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Algorithms often have tunable parameters that impact performance metrics such as runtime and solution
quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds,
so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly
within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may
be rare or nonexistent in practice. A growing body of research has demonstrated that a data-driven approach
to parameter tuning can lead to significant improvements in performance. This approach uses a training set
of problem instances sampled from an unknown, application-specific distribution and returns a parameter
setting with strong average performance on the training set.
We provide techniques for deriving generalization guarantees that bound the difference between the algo-

rithm’s average performance over the training set and its expected performance on the unknown distribu-
tion. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach.
The challenge is that for many types of algorithms, performance is a volatile function of the parameters:
slightly perturbing the parameters can cause a large change in behavior. Prior research [e.g., 12, 16, 20, 62]
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has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering al-
gorithms, integer programming algorithms, and selling mechanisms. We streamline these analyses with a
general theorem that applies whenever an algorithm’s performance is a piecewise-constant, piecewise-linear,
or—more generally—piecewise-structured function of its parameters. Our results, which are tight up to loga-
rithmic factors in the worst case, also imply novel bounds for configuring dynamic programming algorithms
from computational biology.

CCS Concepts: • Theory of computation→ Sample complexity and generalization bounds;

Additional Key Words and Phrases: Automated algorithm design, data-driven algorithm design, automated
algorithm configuration, machine learning theory, computational biology
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1 Introduction

Algorithms often have tunable parameters that impact performance metrics such as runtime,
solution quality, and memory usage. These parameters may be set explicitly, as is often the
case in applied disciplines. For example, integer programming solvers expose over one hundred
parameters for the user to tune. There may not be parameter settings that admit meaningful
worst-case bounds, but after careful parameter tuning, these algorithms can quickly find solutions
to computationally challenging problems. However, applied approaches to parameter tuning
have rarely come with provable guarantees. Alternatively, an algorithm’s parameters may be set
implicitly, as is often the case in theoretical computer science: a proof may implicitly optimize over
a parameterized family of algorithms to guarantee a worst-case approximation factor or runtime
bound. Worst-case bounds, however, can be overly pessimistic in practice. In response to these
challenges, a growing body of research has demonstrated the power of using machine learning
to find parameter settings that work particularly well on problems from the application domain
at hand.
We present techniques for proving generalization guarantees for these data-driven approaches

to parameter tuning.We adopt a natural learning-theoretic model introduced by Gupta and Rough-
garden [62] where—as in the applied literature on this topic [e.g., 68, 71, 74, 83, 109, 109, 129, 130]—
we assume there is an unknown, application-specific distribution over the algorithm’s input in-
stances. A learning procedure receives a training set sampled from this distribution and returns
a parameter setting—or configuration—with strong average performance over the training set. If
the training set is too small, this configuration may have poor expected performance. General-
ization guarantees bound the difference between average performance over the training set and
actual expected performance. Our guarantees apply no matter how the parameters are tuned, via
an algorithmic search [e.g., 35, 109, 129, 130], or manually [e.g., 25, 73, 90].
Acrossmany types of algorithms—for example, combinatorial algorithms, integer programs, and

dynamic programs—the algorithm’s performance is a volatile function of its parameters. This is
a key challenge that distinguishes our results from prior research on generalization guarantees.
For well-understood functions in machine learning theory, there is generally a simple connection
between a function’s parameters and the value of the function. Meanwhile, slightly perturbing an
algorithm’s parameters can cause significant changes in its behavior and performance.
To provide generalization bounds, we exploit useful structure that governs these volatile

performance functions. This structure depends on the relationship between primal and dual
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Fig. 1. A piecewise-constant function over R2≥0 with linear boundary functions д(1) and д(2).

functions [5]. To derive generalization bounds, a common strategy is to calculate the intrinsic

complexity of a function class U which we refer to as the primal class. Every function uρ ∈ U is
defined by a parameter setting ρ ∈ Rd and uρ (x) ∈ R measures the performance of the algorithm
parameterized by ρ given the input x . We measure intrinsic complexity using the classic notion
of pseudo-dimension [103]. This is a challenging task because the domain of every function in U is
a set of problem instances, so there are no obvious notions of Lipschitz continuity or smoothness
on which we can rely. Instead, we use structure exhibited by the dual class U ∗. Every dual function
u∗
x ∈ U ∗ is defined by a problem instance x and measures the algorithm’s performance as a
function of its parameters given x as input. The dual functions have a simple, Euclidean domain
R
d and they have ample structure which we can use to bound the pseudo-dimension of U .

1.1 Our Contributions

Our results apply to any parameterized algorithmwith dual functions that exhibit a clear-cut struc-
tural property: the duals are piecewise constant, piecewise linear, or—more broadly—piecewise
structured. The parameter space decomposes into a small number of regions such that within
each region, the algorithm’s performance is “well-behaved.” As an example, Figure 1 illustrates
a piecewise-structured function of two parameters ρ[1] and ρ[2]. There are two functions д(1) and
д(2) that define a partition of the parameter space and four constant functions that define the func-
tion value on each subset from this partition.
More formally, the dual class U ∗ is (F ,G,k)-piecewise decomposable if for every problem in-

stance, there are at most k boundary functions from a set G (for example, the set of linear
separators) that partition the parameter space into regions such that within each region, al-
gorithmic performance is defined by a function from a set F (for example, the set of con-
stant functions). We bound the pseudo-dimension of U in terms of the pseudo- and VC-
dimensions of the dual classes F ∗ and G∗, denoted Pdim(F ∗) and VCdim (G∗). This yields
our main theorem: if [0,H ] is the range of the functions in U , then with probability 1 −
δ over the draw of N training instances, for any parameter setting, the difference between
the algorithm’s average performance over the training set and its expected performance is

O(H
√

1
N
((Pdim(F ∗) + VCdim(G∗)) ln(k(Pdim(F ∗) + VCdim(G∗))) + ln 1

δ
)). Specifically, we prove

that Pdim(U ) = Õ ((Pdim (F ∗) + VCdim (G∗)) lnk) and that this bound is tight up to log factors.
The classes F and G are often so well structured that bounding Pdim (F ∗) and VCdim (G∗) is
straightforward.
This article contributes to a line of research [6, 12, 13, 16, 20, 62] that provides generalization

bounds for a selection of parameterized algorithms, including greedy algorithms [62], clustering
algorithms [16], and integer programming algorithms [12, 16], as well as mechanism design for rev-
enue maximization [20, tying into a longer line of research on this topic described in Section 1.2].
These works uncover structural properties of these algorithms that then imply—in the words of
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Table 1. Summary of the New Application Areas in This Article

Problem Section

Sequence alignment Section 4.1
RNA folding Section 4.2
Prediction of topologically associating domains Section 4.3

this article—that the parameterized algorithms’ dual classes are piecewise decomposable. Ourmain
theorem then immediately implies generalization bounds for these classes, thus streamlining these
articles’ analyses. In this article, we also derive new generalization bounds for computational biol-
ogy algorithms.

Proof insights. At a high level, we prove this guarantee by counting the number of parameter
settings with significantly different performance over any set S of problem instances. To do so, we
first count the number of regions induced by the |S |k boundary functions that correspond to these
problem instances. This step subtly depends not on the VC-dimension of the class of boundary
functions G , but rather on VCdim (G∗). These |S |k boundary functions partition the parameter
space into regions where across all instances x in S , the dual functions u∗

x are simultaneously
structured. Within any one region, we use the pseudo-dimension of the dual class F ∗ to count the
number of parameter settings in that regionwith significantly different performance.We aggregate
these bounds over all regions to bound the pseudo-dimension of U .

Parameterized dynamic programming algorithms from computational biology. Our results imply
bounds for a variety of computational biology algorithms that are used in practice. We analyze
parameterized sequence alignment algorithms [47, 59, 63, 101, 102] as well as RNA folding algo-
rithms [100], which predict how an input RNA strandwould naturally fold, offering insight into the
molecule’s function. We also provide guarantees for algorithms that predict topologically associat-
ing domains in DNA sequences [48], which shed light on how DNA wraps into three-dimensional
structures that influence genome function. We provide a summary of these application areas
in Table 1.

Parameterized voting mechanisms. A mechanism is a special type of algorithm designed to help
a set of agents come to a collective decision. For example, a town’s residents may want to build
a public resource such as a park, pool, or skating rink, and a mechanism would help them decide
which to build (as in participatory democracy [e.g., 52]). In Appendix F, we analyze neutral affine

maximizers [91, 97, 106], a well-studied family of parameterized mechanisms. The parameters can
be tuned to maximize social welfare, which is the sum of the agents’ values for the mechanism’s
outcome. We study the standard single-shot setting where there is a distribution over agents’ val-
ues that represents the mechanism designer’s domain-specific knowledge. Rather than designing
the mechanism using the complex analytical form of the joint distribution—as is typical in mech-
anism design—we study the case where the mechanism designer only needs samples from this
distribution.

1.2 Additional Related Research

Starting with research by Gupta and Roughgarden [62] and followed by Balcan et al. [16],
a growing body of research investigates learning-theoretic guarantees for incorporating ma-
chine learning into the process of algorithm design, known as data-driven algorithm design [e.g.,
6, 7, 12, 13, 16, 20, 26, 50, 62]. A chapter by Balcan [8] provides a survey. We highlight a few of the
articles that are most related to ours below.

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



How Much Data Is Sufficient to Learn High-Performing Algorithms? 32:5

1.2.1 Prior Research.

Runtime optimization with provable guarantees. Kleinberg et al. [78, 79] and Weisz et al. [126,
127] provide configuration procedures with provable guarantees when the goal is to minimize
runtime. In contrast, our bounds apply to arbitrary performancemetrics, such as solution quality as
well as runtime. Also, their procedures are designed for the casewhere the set of parameter settings
is finite (although they can still offer some guarantees when the parameter space is infinite by first
sampling a finite set of parameter settings and then running the configuration procedure; Balcan
et al. [12, 21] study what kinds of guarantees discretization approaches can and cannot provide). In
contrast, our guarantees apply immediately to infinite parameter spaces. Finally, unlike our results,
the guarantees from this prior research are not configuration-procedure-agnostic: they apply only
to the specific procedures that are proposed.

Learning-augmented algorithms. A related line of research has designed algorithms that replace
some steps of a classic worst-case algorithm with a machine-learned oracle that makes predictions
about structural aspects of the input [69, 89, 92, 105]. If the prediction is accurate, the algorithm’s
performance (for example, its error or runtime) is superior to the original worst-case algorithm,
and if the prediction is incorrect, the algorithm’s performance is close to that of the best-known
worst-case algorithm. Though similar, our approach to parameter tuning is different because we
are not attempting to learn structural aspects of the input; rather, we provide guarantees for tuning
the algorithm’s parameters directly using the training set.

Online and private configuration with well-structured duals. Prior research has also demonstrated
the utility of dual functions for parameter tuning in the context of online learning [7, 13, 23, 33, 62]—
where problem instances arrive one-by-one and the goal is to minimize regret with respect to the
best configuration in hindsight—and private algorithm configuration [13]—where the goal is to find
a high-performing configuration without revealing sensitive information in the training set. These
tasks are impossible in the worst case, so these articles identify a property of the dual functions
under which online and private configuration are possible. Balcan et al. [13] call this property
dispersion, which, roughly speaking, requires that the discontinuities of the dual functions are not
too concentrated in any ball. Online learning guarantees imply sample complexity guarantees due
to online-to-batch conversion, and Balcan et al. [13] also provide sample complexity guarantees
based on dispersion using Rademacher complexity.
To prove that dispersion holds, one typically needs to show that under the distribution over

problem instances, the dual functions’ discontinuities do not concentrate. This argument is typi-
cally made by assuming that the distribution is sufficiently nice or—when applicable—by appealing
to the random nature of the parameterized algorithm. Thus, for arbitrary distributions and deter-
ministic algorithms, dispersion does not necessarily hold. In contrast, our results hold even when
the discontinuities concentrate, and thus apply to a broader set of problems in the distributional
learning model. In other words, the results from this article cannot be recovered using the tech-
niques of Balcan et al. [7, 13]. However, the techniques of Balcan et al. [7, 13] apply to a broader
set of problems, including private optimization, where the goal is to find a configuration without
leaking sensitive information contained within the training set.

Mechanism design. Contributing to a line of research on sample complexity bounds for revenue
maximization [e.g., 3, 27, 29, 34, 36, 40, 56, 57, 61, 65, 70, 93–96, 107, 117], Balcan et al. [20]1

prove that a wide variety of selling mechanisms’ revenue functions are piecewise linear in their

1The reference by Balcan et al. [20] was an extended abstract, and the same set of results will appear in a journal publica-
tion [19].
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parameters (for example, their prices). They use this structure to prove generalization guaran-
tees. In the language of this article, Balcan et al. [20] prove that these mechanism families have
piecewise-decomposable dual functions where the boundary and piece functions are linear, though
Balcan et al. [20] did not frame their problem in the language of primal and dual functions.
This article advances over the article by Balcan et al. [20] in several respects. First, the case

where the boundary and piece functions are linear is an especially simple case of our broader
results because the dual of a class of linear functions is linear—there is essentially no distinction
between the primal and dual functions. Balcan et al. [20] could therefore apply classical results
about hyperplane arrangements [28] to count the number of regions induced by the boundary
functions, a result that does not apply to more general boundary functions.
Crucially, since the result of Balcan et al. [20] is specific to linear functions, it would not apply to

prior or subsequent research where both the piece and boundary functions are not linear [15–18].
First, as we describe in Section 5.2, prior research studied the configuration of integer quadratic pro-
gramming approximation algorithms [16]. In that setting, the piece functions are inverse-quadratic,
of the form a

ρ2
+ b

ρ
+c for constants a,b, c ∈ R. This prior research demonstrated that Balcan et al.’s

result [20] for piecewise-linear revenue functions was not sufficient to provide a general theory
for algorithm configuration.
Subsequent research has validated the utility of this article’s broadly applicable results, confirm-

ing that piecewise linear functions are only a special case in algorithm configuration. For example,
subsequent research has shown that the results in this article can be applied to (1) selecting cutting
planes for integer programming solvers, where the boundary functions are multi-dimensional
polynomial hypersurfaces [17, 18], and (2) configuring the regularization parameters of ElasticNet,
where the boundary functions are semi-algebraic sets bounded by algebraic curves and the piece
functions are rational polynomial functions [15]. These results take us increasingly far from the
special case of piecewise-linear revenue functions. Therefore, this article aims not only at gener-
alizing the result of Balcan et al. [20] but also to find an abstraction that simultaneously captures
that piecewise-linear structure and the non-linear structure observed for other configuration
problems.
Since there is no distinction between the linear primal and dual functions in the article by Balcan

et al. [20], the natural but incorrect extrapolation of that article’s results to non-linear functions
would be that the pseudo-dimension of an (F ,G,k)-piecewise decomposable function class U will
depend on the VC and pseudo-dimensions ofF andG , when this is not the case—rather, the pseudo-
dimension of U depends on the intrinsic complexities of the duals F ∗ and G∗ of these function
classes. In general, the difference between VCdim(G) and VCdim(G∗) can be exponential, so this
is a subtle but important distinction.

1.2.2 Concurrent and Subsequent Research. Subsequently to the appearance of the original ver-
sion of this article in 2019 [10], an extensive body of research has developed that studies the use
of machine learning in the context of algorithm design, as we highlight below.

Learning-augmented algorithms. The literature on learning-augmented algorithms (summarized
in the previous section) has continued to flourish in subsequent research [37, 38, 42, 43, 72, 76, 82, 82,
125]. Some of these articles make explicit connections to the types of parameter tuning problems
we study in this article, such as research by Lavastida et al. [82], who study online flow allocation
and makespan minimization problems. They formulate the machine-learned predictions as a set of
parameters and study the sample complexity of learning a good parameter setting. An interesting
direction for future research is to investigate which other problems from this literature can be
formulated as parameter tuning problems, and whether the techniques in this article can be used
to derive tighter or novel guarantees.

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.
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Sample complexity bounds for algorithm design. As indicated in Section 1.2.1, several subsequent
articles have used the main results in this article to provide sample complexity bounds [2, 15, 17,
18, 108]. Additional applications have included learning heuristic functions for search [108] and
algorithmic fairness [2].
Chawla et al. [30] study the Pandora’s box problem, where there is a set of alternatives with

costs drawn from an unknown distribution. A search algorithm observes the alternatives’ costs
one by one, eventually stopping and selecting one alternative. The authors show how to learn an
algorithm that minimizes the selected alternative’s expected cost, plus the number of alternatives
the algorithm examines. The primary contributions of that article are (1) identifying a finite subset
of algorithms that compete with the optimal algorithm, and (2) showing how to efficiently optimize
over that finite subset of algorithms. Since the authors prove that they only need to optimize over
a finite subset of algorithms, the sample complexity of this approach follows from a Hoeffding and
union bound.
Blum et al. [26] study a data-driven approach to learning a nearly optimal cooling schedule

for the simulated annealing algorithm. They provide upper and lower sample complexity bounds,
with their upper bound following from a careful covering number argument. We leave as an open
question whether our techniques can be combined with theirs to match their sample complexity
lower bound of Ω̃( 3

√
m), wherem is the cooling schedule length.

Bartlett et al. [24] provide generalization bounds for learning over a family of low-rank ap-
proximation algorithms. Their analysis is based on a refined version of the Goldberg and Jerrum
framework [55] for bounding the VC dimension of a function class based on the number of arith-
metic operations and conditional statements required to compute the functions in the class. Their
pseudo-dimension bound grows linearly with the number of algorithm parameters and—at a high
level—logarithmically with the complexity of these arithmetic operations and conditional state-
ments. This analysis allows them to prove a tighter bound than our main theorem would imply
since in their setting, the VC dimension of the set G∗ is exponential in the number of algorithm
parameters, but using their analysis, they obtain a bound that grows only linearly with the number
of parameters.

Machine learning for combinatorial optimization. A growing body of applied research has devel-
oped machine learning approaches to discrete optimization, largely intending to improve classic
optimization algorithms such as branch-and-bound [e.g., 41, 46, 49, 80, 104, 113, 115, 116, 118, 124,
131]. For example, Chmiela et al. [31] present data-driven approaches to scheduling heuristics in
branch-and-bound, and they leave as an open question whether the techniques in this article can
be used to provide provable guarantees.

2 Notation and Problem Statement

We study algorithms parameterized by a set P ⊆ Rd . As a concrete example, parameterized al-
gorithms are often used for sequence alignment [59]. There are many features of an alignment
one might wish to optimize, such as the number of matches, mismatches, or indels (defined in Sec-
tion 4.1). A parameterized objective function is defined by weighting these features. As another
example, hierarchical clustering algorithms often use linkage routines such as single, complete, and
average linkage. Parameters can be used to interpolate between these three classic procedures [16],
which can be outperformed with a careful parameter tuning [6].
We use X to denote the set of problem instances the algorithm takes as input. We measure the

performance of the algorithm parameterized by ρ = (ρ[1], . . . , ρ[d]) ∈ Rd via a utility function
uρ : X → [0,H ], with U = {uρ : ρ ∈ P} denoting the set of all such functions. We assume there
is an unknown, application-specific distribution D over X .

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



32:8 M.-F. Balcan et al.

Our goal is to find a parameter vector inP with high performance in expectation over the distri-
bution D. We provide generalization guarantees for this problem. Given a training set of problem
instances S sampled from D, a generalization guarantee bounds the difference—for any choice
of the parameters ρ—between the average performance of the algorithm over S and its expected
performance.
Specifically, our main technical contribution is a bound on the pseudo-dimension [103] of the set

U . To define pseudo-dimension, we first define the related notion of VC dimension [120]. LetH be
an arbitrary set of binary functions that map an abstract domain Y to {0, 1}. The VC dimension of
H, denoted VCdim(H), is the size of the largest set {y1, . . . ,yN } ⊆ Y that is shattered byH:�������

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

h (y1)
...

h (yN )

���

�������h ∈ H

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� = 2N .

Meanwhile, pseudo-dimension is a complexity measure for real-valued functions. In particular,
let H be an arbitrary set of functions that map an abstract domain Y to R. We convert these
real-valued functions into binary-valued functions by defining the set of below-the-graph indicator
functions BH, which equals the set of all functionsbh : Y×R→ {0, 1}wherebh(y, z) = sign(h(y)−
z). Then the pseudo-dimension of H, denoted Pdim(H), is the VC dimension of BH: Pdim(H) =
VCdim (BH). In other words, Pdim(H) is the size of the largest set {y1, . . . ,yN } ⊆ Y such that for
some set of targets z1, . . . ,zN ∈ R,�������

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign (h (y1) − z1)

...
sign (h (yN ) − zN )

���

�������h ∈ H

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� = 2N . (1)

Classic results from learning theory [103] translate pseudo-dimension bounds into generalization
guarantees. For example, suppose [0,H ] is the range of the functions in H. For any δ ∈ (0, 1) and
any distribution D over Y , with probability 1 − δ over the draw of S ∼ DN , for all functions
h ∈ H, the difference between the average value of h over S and its expected value is bounded as
follows: ������ 1N ∑

y∈S
h(y) − E

y∼D
[h(y)]

������ = O �	
H
√

1

N

(
Pdim(H) + ln 1

δ

)��
 . (2)

When H is a set of binary-valued functions that map Y to {0, 1}, the pseudo-dimension of H is
more commonly referred to as the VC-dimension of H [120], denoted VCdim(H).

