

1 Evidence for chiral graviton modes in fractional 2 quantum Hall liquids

3
4 **Jiehui Liang^{1*}, Ziyu Liu^{2*}, Zihao Yang¹, Yuelei Huang¹, Ursula Wurstbauer³, Cory R. Dean²,**
5 **Ken W. West⁴, Loren N. Pfeiffer⁴, Lingjie Du^{1,5†}, Aron Pinczuk^{2,6}**

6 *¹School of Physics, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center for Advanced
7 Microstructures, Nanjing University, Nanjing 210093, China*

8 *²Department of Physics, Columbia University, New York, New York 10027, USA*

9 *³Institute of Physics, University of Münster, Wilhelm-Klemm-Str.10, 48149 Münster, Germany*

10 *⁴Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA*

11 *⁵Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215000, China*

12 *⁶Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA*

13 **These authors contribute equally to this work*

14 *†Corresponding author. Email: ljdu@nju.edu.cn*

15
16
17 **Exotic physics could emerge from interplay between geometry and correlation. In**
18 **fractional quantum Hall (FQH) states¹, novel collective excitations called chiral**
19 **graviton modes (CGMs) are proposed as quanta of fluctuations of an internal**
20 **quantum metric under a quantum geometry description²⁻⁵. Such modes are**
21 **condensed-matter analogues of gravitons that are hypothetical spin-2 bosons.**
22 **They are characterized by polarized states with chirality⁶⁻⁸ of +2 or -2, and energy**
23 **gaps coinciding with the fundamental neutral collective excitations (i.e.,**
24 **magnetorotons^{9,10}) in the long-wavelength limit. However, CGMs remain**
25 **experimentally inaccessible. Here, we observe chiral spin-2 long-wavelength**
26 **magnetorotons using inelastic scattering of circularly-polarized lights, providing**
27 **strong evidence for CGMs in FQH liquids. At filling factor $\nu = 1/3$, a gapped mode**
28 **identified as the long-wavelength magnetoroton emerges under a specific**
29 **polarization scheme corresponding to angular momentum $S = -2$, which persists**
30 **at extremely-long wavelength. Remarkably, the mode chirality remains -2 at $\nu =$**
31 **2/5 but becomes the opposite at $\nu = 2/3$ and 3/5. The modes have characteristic**
32 **energies and sharp peaks with marked temperature and filling-factor dependence,**
33 **corroborating the assignment of long-wavelength magnetorotons. The**
34 **observations capture the essentials of CGMs and support the FQH geometrical**
35 **description, paving the way to unveil rich physics of quantum metric effects in**
36 **topological correlated systems.**

37 38 39 40 **Main**

41 Substantial advancements in geometrical interpretations of condensed matter systems have
42 propelled quantum metric effects to the forefront of intense research^{2-8,11-25}. Examples include the

43 anomalous and nonlinear Hall effects²³⁻²⁵ as well as collective excitations of FQH states^{2-10,18-20}. The
44 FQH effect¹ presents a paradigm of topological order arising in two-dimensional electron gases
45 (2DEGs) under strong perpendicular magnetic fields B_{\perp} . Collective excitations play a key role in
46 the FQH effect, with their dispersion governing the rich correlation physics. In the FQH states at ν
47 = $p/(2p+1)$ (p = integer), correlation gives rise to incompressible liquids and is often described in
48 terms of composite fermions (CFs) where each electron is bound by two flux quanta. CFs move in
49 circular orbits (Fig. 1a) with Landau-like energy levels, responsible for fruitful topological
50 phenomena, and excitations between adjacent orbits (or CF Landau levels) determine magnetoroton
51 gaps²⁶. Recently, Haldane introduced the concept of quantum geometry² to the FQH effect,
52 suggesting the existence of an intrinsic quantum dynamic metric as a new geometrical degree of
53 freedom emerging from correlation. Phenomenologically, the quantum metric specifies the shape of
54 CF orbits (or shape of fundamental droplets¹⁵) which characterizes the FQH states and can be tuned.
55 Fluctuations of the metric distort the orbits (Fig. 1a) and give rise to spin-2 collective excitations as
56 graviton modes^{3,5}. In the FQH states, only chiral modes (CGMs) are allowed⁶⁻⁸, which carry $S = -2$
57 for electron states or +2 for their particle-hole conjugates (Fig. 1b) and possess certain gap energies.

