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A search for charged leptons with large impact parameters using 139 fb−1 of
ffiffiffi
s

p
¼ 13 TeV pp collision

data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of
possible new physics signatures. Results are consistent with the background prediction. This search
provides unique sensitivity to long-lived scalar supersymmetric lepton partners (sleptons). For lifetimes of
0.1 ns, selectron, smuon, and stau masses up to 720, 680, and 340 GeV, respectively, are excluded at
95% confidence level, drastically improving on the previous best limits from LEP.
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Particles with long lifetimes are a feature of the standard
model (SM) and many theories beyond the standard model
(BSM) including R-parity-conserving supersymmetry
(SUSY) [1–7] models like split SUSY [8,9] and gauge-
mediated SUSY breaking (GMSB) [10–12], as well as
R-parity-violating SUSY models [13,14] and exotic sce-
narios such as universal extra dimensions [15,16].
However, particle lifetime remains an underexplored
parameter of phase space at the Large Hadron Collider
(LHC), where detectors and searches for new physics were
designed to measure the decay products of short-lived,
heavy particles with the assumption that those decay
products trace back to the collision point or very close
to it [17–21]. BSM particles with lifetimes longer than a
few picoseconds produce unconventional signatures,
including displaced decay products that do not trace back
to the interaction point. This brings technical challenges in
almost all aspects of the search; consequently, some models
with TeV-scale BSM particles in this lifetime regime
remain unexplored. While many dedicated searches for
long-lived particles have been performed by the ATLAS
[22–34] and CMS [35–46] Collaborations, signatures with
displaced leptons with no visible decay vertex would not be
identified by any previous ATLAS search. This Letter
addresses that gap in coverage.
This signature brings unique sensitivity to GMSB SUSY

models [47–49], where the nearly massless gravitino is the
lightest SUSY particle (LSP), and the next-to-lightest
SUSY particle (NLSP) becomes long-lived due to the
small gravitational coupling to the LSP. Well-motivated

versions of this model have a stau (τ̃) as the single NLSP, or
a selectron (ẽ), smuon (μ̃), and τ̃ as co-NLSPs [50]. In these
models, pair-produced sleptons (l̃) of the same flavor
decay into an invisible gravitino and a charged lepton of
the same flavor as the parent l̃. A combination of results
from the LEP experiments excluded the superpartners of
the right-handed muons and electrons (μ̃R and ẽR, respec-
tively) of any lifetime for masses less than 96.3 and
65.8 GeV. The OPAL experiment alone set the best limits
for all lifetimes of τ̃1, a mixture of the superpartners of the
left- and right-handed τ leptons, and excluded masses less
than 87.6 GeV [51–55]. A previous search from the CMS
experiment [56] selected events with displaced, different-
flavor leptons using 19.7 fb−1 of 8 TeV data but did not
directly target l̃ decays. A reinterpretation concluded that
OPAL’s constraints remained the most stringent [50].
Additionally, Ref. [57] shows that targeting this signature
could help improve the coverage of minimal supersym-
metric models with a gravitino LSP. The present search
provides mass sensitivity beyond the LEP limits.
To evaluate signal sensitivity, Monte Carlo (MC)

events in a simplified GMSB SUSY model were simulated
with up to two additional partons at leading order using
MADGRAPH5_AMC@NLOV2.6.1 [58] with the NNPDF2.3lo
parton distribution function (PDF) set [59] and interfaced to
PYTHIA8.230 [60] using the A14 set of tuned parameters
(tune) [61]. The sparticle decay was simulated using
GEANT4 [62], which does not preserve information about
the chirality of the l̃. The mixed states of the superpartners
of the left- and right-handed τ leptons, τ̃1;2, were generated
with mixing angle sin θτ̃ ¼ 0.95. The impact of multiple
interactions in the same and neighboring bunch crossings
(pileup) was modeled by overlaying each hard-scattering
event with simulated minimum-bias events generated with
PYTHIA8.210 [60] using the A3 tune [63] and NNPDF2.3lo
PDF set [59]. Signal cross sections were calculated at next-
to-leading order in αs, with soft-gluon emission effects
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added at next-to-leading-logarithm accuracy [64–68]. The
nominal cross section and uncertainty were taken from an
envelope of predictions using different PDF sets and
factorization and renormalization scales [69]. The sim-
plified model used for interpretation assumes the super-
partners of the left- and right-handed leptons are mass
degenerate, yielding a cross section of 0.37" 0.01 pb for
a single flavor of l̃ with mass 100 GeV and 0.059"
0.004 fb for a l̃ with mass 800 GeV. Simulated events
were generated for ẽ=μ̃ (τ̃) masses 50–900 GeV (50–
400 GeV) and lifetimes 0.01–10 ns (0.1–1 ns).
This search uses 139 fb−1 of data collected by the