3 Generalization Guarantees

When tuning an algorithm’s parameters, there are two closely related function classes. First, for
each parameter setting ρ ∈ P , uρ : X → R measures performance as a function of the input
x ∈ X . Similarly, for each input x , there is a function ux : P → R defined as ux (ρ) = uρ (x) that
measures performance as a function of the parameter vector ρ. The set {ux | x ∈ X } is equivalent
to Assouad’s notion of the dual class [5].

Definition 3.1 (Dual Class [5]). For any domain Y and set of functions H ⊆ RY , the dual class
of H is defined as H∗ = {h∗y : H → R | y ∈ Y } where h∗y (h) = h(y). Each function h∗y ∈ H∗ fixes
an input y ∈ Y and maps each function h ∈ H to h(y). We refer to the classH as the primal class.

The set of functions {ux | x ∈ X } is equivalent to the dual class U ∗ = {u∗x : U → [0,H ] |
x ∈ X } in the sense that for every parameter vector ρ ∈ P and every problem instance x ∈ X ,
ux (ρ) = u∗x (uρ ).
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Fig. 2. Boundary functions partitioning R2. The arrows indicate on which side of each function д(i)(ρ) = 0
and on which side д(i)(ρ) = 1. For example, д(1)(ρ1) = 1, д(1)(ρ2) = 1, and д(1)(ρ3) = 0.

Many combinatorial algorithms share a clear-cut, useful structure: for each instance x ∈ X ,
the function ux is piecewise structured. For example, each function ux might be piecewise constant
with a small number of pieces. Given the equivalence of the functions {ux | x ∈ X } and the dual
class U ∗, the dual class exhibits this piecewise structure as well. We use this structure to bound
the pseudo-dimension of the primal class U .
Intuitively, a function h : Y → R is piecewise structured if we can partition the domain Y

into subsets Y1, . . . ,YM so that when we restrict h to one piece Yi , h equals some well-structured
function f : Y → R. In other words, for ally ∈ Yi ,h(y) = f (y). We define the partitionY1, . . . ,YM

using boundary functions д(1), . . . ,д(k ) : Y → {0, 1}. Each function д(i) divides the domain Y into
two sets: the points it labels 0 and the points it labels 1. Figure 2 illustrates a partition of R2

by boundary functions. Together, the k boundary functions partition the domain Y into at most
2k regions, each one corresponding to a bit vector b ∈ {0, 1}k that describes on which side of
each boundary the region belongs. For each region, we specify a piece function fb : Y → R that
defines the function values of h restricted to that region. Figure 1 shows an example of a piecewise-
structured function with two boundary functions and four piece functions.
For many parameterized algorithms, every function in the dual class is piecewise structured.

Moreover, across dual functions, the boundary functions come from a single, fixed class, as do
the piece functions. For example, the boundary functions might always be halfspace indicator
functions, while the piece functions might always be linear. The following definition captures
this structure.

Definition 3.2. A function class H ⊆ RY that maps a domain Y to R is (F ,G,k)-piecewise
decomposable for a class G ⊆ {0, 1}Y of boundary functions and a class F ⊆ RY of piece functions
if the following holds: for every h ∈ H, there are k boundary functions д(1), . . . ,д(k ) ∈ G and a
piece function fb ∈ F for each bit vector b ∈ {0, 1}k such that for all y ∈ Y , h(y) = fby (y) where
by = (д(1)(y), . . . ,д(k )(y)) ∈ {0, 1}k .

Our main theorem shows that whenever the dual class U ∗ is (F ,G,k)-piecewise decomposable,
we can bound the pseudo-dimension of U in terms of the VC-dimension of G∗ and the pseudo-
dimension of F ∗. Later, we show that for many common classes F and G , we can easily bound
the complexity of their duals.

Theorem 3.3. Suppose that the dual function class U ∗ is (F ,G,k)-piecewise decomposable with

boundary functions G ⊆ {0, 1}U and piece functionsF ⊆ RU . The pseudo-dimension of U is bounded

as follows:

Pdim(U ) = O
( (
Pdim(F ∗) + VCdim(G∗)

)
ln
(
Pdim(F ∗) + VCdim(G∗)

)
+ VCdim(G∗) lnk

)
.

To help make the proof of Theorem 3.3 succinct, we extract a key insight in the following
lemma. Given a set of functionsH that map a domain Y to {0, 1}, Lemma 3.4 bounds the number
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of binary vectors

(h1(y), . . . ,hN (y)) , (3)

we can obtain for any N functions h1, . . . ,hN ∈ H as we vary the input y ∈ Y . Pictorially, if we
partition R2 using the functions д(1), д(2), and д(3) from Figure 2 for example, Lemma 3.4 bounds
the number of regions in the partition. This bound depends not on the VC-dimension of the class
H, but rather on that of its dual H∗. We use a classic lemma by Sauer [112] to prove Lemma 3.4.
Sauer’s lemma [112] bounds the number of binary vectors of the form (h (y1) , . . . ,h (yN )) we can
obtain for any N elements y1, . . . ,yN ∈ Y as we vary the function h ∈ H by (eN )VCdim(H) [e.g., 4,
Theorem 3.7]. Therefore, it does not immediately imply a bound on the number of vectors from
Equation (3). To apply Sauer’s lemma, we must transition to the dual class.

Lemma 3.4. Let H be a set of functions that map a domain Y to {0, 1}. For any functions

h1, . . . ,hN ∈ H, the number of binary vectors (h1(y), . . . ,hN (y)) obtained by varying the input

y ∈ Y is bounded as follows:

|{(h1(y), . . . ,hN (y)) |y ∈ Y}| ≤ (eN )VCdim(H∗). (4)

Proof. We rewrite the left-hand-side of Equation (4) as |{(h∗y (h1), . . . ,h∗y (hN )) |y ∈ Y }|.
Since we fix N inputs and vary the function h∗y , the lemma statement follows from Sauer’s
lemma [112]. �

We now prove Theorem 3.3.

Proof of Theorem 3.3. Fix an arbitrary set of problem instances x1, . . . ,xN ∈ X and targets
z1, . . . , zN ∈ R. We bound the number of ways that U can label the problem instances x1, . . . ,xN
with respect to the target thresholds z1, . . . , zN ∈ R. In other words, as per Equation (1), we bound
the size of the set�������

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
uρ (x1) − z1

)
...

sign
(
uρ (xN ) − zN

)���

������� ρ ∈ P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� =

�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
u∗
x1

(
uρ

)
− z1

)
...

sign
(
u∗xN

(
uρ

)
− zN

)���

������� ρ ∈ P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� , (5)

by (ekN )VCdim(G∗)(eN )Pdim(F ∗). Then solving for the largest N such that

2N ≤ (ekN )VCdim(G∗)(eN )Pdim(F ∗),

gives a bound on the pseudo-dimension of U . Our bound on Equation (5) has two main steps:
(1) In Claim 3.5, we show that there are M < (ekN )VCdim(G∗) subsets P1, . . . ,PM partitioning

the parameter space P such that within any one subset, the dual functions u∗
x1
, . . . ,u∗

xN
are simultaneously structured. In particular, for each subset Pj , there exist piece functions
f1, . . . , fN ∈ F such thatu∗

xi
(uρ ) = fi (uρ ) for all parameter settings ρ ∈ Pj and i ∈ [N ]. This

is the partition of P induced by aggregating all of the boundary functions corresponding to
the dual functions u∗

x1
, . . . ,u∗

xN
.

(2) We then show that for any regionPj of the partition, as we vary the parameter vector ρ ∈ Pj ,
uρ can label the problem instances x1, . . . ,xN in at most (eN )Pdim(F ∗) ways with respect to
the target thresholds z1, . . . , zN . It follows that the total number of ways that U can label
the problem instances x1, . . . ,xN is bounded by (ekN )VCdim(G∗)(eN )Pdim(F ∗).

We now prove the first claim.

Claim 3.5. There are M < (ekN )VCdim(G∗) subsets P1, . . . ,PM partitioning the parameter space

P such that within any one subset, the dual functions u∗
x1
, . . . ,u∗

xN
are simultaneously structured. In
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particular, for each subset Pj , there exist piece functions f1, . . . , fN ∈ F such that u∗
xi
(uρ ) = fi (uρ )

for all parameter settings ρ ∈ Pj and i ∈ [N ].
Proof of Claim 3.5. Let u∗x1 , . . . ,u

∗
xN

∈ U ∗ be the dual functions corresponding to the prob-
lem instances x1, . . . ,xN . Since U ∗ is (F ,G,k)-piecewise decomposable, we know that for each

function u∗
xi
, there are k boundary functions д(1)i , . . . ,д

(k )
i ∈ G ⊆ {0, 1}U that define its piecewise

decomposition. Let Ĝ = ⋃N
i=1{д

(1)
i , . . . ,д

(k )
i } be the union of these boundary functions across all

i ∈ [N ]. For ease of notation, we relabel the functions in Ĝ , calling them д1, . . . ,дkN . LetM be the
total number of kN -dimensional vectors we can obtain by applying the functions in Ĝ ⊆ {0, 1}U
to elements of U :

M :=

�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

д1

(
uρ

)
...

дkN
(
uρ

)���
 : ρ ∈ P
⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� . (6)

By Lemma 3.4, M < (ekN )VCdim(G∗). Let b1, . . . ,bM be the binary vectors in the set from Equa-
tion (6). For each i ∈ [M], let Pj = {ρ | (д1(uρ ), . . . ,дkN (uρ )) = bj }. By construction, for each set
Pj , the values of all the boundary functions д1(uρ ), . . . ,дkN (uρ ) are constant as we vary ρ ∈ Pj .
Therefore, there is a fixed set of piece functions f1, . . . , fN ∈ F so that u∗

xi
(uρ ) = fi (uρ ) for all

parameter vectors ρ ∈ Pj and indices i ∈ [N ]. Therefore, the claim holds. �

Claim 3.5 and Equation (5) imply that for every subset Pj of the partition,�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
uρ (x1) − z1

)
...

sign
(
uρ (xN ) − zN

)���

������� ρ ∈ Pj

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� =

�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
f1
(
uρ

)
− z1

)
...

sign
(
fN

(
uρ

)
− zN

)���

������� ρ ∈ Pj

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� .

Switching to the dual class as in Lemma 3.4, we have that�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
uρ (x1) − z1

)
...

sign
(
uρ (xN ) − zN

)���

������� ρ ∈ Pj

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� =

���������
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�				

sign

(
f ∗uρ (f1) − z1

)
...

sign
(
f ∗uρ (fN ) − zN

)�����

��������� ρ ∈ Pj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
��������� .

By definition of the class of below-the-graph indicator functions from Section 2, we have that�������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

sign

(
uρ (x1) − z1

)
...

sign
(
uρ (xN ) − zN

)���

������� ρ ∈ Pj

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� ≤ (eN )VCdim(BF∗ ) = (eN )Pdim(F ∗). (7)

In other words, for any region Pj of the partition, as we vary the parameter vector ρ ∈ Pj , uρ
can label the problem instances x1, . . . ,xN in at most (eN )Pdim(F ∗) ways with respect to the target
thresholds z1, . . . , zN . Because there are M < (ekN )VCdim(G∗) regions Pj of the partition, we can
conclude that U can label the problem instances x1, . . . ,xN in at most (ekN )VCdim(G∗)(eN )Pdim(F ∗)

distinct ways relative to the targets z1, . . . ,zN . In other words, Equation (5) is bounded by

(ekN )VCdim(G∗)(eN )Pdim(F ∗).

On the other hand, if U shatters the problem instances x1, . . . ,xN , then the number of distinct
labelings must be 2N . Therefore, the pseduo-dimension of U is at most the largest value of N
such that 2N ≤ (ekN )VCdim(G∗)(eN )Pdim(F ∗), which implies that

N = O ((Pdim(F ∗) + VCdim(G∗)) ln (Pdim(F ∗) + VCdim(G∗)) + VCdim(G∗) lnk) ,
as claimed. �
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Fig. 3. Each solid line is a function with bounded oscillations and each dotted line is an arbitrary threshold.

Many parameterized algorithms have piecewise-structured duals with piece functions from these families.

We describe several lower bounds which show that Theorem 3.3 is tight up to logarithmic
factors.

Theorem 3.6. There is a parameterized sequence alignment algorithm with Pdim(U ) = Ω(logn)
for some n ≥ 1. Its dual class U ∗ is (F ,G,n)-piecewise decomposable for classes F and G with

Pdim(F ∗) = VCdim(G∗) = 1.

Proof. In Theorem 4.5, we prove the result for sequence alignment, in which case n is the
maximum length of the sequences, F is the set of constant functions, and G is the set of threshold
functions. �

Moreover, as we describe in Section 5.4, there are several function classes U from economic
mechanism designwhose dualsU ∗ are piecewise decomposable with piece functionsF and bound-
ary functions G where Pdim(U ) = Ω(Pdim(F ∗) + VCdim(G∗)) [13].

Applications of our main theorem to representative function classes

We now instantiate Theorem 3.3 in a general setting inspired by structure that many algorithm
families exhibit.

One-dimensional functions with a bounded number of oscillations. Let U = {uρ | ρ ∈ R} be a
set of utility functions defined over a single-dimensional parameter space. We often find that the
dual functions are piecewise constant, linear, or polynomial. More generally, the dual functions are
piecewise structuredwith piece functions that oscillate a fixed number of times. In other words, the
dual class U ∗ is (F ,G,k)-piecewise decomposable where the boundary functions G are thresholds
and the piece functions F oscillate a bounded number of times, as formalized below.

Definition 3.7. A function h : R→ R has at most B oscillations if for every z ∈ R, the function
ρ 
→ I{h(ρ)≥z } is piecewise constant with at most B discontinuities.

Figure 3 illustrates three common types of functions with bounded oscillations. In the following
lemma, we prove that if H is a class of functions that map R to R, each of which has at most B
oscillations, then Pdim(H∗) = O(lnB).

Lemma 3.8. LetH be a class of functions mapping R to R, each of which has at most B oscillations.

Then Pdim(H∗) = O(lnB).

Proof. Suppose that Pdim(H∗) = N . Then there exist functions h1, . . . ,hN ∈ H and witnesses
z1, . . . , zN ∈ R such that for every subsetT ⊆ [N ], there exists a parameter setting ρ ∈ R such that
h∗ρ (hi ) ≥ zi if and only if i ∈ T . We can simplify notation as follows: since h(ρ) = h∗ρ (h) for every
function h ∈ H, we have that for every subset T ⊆ [N ], there exists a parameter setting ρ ∈ R
such that hi (ρ) ≥ zi if and only if i ∈ T . Let P∗ be the set of 2N parameter settings corresponding
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to each subset T ⊆ [N ]. By definition, these parameter settings induce 2N distinct binary vectors
as follows: �������

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�		

I{h1(ρ)≥z1 }
...

I{hN (ρ)≥zN }

���
 : ρ ∈ P∗

⎫⎪⎪⎪⎬⎪⎪⎪⎭
������� = 2N .

On the other hand, since each function hi has at most B oscillations, we can partition R into
M ≤ BN + 1 intervals I1, . . . , IM such that for every interval Ij and every i ∈ [N ], the function
ρ 
→ I{hi (ρ)≥zi } is constant across the interval Ij . Therefore, at most one parameter setting ρ ∈ P∗

can fall within a single interval Ij because otherwise, if ρ, ρ ′ ∈ Ij ∩ P∗, then

�		

I{h1(ρ)≥z1 }
...

I{hN (ρ)≥zN }

���
 =
�		

I{h1(ρ′)≥z1 }

...
I{hN (ρ′)≥zN }

���
 ,
which is a contradiction since each parameter setting in P∗ induces a distinct binary vector. As a
result, 2N ≤ BN + 1. The lemma then follows from Lemma A.1. �

Lemma 3.8 implies the following pseudo-dimension bound when the dual function class U ∗ is
(F ,G,k)-piecewise decomposable, where the boundary functions G are thresholds and the piece
functions F oscillate a bounded number of times.

Lemma 3.9. Let U = {uρ | ρ ∈ R} be a set of utility functions and suppose the dual class U ∗

is (F ,G,k)-decomposable, where the boundary functions G = {дa | a ∈ R} are thresholds дa :
uρ 
→ I{a≤ρ } . Suppose for each f ∈ F , the function ρ 
→ f (uρ ) has at most B oscillations. Then

Pdim(U ) = O((lnB) ln(k lnB)).

Proof. First, we claim that VCdim(G∗) = 1. For a contradiction, suppose G∗ can shatter two
functions дa ,дb ∈ G∗, where a < b. There must be a parameter setting ρ ∈ R where д∗uρ (дa) =
дa(uρ ) = I{a≤ρ } = 0 and д∗uρ (дb ) = дb (uρ ) = I{b≤ρ } = 1. Therefore, b ≤ ρ < a, which is a
contradiction, so VCdim(G∗) = 1.
Next, we claim that Pdim(F ∗) = O(lnB). For each function f ∈ F , let hf : R→ R be defined as

hf (ρ) = f (uρ ). By assumption, each function hf has at most B oscillations. LetH = {hf | f ∈ F }
and let N = Pdim(H∗). By Lemma 3.8, we know that N = O(lnB). We claim that Pdim(H∗) ≥
Pdim(F ∗). For a contradiction, suppose the class F ∗ can shatter N + 1 functions f1, . . . , fN+1
using witnesses z1, . . . , zN+1 ∈ R. By definition, this means that���������

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�				

I{
f ∗uρ (f1)≥z1

}
...

I{
f ∗uρ (fN+1)≥zN+1

}
�����

: ρ ∈ P

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
��������� = 2

N+1.

For any function f ∈ F and any parameter setting ρ ∈ R, f ∗uρ (f ) = f
(
uρ
)
= hf (ρ) = h∗ρ (hf ).

Therefore, ��������
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�			

I{h∗

ρ (hf1 )≥z1}
...

I{h∗
ρ (hfN+1 )≥zN+1}

����
 : ρ ∈ P
⎫⎪⎪⎪⎬⎪⎪⎪⎭
�������� =

���������
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�				

I{
f ∗uρ (f1)≥z1

}
...

I{
f ∗uρ (fN+1)≥zN+1

}
�����

: ρ ∈ P

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
��������� = 2

N+1,

which contradicts the fact that Pdim(H∗) = N . Therefore, Pdim(F ∗) ≤ N = O(lnB). The corollary
then follows from Theorem 3.3. �
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Multi-dimensional piecewise-linear functions. For many algorithm families, we find that the
boundary functions correspond to halfspace thresholds and the piece functions correspond to con-
stant or linear functions. We handle this case in the following lemma.

Lemma 3.10. Let U = {uρ | ρ ∈ P ⊆ Rd } be a class of utility functions defined over a d-
dimensional parameter space. Suppose the dual class U ∗ is (F ,G,k)-piecewise decomposable, where

the boundary functions G = { fa,θ : U → {0, 1} | a ∈ Rd ,θ ∈ R} are halfspace indicator functions
дa,θ : uρ 
→ I{a ·ρ≤θ } and the piece functions F = { fa,θ : U → R | a ∈ Rd ,θ ∈ R} are linear
functions fa,θ : uρ 
→ a · ρ + θ . Then Pdim(U ) = O(d ln(dk)).
The proof of this lemma follows from classic VC- and pseudo-dimension bounds for linear func-

tions and can be found in Appendix B.

4 Parameterized Computational Biology Algorithms

We study algorithms that are used in practice for three biological problems: sequence alignment,
RNA folding, and predicting topologically associated domains in DNA. In these applications, there
are two unifying similarities. First, algorithmic performance is measured in terms of the distance
between the algorithm’s output and a ground-truth solution. In most cases, this solution is dis-
covered using laboratory experimentation, so it is only available for the instances in the train-
ing set. Second, these algorithms use dynamic programming to maximize parameterized objective
functions. This objective function represents a surrogate optimization criterion for the dynamic
programming algorithm, whereas utility measures how well the algorithm’s output resembles the
ground truth. There may be multiple solutions that maximize this objective function, which we
call co-optimal. Although co-optimal solutions have the same objective function value, they may
have different utilities. To handle tie-breaking, we assume that in any region of the parameter
space where the set of co-optimal solutions is fixed, the algorithm’s output is also fixed, which is
typically true in practice.
In some settings, while the correct biological answer can be foundwith enough time and funding,

it is both time and resource intensive, from the order of days to months or more to obtain correct
results for each item rather than minutes to hours for prediction. In other cases, the computational
prediction is the only feasible way to estimate the answer. With the correct parameter choices,
biologists can have high confidence that the predictions made by the algorithms will be equivalent
to—and thus can be used in lieu of—bench-based experiments.
The parameters used to fine-tune the prediction algorithms are meant to model biological pro-

cesses and in many cases the input may not come from a single distribution. This is especially true
when looking at rare diseases, and this is all the more reason why we want to have confidence that
we have enough training examples from the distribution of interest. If, for instance, one were to
study a rare disease, one would want to learn the model parameters that correctly match the bio-
logical process within that disease; that is, the distribution from which your samples come from is
unique to the biological question at hand. The procedure we provide in this work determines how
many examples one needs to properly learn a model that fits this distribution and how confident
you can be in the model’s prediction.

