVT control and IVT m6A RNA mixing.

Xron achieved high-accuracy on SQK-RNA004 data220

We trained an Xron model on a HEK293T cell line dataset from the SG-NEx project, generated using the221

SQK-RNA004 direct RNA sequencing chemistry, a recently released sequencing kit that offers a higher222

sequencing rate and presumably better accuracy. Xron achieved an AUC of 0.91 and a PR-AUC of 0.438223

for all sites (Fig. 4A), and an AUC of 0.92 and a PR-AUC of 0.578 for dense sites (Fig. 4B), surpassing the224

Oxford Nanopore m6A basecaller Dorado and other methods tested on the SQK-RNA002 dataset in the225

same HEK293T cell line. A larger number of detected sites were mutually agreed upon by Xron and Dorado226

and were also supported by immunoprecipitation methods compared to the SQK-RNA002 dataset on the227

same cell line, where most of the sites are detected by only one method (Fig. 4C, Fig. 2C,D). Modified sites228
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A B

C D E

Fig. 4. m6A detection on SQK-RNA004 dataset. (A) ROC and PR curve of Xron on SQK-RNA004 data against
Dorado. Results of m6Anet and MINES from SQK-RNA002 data on the same HEK293T cell line are also plotted for
comparison. (B) Comparison of ROC and PR curves for Xron and Dorado on 2070 dense sites where neighboring
modification sites exist within 5 bases. (C) Venn diagram showing the overlapping sites predicted by Xron and other
methods on HEK293T cell line. (D) Coordinate distribution of the m6A methylated sites predicted by 5 methods against
the background distribution of all DRACH sites. Only sites with at least 20 coverage were chosen. (E) Clustering plot
showing the modification of the TSR3 (ENSG00000007520) mRNA transcript over 780 reads. A modification is called
if the predicted probability is greater than 0.9 and is marked with a green dot.

detected from SQK-RNA004 data are enriched in the 3′ end of the coding sequence along the transcript229

coordinates, as expected for m6A (Fig. 4D).230

Clustering analysis show asynchronous modification231

Xron enables direct access to read-level modification information, allowing us to examine the modification232

states across multiple sites within each read. Genes that have at least 2 m6A modification sites and with233

at least 500 coverage reads were selected. We found asynchronous modification states around the end of234

CDS and in the 3’ UTR region among these reads (Fig. 4E, Supplementary Fig. S8), where m6A methyla-235

tion does not occur synchronously but in a combinatory pattern. For instance, in the TSR3 gene transcript236

(ENST00000007390.2) at positions 1041, 1096, 1105, and 1151, all 16 possible combinations of modifi-237

cation status at these four sites were observed with varying frequencies. This pattern suggests a complex238

regulatory mechanism based on m6A methylation.239
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Xron performs consistent basecalling on m6A-modified datasets240

To compare the performance of Xron as a basecaller with a canonical basecaller, we evaluated the basecall-241

ing accuracy of Xron and compared it with that of the Guppy ONT basecaller (Table 2 and Supplementary242

Table S2). We evaluated the basecall quality achieved on three datasets: the synthesized IVT RNA dataset,243

the S. cerevisiae yeast dataset, and the human HEK293T cell line dataset, considering both modified and244

unmodified reads. When comparing the identity rate, only reads with potential modified sites are taken into245

account. For the synthesized IVT RNA and yeast datasets, we used the second replicate, which was not246

used as training data. Xron suffers less (or no) accuracy drop on datasets with m6A modifications. It exhib-247

ited no performance loss on datasets with methylation compared to the control dataset. On the other hand,248

Guppy showed performance decreases on all three datasets with methylation compared to its performance249

on the unmodified control datasets, including a 14.47% drop in the identity rate on the synthesized reads250

and a 7.55% drop in the identity rate on the HEK293T reads. Guppy also shows a larger context bias for251

k-mers from DRACH motifs, comparing to Xron on the HEK293T reads (Supplementary Fig. S6), explaining252

the identity rate drop on basecalling m6A-modified reads.

Table 2. Accuracy comparison between Xron and Guppy on three different datasets and their control datasets.
The identity rate (%) was defined as the number of matched bases in the query sequence divided by the number of
bases in the reference sequence (the higher the better). All reported rates are mean values among the aligned reads.