ATLAS experiment from pp collisions at
ffiffiffi
s

p
¼ 13 TeV.

The ATLAS detector consists of concentric subdetectors
used together to identify particles [70–73]. Data collection
relies on a two-level trigger system, which uses tracking
information from the inner detector (ID) along with
information from the calorimeters and muon spectrometer
(MS) to make fast, event-level decisions [74]. The typical
lepton selection algorithms used in the trigger select
particles coming from the primary interaction and cannot
be used to select displaced leptons. Instead, triggers
without tracking information are used: Electrons are
identified using only their electromagnetic calorimeter
(EM) signature via photon triggers, and muons are
identified using MS information only. Single-photon
and diphoton triggers select EM signatures with energy
greater than 140 and 50 GeV, respectively, and the muon
trigger selects MS signatures with transverse momentum
(pT) greater than 60 GeV in the range jηj < 1.05. These
triggers have an acceptance independent of lepton dis-
placement in the range probed by this search. The
acceptance ranges from 1% to 80% for all flavors,
increasing with l̃ mass, and is lower for τ̃ than ẽ or μ̃
due to the smaller pT of the final-state leptons.

After the trigger stage, more complex tracking algo-
rithms are possible, and tracks can be used more exten-
sively for particle identification. Displaced leptons are
identified as those with large transverse impact parameter
(jd0j), the distance of closest approach of the particle’s track
to the interaction point in the x − y plane. The jd0j is
measured relative to the vertex with the highest Σp2

T of
associated tracks. Tracks are reconstructed by fitting a
series of ID hits to identify those consistent with a particle’s
trajectory. For this search, tracking is performed in two
stages: First, standard tracking reconstructs tracks with
jd0j < 10 mm [75], and then an additional reconstruction
step uses hits not matched to tracks in the previous stage,
adding tracks with jd0j < 300 mm [76]. The extended track
collection is combined with EM energy clusters to recon-
struct electrons or with tracks composed of segments
measured in the MS to reconstruct muons, both in the
range jηj < 2.5. Standard lepton identification algorithms
[77–79] are modified by removing requirements on jd0j and
the number of hits matched to the track. Figure 1 shows the
final reconstruction efficiency for displaced electrons
and muons.
Signal leptons must have high transverse momentum,

pT > 65 GeV, and large transverse impact parameter,
3 mm < jd0j < 300 mm, to remove SM backgrounds. To
reduce the background from out-of-time cosmic-ray
muons, a requirement is placed on the MS timing relative
to when a standard model particle is expected to arrive in
the detector (t0). The average time measured by the muon’s
MS track segments, tavg0 , must have an absolute value less
than 30 ns. In order to reduce the contribution from leptons
from decays of heavy-flavor hadrons, signal leptons are
required to be isolated from nearby activity in the ID and
calorimeters. The sum of the pT of all tracks near an
electron (muon) must be less than 6% (4%) of the lepton
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FIG. 1. Electron (left) and muon (right) reconstruction and identification efficiency in signal MC simulation. Leptons result from the
decay of a l̃ with ml̃ ¼ 500 GeV and τl̃ ¼ 1 ns. Efficiency is defined as the number of reconstructed leptons divided by the number of
generator-level leptons. Both the reconstructed and generator-level leptons are required to have pT > 20 GeV and jηj < 2.5. The closed
purple square markers show the final lepton reconstruction efficiency. Markers are placed at the bin centers.
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pT , and the sum of energy deposits near the electron
(muon) in the calorimeters must be less than 6% (15%) of
the lepton’s energy [77,78]. The remaining quality criteria
are used to minimize backgrounds and are inverted in the
data-driven background estimation. Signal leptons must
satisfy these to remove fake leptons originating from the
mismatching of ID tracks to MS tracks or to calorimeter
signatures. ID tracks associated with leptons are required to
have a fit with χ2=nd:o:f: < 2 and no more than one missing
hit after their innermost hit. Consistency between the two
components of the reconstructed lepton is required. For
electrons, this is ensured by requiring the ID track pT
measurement to be no less than half the electron pT
measured when accounting for the calorimeter energy
[ðptrack