4.1 Sequence Alignment

4.1.1 Global Pairwise Sequence Alignment. In pairwise sequence alignment, the goal is to line
up strings in order to identify regions of similarity. In biology, for example, these similar regions
indicate functional, structural, or evolutionary relationships between the sequences. Formally, let
Σ be an alphabet and let S1, S2 ∈ Σn be two sequences. A sequence alignment is a pair of sequences
τ1,τ2 ∈ (Σ∪{−})∗ such that |τ1 | = |τ2 |, del (τ1) = S1, and del (τ2) = S2,where del is a function that
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deletes every −, or gap character. There are many features of an alignment that one might wish to
optimize, such as the number of matches (τ1[i] = τ2[i]), mismatches (τ1[i] � τ2[i]), indels (τ1[i] = −
or τ2[i] = −), and gaps (maximal sequences of consecutive gap characters in τ ∈ {τ1,τ2}). We
denote these features using functions �1, . . . , �d that map pairs of sequences (S1, S2) and alignments
L to R.
A common dynamic programming algorithm Aρ [59, 123] returns the alignment L that maxi-

mizes the objective function

ρ[1] · �1 (S1, S2,L) + · · · + ρ[d] · �d (S1, S2,L) , (8)

where ρ ∈ Rd is a parameter vector. We denote the output alignment as Aρ (S1, S2). As Gusfield
et al. [63] wrote, “there is considerable disagreement among molecular biologists about the correct
choice” of a parameter setting ρ.
We assume that there is a utility function that characterizes an alignment’s quality, denoted

u(S1, S2,L) ∈ R. For example, u(S1, S2,L) might measure the distance between L and a “ground
truth” alignment of S1 and S2 [111]. We then define uρ (S1, S2) = u(S1, S2,Aρ (S1, S2)) to be the
utility of the alignment returned by the algorithm Aρ .
In the following lemma, we prove that the set of utility functions uρ has piecewise-structured

dual functions.

Lemma 4.1. Let U be the set of functions U = {uρ : (S1, S2) 
→ u(S1, S2,Aρ (S1, S2)) | ρ ∈ Rd } that
map sequence pairs S1, S2 ∈ Σn to R. The dual class U ∗ is (F ,G, 4nn4n+2)-piecewise decomposable,

where F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c and G = {дa : U →
{0, 1} | a ∈ Rd } consists of halfspace indicator functions дa : uρ 
→ I{a ·ρ<0} .

Proof. Fix a sequence pair S1 and S2. Let L be the set of alignments the algorithm returns as we
range over all parameter vectors ρ ∈ Rd . In other words,L = {Aρ (S1, S2) | ρ ∈ Rd }. In Lemma C.1,
we prove that |L| ≤ 2nn2n+1. For any alignment L ∈ L, the algorithmAρ will return L if and only if

ρ[1] · �1 (S1, S2,L) + · · · + ρ[d] · �d (S1, S2,L) > ρ[1] · �1 (S1, S2,L′) + · · · + ρ[d] · �d (S1, S2,L′) , (9)

for all L′ ∈ L \ {L}. Therefore, there is a set H of at most
(2nn2n+1

2

)
≤ 4nn4n+2 hyperplanes such

that across all parameter vectors ρ in a single connected component of Rd \H, the output of the
algorithm parameterized by ρ, Aρ (S1, S2), is fixed. (As is standard, Rd \H indicates set removal.)
This means that for any connected component R of Rd \H, there exists a real value cR such that
uρ (S1, S2) = cR for all ρ ∈ R. By definition of the dual, this means that u∗

S1,S2
(uρ ) = uρ (S1, S2) = cR

as well.
We now use this structure to show that the dual class U ∗ is (F ,G, 4nn4n+2)-piecewise decom-

posable, as per Definition 3.2. Recall that G = {дa : U → {0, 1} | a ∈ Rd } consists of halfspace
indicator functions дa : uρ 
→ I{a ·ρ<0} and F = { fc : U → R | c ∈ R} consists of constant func-
tions fc : uρ 
→ c . For each pair of alignments L,L′ ∈ L, let д(L,L′) ∈ G correspond to the halfspace

represented in Equation (9). Order these k :=
( |L |
2

)
functions arbitrarily as д(1), . . . ,д(k ). Every con-

nected componentR ofRd\H corresponds to a sign pattern of thek hyperplanes. For a given region
R, let bR ∈ {0, 1}k be the corresponding sign pattern. Define the function f (bR ) ∈ F as f (bR ) = fcR ,
so f (bR )(uρ ) = cR for all ρ ∈ Rd . Meanwhile, for every vectorb not corresponding to a sign pattern
of the k hyperplanes, let f (b ) = f0, so f (b )(uρ ) = 0 for all ρ ∈ Rd . In this way, for every ρ ∈ Rd ,

u∗
S1,S2

(
uρ

)
=

∑
b ∈{0,1}k

I{д(i )(uρ )=b[i],∀i ∈[k ]} f
(b )(uρ ),

as desired. �
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Lemmas 3.10 and 4.1 imply the following corollary.

Corollary 4.2. The pseudo-dimension of U is O(nd lnn + d lnd).

In Appendix C, we also prove tighter guarantees for a structured subclass of algorithms [59, 123].
In that case, d = 4 and �1(S1, S2,L) is the number of matches in the alignment, �2(S1, S2,L) is the
number of mismatches, �3(S1, S2,L) is the number of indels, and �4(S1, S2,L) is the number of gaps.
Building on prior research [47, 63, 101], we show (Lemma 4.3) that the dual classU ∗ is (F ,G,O(n3))-
piecewise decomposable with F and G defined as in Lemma 4.1. This implies a pseudo-dimension
bound of O(lnn), which is significantly tighter than that of Lemma 4.1. We also prove that this
pseudo-dimension bound is tight with a lower bound of Ω(lnn) (Theorem 4.5). Moreover, in Ap-
pendix C.2, we provide guarantees for algorithms that align more than two sequences.

4.1.2 Tighter Guarantees for a Structured Algorithm Subclass: The Affine-gap Model. A line of
prior work [47, 63, 101, 102] analyzed a specific instantiation of the objective function (8) where
d = 3. In this case, we can obtain a pseudo-dimension bound of O(lnn), which is exponentially
better than the bound implied by Lemma 4.1. Given a pair of sequences S1, S2 ∈ Σn , the dynamic
programming algorithm Aρ returns the alignment L that maximizes the objective function

mt(S1, S2,L) − ρ[1] · ms(S1, S2,L) − ρ[2] · id(S1, S2,L) − ρ[3] · gp(S1, S2,L),
where mt(S1, S2,L) is the number ofmatches, ms(S1, S2,L) is the number ofmismatches, id(S1, S2,L)
is the number of indels, gp(S1, S2,L) is the number of gaps, and ρ = (ρ[1], ρ[2], ρ[3]) ∈ R3 is
a parameter vector. We denote the output alignment as Aρ (S1, S2). This is known as the affine-

gap scoring model. We exploit specific structure exhibited by this algorithm family to obtain the
exponential pseudo-dimension improvement. This useful structure guarantees that for any pair of
sequences S1 and S2, there are only O(n3/2) different alignments the algorithm family {Aρ | ρ ∈
R
3} might produce as we range over parameter vectors [47, 63, 101]. This bound is exponentially

smaller than our generic bound of 4nn4n+2 from Lemma C.1.

Lemma 4.3. Let U be the set of functions

U =
{
uρ : (S1, S2) 
→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ R≥0

}
,

that map sequence pairs S1, S2 ∈ Σn to R under the affine gap model. The dual class U ∗ is

(F ,G,O(n3))-piecewise decomposable, where F = { fc : U → R | c ∈ R} consists of constant

functions fc : uρ 
→ c and where G = {дa : U → {0, 1} | a ∈ R} consists of halfspace indicator
functions дa : uρ 
→ I{a[1]ρ[1]+a[2]ρ[2]+a[3]ρ[3]<a[4]} .

Proof. Fix a sequence pair S1 and S2. Let L be the set of alignments the algorithm returns as
we range over all parameter vectors ρ ∈ R3. In other words, L = {Aρ (S1, S2) | ρ ∈ R3}. From prior
research [47, 63, 101], we know that |L| = O

(
n3/2

)
. For any alignment L ∈ L, the algorithm Aρ

will return L if and only if

mt(S1, S2,L) − ρ[1] · ms(S1, S2,L) − ρ[2] · id(S1, S2,L) − ρ[3] · gp(S1, S2,L)
> mt(S1, S2,L′) − ρ[1] · ms(S1, S2,L′) − ρ[2] · id(S1, S2,L′) − ρ[3] · gp(S1, S2,L′),

for all L′ ∈ L \ {L}. Therefore, there is a set H of at most O
(
n3
)
hyperplanes such that across

all parameter vectors ρ in a single connected component of R3 \ H, the output of the algorithm
parameterized by ρ, Aρ (S1, S2), is fixed. The proof now follows by the exact same logic as that of
Lemma 4.1. �

Lemmas 3.10 and 4.3 imply the following corollary.

Corollary 4.4. The pseudo-dimension of U is O(lnn).

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



How Much Data Is Sufficient to Learn High-Performing Algorithms? 32:17

We also prove that this pseudo-dimension bound is tight up to constant factors. In this lower
bound proof, our utility function u is the Q score between a given alignment L of two sequences
(S1, S2) and the ground-truth alignment L∗ (the Q score is also known as the SPS score in the case
of multiple sequence alignment [39]). The Q score between L and the ground-truth alignment L∗

is the fraction of aligned letter pairs in L∗ that are correctly reproduced in L. For example, the
following alignment L has a Q score of 2

3 because it correctly aligns the two pairs of Cs, but not
the pair of Gs:

L =

[
G A T C C
A G - C C

]
L∗ =

[
- G A T C C
A G - - C C

]
.

We use the notation u (S1, S2,L) ∈ [0, 1] to denote the Q score between L and the ground-truth
alignment of S1 and S2. The full proof of the following theorem is in Appendix C.

Theorem 4.5. Under the affine gapmodel, there exists a set
{
Aρ | ρ ∈ R3≥0

}
of co-optimal-constant

algorithms and an alphabet Σ such that the set of functions

U =
{
uρ : (S1, S2) 
→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ R3≥0

}
,

which map sequence pairs S1, S2 ∈ ∪n
i=1Σ

i of length at most n to [0, 1], has a pseudo-dimension of

Ω(logn).

Proof sketch. In this proof sketch, we illustrate the way in which two sequences pairs can be
shattered, and then describe how the proof can be generalized to Θ(logn) sequence pairs.

Setup. Our setup consists of the following three elements: the alphabet, the two sequence pairs

(S (1)1 , S
(1)
2 ) and (S (2)1 , S

(2)
2 ), and ground-truth alignments of these pairs. We detail these elements

below:

(1) Our alphabet consists of twelve characters: {ai , bi , ci , di }3i=1.
(2) The two sequence pairs are comprised of three subsequence pairs: (t (1)1 , t

(1)
2 ), (t (2)1 , t

(2)
2 ), and

(t (3)1 , t
(3)
2 ), where

t (1)1 = a1b1d1
t (1)2 = b1c1d1

,
t (2)1 = a2a2b2d2
t (2)2 = b2c2c2d2

, and
t (3)1 = a3a3a3b3d3
t (3)2 = b3c3c3c3d3

. (10)

We define the two sequence pairs as

S (1)1 = t (1)1 t (2)1 t (3)1 = a1b1d1a2a2b2d2a3a3a3b3d3
S (1)2 = t (1)2 t (2)2 t (3)2 = b1c1d1b2c2c2d2b3c3c3c3d3

and
S (2)1 = t (2)1 = a2a2b2d2
S (2)2 = t (2)2 = b2c2c2d2

.

(3) Finally, we define ground-truth alignments of the two sequence pairs (S (1)1 , S
(1)
2 ) and

(S (2)1 , S
(2)
2 ). We define the ground-truth alignment of (S (1)1 , S

(1)
2 ) to be

a1 b1 - d1 a2 a2 b2 - - d2 a3 a3 a3 b3 - - - d3
b1 - c1 d1 - - b2 c2 c2 d2 b3 - - - c3 c3 c3 d3

. (11)

The most important properties of this alignment are that the dj characters are always match-
ing and the bj characters alternate between matching and not matching. Similarly, we define

the ground-truth alignment of the pair (S (2)1 , S
(2)
2 ) to be

a2 a2 b2 - - d2
- - b2 c2 c2 d2

.

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



32:18 M.-F. Balcan et al.

Fig. 4. The form of u(0,ρ[2],0)(S
(1)
1 ,S

(1)
2 ) as a function of the indel parameter ρ[2]. When ρ[2] ≤ 1

6 , the algo-

rithm returns the bottom alignment. When 1
6 < ρ[2] ≤ 1

4 , the algorithm returns the alignment that is second

to the bottom. When 1
4 < ρ[2] ≤ 1

2 , the algorithm returns the alignment that is second to the top. Finally,

when ρ[2] > 1
2 , the algorithm returns the top alignment. The purple characters denote which characters are

correctly aligned according to the ground-truth alignment (Equation (11)).

Shattering. We now show that these two sequence pairs can be shattered. A key step is proving

that the functions u(0,ρ[2],0)(S (1)1 , S
(1)
2 ) and u(0,ρ[2],0)(S (2)1 , S

(2)
2 ) have the following form:

u(0,ρ[2],0)

(
S (1)1 , S

(1)
2

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4
6 if ρ[2] ≤ 1

6
5
6 if 1

6 < ρ[2] ≤ 1
4

4
6 if 1

4 < ρ[2] ≤ 1
2

5
6 if ρ[2] > 1

2

and u(0,ρ[2],0)

(
S (2)1 , S

(2)
2

)
=

{
1 if ρ[2] ≤ 1

4
1
2 if ρ[2] > 1

4

.

(12)
The form ofu(0,ρ[2],0)(S (1)1 , S

(1)
2 ) is illustrated by Figure 4. It is then straightforward to verify that the

two sequence pairs are shattered by the parameter settings (0, 0, 0), (0, 15 , 0), (0,
1
3 , 0), and (0, 1, 0)

with the witnesses z1 = z2 =
3
4 . In other words, the mismatch and gap parameters are set to 0 and

the indel parameter ρ[2] takes the values {0, 15 ,
1
3 , 1}.

Proof sketch of Equation (12). The full proof that Equation (12) holds follows the following high-
level reasoning:

(1) First, we prove that under the algorithm’s output alignment, the dj characters will always
be matching. Intuitively, this is because the algorithm’s objective function will always be

maximized when each subsequence t (j)1 is aligned with t (j)2 .
(2) Second, we prove that the characters bj will be matched if and only if ρ[2] ≤ 1

2j . Intuitively,
this is because in order to match these characters, we must pay with 2j indels. Since the
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objective function is mt(S (1)1 , S
(1)
2 ,L) − ρ[2] · id(S (1)1 , S

(1)
2 ,L), the 1 match will be worth the 2j

indels if and only if 1 ≥ 2jρ[2].
These two properties in conjunction mean that when ρ[2] > 1

2 , none of the bj characters are
matched, so the characters that are correctly aligned (as per the ground-truth alignment (Equa-
tion (11))) in the algorithm’s output are (a1, b1), (d1, d1), (d2, d2), (a3, b3), and (d3, d3), as illustrated
by purple in the top alignment of Figure 4. Since there are a total of 6 aligned letters in the

ground-truth alignment, we have that the Q score is 5
6 , or in other words, u(0,ρ[2],0)(S

(1)
1 , S

(1)
2 ) = 5

6 .

When ρ[2] shifts to the next-smallest interval ( 14 ,
1
2 ], the indel penalty ρ[2] is sufficiently small

that the b1 characters will align. Thus we lose the correct alignment (a1, b1), and the Q score drops
to 4

6 . Similarly, if we decrease ρ[2] to the next-smallest interval (
1
6 ,

1
4 ], the b2 characters will align,

which is correct under the ground-truth alignment (Equation (11)). Thus the Q score increases
back to 5

6 . Finally, by the same logic, when ρ[2] ≤
1
6 , we lose the correct alignment (a3, b3) in favor

of the alignment of the b3 characters, so the Q score falls to 4
6 . In this way, we prove the form of

u(0,ρ[2],0)(S (1)1 , S
(1)
2 ) from Equation (12). A parallel argument proves the form of u(0,ρ[2],0)(S (2)1 , S

(2)
2 ).

Generalization to shattering Θ(logn) sequence pairs. This proof intuition naturally generalizes
to Θ(logn) sequence pairs of lengthO(n) by expanding the number of subsequences t (j)i a la Equa-

tion (10). In essence, if we define S (1)1 = t (1)1 t (2)1 · · · t (k )1 and S (1)2 = t (1)2 t (2)2 · · · t (k )2 for a carefully-chosen

k = Θ
(√
n
)
, then we can force u(0,ρ[2],0)(S (1)1 , S

(1)
2 ) to oscillate O(n) times. Similarly, if we define

S (2)1 = t (2)1 t (4)1 · · · t (k−1)1 and S (2)2 = t (2)2 t (4)2 · · · t (k−1)2 , then we can force u(0,ρ[2],0)(S (1)1 , S
(1)
2 ) to oscillate

half as many times, and so on. This construction allows us to shatter Θ(logn) sequences. �

In Appendix C.2, we provide guarantees for algorithms that align more than two sequences.

4.2 RNA Folding

RNA molecules have many essential roles including protein coding and enzymatic functions [67].
RNA is assembled as a chain of bases denoted A, U, C, and G. It is often found as a single strand folded
onto itself with non-adjacent bases physically bound together. RNA folding algorithms infer the
way strands would naturally fold, shedding light on their function and how it may be affected by
small changes in the sequence. Given a sequence S ∈ {A, U, C, G}n , we represent a folding by a set
of pairs ϕ ⊂ [n] × [n]. If (i, j) ∈ ϕ, then the ith and jth bases of S bind together. Typically, the bases
A and U bind together, as do C and G. Other matchings are likely less stable. We assume that the
foldings do not contain any pseudoknots, which are pairs (i, j), (i ′, j ′) that cross with i < i ′ < j < j ′.
A well-studied algorithm returns a folding that maximizes a parameterized objective func-

tion [100]. At a high level, this objective function tradesoff between global properties of the folding
(the number of binding pairs |ϕ |) and local properties (the likelihood that bases would appear close
together in the folding). Specifically, the algorithm Aρ uses dynamic programming to return the
folding Aρ (S) that maximizes

ρ |ϕ | + (1 − ρ)
∑

(i, j)∈ϕ
MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ }, (13)

where ρ ∈ [0, 1] is a parameter andMS [i],S [j],S [i−1],S [j+1] ∈ R is a score for having neighboring pairs
of the letters (S[i], S[j]) and (S[i − 1], S[j + 1]). These scores help identify stable sub-structures.
We assume there is a utility function that characterizes a folding’s quality, denoted u(S,ϕ). For

example,u(S,ϕ)mightmeasure the fraction of pairs shared betweenϕ and a “ground-truth” folding,
obtained via expensive computation or laboratory experiments. The full proof of the following
lemma is in Appendix D.
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Lemma 4.6. Let U be the set of functions U = {uρ : S 
→ u(S,Aρ (S)) | ρ ∈ R}. The dual class U ∗

is (F ,G,n2)-piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold
functions дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions

fc : uρ 
→ c .

Proof sketch. We first prove that for any strand S , Aρ (S) will return at most n
2 + 1 different

foldings as we vary ρ. Every folding has length at most n
2 , so for any k ≤ n

2 , let ϕk be the folding
of length k that maximizes the second summand of Equation (13). Due to the form of the objective
function, Aρ (S) ∈ {ϕ0, . . . ,ϕn/2}.
We then prove that for any pair of foldings (ϕ,ϕ ′), there are two intervals that partition Rwhere

for any ρ in one of the intervals, the objective function (Equation (13)) applied to ϕ is higher than
that ofϕ ′, and in the other interval the opposite is true. This implies that there areO

(
n2
)
thresholds

that split R into intervals where the optimal folding is constant. In any interval, the utility is also
constant, so the lemma holds. �

Since constant functions have zero oscillations, Lemmas 3.9 and 4.6 imply the following corol-
lary.

Corollary 4.7. The pseudo-dimension of U is O (lnn) .

4.3 Prediction of Topologically Associating Domains

Inside a cell, the linear DNA of the genome wraps into three-dimensional structures that influ-
ence genome function. Some regions of the genome are closer than others and thereby inter-
act more. Topologically associating domains (TADs) are contiguous segments of the genome
that fold into compact regions. More formally, given the genome length n, a TAD set is a set
T = {(i1, j1), . . . , (it , jt )} ⊂ [n] × [n] such that i1 < j1 < i2 < j2 < · · · < it < jt . If (i, j) ∈ T ,
the bases within the corresponding substring physically interact more frequently with each other
than with other bases. When these TAD boundaries change, the expression of nearby genes can
be altered, which can trigger diseases such as congenital malformations and cancer [88]. The goal
of predicting TAD boundary locations is to identify when these changes correlate with pheno-
typic changes (diseases, malformations, etc.), which would aid in the ultimate goal of preventing
or reversing these phenotypic changes.
The contact frequency of any two genome locations, denoted by a matrix M ∈ Rn×n , can be

measured via experiments [84]. A dynamic programming algorithm Aρ introduced by Filippova
et al. [48] returns the TAD set Aρ (M) that maximizes∑

(i, j)∈T
sρ (i, j) − μρ (j − i), (14)

where ρ ≥ 0 is a parameter, sρ (i, j) = 1
(j−i)ρ

∑
i≤p<q≤j Mpq is the scaled density of the subgraph

induced by the interactions between genomic loci i and j, and μρ (d) = 1
n−d

∑n−d−1
t=0 sρ (t , t + d) is

the mean value of sρ over all sub-matrices of length d along the diagonal ofM . We note that unlike
the sequence alignment and RNA folding algorithms, the parameter ρ appears in the exponent of
the objective function.
We assume there is a utility function that characterizes the quality of a TAD set T , denoted

u(M,T ) ∈ R. For example, u(M,T ) might measure the fraction of TADs in T that are in the cor-
rect location with respect to a ground-truth TAD set. The full proof of the following lemma is in
Appendix E.