Condition Model Identity rate (%)(↑) Identity rate change (%)

IVT Control Xron 87.35 —
Guppy 92.75 —

IVT m6A Xron 88.48 1.13
Guppy 78.28 −14.47

Yeast ime4∆ KO Xron 83.42 —
Guppy 92.50 —

Yeast Xron 83.96 0.54
Guppy 91.94 −0.56

HEK293T METTL3 KO Xron 85.91 —
Guppy 93.19 —

HEK293T Xron 87.12 1.21
Guppy 85.64 −7.55

253

Discussion254

Several computational methods (Liu et al. 2019; Jenjaroenpun et al. 2021; Leger et al. 2021; Gao et al.255

2021; Mateos et al. 2022) have been used to detect m6A methylation. These methods require accurate train-256
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ing data, usually obtained using synthesized RNA reads containing the modification of interest, obtained257

through experimental methods such as m6ACE-seq or miCLIP, or from a comparative analysis against con-258

trol data. However, these methods exhibit a performance drop when they are applied to other datasets,259

implying the existence of overfitting. In addition, these methods usually can only provide site-level methy-260

lation, losing read-level resolution. We developed an end-to-end m6A modification detection system for261

nanopore direct RNA sequencing and were among the first to create a m6A-distinguishing base caller. Our262

system, Xron, includes an NHMM model for k -mer decoding and a neural network basecaller. By employing263

data augmentation and semi-supervised learning, we constructed an NHMM that is capable of performing264

accurate signal sequence alignment and introduced a novel training dataset for m6A methylation detection.265

The training pipeline established in our work facilitates supervised basecaller training without necessitating266

complex feature engineering and using both IVT and IP data available to overcome overfitting.267

Quantifying the transcriptome-wide modification rates is one of the key challenges in methylation detection.268

From the read-level methylation states given by Xron, the modification stoichiometry for each site can be269

obtained. Meanwhile, our method does not require a high minimum coverage depth, which is essential270

for detecting methylation in low-expression regions. Comparative methods detect methylation by analyzing271

data from different conditions (Leger et al. 2021; Pratanwanich et al. 2021). While Xron does not require a272

control sample to detect methylation, it can facilitate the use of a control sample by comparing the same273

site across samples. In addition, compared to other methods where the model performance is influenced274

by aspects such as base-calling algorithms, accuracy in the alignment of the reference sequence to signal,275

and segmentation of the raw signal, Xron reads out methylation information directly from the raw signal.276

More training data on different experimental protocols and different organisms will likely further improve the277

accuracy of Xron and other supervised approaches, while the training framework of Xron can easily adopt278

these additional training data into the finetuning pipeline.279

As a basecaller, Xron achieves a consistent identity rate among methylation and unmethylation datasets.280

Although there is a performance gap in terms of identity rate between Xron and the basecaller Guppy,281

this is likely due to the different neural network architecture used. In future research, it would be bene-282

ficial to investigate various neural network structures since previous studies have shown that alterations283

to the convolutional-recurrent neural network architecture can yield enhanced basecalling accuracy. For284

example, Guppy uses QuartzNet (Kriman et al. 2020), a neural network designed initially for speech recog-285
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nition. SACall (Huang et al. 2020) employs an attention mechanism, while RODAN (Neumann et al. 2022)286

integrated squeeze-and-excitation (Hu et al. 2018) layers into a base CNN.287

Currently, the NHMM takes only raw signal as its input. This has several advantages, including being easy288

to train and having a closed-form solution for parameter estimation. However, additional input features can289

be added to the NHMM, including the encoded representation from the neural network base caller. The290

strategy used by NHMM can also help provide more accurate signal segmentation in other downstream291

current-based applications, such as post-basecalled sequence correction (e.g., Nanopolish by Simpson et292

al. (2017)). We leave this as future work. Xron was used to detect m6A modification, however, our framework293

is suitable for training a basecaller for detecting any natural post-transcription modification, including DNA294

methylation such as 5mC and other types of RNA modification. Xron can also be retrained to detect artificial295

modifications at a single-molecule level, such as detecting modifications introduced in small non-coding296