T − pe
TÞ=pe

T > −0.5], and the combined fit of the
muon’s ID and MS tracks must satisfy χ2=nd:o:f: < 3.
Muons are required to have measurements in at least three
precision tracking layers of the MS and at least one high-
precision ϕ measurement.
Three orthogonal signal regions are defined with

at least two signal leptons and are distinguished by the
flavor of the two highest-pT leptons: SR-ee with two
electrons, SR-μμ with two muons, and SR-eμ with
one muon and one electron. No requirements are
placed on the charge of the leptons. In order to ensure
the broad applicability of this result to other models, event-
level requirements beyond the presence of the two signal
leptons are minimal. Backgrounds from lepton pairs
produced via interactions with detector material are
reduced by requiring that the opening angle between the
two leptons, ΔRll ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηllÞ2 þ ðΔϕllÞ2

p
, is greater than

0.2. Additionally, the event must not contain any cosmic-
tagged muons. A cosmic-ray muon traversing the detector
coincident with an LHC collision leaves a signature that
could be reconstructed as two back-to-back muons, one in
the top half of the detector, μt, and the other in the bottom,
μb. Each muon is tagged as resulting from a cosmic-ray
muon if it has MS segments along its trajectory on the
opposite side of the detector or if its trajectory traces back
to a gap in detector coverage [23]. A window in η and ϕ is
defined relative to the muon’s trajectory, and, if an MS
segment is found within jημ þ ηMS segmentj < 0.018 and
jðϕμ − ϕMS segmentÞ − πj < 0.25, the muon is cosmic
tagged. This algorithm has a cosmic rejection efficiency
of > 99%.
The number of background events remaining after signal

selections is estimated from data while keeping the signal
regions blinded. In SR-ee and SR-eμ, the dominant back-
ground comes from fake leptons, with a smaller contribu-
tion from leptons from heavy-flavor hadron decays. Zero
events with a cosmic-tagged muon and electron were
observed; therefore, the background contribution from
untagged cosmic-ray muons in SR-eμ is expected to be
negligible. Fake electrons typically result from the mis-
matching of a track to a photon. Fake muons result from the

mismatching of an ID track to an MS track and are
comparatively rare, since there is less activity and better
pointing information in the MS than in the calorimeter.
Fake leptons tend to fail quality criteria; as a result, they
have poor χ2 or inconsistent track and lepton pT . Moreover,
these requirements also remove heavy-flavor contributions
which tend to have extra energy in their clusters compared
to their tracks. As a result, the contribution of these
backgrounds is estimated together. The quality criteria in
this analysis are uncorrelated between the two leptons in an
event, which has been verified in inverted regions in data.
Since the variables are uncorrelated, they can be used to
estimate the background contribution to the signal regions.
The background is estimated with an ABCD method [80]
by calculating the ratio of the number of events where
lepton 1 passes inverted quality criteria (not including
lepton pT or jd0j) and lepton 2 passes nominal require-
ments, and vice versa, divided by the number of events
where both leptons fail the quality criteria. To estimate the
background in SR-ee, where the two leading leptons are
electrons, lepton 1 is the leading electron, and lepton 2 is
the subleading electron. To estimate the background in SR-
eμ, where the two leading leptons are an electron and a
muon, leptons 1 and 2 are the leading electron and muon,
respectively. The same algorithm is used for SR-ee and SR-
eμ, but, due to statistical limitations in SR-eμ, the pT and
jd0j requirements on the leptons are relaxed to pT >
50 GeV and jd0j > 2 mm. As the pT and jd0j distributions
are exponentially falling, this results in a conservative
background estimate in SR-eμ.
In the ABCD method, the phase space is split into four

regions: region A, region B, regionC, and regionD. Region
A is the signal region, where all requirements are satisfied,
region B is the region where lepton 1 fails quality criteria
but lepton 2 passes all lepton requirements, region C is the
region where lepton 2 fails quality criteria but lepton 1
passes all requirements, and region D is the region where
both leptons fail quality criteria. For an electron, the
inverted quality criteria are ID track χ2=nd:o:f: > 2,
ðptrack