Lemma 4.8. Let U be the set of functions U = {uρ : M 
→ u(M,Aρ (M)) | ρ ∈ R}. The dual class
U ∗ is (F ,G, 2n24n2 )-piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of
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threshold functions дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 
→ c .

Proof sketch. Fix a matrix M ∈ Rn×n . We rewrite Equation (14) as
∑

(i, j)∈T
ci j

(j−i)ρ , where

each ci j is a constant. As we vary ρ, the set Aρ (M) will only change when
∑

(i, j)∈T
ci j

(j−i)ρ −∑
(i, j)∈T ′

ci j
(j−i)ρ = 0 for some pair T and T ′. This equation has at most 2n2 solutions. Aggregat-

ing these 2n2 thresholds over all pairs T and T ′, there are at most 2n24n
2
thresholds that split

the parameters into intervals where the optimal TAD set is constant. In any interval, the utility
function u is also constant, so the lemma statement holds. �

Since constant functions have zero oscillations, Lemmas 3.9 and 4.8 imply the following corol-
lary.

Corollary 4.9. The pseudo-dimension of U is O
(
n2
)
.

5 Connections to Prior Research

Theorem 3.3 also streamlines many existing guarantees for algorithm parameter tuning. As we de-
scribe in this section, these prior works proved that these algorithm families have structure which
implies that their dual functions are piecewise-decomposable (though they did not use this lan-
guage). Our main theorem then immediately implies generalization bounds for these algorithm
families. In all of these cases, Theorem 3.3 implies generalization guarantees that match the exist-
ing bounds, but in many cases, our approach provides a more succinct proof.

(1) In Section 5.1, we analyze several parameterized clustering algorithms [16], which have
piecewise-constant dual functions. These algorithms first run a linkage routine which builds
a hierarchical tree of clusters. The parameters interpolate between the popular single, av-
erage, and complete linkage. The linkage routine is followed by a dynamic programming
procedure that returns a clustering corresponding to a pruning of the hierarchical tree.

(2) Balcan et al. [6] study a family of linkage-based clustering algorithms where the parame-
ters control the distance metric used for clustering in addition to the linkage routine. The
algorithm family has two sets of parameters. The first set of parameters interpolate between
linkage algorithms, while the second set interpolate between distancemetrics. The dual func-
tions are piecewise-constant with quadratic boundary functions. We recover their general-
ization bounds in Section 5.1.2.

(3) In Section 5.2, we analyze several integer programming algorithms, which have piecewise-
constant and piecewise-inverse-quadratic dual functions (as in Figure 3(c)). The first is
branch-and-bound, which is used by commercial solvers such as CPLEX. Branch-and-bound
always finds an optimal solution and its parameters control runtime and memory usage. We
also study semidefinite programming approximation algorithms for integer quadratic pro-
gramming. We analyze a parameterized algorithm introduced by Feige and Langberg [44]
which includes the Goemans-Williamson algorithm [53] as a special case. We recover previ-
ous generalization bounds in both settings [12, 16].

(4) Gupta and Roughgarden [62] introduced parameterized greedy algorithms for the knapsack
and maximum weight independent set problems, which we show have piecewise-constant
dual functions. We recover their generalization bounds in Section 5.3.

(5) We provide generalization bounds for parameterized selling mechanisms when the
goal is to maximize revenue, which have piecewise-linear dual functions (as in Fig-
ure 3(b)). A long line of research has studied revenue maximization via machine learn-
ing [9, 29, 34, 36, 40, 56, 58, 61, 85, 86, 93, 95, 110]. In Section 5.4, we recover Balcan,
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Sandholm, and Vitercik’s generalization bounds [20] which apply to a variety of pricing,
auction, and lottery mechanisms. They proved new bounds for mechanism classes not
previously studied in the sample-based mechanism design literature and matched or
improved over the best known guarantees for many classes.

5.1 Clustering Algorithms

A clustering instance is made up of a set points V from a data domain X and a distance metric
d : X × X → R≥0. The goal is to split up the points into groups, or “clusters,” so that within each
group, distances are minimized and between each group, distances are maximized. Typically, a
clustering’s quality is quantified by some objective function. Classic choices include the k-means,
k-median, ork-center objective functions. Unfortunately, finding the clustering that minimizes any
one of these objectives is NP-hard. Clustering algorithms have uses in data science, computational
biology [98], and many other fields.
Balcan et al. [6, 16] analyze agglomerative clustering algorithms. This type of algorithm requires

a merge function c(A,B;d) → R≥0, defining the distances between point sets A,B ⊆ V . The al-
gorithm constructs a cluster tree. This tree starts with n leaf nodes, each containing a point from
V . Over a series of rounds, the algorithm merges the sets with minimum distance according to
c . The tree is complete when there is one node remaining, which consists of the set V . The chil-
dren of each internal node consist of the two sets merged to create the node. There are several
common merge function c : mina∈A,b ∈B d(a,b) (single-linkage), 1

|A | · |B |
∑

a∈A,b ∈B d(a,b) (average-
linkage), and maxa∈A,b ∈B d(a,b) (complete-linkage). Following the linkage procedure, there is a
dynamic programming step. This steps finds the tree pruning that minimizes an objective func-
tion, such as the k-means, -median, or -center objectives.
To evaluate the quality of a clustering, we assume access to a utility function u : T → [−1, 1]

where T is the set of all cluster trees over the data domain X . For example, u (T ) might measure
the distance between the ground truth clustering and the optimal k-means pruning of the cluster
tree T ∈ T .
In Section 5.1.1, we present results for learning merge functions and in Section 5.1.2, we present

results for learning distance functions in addition to merge functions. The latter set of results apply
to a special subclass of merge functions called two-point-based (as we describe in Section 5.1.2),
and thus do not subsume the results in Section 5.1.1, but do apply to the more general problem of
learning a distance function in addition to a merge function.

5.1.1 Learning Merge Functions. Balcan et al. [16] study several families of merge functions:

C1 =
{
c1,ρ : (A,B;d) 
→

(
min

u ∈A,v ∈B
(d(u,v))ρ + max

u ∈A,v ∈B
(d(u,v))ρ

)1/ρ ����� ρ ∈ R ∪ {∞,−∞}
}
,

C2 =
{
c2,ρ : (A,B;d) 
→ ρ min

u ∈A,v ∈B
d(u,v) + (1 − ρ) max

u ∈A,v ∈B
d(u,v)

���� ρ ∈ [0, 1]
}
,

C3 =
⎧⎪⎪⎨⎪⎪⎩c3,ρ : (A,B;d) 
→ �	
 1

|A| |B |
∑

u ∈A,v ∈B
(d(u,v))ρ

)1/ρ ������ ρ ∈ R ∪ {∞,−∞}
⎫⎪⎪⎬⎪⎪⎭ .

The classes C1 and C2 interpolate between single- (c1,−∞ and c2,1) and complete-linkage (c1,∞
and c2,0). The class C3 includes as special cases average-, complete-, and single-linkage.
For each class i ∈ {1, 2, 3} and each parameter ρ, let Ai,ρ be the algorithm that takes as input a

clustering instance (V ,d) and returns a cluster tree Ai,ρ (V ,d) ∈ T .
Balcan et al. [16] prove the following useful structure about the classes C1 and C2:
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Lemma 5.1 ([16]). Let (V ,d) be an arbitrary clustering instance over n points. There is a partition

of R into k ≤ n8 intervals I1, . . . , Ik such that for any interval Ij and any two parameters ρ, ρ ′ ∈ Ij ,
the sequences of merges the agglomerative clustering algorithm makes using the merge functions c1,ρ
and c1,ρ′ are identical. The same holds for the set of merge functions C2.

This structure immediately implies that the corresponding class of utility functions has a
piecewise-structured dual class.

Corollary 5.2. Let U be the set of functions

U =
{
uρ : (V ,d) 
→ u

(
A1,ρ (V ,d)

)
| ρ ∈ R ∪ {−∞,∞}

}
mapping clustering instances (V ,d) to [−1, 1]. The dual class U ∗ is (F ,G,n8)-piecewise decomposable,

where G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions дa : uρ 
→ I{ρ<a } and

F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c . The same holds when U is

defined according to merge functions in C2 as U =
{
uρ : (V ,d) 
→ u

(
A2,ρ (V ,d)

)
| ρ ∈ [0, 1]

}
.

Lemma 3.9 and Corollary 5.2 imply the following pseudo-dimension bound.

Corollary 5.3. Let U be the set of functions

U =
{
uρ : (V ,d) 
→ u

(
A1,ρ (V ,d)

)
| ρ ∈ R ∪ {−∞,∞}

}
,

mapping clustering instances (V ,d) to [−1, 1]. Then Pdim(U ) = O(lnn). The same holds when U is

defined according to merge functions in C2 as U =
{
uρ : (V ,d) 
→ u

(
A2,ρ (V ,d)

)
| ρ ∈ [0, 1]

}
.

Balcan et al. [16] prove a similar guarantee for the more complicated class C3.

Lemma 5.4 ([16]). Let (V ,d) be an arbitrary clustering instance over n points. There is a partition

of R into k ≤ n232n intervals I1, . . . , Ik such that for any interval Ij and any two parameters ρ, ρ ′ ∈ Ij ,
the sequences of merges the agglomerative clustering algorithm makes using the merge functions c3,ρ
and c3,ρ′ are identical.

Again, this structure immediately implies that the corresponding class of utility functions has a
piecewise-structured dual class.

Corollary 5.5. Let U be the set of functions

U =
{
uρ : (V ,d) 
→ u

(
A3,ρ (V ,d)

)
| ρ ∈ R ∪ {−∞,∞}

}
,

mapping clustering instances (V ,d) to [−1, 1]. The dual class U ∗ is
(
F ,G,n232n

)
-piecewise decom-

posable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions дa : uρ 
→ I{ρ<a } and
F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c .

Lemma 3.9 and Corollary 5.5 imply the following pseudo-dimension bound.

Corollary 5.6. Let U be the set of functions

U =
{
uρ : (V ,d) 
→ u

(
A3,ρ (V ,d)

)
| ρ ∈ R ∪ {−∞,∞}

}
,

mapping clustering instances (V ,d) to [−1, 1]. Then Pdim(U ) = O(n).

Corollaries 5.3 and 5.6 match the pseudo-dimension guarantees that Balcan et al. [16] prove.
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5.1.2 Learning Merge Functions and Distance Functions. Balcan et al. [6] extend the clustering
generalization bounds of Balcan et al. [16] to the case of learning both a distancemetric and amerge
function. They introduce a family of linkage-based clustering algorithms that simultaneously in-
terpolate between a collection of base metrics d1, . . . ,dL and base merge functions c1, . . . , cL . The
algorithm family is parameterized by ρ = (α , β) ∈ ΔL′ ×ΔL , whereα and β are mixing weights for
the merge functions and metrics, respectively. The algorithm with parameters ρ = (α , β) starts
with each point in a cluster of its own and repeatedly merges the pair of clustersA and B minimiz-
ing cα (A,B;dβ ), where

cα (A,B;d) =
L′∑
i=1

αi · ci (A,B;d) and dβ (a,b) =
L∑
i=1

βi · di (a,b).

We use the notationAρ to denote the algorithm that takes as input a clustering instance (V ,d) and
returns a cluster tree Aρ (V ,d) ∈ T using the merge function cα (A,B;dβ ), where ρ = (α , β).
When analyzing this algorithm family, Balcan et al. [6] prove that the following piecewise-

structure holds when all of the merge functions are two-point-based, which roughly requires that
for any pair of clusters A and B, there exist points a ∈ A and b ∈ B such that c(A,B;d) = d(a,b).
Single- and complete-linkage are two-point-based, but average-linkage is not.

Lemma 5.7 ([6]). For any clustering instance V , there exists a collection of O
(
|V |4L′

)
quadratic

boundary functions that partition the (L + L′)-dimensional parameter space into regions where the

algorithm’s output is constant on each region in the partition.

This lemma immediately implies that the corresponding class of utility functions has a
piecewise-structured dual class.

Corollary 5.8. Let U be the set of functions U = {uρ : (V ,d) 
→ u(Aρ (V ,d)) | ρ ∈ ΔL′ ×
ΔL} mapping clustering instances (V ,d) to [−1, 1]. The dual class U ∗ is (F ,G,O(|V |4L′ ))-piecewise
decomposable, where F is the set of constant functions and G is the set of quadratic functions defined

on ΔL′ × ΔL .

Using the fact that VCdim (G∗) = O((L+L′)2), we obtain the following pseudo-dimension bound.

Corollary 5.9. Let U be the set of functions U = {uρ : (V ,d) 
→ u(Aρ (V ,d)) | ρ ∈ ΔL′ × ΔL}
mapping clustering instances (V ,d) to [−1, 1]. Then

Pdim(U ) = O
(
(L + L′)2 log (L + L′) + (L + L′)2 L′ log(n)

)
.

This matches the generalization bound that Balcan et al. [6] prove.

5.2 Integer Programming

Several articles [12, 16] study algorithm configuration for both integer linear and integer quadratic
programming, as we describe below.

Integer linear programming. In the context of integer linear programming, Balcan et al. [12] focus
on branch-and-bound (B&B) [81], an algorithm for solving mixed integer linear programs

(MILPs). A MILP is defined by a matrix A ∈ Rm×n , a vector b ∈ Rm , a vector c ∈ Rn , and a set of
indices I ⊆ [n]. The goal is to find a vector x ∈ Rn such that c · x is maximized, Ax ≤ b, and for
every index i ∈ I , xi is constrained to be binary: xi ∈ {0, 1}.
Branch-and-bound builds a search tree to solve an input MILP Q . At the root of the search

tree is the original MILP Q . At each round, the algorithm chooses a leaf of the search tree, which

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



How Much Data Is Sufficient to Learn High-Performing Algorithms? 32:25

represents an MILPQ ′. It does so using a node selection policy; common choices include depth- and
best-first search. Then, it chooses an index i ∈ I using a variable selection policy. It next branches on
xi : it sets the left child ofQ ′ to be that same integer program, but with the additional constraint that
xi = 0, and it sets the right child of Q ′ to be that same integer program, but with the additional
constraint that xi = 1. The algorithm fathoms a leaf, which means that it never will branch on
that leaf, if it can guarantee that the optimal solution does not lie along that path. The algorithm
terminates when it has fathomed every leaf. At that point, we can guarantee that the best solution
to Q found so far is optimal. See the article by Balcan et al. [12] for more details.
Balcan et al. [12] show how to learn variable selection policies. Specifically, they study score-

based variable selection policies, defined below.

Definition 5.10 (Score-based Variable Selection Policy [12]). Let score be a deterministic function
that takes as input a partial search tree T , a leaf Q of that tree, and an index i , and returns a real
value score(T ,Q, i) ∈ R. For a leafQ of a tree T , let NT ,Q be the set of variables that have not yet
been branched on along the path from the root of T to Q . A score-based variable selection policy
selects the variable argmaxxi ∈NT ,Q

{score(T ,Q, i)} to branch on at the node Q .

This type of variable selection policy is widely used [1, 51, 87]. See the article by Balcan et al.
[12] for examples.
Givend arbitrary scoring rules score1, . . . , scored , Balcan et al. [12] provide guidance for learn-

ing a linear combination ρ[1]score1+ · · ·+ρ[d]scored that leads to small expected tree sizes. They
assume that all aspects of the tree search algorithm except the variable selection policy, such as
the node selection policy, are fixed. In their analysis, they prove the following lemma.

Lemma 5.11 ([12]). Let score1, . . . , scored be d arbitrary scoring rules and let Q be an arbitrary

MILP over n binary variables. Suppose we limit B&B to producing search trees of size τ . There is a
set H of at most n2(τ+1) hyperplanes such that for any connected component R of [0, 1]d \ H , the

search tree B&B builds using the scoring rule ρ[1]score1 + · · · + ρ[d]scored is invariant across all

(ρ[1], . . . , ρ[d]) ∈ R.

This piecewise structure immediately implies the following guarantee.

Corollary 5.12. Let score1, . . . , scored be d arbitrary scoring rules and let Q be an arbitrary

MILP over n binary variables. Suppose we limit B&B to producing search trees of size τ . For each
parameter vector ρ = (ρ[1], . . . , ρ[d]) ∈ [0, 1]d , let uρ (Q) be the size of the tree, divided by τ , that
B&B builds using the scoring rule ρ[1]score1 + · · · + ρ[d]scored given Q as input. Let U be the set

of functions U = {uρ | ρ ∈ [0, 1]d } mapping MILPs to [0, 1]. The dual class U ∗ is (F ,G,n2(τ+1))-
piecewise decomposable, where G = {дa,θ : U → {0, 1} | a ∈ Rd ,θ ∈ R} consists of halfspace

indicator functions дa,θ : uρ 
→ I{ρ ·a≤θ } and F = { fc : U → R | c ∈ R} consists of constant

functions fc : uρ 
→ c .

Corollary 5.12 and Lemma 3.10 imply the following pseudo-dimension bound.

Corollary 5.13. Let score1, . . . , scored be d arbitrary scoring rules and let Q be an arbitrary

MILP over n binary variables. Suppose we limit B&B to producing search trees of size τ . For each
parameter vector ρ = (ρ[1], . . . , ρ[d]) ∈ [0, 1]d , let uρ (Q) be the size of the tree, divided by τ , that
B&B builds using the scoring rule ρ[1]score1 + · · · + ρ[d]scored given Q as input. Let U be the set

of functions U =
{
uρ | ρ ∈ [0, 1]d

}
mapping MILPs to [0, 1]. Then Pdim(U ) = O(d(τ ln(n) + ln(d))).

Corollary 5.13 matches the pseudo-dimension guarantee that Balcan et al. [12] prove.

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



32:26 M.-F. Balcan et al.

ALGORITHM 1: SDP rounding algorithm with rounding function r

Input: Matrix A ∈ Rn×n .
1: Draw a random vector Z from Z , the n-dimensional Gaussian distribution.
2: Solve the SDP (15) for the optimal embedding U = {u1, . . . ,un}.
3: Compute set of fractional assignments r (〈Z ,u1〉), . . . , r (〈Z ,un〉).
4: For all i ∈ [n], set xi to 1 with probability 1

2 +
1
2 · r (〈Z ,ui 〉) and −1 with probability 1

2 −
1
2 ·

r (〈Z ,ui 〉).
Output: x1, . . . ,xn .

Integer quadratic programming. A diverse array of NP-hard problems, includingmax-2SAT, max-
cut, and correlation clustering, can be characterized as integer quadratic programs (IQPs). An IQP
is represented by a matrix A ∈ Rn×n . The goal is to find a set X = {x1, . . . ,xn} ∈ {−1, 1}n
maximizing

∑
i, j ∈[n] ai jxix j . The most-studied IQP approximation algorithms operate via an SDP

relaxation:
maximize

∑
i, j ∈[n]

ai j 〈ui ,uj 〉 subject to ui ∈ Sn−1. (15)

The approximation algorithm must transform, or “round,” the unit vectors into a binary assign-
ment of the variables x1, . . . ,xn . In the seminal GW algorithm [53], the algorithm projects the unit
vectors onto a random vector Z , which it draws from the n-dimensional Gaussian distribution,
which we denote using Z . If 〈ui ,Z 〉 > 0, it sets xi = 1. Otherwise, it sets xi = −1.
TheGWalgorithm’s approximation ratio can sometimes be improved if the algorithm probabilis-

tically assigns the binary variables. In the final step, the algorithm can use any rounding function
r : R → [−1, 1] to set xi = 1 with probability 1

2 +
1
2 · r (〈Z ,ui 〉) and xi = −1 with probability

1
2 −

1
2 · r (〈Z ,ui 〉). See Algorithm 1 for the pseudocode. Algorithm 1 is known as a Random Pro-

jection, Randomized Rounding (RPR2) algorithm, so named by the seminal work of Feige and
Langberg [44].
Balcan et al. [16] analyze s-linear rounding functions [44] ϕs : R → [−1, 1], parameterized by

s > 0, defined as follows:

ϕs (y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if y < −s
y/s if − s ≤ y ≤ s

1 if y > s .

The goal is to learn a parameter s such that in expectation,
∑

i, j ∈[n] ai jxix j is maximized. The
expectation is over several sources of randomness: first, the distribution D over matrices A; sec-
ond, the vector Z ; and third, the assignment of x1, . . . ,xn . This final assignment depends on the
parameter s , the matrix A, and the vector Z . Balcan et al. [16] refer to this value as the true utility
of the parameter s . Note that the distribution over matrices, which defines the algorithm’s input,
is unknown and external to the algorithm, whereas the Gaussian distribution over vectors as well
as the distribution defining the variable assignment are internal to the algorithm.
The distribution over matrices is unknown, so we cannot know any parameter’s true utility.