58 CGMs have been studied the most in the $\nu = 1/3$ Laughlin state, with similar physics applicable
59 to the Jain states^{8,19,20}. At $\nu = 1/3$, the magnetoroton, proposed by Girvin, MacDonald and Platzman
60 in the single-mode approximation⁹, has an energy minimum^{27,28} Δ_m^R analogous to the roton in
61 helium, and can be described by one quasiparticle-quasihole pair of CFs²⁹ separated by a distance
62 proportional to wavevector q (Fig. 1c). In the long-wavelength limit ($q \approx 0$), the excited CF
63 overlaps its quasihole; then, the magnetoroton has dipole spectral weight vanishing quickly with
64 $(ql_B)^4$ ($l_B = \sqrt{\hbar c/eB_{\perp}}$ is the magnetic length), and was considered optically invisible^{9,10,30}.
65 Nevertheless, according to the FQH geometrical description^{3,5,6,17}, as the distance approaches zero
66 at $q \approx 0$, metric fluctuations of the ground state would become the most effective and develop a
67 quadrupole moment with the spin-2 CGM triggered between adjacent CF LLs (Fig. 1c). As a result,
68 CGMs possess the gap energies of the long-wavelength magnetorotons^{9,10} Δ_m^0 , which equivalently
69 are chiral spin-2 long-wavelength magnetorotons^{3,6} (CS2LMs). Interestingly, while the Fierz-Pauli
70 field equations³¹ in 3+1-dimensions (3+1D) were proposed to describe massive spin-2 bosons (i.e.,
71 massive gravitons), the equations for CS2LMs were found^{32,33} from the 2+1D Fierz-Pauli field
72 equations in the nonrelativistic limit, thereby revealing the quasiparticle nature of CGMs. Owing to
73 their spin-2 components⁵⁻⁷, CGMs would have quadrupole spectral weight dominant in Δ_m^0 , which
74 are sensitive to two-photon processes like in resonant inelastic light scattering (RILS).

75 In experiments, the search for CS2LMs remains an open question. RILS offers direct access to
76 low-lying collective excitations in the FQH regime^{10,27,28,34-37}, providing critical examinations on
77 the modelling of the FQH liquids^{9,29}. In conventional unpolarized RILS studies, energy gaps of
78 long-wavelength magnetorotons were investigated at $\nu = 1/3$ (refs. 10,27) and other FQH states^{28,34},
79 manifesting incompressibility of the correlated liquids at macroscopic length scales. However,
80 angular momenta of these modes have not been accessed since incident and scattered lights in the
81 unpolarized setup possess linearly-polarized photons. Circularly-polarized RILS (CP-RILS)
82 experiments that switch circular polarizations of incident and scattered photons could
83 simultaneously probe their excitation gaps and angular momenta^{6,7}, which are highly desirable to
84 reveal CGMs in the FQH effect.

85 Here, we report CP-RILS measurements that provide direct observation of chiral spin-2 long-
86 wavelength magnetorotons at $\nu = 1/3$ and its resembling fractional fillings. We locate collective

87 modes at Δ_m^0 in RILS spectra by their energies in magnetoroton dispersions. Remarkably, the
88 modes are observed to possess polarization states of angular momentum $S = -2$ for $\nu = 1/3$ and $2/5$
89 or $S = +2$ for $\nu = 2/3$ and $3/5$. Furthermore, sharp peaks of the spin-2 modes suggest that the modes
90 have long wavelength; the mode energies at $\nu = p/(2p+1)$ excellently follow the energy scaling Δ_m^0
91 $\propto E_c/|2p+1|$ ($E_c = e^2/\epsilon l_B$ is the Coulomb energy, ϵ is the dielectric constant), confirming the
92 magnetoroton characteristics of these long-wavelength modes. These modes are found sensitive to
93 elevated temperatures and deviated filling factors away from the incompressible FQH states,
94 behaviors indicative of magnetorotons. Our findings thus provide the first experimental evidence
95 that FQH liquids harbor exotic quasiparticles of CGMs, and reveal the emergence of the quantum
96 metric in topological orders.

99 **Excitations in RILS at $\nu = 1/3$**

100 An ultra-high-mobility 2DEG in a GaAs quantum well (QW) is measured in a backscattering
101 configuration at an angle of incidence θ shown in Fig. 1d (see Methods). This configuration transfers
102 wavevector k of photons to FQH liquids and excites long-wavelength excitations (e.g., $q = k \approx$
103 $0.05/l_B$ at $\theta = 25^\circ$). Nevertheless, weak residual disorder could break wavevector conservation^{27,28},
104 thus allowing to detect modes with $ql_B \gtrsim 1$. Low-lying excitations in FQH liquids are rare and can
105 be probed using well-established methods in RILS studies^{10,27,28,34}. Figure 1e presents RILS spectra
106 of collective excitations at $\nu = 1/3$ in the unpolarized geometry with $\theta = 25^\circ$. Spin-wave excitations
107 at $q \ll 1/l_B$ (Δ_s^0) and at large- q (Δ_s^∞) are located in Fig. 1e (see Methods). Dramatic dependence on
108 temperature and filling factor distinguishes three collective magnetoroton modes^{10,27} at $\nu = 1/3$ (see
109 Extended Data Fig. 1). We compare these modes with the calculated dispersion scaled down from
110 the ideal 2D result²⁹ (the dashed red line in Fig. 1f), facilitating the specific assignments of Δ_m^0 ,
111 Δ_m^R , and the mode Δ_m^∞ with peaked density of states at large q (see Methods).