T − pe
TÞ=pe

T < −0.5, and greater than one missing
hit after the electron’s innermost hit. For a muon, the
inverted quality criteria are ID track χ2=nd:o:f: > 2, com-
bined MS and ID track χ2=nd:o:f: > 3, measurements in less
than three precision tracking layers of the MS, greater than
one missing hit after the muon’s innermost hit, and no high-
precision ϕ measurement. The number of events in the
signal region is then estimated by the following calculation:

Npredicted
A ¼ NB × NC

ND
;

where Npredicted
A is the predicted number of background

events in the signal region (region A), NB is the number of
events in region B, NC is the number of events in region C,
and ND is the number of events in region D.
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Validations of these background estimates are per-
formed, with the heavy-flavor and fake contributions
targeted separately. The validation of the heavy-flavor
contribution is achieved using the same method as the
nominal background estimation but inverting the isolation
requirement in all regions. To increase statistics, the
requirement on ðptrack

T − pe
TÞ=pe

T is loosened to be greater
than −0.9 instead of −0.5, as this distribution exponentially
decreases from −1 to −0.5. The fake-lepton contribution is
probed by inverting the most powerful fake discriminators
by requiring the electron variable ðptrack

T − pe
TÞ=pe

T to be
less than −0.5 and the muon’s combined track’s χ2=nd:o:f .
to be greater than 3 and performing the ABCD estimate
with the remaining quality criteria. The validation of both
estimates is shown in Table I. Even with the loosened
requirements of pT > 50 GeV and jd0j > 2 mm in VR-eμ-
fake and VR-eμ-heavy-flavor and ðptrack

T − pe
TÞ=pe

T > −0.9
in VR-eμ-heavy-flavor, the statistics in these validation
regions are limited. The background is so small since fake
muons are rare, and the requirements on pT and jd0j on
signal leptons render heavy-flavor backgrounds negligible.
Nonetheless, the numbers of estimated and observed events
were consistent within statistical uncertainties, and uncer-
tainties were assigned to account for small differences
between predictions and observations in each validation.
The predicted number of background events from fake and
heavy-flavor-decay leptons is 0.46" 0.10 in SR-ee and
0.007þ0.019

−0.007 in SR-eμ, including all uncertainties.
The dominant background in SR-μμ comes from mis-

measured reconstructed muons from cosmic rays. The fake
lepton background is found to be negligible due to the rarity
of fake muons. The heavy-flavor background is estimated
using an ABCD estimate extrapolating from nonisolated
muons to isolated muons with loosened pT and jd0j
requirements to increase statistics (pT > 50 GeV and
subleading muon jd0j > 0.5 mm). This results in a
heavy-flavor estimate of < 10−4 events. For a cosmic event
to be a background to this search, both μt and μb must be
reconstructed in the same event, which means their jtavg0 j
will be near the edges of the allowed range and are likely to
have their MS hits associated with the wrong event. This
results in reconstructed muons with good quality ID tracks,
but poor quality MS signatures, which could present
challenges in cosmic tagging one or both muons. An event
with a cosmic-ray muon could meet signal region require-
ments if both muons have missing MS hits and neither is
tagged. Cosmic-tagging failures occur not when the muon

in question is mismeasured, but when the muon is in the
half of the detector opposite to a poorly reconstructed MS
track, and no MS segments are found in the tag window.
The estimate of this background relies on the assumption
that the quality of a muon and its probability to be cosmic
tagged are uncorrelated.
All events considered in this estimate have μb passing all

signal requirements, while μt is either cosmic tagged, fails
to satisfy some of the quality criteria, or both. No dimuon
events were observed with two muons on the same side of
the detector. In events where μt is cosmic tagged, the ratio
of μt which satisfy the quality criteria to those that do not,
Rgood, is measured. This ratio is multiplied by the number
of events in which μt is not cosmic tagged but fails to
satisfy at least one of the quality criteria, to estimate the
background in SR-μμ. The estimate is validated by redefin-
ing the cosmic-tag window to leave more muons untagged,
providing a larger sample for studying Rgood. An additional
uncertainty is assigned to the background estimate from the
validation to account for the jd0j dependence of Rgood,
which cannot be directly constrained in the nominal
estimate due to statistical limitations. Additional valida-
tions test other assumptions by varying the quality criteria
and reversing the roles of μb and μt in the definition of
Rgood. Including all uncertainties, 0.11þ0.20