Therefore, to learn a good parameter s , we must use samples. Balcan et al. [16] suggest drawing
samples from two sources of randomness: the distributions over vectors and matrices. In other
words, they suggest drawing a set of samples S = {(A(1),Z (1)), . . . , (A(m),Z (m))} ∼ (D × Z )m .
Given these samples, Balcan et al. [16] define a parameter’s empirical utility to be the expected
objective value of the solution Algorithm 1 returns given input A, using the vector Z and ϕs in
Step 3, on average over all (A,Z ) ∈ S . Generally speaking, Balcan et al. [16] suggest sampling the
first two randomness sources in order to isolate the third randomness source. They argue that this
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third source of randomness has an expectation that is simple to analyze. Using pseudo-dimension,
they prove that every parameter s , its empirical and true utilities converge.
A bit more formally, Balcan et al. [16] use the notation p(i,Z ,A,s) to denote the distribution that

the binary value xi is drawn from when Algorithm 1 is given A as input and uses the rounding
function r = ϕs and the hyperplane Z in Step 3. Using this notation, the parameter s has a true
utility of

E
A,Z ∼D×Z

[
E

xi∼p(i,Z ,A,s )

[∑
i, j

ai jxix j

] ]
.2

We also use the notationus (A,Z ) to denote the expected objective value of the solution Algorithm 1
returns given inputA, using the vector Z and ϕs in Step 3. The expectation is over the final assign-
ment of each variable xi . Specifically, us (A,Z ) = Exi∼p(i,Z ,A,s ) [

∑
i, j ai jxix j ]. By definition, a param-

eter’s true utility equals EA,Z ∼D×Z [us (A,Z )]. Given a set (A(1),Z (1)), . . . , (A(m),Z (m)) ∼ D ×Z , a
parameter’s empirical utility is 1

m

∑m
i=1 us (A(i),Z (i)).

Both we and Balcan et al. [16] bound the pseudo-dimension of the function class U = {us : s >
0}. Balcan et al. [16] prove that the functions in U are piecewise structured: roughly speaking, for
a fixed matrix A and vector Z , each function in U is a piecewise, inverse-quadratic function of
the parameter s . To present this lemma, we use the following notation: given a tuple (A,Z ), let
uA,Z : R→ R be defined such that uA,Z (s) = us (A,Z ).

Lemma 5.14 ([16]). For any matrix A and vector Z , the function uA,Z : R>0 → R is made up of

n+1 piecewise components of the form a
s2
+ b

s
+c for some a,b, c ∈ R. Moreover, if the border between

two components falls at some s ∈ R>0, then it must be that s = |〈ui ,Z 〉| for some ui in the optimal

SDP embedding of A.

This piecewise structure immediately implies the following corollary about the dual class U ∗.

Corollary 5.15. Let U be the set of functions U = {us : s > 0}. The dual class U ∗ is (F ,G,n)-
piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions

дa : us 
→ I{s≤a } and F = { fa,b,c : U → R | a,b, c ∈ R} consists of inverse-quadratic functions
fa,b,c : us 
→ a

s2
+ b

s
+ c .

Lemma 3.9 and Corollary 5.15 imply the following pseudo-dimension bound.

Corollary 5.16. Let U be the set of functions U = {us : s > 0}. The pseudo-dimension of U is at

most O(lnn).

Corollary 5.16 matches the pseudo-dimension bound that Balcan et al. [16] prove.

5.3 Greedy Algorithms

Gupta and Roughgarden [62] provide pseudo-dimension bounds for greedy algorithm configu-
ration, analyzing two canonical combinatorial problems: the maximum weight independent set
problem and the knapsack problem. We recover their bounds in both cases.

2We, like Balcan et al. [16], use the abbreviated notation

E
A,Z ∼D×Z

[
E

xi∼p(i,Z ,A,s )

[∑
i, j

ai jxix j

] ]
= E
A,Z ∼D×Z

[
E

x1∼p(1,Z ,A,s ), . . .,xn∼p(n,Z ,A,s )

[∑
i, j

ai jxix j

] ]
.
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Maximumweight independent set (MWIS). In theMWIS problem, the input is a graphG with
a weightw (v) ∈ R≥0 per vertex v . The objective is to find a maximum-weight set of non-adjacent
(or independent) vertices. On each iteration, the classic greedy algorithm adds the vertex v that
maximizesw (v) /(1 + deg (v)) to the set. It then removesv and its neighbors from the graph. Given
a parameter ρ ≥ 0, Gupta and Roughgarden [62] propose the greedy heuristicw (v) /(1 + deg (v))ρ .
In this context, the utility function uρ (G,w) equals the weight of the vertices in the set returned
by the algorithm parameterized by ρ. Gupta and Roughgarden [62] implicitly prove the following
lemma about each function uρ (made explicit in work by Balcan et al. [13]). To present this lemma,
we use the following notation: let uG,w : R→ R be defined such that uG,w (ρ) = uρ (G,w).

Lemma 5.17 ([62]). For any weighted graph (G,w), the function uG,w : R → R is piecewise con-

stant with at most n4 discontinuities.

This structure immediately implies that the function class U = {uρ : ρ > 0} has a piecewise-
structured dual class.

Corollary 5.18. Let U be the set of functions U = {uρ : ρ > 0}. The dual class U ∗ is (F ,G,n4)-
piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions

дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c .

Lemma 3.9 and Corollary 5.18 imply the following pseudo-dimension bound.

Corollary 5.19. Let U be the set of functions U = {uρ : ρ > 0}. The pseudo-dimension of U is

O(lnn).

This matches the pseudo-dimension bound by Gupta and Roughgarden [62].

Knapsack. Moving to the classic knapsack problem, the input is a knapsack capacity C and a
set of n items i each with a value νi and a size si . The goal is to determine a set I ⊆ {1, . . . ,n}
with maximium total value

∑
i ∈I νi such that

∑
i ∈I si ≤ C . Gupta and Roughgarden [62] suggest

the family of algorithms parameterized by ρ > 0 where each algorithm returns the better of the
following two solutions:

— Greedily pack items in order of nonincreasing value νi subject to feasibility.
— Greedily pack items in order of νi/sρi subject to feasibility.

It is well-known that the algorithm with ρ = 1 achieves a 2-approximation. We use the notation
uρ (ν , s,C) to denote the total value of the items returned by the algorithm parameterized by ρ
given input (ν , s,C).
Gupta and Roughgarden [62] implicitly prove the following fact about the functions uρ (made

explicit in work by Balcan et al. [13]). To present this lemma, we use the following notation: given
a tuple (ν , s,C), let uν,s,C : R→ R be defined such that uν,s,C (ρ) = uρ (ν , s,C).

Lemma 5.20 ([62]). For any tuple (ν , s,C), the function uν,s,C : R→ R is piecewise constant with

at most n2 discontinuities.

This structure immediately implies that the function class U =
{
uρ : ρ > 0

}
has a piecewise-

structured dual class.

Corollary 5.21. Let U be the set of functions U =
{
uρ : ρ > 0

}
. The dual class U ∗ is (F ,G,n2)-

piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions

дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c .

Lemma 3.9 and Corollary 5.21 imply the following pseudo-dimension bound.
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Corollary 5.22. Let U be the set of functions U =
{
uρ : ρ > 0

}
. The pseudo-dimension of U is

O(lnn).
This matches the pseudo-dimension bound by Gupta and Roughgarden [62].

5.4 Revenue Maximization

The design of revenue-maximizing multi-item mechanisms is a notoriously challenging problem.
Remarkably, the revenue-maximizing mechanism is not known even when there are just two items
for sale. In this setting, the mechanism designer’s goal is to field a mechanism with high expected
revenue on the distribution over agents’ values. A line of research has provided generalization
guarantees for mechanism design in the context of revenue maximization [29, 34, 36, 40, 56, 58,
61, 93, 95]. These articles focus on sales settings: there is a seller, not included among the agents,
who will use a mechanism to allocate a set of goods among the agents. The agents submit bids
describing their values for the goods for sale. The mechanism determines which agents receive
which items and howmuch the agents pay. The seller’s revenue is the sum of the agents’ payments.
The mechanism designer’s goal is to select a mechanism that maximizes the revenue. All of the
mechanisms they analyze are incentive-compatible, meaning that agents are incentivized to report
their values truthfully.
We study the problem of selling m heterogeneous goods to n buyers. We denote a bundle of

goods as a subset b ⊆ [m]. Each buyer j ∈ [n] has a valuation function vj : 2[m] → R over
bundles of goods. In this setting, the set X of problem instances consists of n-tuples of buyer
values v = (v1, . . . ,vn). Selling mechanisms are defined by an allocation function and a set of
payment functions. Every auction in the classes we study is incentive-compatible, so we assume
that the bids equal the bidders’ valuations. An allocation function ψ : X → (2[m])n maps the
values v ∈ X to a division of the goods (b1, . . . ,bn) ∈ (2[m])n , where bi ⊆ [m] is the set of goods
buyer i receives. For each agent i ∈ [n], there is a payment function pi : X → R which maps
valuesv ∈ X to a payment pi (v) ∈ R≥0 that agent i must make.
We recover generalization guarantees proved by Balcan et al. [20] which apply to a variety of

widely studied parameterized mechanism classes, including posted-price mechanisms, multi-part
tariffs, second-price auctions with reserves, affine maximizer auctions, virtual valuations combina-
torial auctionsmixed-bundling auctions, and randomizedmechanisms. They provided new bounds
formechanism classes not previously studied in the sample-basedmechanism design literature and
matched or improved over the best known guarantees for many classes. They proved these guar-
antees by uncovering structure shared by all of these mechanisms: for any set of buyers’ values,
revenue is a piecewise-linear function of the mechanism’s parameters. This structure is captured
by our definition of piecewise decomposability.
Each of these mechanism classes is parameterized by a d-dimensional vector ρ ∈ P ⊆ Rd for

some d ≥ 1. For example, when d = m, ρ might be a vector of prices for each of the items. The
revenue of a mechanism is the sum of the agents’ payments. Given a mechanism parameterized
by a vector ρ ∈ Rd , we denote the revenue as uρ : X → R, where uρ (v) =

∑n
i=1 pi (v).

Balcan et al. [20] provide pseudo-dimension bounds for any mechanism class that is delineable.
To define this notion, for any fixed valuation vector v ∈ X , we use the notation uv (ρ) to denote
revenue as a function of the mechanism’s parameters.

Definition 5.23 ((d, t)-delineable [20]). A mechanism class is (d, t)-delineable if:
(1) The class consists of mechanisms parameterized by vectors ρ from a set P ⊆ Rd ; and
(2) For anyv ∈ X , there is a setH of t hyperplanes such that for any connected component P ′

of P \H, the function uv
(
ρ
)
is linear over P ′.

Delineability naturally translates to decomposability, as we formalize below.
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Lemma 5.24. Let U be a set of revenue functions corresponding to a (d, t)-delineable mechanism

class. The dual class U ∗ is (F ,G, t)-piecewise decomposable, where G = {дa,θ : U → {0, 1} | a ∈
R
d ,θ ∈ R} consists of halfspace indicator functions дa,θ : uρ 
→ I{ρ ·a≤θ } and F = { fa,θ : U → R |

a ∈ Rd ,θ ∈ R} consists of linear functions fa,θ : uρ 
→ ρ · a + θ .

Lemmas 3.10 and 5.24 imply the following bound.

Corollary 5.25. Let U be a set of revenue functions corresponding to a (d, t)-delineable mecha-

nism class. The pseudo-dimension of U is at most O(d ln(td)).

Corollary 5.25 matches the pseudo-dimension bound that Balcan et al. [20] prove. Balcan et al.
[20] also prove several lower bounds showing that Corollary 5.25 is tight up to logarithmic factors.

6 Experiments

We complement our theoretical guarantees with experiments in several settings to help illustrate
our bounds. Our experiments are in the contexts of both new and previously-studied domains: tun-
ing parameters of sequence alignment algorithms in computational biology and tuning parameters
of sales mechanisms to maximize revenue.We summarize two observations from the experiments
that help illustrate the theoretical message of this article.

Observation 6.1. First, using sequence alignment data (Section 6.1), we demonstrate that with

a finite number of samples, an algorithm’s average performance over the samples provides a tight

estimate of its expected performance on unseen instances.

Observation 6.2. Second, our experiments empirically illustrate that two algorithm families for

the same computational problemmay require markedly different training set sizes to avoid overfitting,

a fact that has also been explored in prior theoretical research [16, 20]. This shows that it is crucial to

bound an algorithm family’s intrinsic complexity to provide accurate guarantees, and in this article,

we provide tools for doing so. Our experiments here are in the context of mechanism design for revenue

maximization (Section 6.2) using real-world data. In this setting, we analyze two natural, practical

mechanism families where one of the families is intrinsically simple and the other is intrinsically com-

plex. When we use Theorem 3.3 to select enough samples to ensure that overfitting does not occur for

the simple class, we indeed empirically observe overfitting when optimizing over the complex class.

The complex class requires more samples to avoid overfitting. Despite surface-level similarities be-

tween the complex and simple mechanism families, there is a pronounced difference in their intrinsic

complexities, as illustrated by these experiments.

6.1 Sequence Alignment Experiments

Changing the alignment parameter can alter the accuracy of the produced alignments. Figure 5
shows the regions of the gap-open/gap-extension penalty plane divided into regions such that
each region corresponds to a different computed alignment. The regions in the figure are pro-
duced using the XPARAL software of Gusfield and Stelling [64], with using the BLOSUM62 amino
acid replacement matrix, the scores in each region were computed using Robert Edgar’s qscore
package.3 The alignment sequences are a single pairwise alignment from the data set described
below.
To illustrate Observation 6.1, we use the IPA tool [77] to learn optimal parameter choices for

a given set of example pairwise sequence alignments. We used 861 protein multiple sequence
alignment benchmarks that had previously been used in DeBlasio and Kececioglu [35], which

3http://drive5.com/qscore/
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Fig. 5. Parameter space decomposition for a single example.

split these benchmarks into 12 cross-validation folds that evenly distributed the “difficulty” of
an alignment (the accuracy of the alignment produced using aligner defaults parameter choice).
All pairwise alignments were extracted from each multiple sequence alignment. We then took
randomized increasing sized subsets of the pairwise sequence alignments from each training set
and found the optimal parameter choices for affine gap costs and alphabet-dependent substitution
costs. These parameters were then given to the Opal aligner [v3.1b, 128] to realign the pairwise
alignments in the associated test sets.
Figure 6 shows the impact of increasing the number of training examples used to optimize pa-

rameter choices. As the number of training examples increases, the optimized parameter choice
is less able to fit the training data exactly and thus the training accuracy decreases. For the same
reason the parameter choices are more general and the test accuracy increases. The test and train-
ing accuracies are roughly equal when the training set size is close to 1, 000 examples and remains
equal for larger training sets. The test accuracy is actually slightly higher and this is likely due to
the training subset not representing the distribution of inputs as well as the full test set due to the
randomization being on all of the alignments rather than across difficulty, as was done to create
the cross-validation separations.

6.2 Mechanism Design Experiments

In this section, we build off of Section 5.4 by providing experiments that analyze the estimation
error of several mechanism classes. We introduced the notion of estimation error in Section 2, but
review it here. For a class of mechanisms parameterized by vectors ρ, let uρ (v) ∈ [0,H ] be the
revenue of the mechanism parameterized by ρ when the agents’ values are defined by the vectorv .
Given a set ofN samples S , themechanism class’s estimation error equals themaximum difference,
across all parameter vectors ρ, between the average revenue of the mechanism over the samples
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Fig. 6. Pairwise sequence alignment experiments showing the average accuracy on training and test exam-

ples using parameter choices optimized for various training set sizes.

1
N

∑
v ∈S uρ (v) and its expected revenue Ev∼D[uρ (v)]. We know that with high probability, the

estimation error is bounded by Õ(H
√
d/N ), where d is the pseudo-dimension of the mechanism

class. In other words, for all parameter vectors ρ,����� 1N ∑
v ∈S

uρ (v) − E
v∼D

[
uρ (v)

] ����� = Õ
(
H

√
d

N

)
.

Said another way, Õ(H 2d
ϵ 2

) samples are sufficient to ensure that with high probability, for every
parameter vector ρ, the difference between the average and expected utility of the mechanism
parameterized by ρ is at most ϵ .
In our experiments, we analyze second-price auctions with reserves, one of the most well-studied

mechanism classes in economics [121]. In this setting, there is one item for sale and a set ofn agents
who are interested in buying that item. This mechanism family is defined by a parameter vector
ρ ∈ Rn≥0, where each entry ρ[i] is the reserve price for agent i . The agents report their values for
the item to the auctioneer. If the highest bidder—say, agent i∗—reports a bid that is larger than her
reserve ρ [i∗], she wins the item and pays the maximum of the second-highest bid and her reserve
ρ [i∗]. Otherwise, no agent wins the item. The second-price auction (SPA) is called anonymous

if every agent has the same reserve price: ρ[1] = ρ[2] = · · · = ρ[n]. Otherwise, the SPA is called
non-anonymous. Like neutral affine maximizers, SPAs are incentive compatible, so we assume the
agents’ bids equal their true values. We refer to the class of non-anonymous SPAs as AN and the
class of anonymous SPAs as AA.
The class of non-anonymous SPAsAN is more complex than the class of anonymous SPAsAA,

and thus the sample complexity of the former is higher than the latter. However, non-anonymous
SPAs can provide much higher revenue than anonymous SPAs. We illustrate this tradeoff in our
experiments, which helps exemplify Observation 6.2.
In a bit more detail, the pseudo-dimension of the class of non-anonymous SPAs AN is Õ(n),

an upper bound proved in prior research [20, 95] which can be recovered using the techniques
in this article, as we summarize in Section 5.4. What’s more, Balcan et al. [20] proved a pseudo-
dimension lower bound of Ω(n) for this class. Meanwhile, the pseudo-dimension of the class of
anonymous SPAsAA isO(1). This upper bound was proved in prior research by Morgenstern and
Roughgarden [95] and Balcan et al. [20], and it follows from the general techniques presented in
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Fig. 7. Revenue maximization experiments. We vary the size of the training set, N , along the x-axis. The
orange dashed line is our theoretical upper bound on the estimation error of the class of anonymous SPAs

AA,
√

4
N ln(eN )+

√
1
2N ln 100, which follows from our pseudo-dimension bound (Lemma 6.3). The blue solid

line lower bounds the true estimation error of the class of non-anonymous SPAsAN over the Jester dataset.

For several choices of N ∈ [2000, 10000], we compute this lower bound by drawing a set of N training

instances, finding a mechanism in AN with high average revenue over the training set, and calculating the

mechanism’s estimation error (the difference between its average revenue and expected revenue). For scale,

estimation error is a quantity in the range [0, 1].

this article, as we formalize below in Lemma 6.3. In our experiments, we exhibit a distribution over
agents’ values under which the following properties hold:

(1) The true estimation error of the set of non-anonymous SPAs AN is larger than our upper
bound on the worst-case estimation error of the set of anonymous SPAs AA.

(2) The expected revenue of the optimal non-anonymous SPA is significantly larger than the
expected revenue of the optimal anonymous SPA: the former is 0.38 and the latter is 0.57.

These two points imply that even though it may be tempting to optimize over the class of non-
anonymous SPAs AN in order to obtain higher expected revenue, the training set must be large
enough to ensure the empirically-optimal mechanism has nearly optimal expected revenue.
The distributionwe analyze is over the Jester Collaborative FilteringDataset [54], which consists

of ratings from tens of thousands of users of one hundred jokes—in this example, the jokes could be
proxies for comedians, and the agents could be venues who are bidding for the opportunity to host
the comedians. Since the auctions we analyze in these experiments are for a single item, we run
experiments using agents’ values for a single joke, which we select to have a roughly equal number
of agents with high values as with low values (we describe this selection in greater detail below).
Figure 7 illustrates the outcome of our experiments. The orange dashed line is our upper bound on

the estimation error of the class of anonymous SPAsAA, which equals
√

4
N
ln(eN )+

√
1
2N ln 1

δ
, with

δ = 0.01. This upper bound has been presented in prior research [20, 95], and we recover it using
the results presented in this article, as we demonstrate below in Lemma 6.3. The blue solid line is
the true estimation error4 of the class of non-anonymous SPAs AN over the Jester dataset, which

4Sample complexity and estimation error bounds for SPAs have been studied in prior research [20, 36, 95], and our guar-
antees match the bounds provided in that literature.
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we calculate via the following experiment. For a selection of training set sizesN ∈ [2000, 12000], we
draw N sample agent values, with the number of agents equal to 10,612 (as we explain below). We
then find a vector of non-anonymous reserves with maximum average revenue over the samples
but low expected revenue on the true distribution, as we describe in greater detail below. We
plot this difference between average and expected revenue, averaged over 100 trials of the same
procedure. As these experiments illustrate, there is a tradeoff between the sample complexity and
revenue guarantees of these two classes, and it is crucial to calculate a class’s intrinsic complexity
to provide accurate guarantees. We now explain the details of these experiments.

Distribution over agents’ values. We use the Jester Collaborative Filtering Dataset [54], which
consists of ratings from 24,983 users of 100 jokes. The users’ ratings are in the range [−10, 10],
so we normalize their values to lie in the interval [0, 1]. We select a joke which has at least 5,000
(normalized) ratings in the interval [ 14 ,

1
2 ] and at least 5,000 (normalized) ratings in the interval

[ 34 , 1] (specifically, Joke #22). There is a total of 5,334 ratings of the first type and 5,278 ratings
of the second type. LetW = {w1, . . . ,w10,612} be all 10,612 values. For every i ∈ [10, 612], we
define the following valuation vector v (i): agent i’s value v(i)

i equals wi and for all other agents

j � i ,v(i)
j = 0. We define the distributionD over agents’ values to be the uniform distribution over

v (1), . . . ,v(10,612).