RNA (Shi et al. 2022).297

Methods298

Xron is trained using both IVT and IP datasets to obtain better performance. It was first trained on a sur-299

rogated IVT dataset and then fine-tuned on IP data. To make efficient finetuning and to avoid overfitting to300

the all-or-none methylated reads in IVT data when training with the long current signal, we create partially301

methylated reads using data augmentation, first segmenting the signal and then cross-linking the reads302

and its corresponding signal in silico. To achieve this, we design a novel nonhomogeneous hidden Markov303

model (NHMM) that can be trained to conduct signal segmentation in a semi-supervised fashion on modified304

reads, even when lacking methylation labels. The NHMM is trained using the forward-backward algorithm305

with its transition matrix conditioned on a canonical basecalled sequence and its alignment, thus giving the306

maximum a posteriori estimation of the model parameters regarding methylation base. The Viterbi path of307

the NHMM gives the alignment between the current signal and sequence. Following the signal segmentation308

process with the NHMM, we prepared a partially methylated dataset through data augmentation, splicing309

the fully methylated and unmethylated segments. Training on this augmented dataset diminishes the induc-310

tive bias of the model on partially methylated reads when training with entirely methylated or nonmethylated311

reads. We then trained an end-to-end methylation-detection basecaller on the augmented dataset, and it312

achieved high-accuracy methylation base detection at a single-read resolution. We further improved the313

basecaller by applying a fine-tuning procedure on IP data with label smoothing to obtain a more accurate314
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basecalling model. Finally, we benchmarked different m6A detection methods on three datasets, including315

a synthetic IVT dataset, a yeast dataset, and a human HEK293T cell line, demonstrating that Xron yields316

accurate methylation-aware basecalls and generalizes to different species.317

NHMM trained using semisupervised learning318

We design a hybrid framework to conduct signal segmentation and alignment when methylated bases are319

present. A homogeneous HMM (we refer to this model as an HMM throughout the remainder of this paper320

for convenience), as employed in the Nanopolish preprocessing tool (Simpson et al. 2017), faces challenges321

when applied to sequences with methylation bases. The absence of ground truth for the methylation states322

in each basecalled sequence prevents supervised HMM training. However, training the HMM unsupervised,323

using only signal and reference genome, is difficult due to the high noise contained in nanopore sequencing324

signals, the long lengths of the electrical signals, and the similar signal levels between certain k -mers and325

their methylated counterparts. Additionally, totally unsupervised training is not necessary as we already326

have the canonical basecalled sequence with alignment given by the canonical basecaller and the refer-327

ence genome. Although the signals are error-prone in the methylated region, they still provide a general328

sketch of the sequence. Thus, instead of performing unsupervised learning with the HMM, we develop a329

semi-supervised training process using an NHMM, where we use the basecalled canonical sequence as a330

prior when building the transition chain backbone in the NHMM. In contrast with an HMM possessing a ho-331

mogeneous transition matrix that remains constant over time t, an NHMM possesses a nonhomogeneous332

transition matrix that depends on the external variables and varies over time t, allowing the use of dynamic333

control for the transition process. Various NHMMs have been used in meteorology (Hughes et al. 1999)334

and economics (Netzer et al. 2008; Meligkotsidou & Dellaportas 2011) by constructing transition matrices335

that depend on time-varying covariates, such as seasonality (Hughes et al. 1999) or economic cycle indi-336

cators (Meligkotsidou & Dellaportas 2011). In our case, the base probabilities along time t predicted by an337

existing canonical basecaller (a base caller trained to predict only canonical bases) are used as the time338

covariates of the transition matrix. This approach enables the model to concentrate on the section of the339

Markov chain guided by the predicted base probability (Fig. 1C), rather than dealing with the entire chain340

as is required in unsupervised learning using HMM, which is more challenging and error-prone.341
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NHMM for methylated sequence segmentation and alignment342

The NHMM represents the input sequence of raw current signals as X = (x1, . . . , xT ) for a given k -mer343

sequence Z = (z1, . . . , zT ) inside a nanopore over the sequencing duration T . Each signal point xt repre-344

sents a normalized current value, while zt is a variable indicating the k -mer at time t. The transition matrix of345

the NHMM is constrained on the basecalled sequence and its alignment given by the canonical basecaller.346

More specifically, suppose we are given the base probability matrix H = (h1, . . . , hT ) ∈ RB×T , where B is347

the number of bases and hbt is the probability of base b at time t, which is obtained from an existing canon-348

ical neural network basecaller (Fig. 1A) (Graves et al. 2006; Teng et al. 2018). From the base probability349

matrix H, we extract the most probable basecalled sequence Y = {yτ} and its corresponding alignment350