−0.11 events are
predicted in SR-μμ.
Signal systematic uncertainties are evaluated to quantify

differences between data and simulation and correct the
MC events where possible. Differences in signal lepton
selection efficiency cannot be compared between data and
MC simulation due to the lack of displaced leptons in data,
so a conservative systematic uncertainty is derived in three
steps. First, trigger, reconstruction, and selection efficien-
cies are measured for low-jd0j leptons resulting from Z
boson decays, for which data and simulation can be
compared. Scale factors are derived to correct the simu-
lation to match the data. Uncertainties in these scale factors
are statistical and less than 5%. Next, the high-jd0j tracking
efficiency is compared between signal simulation and data
with cosmic-tagged muons. After corrections to account for
the different physical processes, the tracking efficiency as a
function of displacement is compared, and an 8% uncer-
tainty is assigned to each lepton. Finally, the jd0j depend-
ence of the lepton reconstruction and selection efficiency is
compared with the jd0j dependence of the tracking effi-
ciency in simulation only. The variation of the selection
efficiency as a function of jd0j is taken as an uncertainty to

TABLE I. Validation of the background data-driven estimate for the ee and eμ channel fake and heavy-flavor backgrounds.
Uncertainties are statistical.

VR-ee-fake VR-ee-heavy-flavor VR-eμ-fake VR-eμ-heavy-flavor

Estimate 1356" 49 23.5" 1.9 1.9þ1.8
−1.0 0.38þ0.37

−0.32
Observed 1440 26 2 1
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account for any discrepancies that cannot be studied in data.
This uncertainty increases with displacement and is
0.5%–5% (3%–27%) for muons (electrons). It is larger
for electrons due to identification challenges introduced by
the ambiguity in the detector signatures of electrons,
photons, and converted photons. Theoretical uncertainties
include cross section uncertainties of 2%–6% and effects of
varying the factorization and renormalization scales < 5%.
Other uncertainties, including the impact of pileup on
signal selection, luminosity uncertainty [81,82], and uncer-
tainty from the filtering selection used for the extended
track reconstruction, contribute at < 2%.
Zero events are observed in each of the three signal

regions, consistent with the background predictions shown
in Table II. As no excess of events is observed, exclusion
limits on the l̃ masses are derived at 95% confidence
level (C.L.) following the C:L:s prescription [83]. The
HISTFITTER package [84] is used for statistical interpreta-
tion, and all systematic uncertainties are treated as Gaussian
nuisance parameters during the fitting procedure. SR-ee
and SR-μμ are fit individually to calculate limits on GMSB
SUSY models with a ẽ or μ̃ NLSP, while τ̃ NLSP and co-
NLSP limits are obtained using a simultaneous fit of all
three signal regions. All uncertainties other than statistical
are treated as correlated across the orthogonal regions.
Limits on long-lived l̃ production are presented in Fig. 2,

where expected and observed exclusion contours as a
function of l̃ mass and lifetime are shown. For a lifetime
of 0.1 ns, ẽNLSP, μ̃NLSP, τ̃ NLSP, and co-NLSP scenarios
are excluded for l̃ masses up to 720, 680, 340, and
820 GeV, respectively, for the case where the superpartners
of the left- and right-handed leptons are mass degenerate.
For a direct comparison with the previous best limits
available from LEP, superpartners of right-handed electrons
(ẽR), muons (μ̃R), and left-handed τ-leptons (τ̃L) are
excluded up to 580, 550, and 280 GeV, respectively, for
lifetimes of 0.1 ns. This result probes GMSB l̃ production
for the first time in this lifetime range at the electroweak
scale and approaching the TeV scale. Furthermore, as no
requirements were made on missing energy, displaced
vertices, or jets, this result is model independent and
applicable to any BSMmodel producing high-pT displaced
leptons.
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75aINFN-TIFPA, Trento, Italy
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