Empirically-optimal non-anonymous reserve vectors with poor generalization. Given a set of sam-
ples S ∼ DN , let p(v (1)), . . . ,p(v (10,612)) define the empirical distribution over S (that is, p(v (i))
equals the number of timesv(i) appears in S divided by N ). Then for any non-anonymous reserve
vector ρ ∈ Rn , the average revenue over the samples is

10,612∑
i=1

p
(
v(i)

)
ρ[i]1{wi ≥ρ[i]} . (16)

This is because for every vectorv(i), the only agent with a non-zero value is agent i , whose value
is wi . Therefore, the highest bidder is agent i , who wins the item if wi ≥ ρ[i], and pays reserve
ρ[i], which is the maximum of ρ[i] and the second-highest bid. As is clear from Equation (16),
if v (i) ∈ S , an empirically-optimal reserve vector ρ̂ (which maximizes average revenue over the
samples) will set ρ̂i = wi , and if v (i) � S , ρ̂i can be set arbitrarily, because it has no effect on
the average revenue over the samples. In our experiments, for all v (i) � S , we set ρ̂i = 0.7. The
intuition is that those agents i with v(i) � S and wi ∈ [ 14 ,

1
2 ] will not win the item, and therefore

will drag down expected revenue.
In Figure 7, the orange dashed line is the difference between the average value of ρ̂ over S and

its expected value, which we calculate via the following experiment. For a selection of training
set sizes N ∈ [2000, 12000], we draw the set S ∼ DN . We then construct the reserve vector ρ̂ as
described above. We plot the difference between the average value of ρ̂ over S and its expected
value, averaged over 100 trials of the same procedure.

Estimation error of anonymous SPAs. We now bound the estimation error of the class of anony-
mous SPAs AA so that we can plot the blue solid line in Figure 7. This pseudo-dimension upper
bound has been presented in prior research [20, 95], but here we show that it can be recovered
using this article’s techniques. We use Lemma 3.8 to obtain a slightly tighter pseudo-dimension
bound (up to constant factors) than that of Corollary 5.25.
Given a reserve price ρ ≥ 0 and valuation vector v ∈ Rn , let uρ (v) ∈ [0, 1] be the revenue

of the anonymous second-price auction with a reserve price of ρ when the bids equal v . Using
Lemma 3.8, we prove that the pseudo-dimension of this class of revenue functions is at most 2.
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Lemma 6.3. The pseudo-dimension of the class AA = {uρ : ρ ≥ 0} is at most 2.

Proof. Given a vectorv of bids, letv(1) be the highest bid inv and letv(2) be the second-highest
bid. Under the anonymous SPA, the highest bidder wins the item if v(1) ≥ ρ and pays max{v(2), ρ}.
Therefore uρ (v) = max{v(2), ρ}1{v(1) ≥ρ } . By definition of the dual function,

u∗v
(
uρ
)
= max

{
v(2), ρ

}
1{v(1) ≥ρ} .

The dual function is thus an increasing function of ρ in the interval [0,v(1)] and is equal to zero in
the interval (v(1),∞). Therefore, the function has at most two oscillations (as in Definition 3.7). By
Lemma 3.8, the pseudo-dimension of AA is at most the largest integer D such that 2D ≤ 2D + 1,
which equals 2. Therefore, the theorem statement holds. �

By Equation (2), with probability 1 − δ over the draw of S ∼ DN , for any reserve ρ ≥ 0,����� 1N ∑
v ∈S

uρ (v) − E
v∼D

[
uρ (v)

] ����� ≤
√

4

N
ln(eN ) +

√
1

2N
ln
1

δ
. (17)

In Figure 7, the blue solid line equals the right-hand-side of Equation (17) with δ = 0.01 as a
function of N .

Choice of the default reserve. In the above discussion, for allv(i) � S , we set a default reserve of
ρ̂i = 0.7. As we discussed, for all such i , the choice of ρ̂i has no effect on the average revenue over
the samples. However, it does have an impact on expected revenue. In Figure 8, we compare the
expected revenue of the empirically-optimal anonymous SPA and that of the empirically-optimal
non-anonymous SPA for different choices of this default reserve. We plot these quantities as a
function of the number of samples in the training set. This plot illustrates that a poor choice of the
default reserve can cause the expected revenue of the empirically-optimal non-anonymous SPA to
be smaller than that of the empirically-optimal anonymous SPA. Intuitively, with a small number
of samples, the empirically-optimal non-anonymous SPA will set a large number of reserves to be
the default reserve, so a poor choice of the default reserve—in conjunction with a small number of
samples—can lead to low expected revenue.

Discussion. In summary, this section exemplifies a distribution over agents’ values where:

(1) The true estimation error of the set of non-anonymous SPAs (the orange dashed line in
Figure 7) is larger than our upper bound on the worst-case estimation error of the set of
anonymous SPAs (the blue solid line in Figure 7).

(2) The expected revenue of the optimal non-anonymous SPA is significantly larger than the
expected revenue of the optimal anonymous SPA: the former is 0.38 and the latter is 0.62.

Therefore, there is a tradeoff between the sample complexity and revenue guarantees of these
two classes.

7 Conclusions

We provided a general sample complexity theorem for tuning algorithm parameters. Our bound
applies whenever a parameterized algorithm’s performance is a piecewise-structured function of
its parameters: for any fixed problem instance, boundary functions partition the parameters into
regions where performance is a well-structured function. We proved this guarantee by exploiting
intricate connections between primal function classes (measuring the algorithm’s performance
as a function of its input) and dual function classes (measuring the algorithm’s performance on a
fixed input as a function of its parameters). We demonstrated that many parameterized algorithms
exhibit this structure and thus our main theorem implies sample complexity guarantees for these
algorithms and application domains.
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Fig. 8. Comparison of the expected revenue of the empirically-optimal anonymous SPA and that of the

empirically-optimal non-anonymous SPA for different choices of the default reserve.We plot these quantities

as a function of the number of samples.

A great direction for future research is to build on these ideas for the sake of learning a port-
folio of configurations, rather than a single high-performing configuration. At runtime, machine
learning is used to determine which configuration in the portfolio to employ for the given input.
Gupta and Roughgarden [62] and Balcan et al. [22] have provided initial results in this direction,
but a general theory is yet to be developed.
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Another direction is to provide data-dependent guarantees and problem-specific guarantees that
are tailored to the specific algorithm family. For example, as illustrated by the applications we ana-
lyze in this article, our guarantees typically grow (at least) linearly with the number of parameters
because typically either the setF ∗ orG∗ is either linear or evenmore complex. Related research has
proven tighter bounds than those one could achieve using this framework via algorithm-specific
analyses [14, 24, 26].

Appendices

A Helpful Lemmas

Lemma A.1 (Shalev-Shwartz and Ben-David [114]). Let a ≥ 1 and b > 0. If y < a lny + b,
then y < 4a ln(2a) + 2b.

The following is a corollary of Rolle’s theorem that we use in the proof of Lemma 4.8.

Lemma A.2 (Tossavainen [119]). Let h be a polynomial-exponential sum of the form h(x) =∑t
i=1 aib

x
i , where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t .

Corollary A.3. Let h be a polynomial-exponential sum of the form

h(x) =
t∑
i=1

ai
bxi
,

where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t .

Proof. Note that
∑t

i=1
ai
bxi
= 0 if and only if(

n∏
j=1

bxi

)
t∑
i=1

ai
bxi
=

n∑
i=1

ai

(∏
j�i

bi

)x
= 0.

Therefore, the corollary follows from Lemma A.2. �

B Additional Details about Our General Theorem

Lemma 3.10. Let U = {uρ | ρ ∈ P ⊆ Rd } be a class of utility functions defined over a d-
dimensional parameter space. Suppose the dual class U ∗ is (F ,G,k)-piecewise decomposable, where

the boundary functions G = { fa,θ : U → {0, 1} | a ∈ Rd ,θ ∈ R} are halfspace indicator functions
дa,θ : uρ 
→ I{a ·ρ≤θ } and the piece functions F = { fa,θ : U → R | a ∈ Rd ,θ ∈ R} are linear
functions fa,θ : uρ 
→ a · ρ + θ . Then Pdim(U ) = O(d ln(dk)).

Proof. First, we prove that the VC-dimension of the dual class G∗ is at most d + 1. The dual
class G∗ consists of functions д∗uρ for all ρ ∈ P where д∗uρ (дa,θ ) = I{a ·ρ≤θ } . Let Ĝ = {д̂ρ :

R
d+1 → {0, 1}} be the class of halfspace thresholds д̂ρ : (a,θ ) 
→ I{a ·ρ≤θ } . It is well-known that

VCdim(Ĝ) ≤ d+1, which we prove means that VCdim(G∗) ≤ d+1. For a contradiction, suppose G∗

can shatter d + 2 functions дa1,θ1 , . . . ,дad+2,θd+2 ∈ G . Then for every subsetT ⊆ [d + 2], there exists
a parameter vector ρT such that ai · ρT ≤ θi if and only if i ∈ T . This means that Ĝ can shatter
the tuples (a1,θ1), . . . , (ad+2,θd+2) as well, which contradicts the fact that VCdim(Ĝ) ≤ d + 1.
Therefore, VCdim(G∗) ≤ d + 1.
By a similar argument, we prove that the pseudo-dimension of the dual class F ∗ is at most

d + 1. The dual class F ∗ consists of functions f ∗uρ for all ρ ∈ P where f ∗uρ (fa,θ ) = a · ρ + θ . Let
F̂ = { f̂ρ : Rd+1 → R} be the class of linear functions f̂ρ : (a,θ ) 
→ a · ρ + θ . It is well-known that
Pdim(F̂ ) ≤ d + 1, which we prove means that Pdim(F ∗) ≤ d + 1. For a contradiction, suppose F ∗
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can shatter d + 2 functions fa1,θ1 , . . . , fad+2,θd+2 ∈ F . Then there exist witnesses z1, . . . ,zd+2 such
that for every subset T ⊆ [d + 2], there exists a parameter vector ρT such that ai · ρT + θi ≤ zi if
and only if i ∈ T . This means that F̂ can shatter the tuples (a1,θ1), . . . , (ad+2,θd+2) as well, which
contradicts the fact that Pdim(F̂ ) ≤ d + 1. Therefore, Pdim(F ∗) ≤ d + 1.
The lemma statement now follows from Theorem 3.3. �

C Additional Details about Sequence Alignment (Section 4.1)

Lemma C.1. Fix a pair of sequences S1, S2 ∈ Σn . There are at most 2nn2n+1 alignments of S1 and S2.

Proof. For any alignment (τ1,τ2), we know that |τ1 | = |τ2 | and for all i ∈ [|τ1 |], if τ1[i] = −,
then τ2[i] � − and vice versa. This means that τ1 and τ2 have the same number of gaps. To prove
the upper bound, we count the number of alignments (τ1,τ2) where τ1 and τ2 each have exactly
i gaps. There are

(n+i
i

)
choices for the sequence τ1. Given a sequence τ1, we can only pair a gap

in τ2 with a non-gap in τ1. Since there are i gaps in τ2 and n non-gaps in τ1, there are
(n
i

)
choices

for the sequence τ2 once τ1 is fixed. This means that there are
(n+i
i

) (n
i

)
≤ 2nn2n alignments (τ1,τ2)

where τ1 and τ2 each have exactly i gaps. Summing over i ∈ [n], the total number of alignments is
at most 2nn2n+1. �

Theorem 4.5. Under the affine gapmodel, there exists a set
{
Aρ | ρ ∈ R3≥0

}
of co-optimal-constant

algorithms and an alphabet Σ such that the set of functions

U =
{
uρ : (S1, S2) 
→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ R3≥0

}
,

which map sequence pairs S1, S2 ∈ ∪n
i=1Σ

i of length at most n to [0, 1], has a pseudo-dimension of

Ω(logn).

Proof. To prove this theorem, we identify:

(1) An alphabet Σ,

(2) A set of N = Θ(logn) sequence pairs (S (1)1 , S
(1)
2 ), . . . , (S (N )

1 , S
(N )
2 ) ∈ ∪n

i=1Σ
i × Σi ,

(3) A ground-truth alignment L(i)∗ for each sequence pair (S (i)1 , S
(i)
2 ), and

(4) A set of N witnesses z1, . . . , zN ∈ R such that for any subset T ⊆ [N ], there exists an indel
penalty parameter ρ[T ] such that if i ∈ [T ], then u0,ρ[T ],0(S (i)1 , S

(i)
2 ) < zi and if i � [T ], then

u0,ρ[T ],0(S (i)1 , S
(i)
2 ) ≥ zi .

We now describe each of these four elements in turn.

The alphabet Σ. Let k = 2 �log
√
n/2� − 1 = Θ(

√
n). The alphabet Σ consists of 4k characters5 we

denote as {ai , bi , ci , di }ki=1.

The set of N = Θ(logn) sequence pairs. These N sequence pairs are defined by a set of k

subsequence pairs (t (1)1 , t
(1)
2 ), . . . , (t (k )1 , t

(k )
2 ) ∈ Σ∗ × Σ∗. Each pair (t (i)1 , t

(i)
2 ) is defined as follows:

— The subsequence t (i)1 begins with i ai s followed by bidi . For example, t
(3)
1 = a3a3a3b3d3.

— The subsequence t (i)2 begins with 1 bi , followed by i ci s, followed by 1 di . For example,

t (3)2 = b3c3c3c3d3.

Therefore, t (i)1 and t (i)2 are both of length i + 2.

5To simplify the proof, we use this alphabet of size 4k , but we believe it is possible to adapt this proof to handle the case
where there are only 4 characters in the alphabet.
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We use these subsequence pairs to define a set of N = log(k + 1) = Θ(logn) sequence pairs. The
first sequence pair, (S (1)1 , S

(1)
2 ) is defined as follows: S (1)1 is the concatenation of all subsequences

t (1)1 , . . . , t
(k )
1 and S (1)2 is the concatenation of all subsequences t (1)2 , . . . , t

(k )
2 :

S (1)1 = t (1)1 t (2)1 t (3)1 · · · t (k )1 and S (1)2 = t (1)2 t (2)2 t (3)2 · · · t (k )2 .

Next, S (2)1 and S (2)2 are the concatenation of every 2nd subsequence:

S (2)1 = t (2)1 t (4)1 t (6)1 · · · t (k−1)1 and S (2)2 = t (2)2 t (4)2 t (6)2 · · · t (k−1)2 .

Similarly, S (3)1 and S (3)2 are the concatenation of every 4th subsequence:

S (3)1 = t (4)1 t (8)1 t (12)1 · · · t (k−3)1 and S (3)2 = t (4)2 t (8)2 t (12)2 · · · t (k−3)2 .

Generally speaking, S (i)1 and S (i)2 are the concatenation of every (2i−1)th subsequence:

S (i)1 = t (2
i−1)

1 t (2·2
i−1)

1 t (3·2
i−1)

1 · · · t (k+1−2
i−1)

1 and S (i)2 = t (2
i−1)

2 t (2·2
i−1)

2 t (3·2
i−1)

2 · · · t (k+1−2
i−1)

2 .

To explain the index of the last subsequence of every pair, since k + 1 is a power of two, we know
that k − 1 is divisible by 2, k − 3 is divisible by 4, and more generally, k + 1 − 2i−1 is divisible by
2i−1.
We claim that there are a total of N = log(k + 1) such sequence pairs. To see why, note that

each sequence in the first pair S (1)1 and S (1)2 consists of k subsequences. Each sequence in the sec-

ond pair S (2)1 and S (2)2 consists of k−1
2 subsequences. More generally, each sequence in the ith pair

S (k+1−2
i−1)

1 and S (k+1−2
i−1)

2 consists of k+1−2i−1
2i−1 subsequences. The final pair will will consist of only

one subsequence, so k+1−2i−1
2i−1 = 1, or in other words i = log(k + 1).

We also claim that each sequence has length at most n. This is because the longest sequence

pair is the first, (S (1)1 , S
(1)
2 ). By definition of the subsequences t (i)j , these two sequences are of length∑k

i=1(i + 2) = 1
2k(k + 5) ≤ n. Therefore, all N sequence pairs are of length at most n.

Example C.2. Suppose that n = 128. Then k = 2 �log
√
n/2� − 1 = 7 and N = log(k + 1) = 3. The

three sequence pairs have the following form:6

S
(1)
1 = a1b1d1a2a2b2d2a3a3a3b3d3a4a4a4a4b4d4a5a5a5a5a5b5d5a6a6a6a6a6a6b6d6a7a7a7a7a7a7a7b7d7

S
(1)
2 = b1c1d1b2c2c2d2b3c3c3c3d3b4c4c4c4c4d4b5c5c5c5c5c5d5b6c6c6c6c6c6c6d6b7c7c7c7c7c7c7c7d7

S
(2)
1 = a2a2b2d2a4a4a4a4b4d4a6a6a6a6a6a6b6d6

S
(2)
2 = b2c2c2d2b4c4c4c4c4d4b6c6c6c6c6c6c6d6

S
(3)
1 = a4a4a4a4b4d4

S
(3)
2 = b4c4c4c4c4d4

A ground-truth alignment for every sequence pair. To define a ground-truth alignment for

all N sequence pairs, we first define two alignments per subsequence pair (t (i)1 , t
(i)
2 ). The resulting

ground-truth alignments will be a concatenation of these alignments. The first alignment, which

we denote as (h(i)1 ,h
(i)
2 ), is defined as follows: h(i)1 begins with i ai s, followed by 1 bi , followed by i

6The maximum length of these six strings is 42, which is smaller than 128, as required.
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gap characters, followed by 1 di ; h
(i)
2 begins with i gap characters, followed by 1 bi , followed by i

ci s, followed by 1 di . For example,

h(3)1 = a3 a3 a3 b3 - - - d3
h(3)2 = - - - b3 c3 c3 c3 d3

.

The second alignment, which we denote as (�(i)1 , �
(i)
2 ), is defined as follows: �(i)1 begins with i ai s,

followed by 1 bi , followed by i gap characters, followed by 1 di ; �
(i)
2 begins with 1 bi , followed by

i gap characters, followed by i ci s, followed by 1 di . For example,

�
(3)
1 = a3 a3 a3 b3 - - - d3
�
(3)
2 = b3 - - - c3 c3 c3 d3

.

We now use these 2k alignments to define a ground-truth alignment L(i)∗ per sequence pair

(S (i)1 , S
(i)
2 ). Beginning with the first pair (S (1)1 , S

(1)
2 ), where

S (1)1 = t (1)1 t (2)1 t (3)1 · · · t (k )1 and S (1)2 = t (1)2 t (2)2 t (3)2 · · · t (k )2 ,

we define the alignment of S (1)1 to be �(1)1 h(2)1 �
(3)
1 h(4)1 · · · �(k )1 and we define the alignment of S (1)2 to

be �(1)2 h(2)2 �
(3)
2 h(4)2 · · · �(k )2 . Moving on to the second pair (S (2)1 , S

(2)
2 ), where

S (2)1 = t (2)1 t (4)1 t (6)1 · · · t (k−1)1 and S (2)2 = t (2)2 t (4)2 t (6)2 · · · t (k−1)2 ,

we define the alignment of S (2)1 to be �(2)1 h(4)1 �
(6)
1 h(8)1 · · · �(k−1)1 and we define the alignment of S (1)2 to

be �(2)2 h(4)2 �
(6)
2 h(8)2 · · · �(k−1)2 . Generally speaking, each pair (S (i)1 , S

(i)
2 ), where

S (i)1 = t (2
i−1)

1 t (2·2
i−1)

1 t (3·2
i−1)

1 · · · t (k−2
i−1+1)

1 and S (i)2 = t (2
i−1)

2 t (2·2
i−1)

2 t (3·2
i−1)

2 · · · t (k−2
i−1+1)

2 ,

is made up of k+1
2i−1 − 1 subsequences. Since k + 1 is a power of two, this number of subsequences is

odd. We define the alignment of S (i)1 to alternate between alignments of type �(j)1 and alignments

of type h(j
′)

1 , beginning and ending with alignments of the first type. Specifically, the alignment

S (i)1 is �(2
i−1)

1 h(2·2
i−1)

1 �
(3·2i−1)
1 h(4·2

i−1)
1 · · · �(k−2

i−1+1)
1 . Similarly, we define the alignment of S (i)2 to be

�
(2i−1)
2 h(2·2

i−1)
2 �

(3·2i−1)
2 h(4·2

i−1)
2 · · · �(k−2

i−1+1)
2 .

The N witnesses. We define the N values that witness the shattering of these N sequence pairs
to be z1 = z2 = · · · = zN =

3
4 .

Shattering the N sequence pairs. Our goal is to show that for any subsetT ⊆ [N ], there exists
an indel penalty parameter ρ[T ] such that if i ∈ [T ], then u0,ρ[T ],0(S (i)1 , S

(i)
2 ) < 3

4 and if i � [T ], then
u0,ρ[T ],0(S (i)1 , S

(i)
2 ) ≥ 3

4 . To prove this, we will use two helpful claims, Claims C.3 and C.4.

Claim C.3. For any pair (S (i)1 , S
(i)
2 ) and indel parameter ρ[2] ≥ 0, there exists an alignment

L ∈ argmaxL′mt
(
S (i)1 , S

(i)
2 ,L

′
)
− ρ[2] · id

(
S (i)1 , S

(i)
2 ,L

′
)

such that each dj character in S
(i)
1 is matched to dj in S

(i)
2 .