A(t) which aligns the signal point time t to sequence index τ , giving t → τ . After correcting the basecalled351

sequence with the reference genome, we construct a reference k -mer sequence C by sliding a window of352

size k (in our case, k = 5) across the basecalled sequence, moving one base at a time. Each windowed353

segment forms a k -mer and is added to the sequence C = {cτ}. From now on, to simplify the notation,354

we use ct to denote the corresponding k -mer at time t after transitioning through alignment cA(t). All time355

offsets of the k -mer sequence reside in the sequence domain, meaning ct−1 refers to cA(t)−1. Finally, we356

derived the k -mer transition matrix Ψ from k -mer sequence C; for details, see the next section. Then, the357

likelihood of observing an electrical signal X is given by:358

P (X | C) =
∑
Z

[
T∏

t=1

P (xt | zt)
T∏

t=1

P (zt | zt−1, ct−⌊m/2⌋, . . . , ct+⌊m/2⌋)

]
. (1)

Here, Z is the hidden state representing the underlying k -mer sequence, zt is the k -mer at time t, and359

cA(t) is the corrected k -mer representation at time t acquired from the canonical neural network output H360

(Fig. 1A). T is the maximum time stamp for a given sequence segment. m is the window size for the k -mers361

to be considered. P (x | z) is the emission probability of the signal x given the k -mer z, as modeled by a362

Gaussian distribution.363

Constructing a transition matrix from the base-called sequence and its alignment364

We loosely constrain the transition matrix at time t in the nonhomogeneous HMM by using the base pre-365

diction output H derived from a canonical basecaller, thereby using the segmentation results provided by366

the basecaller in an error-tolerant manner (Fig. 1B). By calculating the most probable path from H, we can367

obtain both the basecalled sequence and the alignment between each base within the most probable path368
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and the sequencing time t. Following this, we correct the basecalled sequence using the reference genome,369

and we also make appropriate revisions to the alignment to address the deletion or insertion errors in the370

basecalled sequence. We transform the corrected sequence into a k -mer sequence C = {ct : t = 1, . . . , T},371

incorporating the k bases surrounding each base in the basecalled sequence; then, this k -mer sequence is372

reformatted into transition matrices Ψ = {ψt : t = 1, . . . , T} by including at most m transitions, where each373

ψt is the temporal transition matrix at time t. During the process of constructing the k -mer sequence C from374

H, the basecalled RNA sequence is corrected by aligning it to a reference genome through the following375

steps:376

– For mismatched bases, we replace the bases in the k -mer with the reference bases.377

– For insertions/deletions in the base-called sequences that are smaller than five bases, we determine378

the new signal alignment boundary of the inserted/deleted bases by evenly merging/splitting the signal379

boundaries of nearby bases; i.e., we redistribute the occupancy of the inserted bases to the nearby380

bases and allocate occupancy for the deleted bases from the nearby bases.381

– We skip the sequence segments with insertions and deletions that are larger than five bases for quality382

control purposes.383

The transition matrix Ψ is then constrained by C, masking out the irrelevant transition paths so that only384

transition paths that are likely to occur at time t are retained. To more clearly see what these temporal tran-385

sition matrices stand for, let ψt
i,j = Pr(zt = i | zt−1 = j, ct−⌊m/2⌋, . . . , ct+⌊m/2⌋) be the transition probability386

from k -mer i to k -mer j given constraint k -mers ci from a time window with a width of at most m, i.e., from387

t − ⌊m/2⌋ to t + ⌊m/2⌋. At the start and end of sequence, the window size is less than k due to boundary388

constraints. In comparison with the transition matrix ϕi,j = P (zt = i | zt−1 = j) of a homogeneous HMM,389

the transition matrix now changes over time t:390

ψt
i,j =

t+⌊m/2⌋∑
t′=t−⌊m/2⌋

ect′ ⊗ ect′+1
⊙ ϕi,j , (2)

where ⊗ is the tensor product operation, ⊙ denotes elementwise multiplication, ei is a one-hot vector where391

only the ith element is 1, and ϕi,j is the transition matrix in which ϕi,j = 1 if the transition from k -mer i392

to k -mer j is valid (otherwise, it is 0). For example, AAACT to AACTA is valid, while AAACT to ACTCC is393

not, as we only allow 1 base step. ψt
i,j is the k -mer transition matrix from the k -mer sequence described394