Proof. Let L0 ∈ argmaxL′mt(S
(i)
1 , S

(i)
2 ,L

′)−ρ[2] · id(S (i)1 , S
(i)
2 ,L

′) be an alignment such that some
dj character in S

(i)
1 is not matched to dj in S

(i)
2 . Denote the alignment L0 as (τ1,τ2). Let j ∈ Z be the

smallest integer such that for some indices �1 � �2, τ1[�1] = dj and τ2[�2] = dj . Next, let �0 be the
maximum index smaller than �1 and �2 such that τ1[�0] = dj′ for some j ′ � j. We illustrate �0, �1,
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Fig. 9. Illustration of Claim C.3: we can assume that each dj character in S
(i)
1 is matched to dj in S

(i)
2 .

and �2 in Figure 9(a). By definition of j, we know that τ1[�0] = τ2[�0] = dj′ . We also know there is at
least one gap character in {τ1[i] : �0 + 1 ≤ i ≤ �1} ∪ {τ2[i] : �0 + 1 ≤ i ≤ �2} because otherwise, the
dj characters would be aligned in L0. Moreover, we know there is at most one match among these
elements between characters other than dj (namely, between the character bj ). If we rearrange
all of these gap characters so that they fall directly after dj in both sequences, as in Figure 9(b),
then we may lose the match between the character bj , but we will gain the match between the
character dj . Moreover, the number of indels remains the same, and all matches in the remainder
of the alignment will remain unchanged. Therefore, this rearranged alignment has at least as high
an objective function value as L0, so the claim holds. �

Based on this claim, we will assume, without loss of generality, that for any pair (S (i)1 , S
(i)
2 ) and

indel parameter ρ[2] ≥ 0, under the alignment L = A0,ρ[2],0(S (i)1 , S
(i)
2 ) returned by the algorithm

A0,ρ[2],0, all dj characters in S
(i)
1 are matched to dj in S

(i)
2 .

Claim C.4. Suppose that the character bj is in S (i)1 and S (i)2 . The bj characters will be matched in

L = A0,ρ[2],0(S (i)1 , S
(i)
2 ) if and only if ρ[2] ≤ 1

2j .

Proof. Since all dj characters are matched in L, in order to match bj , it is necessary to add
exactly 2j gap characters: all 2j aj and cj characters must be matched with gap characters. Under

the objective function mt(S (i)1 , S
(i)
2 ,L

′) − ρ[2] · id(S (i)1 , S
(i)
2 ,L

′), this one match will be worth the
2jρ[2] penalty if and only if 1 ≥ 2jρ[2], as claimed. �

We now use Claims C.3 and C.4 to prove that we can shatter the N sequence pairs (S (1)1 , S
(1)
2 ), . . . ,

(S (N )
1 , S

(N )
2 ).

Claim C.5. There are k+1
2i−1 − 1 thresholds 1

2(k+1)−2i <
1

2(k+1)−2·2i <
1

2(k+1)−3·2i < · · · < 1
2i

such that as ρ[2] ranges from 0 to 1, when ρ[2] crosses one of these thresholds, u0,ρ[2],0(S (i)1 , S
(i)
2 )

switches from above 3
4 to below

3
4 , or vice versa, beginning with u0,0,0(S

(i)
1 , S

(i)
2 ) < 3

4 and ending with

u0,1,0(S (i)1 , S
(i)
2 ) > 3

4 .

Proof. Recall that

S (i)1 = t (2
i−1)

1 t (2·2
i−1)

1 t (3·2
i−1)

1 · · · t (k−2
i−1+1)

1 and S (i)2 = t (2
i−1)

2 t (2·2
i−1)

2 t (3·2
i−1)

2 · · · t (k−2
i−1+1)

2 ,

J. ACM, Vol. 71, No. 5, Article 32. Publication date: October 2024.



32:42 M.-F. Balcan et al.

so in S (i)1 and S (i)2 , the bj characters are b2i−1 , b2·2i−1 , b3·2i−1 , . . . , bk−2i−1+1. Also, the reference align-

ment of S (i)1 is �(2
i−1)

1 h(2·2
i−1)

1 �
(3·2i−1)
1 h(4·2

i−1)
1 · · · �(k−2

i−1+1)
1 and the reference alignment of S (i)2 is

�
(2i−1)
2 h(2·2

i−1)
2 �

(3·2i−1)
2 h(4·2

i−1)
2 · · · �(k−2

i−1+1)
2 .

We know that when the indel penalty ρ[2] is equal to zero, all dj characters will be aligned, as
will all bj characters. This means we will correctly align all dj characters and we will correctly

align all bj characters in the (h(j)1 ,h
(j)
2 ) pairs, but we will incorrectly align the bj characters in

the (�(j)1 , �
(j)
2 ) pairs. The number of (h(j)1 ,h

(j)
2 ) pairs in this reference alignment is k+1

2i − 1 and the

number of (�(j)1 , �
(j)
2 ) pairs is k+1

2i . Therefore, the utility of the alignment that maximizes the number
of matches equals the following:

u0,0,0
(
S (i)1 , S

(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i − 1
k+1
2i−2 − 2

=
3(k + 1) − 2i+1

4(k + 1) − 2i+1
<
3

4
,

where the final inequality holds because 2i+1 ≤ 2(k + 1) < 3(k + 1).
Next, suppose we increase ρ[2] to lie in the interval ( 1

2(k+1)−2i ,
1

2(k+1)−2·2i ]. Since it is no longer
the case that ρ[2] ≤ 1

2(k−2i−1+1) , we know that the bk−2i−1+1 characters will no longer be matched,
and thus we will correctly align this character according to the reference alignment. This means

we will correctly align all dj characters and we will correctly align all bj characters in the (h(j)1 ,h
(j)
2 )

pairs, but we will incorrectly align all but one of the bj characters in the (�(j)1 , �
(j)
2 ) pairs. Therefore,

the utility of the alignment that maximizes mt(S1, S2,L) − ρ[2] · id(S1, S2,L) is

u0,ρ[2],0

(
S (i)1 , S

(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i

k+1
2i−2 − 2

=
3(k + 1) − 2i

4(k + 1) − 2i+1
>
3

4
,

where the final inequality holds because 2i+1 ≤ 2(k + 1) < 4(k + 1).
Next, suppose we increase ρ[2] to lie in the interval ( 1

2(k+1)−2·2i ,
1

2(k+1)−3·2i ]. Since it is no

longer the case that ρ[2] ≤ 1
2(k−2·2i−1+1) , we know that the bk−2·2i−1+1 characters will no longer be

matched, and thus we will incorrectly align this character according to the reference alignment.
This means we will correctly align all dj characters and we will correctly align the bj characters

in all but one of the (h(j)1 ,h
(j)
2 ) pairs, but we will incorrectly align all but one of the bj

characters in the (�(j)1 , �
(j)
2 ) pairs. Therefore, the utility of the alignment that maximizes

mt(S1, S2,L) − ρ[2] · id(S1, S2,L) is

u0,ρ[2],0

(
S (i)1 , S

(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i

k+1
2i−2 − 2

>
3

4
.

In a similar fashion, every time ρ[2] crosses one of the thresholds 1
2(k+1)−2i <

1
2(k+1)−2·2i <

1
2(k+1)−3·2i < · · · < 1

2i , the utility will shift from above 3
4 to below or vice versa, as claimed. �

The above claim demonstrates that the N sequence pairs are shattered, each with the wit-
ness 3

4 . After all, for every i ∈ {2, . . . ,N } and every interval ( 1
2(k+1)−j2i ,

1
2(k+1)−(j+1)2i ) where

u0,ρ[2],0(S (i)1 , S
(i)
2 ) is uniformly above or below 3

4 , there exists a subpartition of this interval into
the two intervals(

1

2(k + 1) − j2i
,

1

2(k + 1) − (2j + 1)2i−1

)
and

(
1

2(k + 1) − (2j + 1)2i−1 ,
1

2(k + 1) − (j + 1)2i

)
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such that in the first interval,u0,ρ[2],0(S (i−1)1 , S (i−1)2 ) < 3
4 and in the second,u0,ρ[2],0(S

(i−1)
1 , S (i−1)2 ) > 3

4 .
Therefore, for any subsetT ⊆ [N ], there exists an indel penalty parameter ρ[T ] such that if i ∈ [T ],
then u0,ρ[T ],0(S (i)1 , S

(i)
2 ) < 3

4 and if i � [T ], then u0,ρ[T ],0(S
(i)
1 , S

(i)
2 ) > 3

4 . �

C.1 Tighter Guarantees for a Structured Algorithm Subclass: Sequence Alignment

using Hidden Markov Models

While we focused on the affine gapmodel in the previous section, whichwas inspired by the results
in Gusfield et al. [63], the result in Pachter and Sturmfels [101] helps to provide uniform conver-
gence guarantees for any alignment scoring function that can be modeled as a hidden Markov

model (HMM). A bound on the number of parameter choices that emit distinct sets of co-optimal
alignments in that work is found by taking an algebraic view of the alignment HMM with d tun-
able parameters. In fact, the bounds provided can be used to provide guarantees for many types
of HMMs.

Lemma C.6. Let {Aρ | ρ ∈ Rd } be a set of co-optimal-constant algorithms and let u be a utility

function mapping tuples (S1, S2,L) of sequence pairs and alignments to the interval [0, 1]. Let U be

the set of functions U = {uρ : (S1, S2) 
→ u(S1, S2,Aρ (S1, S2)) | ρ ∈ R} mapping sequence pairs

S1, S2 ∈ Σn to [0, 1]. For some constant c1 > 0, the dual class U ∗ is (F ,G, c21n2d (d−1)/(d+1))-piecewise
decomposable, where G = {дa : U → {0, 1} | a ∈ Rd+1} consists of halfspace indicator functions
дa : uρ 
→ I{a1ρ[1]+· · ·+ad ρ[d ]<ad+1 } and F = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 
→ c .

Proof. Fix a sequence pair S1 and S2 and consider the function u∗
S1,S2

: U → R from the dual
class U ∗, where u∗

S1,S2
(uρ ) = uρ (S1, S2). Consider the set of alignments LS1,S2 = {Aρ (S1, S2) | ρ ∈

R
d }. There are at most O(nd (d−1)/(d+1)) sets of co-optimal solutions as we range ρ over Rd [101].

The remainder of the proof is analogous to that for Lemma 4.3. �

Finally the results of Lemma C.6 imply the following pseudo-dimension bound.

Corollary C.7. Let {Aρ | ρ ∈ Rd } be a set of co-optimal-constant algorithms and let u be a

utility function mapping tuples (S1, S2,L) to [0,H ]. Let U be the set of functions

U =
{
uρ : (S1, S2) 
→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ Rd

}
mapping sequence pairs S1, S2 ∈ Σn to [0, 1]. Then Pdim(U ) = O(d2 lnn).

C.2 Progressive Multiple Sequence Alignment

The multiple sequence alignment problem is a generalization of the pairwise alignment problem
introduced in Section 4.1. Let Σ be an abstract alphabet and let S1, . . . , Sκ ∈ Σn be a collection of
sequences in Σ of length n. A multiple sequence alignment is a collection of sequences τ1, . . . ,τκ ∈
(Σ ∪ {−})∗ such that the following hold:
(1) The aligned sequences are the same length: |τ1 | = |τ2 | = · · · = |τκ |.
(2) Removing the gap characters from τi gives Si : for all i ∈ [κ], del(τi ) = Si .
(3) For every position in the alignment, at least one of the aligned sequences has a non-gap

character. In other words, for every position i ∈ [|τ1 |], there exists a sequence τj such that
τj [i] � −.

The extension from pairwise to multiple sequence alignment is computationally challenging:
all common formulations of the problem are NP-complete [75, 122]. As a result, heuristics have
been developed to find good but possibly sub-optimal alignments. The most common heuristic
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approach is called progressive multiple sequence alignment. It leverages efficient pairwise alignment
algorithms to heuristically align multiple sequences [45].
The input to a progressive multiple sequence alignment algorithm is a collection of sequences

S1, . . . , Sκ together with a binary guide tree G with κ leaves.7 The tree indicates how the original
alignment should be decomposed into a hierarchy of subproblems, each of which can be heuris-
tically solved using pairwise alignment. The leaves of the guide tree correspond to the input se-
quences S1, . . . , Sκ .
While there are many formalizations of the progressive alignment method, for the sake of anal-

ysis we will focus on “partial consensus” described by Higgins and Sharp [66]. Here, we provide
a high-level description of the algorithm. At a high level, the algorithm recursively constructs an
alignment in two stages: first, it creates a consensus sequence for each node in the guide tree using
a pairwise alignment algorithm, and then it propagates the node-level alignments to the leaves by
inserting additional gap characters.
In a bit more detail, for each node v in the tree, we construct an alignment L′v of the consensus

sequences of its children as well as a consensus sequence σ ′
v ∈ Σ∗. Since each leaf corresponds

to a single input sequence, it has a trivial alignment and the consensus sequence is just the in-
put sequence itself. For an internal node v with children c1 and c2, we use a pairwise alignment
algorithm to construct an alignment of the consensus strings σ ′

v1
and σ ′

v2
. Finally, we define the

consensus sequence of the node v to be the string σv ∈ Σ∗ such that σv [i] is the most-frequent
non-gap character in the ith position in the alignment L′v . By defining the consensus sequence
in this way, we can represent all of the sub-alignments of the leaves of the subtree rooted at v
as a single sequence which can be aligned using existing methods. We obtain a full multiple se-
quence alignment by iteratively replacing each consensus sequence by the pairwise alignment it
represents, adding gap columns to the sub-alignments when necessary. Once we add a gap to a
sequence, we never remove it: “once a gap, always a gap.”
See Algorithm 2 for more details, which relies on the following definition.

Definition C.8. Let (τ1,τ2) be a sequence alignment. The consensus sequence of this alignment is
the sequence σ ∈ Σ∗ where σ [j] is the most-frequent non-gap character in the jth position in the
alignment (breaking ties in a fixed but arbitrary way). For example, the consensus sequence of the
alignment [

A T - C
G - C C

]
is ATCC when ties are broken in favor of A over G.

Figure 10 illustrates an example of this algorithm in action, and corresponds to the pseudo-code
given in Algorithm 2. The first loop matches with Figure 10(a), the second and third match with
Figure 10(b).
The family {Aρ | ρ ∈ Rd } of parameterized pairwise alignment algorithms introduced in Sec-

tion 4.1 induces a parameterized family of progressive multiple sequence alignment algorithms
{Mρ | ρ ∈ Rd }. In particular, the algorithm Mρ takes as input a collection of input sequences
S1, . . . , Sκ ∈ Σn and a guide tree G, and it outputs a multiple-sequence alignment L by apply-
ing the pairwise alignment algorithm Aρ at each node of the guide tree. We assume that there is
a utility function that characterizes an alignment’s quality, denoted u(S1, . . . , Sκ ,L) ∈ [0, 1]. We
then define uρ (S1, . . . , Sκ ,G) = u(S1, . . . , Sκ ,Mρ (S1, . . . , Sκ ,G)) to be the utility of the alignment

7The problem of constructing the guide tree is also an algorithmic task, often tackled via hierarchical clustering, but we
are agnostic to that pre-processing step.
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Fig. 10. This figure illustrates an example of the progressive sequence alignment algorithm in action. Fig-

ure 10(a) depicts a completed guide tree. The five input sequences are represented by the leaves. Each inter-

nal leaf, depicts an alignment of the (consensus) sequences contained in the leaf’s children. Each internal leaf

other than the root also contains the consensus sequence corresponding to that alignment. Figure 10(b) illus-

trates how to extract an alignment of the five input strings (as well as the consensus strings) from Figure 10(a).

ALGORITHM 2: Progressive Alignment Algorithm ProgressiveAlignment

Input: Binary guide tree G, pairwise sequence alignment algorithm Aρ

Let v1, . . . ,vm be an ordering of the nodes in G from deepest to shallowest, with nodes of the
same depth ordered arbitrarily
for i ∈ {1, . . . ,m} do � Compute the consensus sequences

if vi is a leaf then
Set σ ′

vi
to be the leaf’s sequence

else

Let c1 and c2 be the children of vi
Compute the pairwise alignment L′vi = Aρ (σ ′

c1
,σ ′

c2
)

Set σ ′
vi
to be the consensus sequence of L′vi (as in Definition C.8)

set σvm = σ ′
vm

� note vm is the root of G
for i ∈ {m, . . . , 1} do � Compute the alignment sequences

if vi is not a leaf then
Let L′vi = (τ ′1,τ ′2) be the alignment sequences computed at vi
Let c1 and c2 be the children of vi
Set σc1 = σc2 = “”
Set k = 0
for j ∈ [|σvi |] do

if σvi [j] = ‘-’ then
Append ‘-’ to the end of both σc1 and σc2

else

Append τ ′1[k] to the end of σc1
Append τ ′2[k] to the end of σc2
Increment k by 1

for i ∈ {1, . . . ,m} do � Construct the final alignment
if vi is a leaf representing sequence S j then

Set τj = σvi
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returned by the algorithm Mρ . The proof of the following lemma follows by the same logic as
Lemma 4.1 for pairwise sequence alignment, inductively over the guide tree.

Lemma C.9. Let G be a guide tree of depth η and let U be the set of functions

U =
{
uρ : (S1, . . . , Sκ ,G) 
→ u

(
S1, . . . , Sκ ,Mρ (S1, . . . , Sκ ,G)

)
| ρ ∈ Rd

}
.

The dual class U ∗ is (
F ,G,

(
4nκ (nκ)4nκ+2

)2dη
4d

η+1
)
-piecewise decomposable,

where G = {дa,θ : U → {0, 1} | a ∈ Rd ,θ ∈ R} consists of halfspace indicator functions дa,θ : uρ 
→
I{a ·ρ≤θ } and F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c .

Proof. A key step in the proof of Lemma 4.1 for pairwise alignment shows that for any pair of
sequences S1, S2 ∈ Σn , we can find a setH of 4nn4n+2 hyperplanes such that for any pair ρ and ρ ′

belonging to the same connected component of Rd \H, we have Aρ (S1, S2) = Aρ′(S1, S2). We use
this result to prove the following claim.

Claim C.10. For each node v in the guide tree, there is a set Hv of hyperplanes where for any

connected component R of Rd \Hv , the alignment and consensus sequence computed by Mρ is fixed

across all ρ ∈ R. Moreover, the size of Hv is bounded as follows:

|Hv | ≤ �d
height(v )

(
�4d

)(dheight(v )−1)/(d−1)
,

where � := 4nκ (nκ)4nκ+2.

Before we prove Claim C.10, we remark that the longest consensus sequence computed for any
node v of the guide tree has length at most nκ, which is a bound on the sum of the lengths of the
input sequences.

Proof of Claim C.10. We prove this claim by induction on the guide tree G. The base case
corresponds to the leaves of G. On each leaf, the alignment and consensus sequence constructed
byMρ is constant for all ρ ∈ Rd , since there is only one string to align (i.e., the input string placed
at that leaf). Therefore, the claim holds for the leaves ofG. Moving to an internal node v , suppose
that the inductive hypothesis holds for its children v1 and v2. Assume without loss of generality
that height (v1) ≥ height (v2), so that height (v) = height (v1) + 1. Let Hv1 and Hv2 be the sets of
hyperplanes corresponding to the children v1 and v2. By the inductive hypothesis, these sets are
each of size at most

s := �d
height(v1)

(
�4d

) (dheight(v1)−1)/(d−1)
Letting H = Hv1 ∪ Hv2 , we are guaranteed that for every connected component of R

d \ H, the
alignment and consensus string computed by Mρ for both children v1 and v2 is constant. Based
on work by Buck [28], we know that there are at most (2s + 1)d ≤ (3s)d connected components of
R
d \H. For each region, by the same argument as in the proof of Lemma 4.1, there are an additional
� hyperplanes that partition the region into subregions where the outcome of the pairwise merge
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at node v is constant. Therefore, there is a setHv of at most

�(3s)d + 2s ≤ �(4s)d

= �

(
4�d

height(v1)
(
�4d

) (dheight(v1)−1)/(d−1))d
= �d

height(v1)+1
(
�4d

) (dheight(v1)+1−d )/(d−1)+1
= �d

height(v1)+1
(
�4d

) (dheight(v1)+1−1)/(d−1)
= �d

height(v )
(
�4d

)(dheight(v )−1)/(d−1)

hyperplanes where for every connected component of Rd \H, the alignment and consensus string
computed byMρ at v is invariant. �

Applying Claim C.10 to the root of the guide tree, the function ρ 
→ Mρ (S1, . . . , Sκ ,G) is piece-
wise constant with

�d
height(G)

(
�4d

)(dheight(G)−1)/(d−1)

linear boundary functions. The lemma then follows from the following chain of inequalities:

�d
height(G)

(
�4d

)(dheight(G)−1)/(d−1)
≤ �dheight(G)

(
�4d

)dheight(G)

= �2d
height(G)

4d
height(G)+1

=
(
4nκ (nκ)4nκ+2

)2dheight(G)
4d

height(G)+1

=
(
4nκ (nκ)4nκ+2

)2dheight(G)
4d

height(G)+1

≤
(
4nκ (nκ)4nκ+2

)2dη
4d

η+1
. �

This lemma together with Lemma 3.10 implies the following corollary.

Corollary C.11. The pseudo-dimension of U is O
(
dη+1nκ ln(nκ) + dη+2

)
.

Therefore, the pseudo-dimension grows only linearly in n and quadratically in κ in the affine-
gap model (d = 3) when the guide tree is balanced (η ≤ logκ).

D Additional Details about RNA Folding (Section 4.2)

Lemma 4.6. Let U be the set of functions U = {uρ : S 
→ u(S,Aρ (S)) | ρ ∈ R}. The dual class U ∗

is (F ,G,n2)-piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of threshold
functions дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions

fc : uρ 
→ c .

Proof. Fix a sequence S . Let Φ be the set of alignments that the algorithm returns as we range
over all parameters ρ ∈ R. In other words, Φ = {Aρ (S) | ρ ∈ [0, 1]}. We know that every folding
has length at most n/2. For any k ∈ {0, . . . ,n/2}, let ϕk be the folding of length k that maximizes
the right-hand-side of Equation (13):

ϕk = argmaxϕ : |ϕ |=k

∑
(i, j)∈ϕ

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ } .
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The folding the algorithm returns will always be one of {ϕ0, . . . ,ϕn/2}, so |Φ| ≤ n
2 + 1.

Fix an arbitrary folding ϕ ∈ Φ. We know that ϕ will be the folding returned by the algorithm
Aρ (S) if and only if

ρ |ϕ | + (1 − ρ)
∑

(i, j)∈ϕ
MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ }

≥ ρ |ϕ ′ | + (1 − ρ)
∑

(i, j)∈ϕ′

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ′ }
(18)

for all ϕ ′ ∈ Φ \ {ϕ}. Since these functions are linear in ρ, this means there is a set ofT ≤
( |Φ |
2

)
≤ n2

intervals [ρ1, ρ2), [ρ2, ρ3), . . . , [ρT , ρT+1] with ρ1 := 0 < ρ2 < · · · < ρT < 1 := ρT+1 such that for
any one interval I , across all ρ ∈ I , Aρ (S) is fixed. This means that for any one interval [ρi , ρi+1),
there exists a real value ci such that uρ (S) = ci for all ρ ∈ [ρi , ρi+1). By definition of the dual, this
means that u∗

S (uρ ) = uρ (S) = ci as well.
We now use this structure to show that the dual class U ∗ is (F ,G,n2)-piecewise decomposable,

as per Definition 3.2. Recall that G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions
дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 
→ c .

We claim that there exists a function f (b ) ∈ F for every vector b ∈ {0, 1}T such that for every
ρ ∈ [0, 1],

u∗
S (uρ ) =

∑
b ∈{0,1}T

I{дρi (uρ )=b[i],∀i ∈[T ]} f
(b )(uρ ). (19)

To see why, suppose ρ ∈ [ρi , ρi+1) for some i ∈ [T ]. Then дρ j (uρ ) = I{ρ≤ρ j } = 1 for all j ≥ i + 1

and дρ j (uρ ) = I{ρ≤ρ j } = 0 for all j ≤ i . Let bi ∈ {0, 1}T be the vector that has only 0’s in its first i

coordinates and all 1’s in its remaining T − i coordinates. For all i ∈ [T ], we define f (bi ) = fci , so
f (bi )(uρ ) = ci for all ρ ∈ [0, 1]. For any other b, we set f (b ) = f0, so f (b )(uρ ) = 0 for all ρ ∈ [0, 1].
Therefore, Equation (19) holds. �

E Additional Details about Predicting TADs (Section 4.3)

Lemma 4.8. Let U be the set of functions U = {uρ : M 
→ u(M,Aρ (M)) | ρ ∈ R}. The dual class
U ∗ is (F ,G, 2n24n2 )-piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ R} consists of

threshold functions дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 
→ c .

Proof. Fix a matrixM . We begin by rewriting Equation (14) as follows:

Aρ (M) = argmax
T ⊂[n]×[n]

∑
(i, j)∈T

(
1

(j − i)ρ

( ∑
i≤u<v≤j

Muv

)
− 1

n − j + i

n−j+i∑
t=0

1

(j − i)ρ
∑

t ≤p<q≤t+j−i
Mpq

)
= argmax

∑
(i, j)∈T

1

(j − i)ρ

(( ∑
i≤u<v≤j

Muv

)
− 1

n − j + i

n−j+i∑
t=0

∑
t ≤p<q≤t+j−i

Mpq

)
= argmax

∑
(i, j)∈T

ci j

(j − i)ρ ,

where

ci j =

( ∑
i≤u<v≤j

Muv

)
− 1

n − j + i

n−j+i∑
t=0

∑
t ≤p<q≤t+j−i

Mpq ,

is a constant that does not depend on ρ.
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Let T be the set of TAD sets that the algorithm returns as we range over all parameters ρ ≥ 0.
In other words, T = {Aρ (M) | ρ ∈ R≥0}. Since each TAD set is a subset of [n] × [n], |T | ≤ 2n

2
. For

any TAD set T ∈ T , the algorithm Aρ will return T if and only if∑
(i, j)∈T

ci j

(j − i)ρ >
∑

(i′, j′)∈T ′

ci′j′

(j ′ − i ′)ρ ,

for all T ′ ∈ T \ {T }. This means that as we range ρ over the positive reals, the TAD set returned
by algorithm Aρ (M) will only change when∑

(i, j)∈T

ci j

(j − i)ρ −
∑

(i′, j′)∈T ′

ci′j′

(j ′ − i ′)ρ = 0, (20)

for some T ,T ′ ∈ T . As a result of Rolle’s Theorem (Corollary A.3), we know that Equation (20)
has at most |T | + |T ′ | ≤ 2n2 solutions. This means there are t ≤ 2n2

( |T |
2

)
≤ 2n24n

2
intervals

[ρ1, ρ2), [ρ2, ρ3), . . . , [ρt , ρt+1) with ρ1 := 0 < ρ2 < · · · < ρt < ∞ := ρt+1 that partition R≥0 such
that across all ρ within any one interval [ρi , ρi+1), the TAD set returned by algorithm Aρ (M) is
fixed. Therefore, there exists a real value ci such thatuρ (M) = ci for all ρ ∈ [ρi , ρi+1). By definition
of the dual, this means that u∗

M (uρ ) = uρ (M) = ci as well.
We now use this structure to show that the dual class U ∗ is (F ,G, 2n24n2 )-piecewise decom-

posable, as per Definition 3.2. Recall that G = {дa : U → {0, 1} | a ∈ R} consists of threshold
functions дa : uρ 
→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 
→ c . We claim that there exists a function f (b ) ∈ F for every vector b ∈ {0, 1}t such that
for every ρ ≥ 0,

u∗
M (uρ ) =

∑
b ∈{0,1}t

I{дρi (uρ )=b[i],∀i ∈[t ]} f
(b )(uρ ). (21)

To see why, suppose ρ ∈ [ρi , ρi+1) for some i ∈ [t]. Then дρ j (uρ ) = I{ρ≤ρ j } = 1 for all j ≥ i + 1

and дρ j (uρ ) = I{ρ≤ρ j } = 0 for all j ≤ i . Let bi ∈ {0, 1}t be the vector that has only 0’s in its first
i coordinates and all 1’s in its remaining t − i coordinates. For all i ∈ [t], we define f (bi ) = fci , so
f (bi )(uρ ) = ci for all ρ ∈ [0, 1]. For any other b, we set f (b ) = f0, so f (b )(uρ ) = 0 for all ρ ∈ [0, 1].
Therefore, Equation (21) holds. �

F Parameterized Voting Mechanisms

A large body of research in economics studies how to designmechanisms that help groups of agents
come to collective decisions. For example, when a town’s residents want to build a public resource
such as a park, pool, or skating rink, how should they choose what to build (as in participatory
democracy [e.g., 52])?When children inherit an estate, how should they divide the property?When
a jointly-owned company is dissolved, which partner should buy the others out? There is no one
mechanism that best answers these questions; the optimal mechanism depends on the setting at
hand.
We study a family of mechanisms called neutral affine maximizers (NAMs) [91, 97, 106]. A

NAM takes as input a set of agents’ reported values for each possible outcome and returns one
of those outcomes. A NAM can thus be thought of as an algorithm that the agents use to arrive
at a single outcome. NAMs are incentive compatible, which means that each agent is incentivized
to report his values truthfully. In order to satisfy incentive compatibility, each agent may have to
make a payment. NAMs are also budget-balanced which means that the aggregated payments are
redistributed among the agents.
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Formally, we study a setting where there is a set ofm alternatives and a set of n agents. Each
agent i has a value vi (j) ∈ R for each alternative j ∈ [m]. We denote all of his values as vi ∈ Rm
and all n agents’ values as v = (v1, . . . ,vn) ∈ Rnm . In this case, the unknown distribution D is
over vectorsv ∈ Rnm . This distributional assumption is standard in mechanism design [99].
A NAM is defined by n parameters (one per agent) ρ = (ρ[1], . . . , ρ[n]) ∈ Rn≥0 such that at

least one agent is assigned a weight of zero. There is a social choice function ψρ : Rnm → [m]
which uses the values v ∈ Rnm to choose an alternative ψρ (v) ∈ [m]. In particular, ψρ (v) =
argmaxj ∈[m]

∑n
i=1 ρ[i]vi (j) maximizes the agents’ weighted values. Each agent i with zero weight

ρ[i] = 0 is called a sink agent because his values do not influence the outcome. For every agent
who is not a sink agent (ρ[i] � 0), their payment is defined as in the weighted version of the
classic Vickrey-Clarke-Groves mechanism [32, 60, 121]. To achieve budget balance, these pay-
ments are given to the sink agent(s). More formally, let j∗ = ψρ (v) and for each agent i , let
j−i = argmaxj ∈[m]

∑
i′�i ρ[i ′]vi′ (j). The payment function is defined as

pi (v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

ρ[i]
(∑

i′�i ρ[i ′]vi′ (j∗) −
∑

i′�i ρ[i ′]vi′ (j−i )
)

if ρ[i] � 0
−
∑

i′�i pi′ (v) if i = min {i ′ : ρ[i ′] = 0}
0 otherwise.

We aim at optimizing the expected social welfare Ev∼D[
∑n

i=1vi (ψρ (v))] of the NAM’s outcome
ψρ (v), so we define the utility function uρ (v) =

∑n
i=1vi (ψρ (v)).

Lemma F.1. Let U be the set of functions U = {uρ | ρ ∈ Rn≥0, {i | ρ[i] = 0} � ∅}. The dual
class U ∗ is (F ,G,m2)-piecewise decomposable, where G = {дa : U → {0, 1} | a ∈ Rn} consists

of halfspace indicators дa : uρ 
→ I{ρ ·a≤0} and F = { fc : U → R | c ∈ R} consists of constant
functions fc : uρ 
→ c .

Proof. Fix a valuation vector v ∈ Rnm . We know that for any two alternatives j, j ′ ∈ [m], the
alternative j would be selected over j ′ so long as

n∑
i=1

ρ[i]vi (j) >
n∑
i=1

ρ[i]vi (j ′) . (22)

Therefore, there is a setH of
(m
2

)
hyperplanes such that across all parameter vectors ρ in a single

connected component ofRn \H, the outcome of the NAM defined by ρ is fixed.When the outcome
of the NAM is fixed, the social welfare is fixed as well. This means that for a single connected
component R of Rn \ H, there exists a real value cR such that uρ (v) = cR for all ρ ∈ R. By
definition of the dual, this means that u∗v (uρ ) = uρ (v) = cR as well.
We now use this structure to show that the dual class U ∗ is (F ,G,m2)-piecewise decomposable,

as per Definition 3.2. Recall that G = {дa : U → {0, 1} | a ∈ Rn} consists of halfspace indicator
functions дa : uρ 
→ I{a ·ρ<0} and F = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 
→ c . For each pair of alternatives j, j ′ ∈ L, let д(j, j′) ∈ G correspond to the halfspace
represented in Equation (22). Order these k :=

(m
2

)
functions arbitrarily as д(1), . . . ,д(k ). Every

connected component R of Rn \H corresponds to a sign pattern of the k hyperplanes. For a given
region R, let bR ∈ {0, 1}k be the corresponding sign pattern. Define the function f (bR ) ∈ F as
f (bR ) = fcR , so f (bR )(uρ ) = cR for all ρ ∈ Rn . Meanwhile, for every vector b not corresponding to
a sign pattern of the k hyperplanes, let f (b ) = f0, so f (b )(uρ ) = 0 for all ρ ∈ Rn . In this way, for
every ρ ∈ Rn ,

u∗
v

(
uρ

)
=

∑
b ∈{0,1}k

I{д(i )(uρ )=b[i],∀i ∈[k ]} f
(b )(uρ ),

as desired. �
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Theorem 3.3 and Lemma F.1 imply the following corollary

Corollary F.2. The pseudo-dimension of U is O(n lnm).

Next, we prove that the pseudo-dimension of U is at least n
2 , which means that our pseudo-

dimension upper bound is tight up to log factors.

Theorem F.3. Let U be the set of functions U = {uρ | ρ ∈ Rn≥0, {ρ[i] | i = 0} � ∅}. Then
Pdim(U ) ≥ n

2 .

Proof. Let the number of alternativesm = 2 and without loss of generality, suppose that n is
even. To prove this theorem, we will identify a set of N = n

2 valuation vectors v
(1), . . . ,v(N ) that

are shattered by the set U of social welfare functions.
Let ϵ be an arbitrary number in (0, 12 ). For each � ∈ [N ], define agent i’s values for the first and

second alternatives under the �th valuation vectorv(�)—namely, v(�)
i (1) and v(�)

i (2)—as follows:

v(�)
i (1) =

{
1 if � = i

0 otherwise
and v(�)

i (2) =
{
ϵ if � = n

2 + i

0 otherwise.

For example, if there are n = 6 agents, then across the N = n
2 = 3 valuation vectors v

(1),v (2),v (3),
the agents’ values for the first alternative are defined as⎡⎢⎢⎢⎢⎢⎣

v(1)
1 (1) · · · v(1)

6 (1)
v(2)
1 (1) · · · v(2)

6 (1)
v(3)
1 (1) · · · v(3)

6 (1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎦ ,
and their values for the second alternative are defined as⎡⎢⎢⎢⎢⎢⎣

v(1)
1 (2) · · · v(1)

6 (2)
v(2)
1 (2) · · · v(2)

6 (2)
v(3)
1 (2) · · · v(3)

6 (2)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0 0 0 ϵ 0 0
0 0 0 0 ϵ 0
0 0 0 0 0 ϵ

⎤⎥⎥⎥⎥⎦ .
Let b ∈ {0, 1}N be an arbitrary bit vector. We will construct a NAM parameter vector ρ such

that for any � ∈ [N ], if b� = 0, then the outcome of the NAM given bids v(�) will be the second
alternative, so uρ (v (�)) = ϵ because there is always exactly one agent who has a value of ϵ for the
second alternative, and every other agent has a value of 0. Meanwhile, if b� = 0, then the outcome
of the NAM given bids v(�) will be the first alternative, so uρ (v (�)) = 1 because there is always
exactly one agent who has a value of 1 for the first alternative, and every other agent has a value
of 0. To do so, when b� = 0, ρ must ignore the values of agent � in favor of the values of agent
n
2 + �. After all, under v

(�), agent � has a value of 1 for the first alternative and agent n
2 + � has

a value of ϵ for the second alternative, and all other values are 0. By a similar argument, when
b� = 1, ρ must ignore the values of agent n

2 + � in favor of the values of agent �. Specifically, we
define ρ ∈ {0, 1}n as follows: for all � ∈ [N ] = [n2 ], if b� = 0, then ρ[�] = 0 and ρ[n2 + �] = 1 and if
b� = 1, then ρ[�] = 1 and ρ[n2 + �] = 0. All other entries of ρ are set to 0.

We claim that if b� = 0, then uρ (v (�)) = ϵ . To see why, we know that
∑n

i=1 ρ[i]v
(�)
i (1) =

ρ[�]v(�)
�
(1) = ρ[�] = 0. Meanwhile,

∑n
i=1 ρ[i]v

(�)
i (2) = ρ[n2 + �]v

(�)
n
2 +�

(1) = ϵ . Therefore, the out-

come of the NAM is alternative 2. The social welfare of this alternative is ϵ , so uρ (v (�)) = ϵ .

Next, we claim that if b� = 1, then uρ (v (�)) = 1. To see why, we know that
∑n

i=1 ρ[i]v
(�)
i (1) =

ρ[�]v(�)
�
(1) = ρ[�] = 1. Meanwhile,

∑n
i=1 ρ[i]v

(�)
i (2) = ρ[n2 +�]v

(�)
n
2 +�

(1) = 0. Therefore, the outcome

of the NAM is alternative 1. The social welfare of this alternative is 1, so uρ (v (�)) = 1.
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We conclude that the valuation vectors v(1), . . . ,v(N ) that are shattered by the set U of social
welfare functions with witnesses z(1) = · · · = z(N ) = 1

2 . �

Theorem F.3 implies that the pseudo-dimension upper bound from Lemma F.1 is tight up to
logarithmic factors.

Experiments

In this section, we provide similar experiments as those in Section 6.2, but in the context of NAMs.
We present a simple subset of NAMs with a small estimation error upper bound. We then experi-
mentally demonstrate that the true estimation error of the class of NAMs is larger than this simple
subset’s estimation error. Therefore, it is crucial to calculate a class’s intrinsic complexity in order
to provide accurate guarantees. These experiments further illustrate Observation 6.2.
Our simple set of mechanisms is defined as follows. One agent is selected to be the sink agent (a

sink agent i has the weight ρ[i] = 0), and every other agent’s weight is set to 1. In other words, this
class is defined by the set of all vectors ρ ∈ {0, 1}n where exactly one component of ρ is equal to
zero. We use the notationA0 to denote this simple class,ANAM to denote the set of all NAMs and
uρ (v) to denote the social welfare of the NAM parameterized by ρ given the valuation vectorv .

Fig. 11. Neutral affine maximizer experiments. We vary the size of the training set, N , along the x-axis. The

orange dashed line is our upper bound on the estimation error of the simple subset of NAMs A0,

√
ln(200n)
2N

(Equation (23)). The blue solid line lower bounds the true estimation error of the entire class of NAMsANAM

over the Jester dataset. For several choices of N ∈ [100, 600], we compute this lower bound by drawing a set

of N training instances, finding a mechanism in ANAM with high average social welfare over the training

set, and calculating the mechanism’s estimation error (the difference between its average social welfare and

expected social welfare). For scale, estimation error is a quantity in the range [0, 1].

Since there are n NAMs inA0, a Hoeffding and union bound tells us that for any distributionD,
with probability 0.99 over the draw of N valuation vectors S ∼ DN , for all n parameter vectors ρ,����� Ev∼D

[
uρ (v)

]
− 1

N

∑
v ∈S

uρ (v)

����� ≤
√
ln(200n)
2N

. (23)

This is the orange dashed line in Figure 11. Meanwhile, as we proved earlier in this section, the
pseudo-dimension of the class of all NAMs ANAM is Θ̃(n), so it is a more complex set of mecha-
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nisms than A0. To experimentally compute the lower bound on the true estimation error of the
class of all NAMs ANAM , we identify a distribution such that the class has high estimation error,
as we describe below.

Distribution. As in the previous section, we use the Jester Collaborative Filtering Dataset [54] to
define our distribution. This dataset consists of ratings from 24,983 users of 100 jokes. The users’
ratings are in the range [−10, 10], so we normalize their ratings to lie in the interval [−0.5, 0.5].
We begin by selecting two jokes (jokes #7 and #15) such that—at a high level—a large number of
agents either like the first joke a lot and do not like the second joke, or do not like the first joke
and like the second joke a medium amount. We explain the intuition behind this choice below.
Specifically, we split the agents into two groups: in the first group, the agents rated joke 1 at least
0.35 and rated joke 2 at most 0, and in the second group, the agents rated joke 1 at most 0 and rated
joke 2 between 0 and 0.15. We call the set of ratings corresponding to the first group A1 ⊆ R2 and
those corresponding to the second group A2 ⊆ R2. The set A1 has size 870 and A2 has size 1677.
We useA1 andA2 to define a distributionD over the valuations of n = 1000 agents for two jokes.

The support of D consists of 500 valuation vectors v (1), . . . ,v(500) ∈ R2×1000. For i ∈ [500], v(i) is

defined as follows. The values of agent i for the two jokes, (v(i)
i (1),v(i)

i (2)), are chosen uniformly
at random fromA1 and the values of agent 500+ i are chosen uniformly at random fromA2. Every

other agent i has a value of v(i)
i (1) = v(i)

i (2) = 0.

Parameter vector with poor estimation error. Given a set of samples S ⊆ {v(1), . . . ,v(500)}, we
define a parameter vector ρ ∈ {0, 1}1000 with high estimation error as follows: for all i ∈ [500],

ρ[i] =
{
1 ifv (i) ∈ S
0 otherwise

and ρ[500 + i] =
{
0 ifv (i) � S
1 otherwise.

(24)

Intuitively, this parameter vector8 has high estimation error for the following reason. Suppose
v(i) ∈ S . The only agents with nonzero values inv(i) are agent i and agent 500 + i . Sincev(i) ∈ S ,
ρ[i] = 1 and ρ[500 + i] = 0. Therefore, agent i’s favorite joke is selected. Since agent i’s values
are from the set A1, they have a value of at least 0.35 for joke 1 and a value of at most 0 for joke 2.
Therefore, joke 1 will be the selected joke. Meanwhile, by the same reasoning for every v(i) � S ,
if we run the NAM defined by ρ, joke 2 will be the selected joke. In expectation over D, joke 1
has a significantly higher social welfare than joke 2. Therefore, the NAM defined by ρ will have a
high average social welfare over the samples in S but a low expected social welfare, which means
it will have high estimation error. We illustrate this intuition in our experiments.

Experimental procedure. We repeat the following experiment 100 times. For various choices of
N ∈ [600], we draw a set of samples S ∼ DN , compute the parameter vector ρ defined by Equa-
tion (24), and compute the difference between the average social welfare of ρ over S and its ex-
pected social welfare. We plot the difference averaged over all 100 runs.

Discussion. These experiments demonstrate that although the simple and complex NAM fam-
ilies ANAM and A0 are artificially similar (they are both defined by the m agent weights), the
complex family ANAM requires far more samples to avoid overfitting than the simple family A0.
This illustrates the importance of using our pseudo-dimension bounds to provide accurate guar-
antees.

8Although this parameter vector has high average social welfare over the samples, it may set multiple agents to be sink
agents, which may be wasteful. We leave the problem of finding a parameter vector with high estimation error and only a
single sink agent to future research.
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