18

 Cold Spring Harbor Laboratory Press on February 18, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


above; it is a binary value matrix indicating the k -mer transition i→ j at time t, where 1 denotes a possible395

transition and 0 represents an impossible transition.396

We construct the transition matrix from m nearby k -mers instead of only the k -mer at time t from k -mer397

sequence C because the base probability predicted by the canonical basecaller is not exact due to the398

connectionist temporal classification (CTC) loss used (Graves et al. 2006; Teng et al. 2018) and the inser-399

tion/deletion errors in the sequence, nor is it totally correct due to the previously unseen modified bases.400

Thus, we allow the NHMM to explore the alignment space in two ways. First, at each time point, the transition401

matrix of the NHMM is restricted to the current transition probability and the m nearby transition probabili-402

ties, where m is a hyperparameter (Eq. 2). This is done to make sure that the final alignment output by the403

NHMM is not too far away from the given the alignment from canonical basecalling but still allows for explo-404

ration within the m-base window. Second, the transition path of the underlying Markov chain is broadened405

to encompass all possible modified counterparts for each k -mer along the path (Fig. 1C). As an example,406

AACGT is extended to include four alternative k -mers with modified bases, AACGT (the original k -mer),407

AMCGT, MACGT, and MMCGT, leading to expanded paths. After the transition matrix is constructed for all408

the time points, the NHMM is then trained using the expectation-maximization (EM) algorithm (Baum et al.409

1970) until it converges (Fig. S2B).410

Preparing the training data with data augmentation and read sampling411

All-or-none methylated reads exhibit either complete methylation of all adenine (A) bases or none at all,412

whereas in actual biological samples, methylation typically occurs less frequently and is more sporadically413

distributed. To prevent the neural network from overfitting to all-or-none methylation reads, we create a414

training dataset containing partially methylated reads with labels. This is accomplished by dividing the sig-415

nals from the all-or-none modified reads into smaller segments and subsequently splicing them together.416

The corresponding sequences are recombined according to their alignment with the signal, as provided by417

the NHMM. Merging the signals generated from distinct k -mers at their junction points can result in sub-418

stantial discrepancies between the combined signal and the actual signal obtained from a real sequencing419

run. To avoid such deviations caused by k -mer mismatches, we ensure that the preceding and succeeding420

k -mers at the joint sections are identical. For instance, we can merge the signal segments with base-called421

sequences such as GGMCGTTCXXX and XXXCGTTCTAG to form GGMCGTTCTAG. To achieve this, we422

define nonmethylatable k -mers as k -mers without adenine (CGTTC in the example). They have the same423

sequencing signal distributions in both modified and unmodified reads, making them suitable for use as424

19

 Cold Spring Harbor Laboratory Press on February 18, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


joint anchors. We employ the trained NHMM to decode both the canonical and fully modified reads in the425

training IVT dataset, using the base probability prediction from the canonical basecaller as described be-426

fore. The alignment between the sequence and signal is established through a Viterbi path, which assigns427

each signal point to its corresponding k -mer (Fig. 1D). Each read is subsequently divided into segments at428

nonmethylatable k -mers. These segments are used to construct a k -mer signal graph, where each node429

represents an invariant k -mer. Each edge corresponds to a signal segment whose aligned sequence be-430

gins and ends at the respective k -mers of the connected nodes (Fig. 1E). We then perform a random walk431

on the graph, choosing the next edge via an ϵ-greedy sampling strategy with an upper confidence bound432

(UCB) (Sutton & Barto 2018), as used in the multi-armed bandit algorithm, to ensure maximum diversity in433

the sampling sequence (see Algorithm 1 in the supplementary materials).434

Data processing435

Acquisition and processing of direct RNA sequencing datasets All datasets used in this study are436

acquired from references Liu et al. (2019), Jenjaroenpun et al. (2021), Workman et al. (2019), Hendra437

et al. (2022), and Chen et al. (2021). We obtained both replicates (replicate 1 and 2) from the Epinano438

synthesized IVT RNA dataset (Liu et al. 2019) and the only single replicate from the ELIGOS synthe-439

sized IVT RNA dataset (Jenjaroenpun et al. 2021). Both of these datasets contain fully modified reads and440

unmodified control reads. We also obtained all the NA12878 IVT RNA reads from the Oxford Nanopore441

human reference dataset repository: https://github.com/nanopore-wgs-consortium/NA12878/blob/master/442

RNA.md (Workman et al. 2019). For the yeast dataset, we obtained all three replicates of the wild strain443

and ime4-knockout strain (ime4∆) (Liu et al. 2019). Reads are extracted if mapped to m6A-modified RRACH444

sites previously identified by antibody immunoprecipitation (Schwartz et al. 2013). For the human HEK293T445

cell line, we obtained two replicates (replicate 1 and 2) of the wild-type human HEK293T cell (Hendra446

et al. 2022) to evaluate models. Following a previous study (Hendra et al. 2022), we used the refer-447

ence transcriptome and its genome annotation provided by SG-NEx project: https://github.com/GoekeLab/448

sg-nex-data (Chen et al. 2021). We used the same m6A DRACH sites in the m6Anet paper (Hendra et al.449

2022), which were originally identified by m6ACE-seq and miCLIP experiments (Koh et al. 2019; Linder450

et al. 2015). We also obtained the first replicate of the wild-type cell line, generated using the SQK-RNA004451

sequencing kit from the SG-NEx data repository v5.0.1 (Chen et al. 2021). Currently, there is only one452

replicate of this dataset available. Therefore, we split the dataset randomly by reads for training and eval-453

uation purposes. For the Arabidopsis dataset, we obtained 3 wild-type replicates (Col0-1 to Col0-3) from454
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Parker et al. (2020). We used the TAIR10 reference transcriptome (cDNA) and genome from Ensembl:455

https://plants.ensembl.org/Arabidopsis thaliana/Info/Index. All replicates in the datasets are biological repli-456

cates, which are independent biological samples sequenced using the same direct RNA nanopore sequenc-457

ing protocol. As for synthesized IVT reads, RNA replicates were transcribed from synthesized DNA reads458

with different sequences. See the sections below for details on replicates used for training and evaluating.459

All SQK-RNA002 samples were generated using the Nanopore R9.4.1 flow cell, except for the human IVT460

data, which came from the R9.4 flow cell. The only significant difference between the two flow cells is the461

slightly improved yield in the R9.4.1. SQK-RNA004 samples were generated using the FLO-PRO004RA462

flow cell (Chen et al. 2021).463

The IVT RNA datasets were obtained from Epinano project (Liu et al. 2019) through the GEO database464

(GSE124309). The ELIGOS IVT RNA datasets were obtained from ELIGOS project (Jenjaroenpun et al.465

2021) through the SRA database (SRP166020). The yeast datasets (wild and ime4-knockout) were ob-466

tained from Epinano Project (Liu et al. 2019) through the GEO database (GSE126213). The HEK293T cell467

lines data were obtained from the SG-NEx Project (Chen et al. 2021) through ENA (PRJEB40872). The468

Arabidopsis data were obtained through ENA (PRJEB32782). The SQK-RNA004 data was an early-access469

dataset obtained from the SG-NEx data repository v5.0.1.470

Canonical basecalling and mapping All reads in the training dataset were basecalled using the Guppy471

5.0.11 ONT basecaller (Oxford Nanopore Technologies 2021) and then mapped to the reference genome472

using minimap2 v2.24 (Li 2018) with the settings “-ax map-ont -uf --secondary=no --MD”. The mapped473

reads were then transferred to the BAM format using SAMtools 1.11.0 (Li et al. 2009). A canonical neural474

network basecaller with the same structure as the CRNN was then trained using the NA12878 IVT reads,475

and this basecaller was then used to produce the base probability prediction. This canonical basecaller is476

used as a starting model when we retrain it on the augmented IVT data and subsequently fine-tune it on477

the yeast data (Liu et al. 2019).478

Training datasets We randomly selected 300,000 canonical (unmodified) read chunks and 300,000 fully-479

modified read chunks from replicate 1 of each of the two synthesized IVT RNA datasets (Liu et al. 2019;480

Jenjaroenpun et al. 2021), as well as the first 300,000 canonical read chunks from the Oxford Nanopore Hu-481

man IVT reference dataset (Workman et al. 2019) to construct the k -mer signal graph we described above.482

Reads were filtered out if the corresponding basecalled sequence was shorter than three bases, if the signal483
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had a dwell time (the putative duration a k -mer remains in the pore) exceeding 2000 signal time points, if the484

basecalled sequence could not be aligned to the reference genome, or if a single base type comprised more485

than 60% of the basecalled sequence. This filtering process resulted in 228,983 canonical read chunks and486

204,822 methylated read chunks from the first synthesized IVT dataset (Liu et al. 2019), 195,161 canonical487

read chunks and 213,085 methylated read chunks from the second synthesized IVT dataset (Jenjaroenpun488

et al. 2021), and 188,004 canonical read chunks from the Human IVT reference dataset (Workman et al.489

2019). Methylation sites identified by antibody immunoprecipitation (Schwartz et al. 2013), derived from the490

first replicate of the wild-type and the first replicate of the ime4∆ from the yeast dataset (Liu et al. 2019)491

were used to create the fine-tuning dataset. We regarded all sites from the wild-type strain as methylated492

and all sites from the ime4∆ strain as unmethylated. However, we considered these classifications noisy493

labels and used label smoothing during fine-tuning. Human HEK293T cell dataset (Hendra et al. 2022) was494

not used for training and only used in the evaluation.495

Evaluation datasets All the accuracy evaluation datasets we used are sourced from previously published496

resources. These include a synthesized IVT dataset (Liu et al. 2019), a yeast dataset (Liu et al. 2019), and a497

human HEK293T cell dataset (Hendra et al. 2022). We used the second replicate from both the synthesized498

IVT and yeast datasets, as we had already used the first replicate of these two datasets for training and499

fine-tuning, and we used the first replicate of the human HEK293T cell dataset as it was not included in500

training. A subset of the human HEK293T cell dataset containing 500 genes was randomly sampled from501

the original dataset. For the yeast data, we assessed model performance based on the sites identified by502

m6A-seq (Schwartz et al. 2013) for the wild-type strain, and the ime4∆ strains where no methylation should503

be observed. For evaluation on human data, following previous work (Hendra et al. 2022), we regarded the504

combined sites identified by m6ACE-seq (Koh et al. 2019) and miCLIP (Linder et al. 2015) as methylated505

sites, and other randomly selected sites with the DRACH motif as unmethylated sites.506

Training and fine-tuning a m6A methylation-sensitive neural network basecaller507

We used the partially modified reads sampled from the signal k -mer graph to retrain a canonical basecaller.508

Before performing retraining on the pre-trained canonical basecaller, we reinitialized the parameters of509

the last fully connected hidden layer with random weights but kept the same standard deviation. We then510

retrained the model using a smaller learning rate (0.00001) than the usual learning rate (0.001). We fine-511

tuned our model on biological samples with m6A sites identified by antibody experiments (Liu et al. 2019),512
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labeling the A base at each modified site as an m6A base for every read (Fig. S2B). Since the bases513

at methylation sites are usually not methylated in every read, this approach would introduce many false-514

positive labels. To address this issue, we applied label-smoothing to the connectionist temporal classification515

(CTC) loss that was used to train the basecaller. A label sequence of length L was defined as S = {si : i =516

1, 2, . . . , L}, and each si belonged to the set {A,C,G, T,M}. The base probability logit output H ∈ RT/K×N
517

was a (T/K)-by-N matrix derived from the basecaller’s CRNN, where K is the total number of strides (i.e.,518

the number of steps the convolutional filter moves across the input at each operation), and N is the number519

of bases used for prediction plus 1 (a blank symbol). The altered CTC loss with label smoothing under a520

strength factor represented by ϵ was then defined as:521

L = ϵLCTC(SM→A, H) + (1− ϵ)LCTC(S,H), (3)

where M stands for the m6A base, LCTC is the usual CTC loss, and SM→A is the sequence in which522

every m6A base is replaced with an A base. We set ϵ = 0.1 empirically for the fine-tuning process, with an523

expectation that the methylation label is correct with probability 1− ϵ.524

Software Availability525

Code is hosted at GitHub repository https://github.com/haotianteng/xron. Xron is available under a GNU526

GENERAL PUBLIC LICENSE v3.0. Xron is built with Python 3.8 and PyTorch 1.12, and has been tested on527

PyTorch 1.13 and 2.0.528
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