114 **CP-RILS at $\nu = 1/3$**

115 The chirality characteristic of Δ_m^0 could be resolved by CP-RILS⁵⁻⁷ (see Methods). Figure 2a
116 sketches all circularly-polarized (CP) scattering geometries (RR, LL, RL and LR) employed in CP-
117 RILS with right- (R) or left- (L) CP incident and scattered photons. According to angular momentum
118 conservation, the angular momentum transferred to FQH liquids equals the change in the photon
119 spin during light scattering. For example, a mode with $S = -2$ would be excited when the incident
120 photon has spin -1 and the scattered one has spin +1; this process corresponds to both incident and
121 scattered lights that are right-circularly polarized (RR). A mode with a well-defined chirality should
122 dominate in one specific CP geometry corresponding to a certain angular momentum⁵⁻⁷; otherwise,
123 the mode would be active in different CP geometries.

124 The unpolarized RILS spectrum of Δ_m^0 (Fig. 2b) can be considered as mixed signals from
125 various CP geometries. As shown in Fig. 2c, CP-RILS resolves different CP components of the
126 unpolarized signals. It can be readily found that Δ_m^0 only appears in the RR geometry where two
127 photons transfer spin angular momentum -2 into the FQH state. The mode has marked intensity
128 dependence on incident photon energies ω_L , which is peculiar to RILS (Fig. 2d). In other CP
129 geometries, the mode is suppressed with photoluminescence (PL) background dominating the
130 spectral line-shape (e.g., LR in Supplementary Fig. 1). In sharp contrast to Δ_m^0 , Δ_m^R that is well-

131 defined in the magnetoroton dispersion displays finite intensity in all CP geometries (Fig. 2e). The
132 simultaneous occurrence of this mode with both $|S| = 0$ and $|S| = 2$ indicates that it does not carry a
133 certain chirality. The results thus reveal that Δ_m^0 at $\nu = 1/3$ has a specific chirality with $S = -2$.

134 Figure 2f demonstrates that the spin-2 mode has a quite sharp profile (with PL background
135 subtracted as shown in Extended Data Fig. 2), characterized by full width at half maximum (FWHM)
136 of 30 μ eV. Its FWHM that is close to the one of Δ_s^0 at $q = k \ll 1/l_B$, suggests that the spin-2 mode
137 has its wavevector conserved in the scattering¹⁰ and is at long wavelength (see Methods), consistent
138 with our assignment of this mode in Fig. 1e. In contrast, Δ_m^∞ and Δ_s^∞ have larger widths due to
139 weak residual disorder^{27,28}. As temperature increases, the spin-2 mode quickly collapses below 800
140 mK (Fig. 2g). We also find that this mode rapidly quenches when the filling factor is away from ν
141 = 1/3 (Supplementary Fig. 2). The striking temperature and filling-factor dependent behaviors,
142 fingerprints of the FQH effect, suggest that the spin-2 mode highly relies on the incompressibility
143 and correlation of the $\nu = 1/3$ state.

147 CP-RILS at an extremely small wavevector

148 In RILS, the wavevector transferred to the 2DEG can be tuned by varying θ . By decreasing θ
149 to 10°, we are able to probe modes at an extremely small $kl_B \approx 0.02$. This value is significantly lower
150 than typical ones ($kl_B \gtrsim 0.05$) reported in previous studies^{28,34}, allowing us to approach the $q = 0$
151 limit. In the following, all experiments are performed at $\theta = 10^\circ$ unless noted otherwise. Similar
152 with the result in Fig. 1e, the unpolarized RILS spectra at $\nu = 1/3$ identify Δ_m^0 at 0.66 meV
153 (Extended Data Fig. 3). Then we perform CP-RILS measurements to resolve CP components of this
154 mode. Figure 3a shows a single peak in the RR geometry (corresponding to $S = -2$) coinciding with
155 Δ_m^0 (Extended Data Fig. 4a) and no such peak is found in other geometries (corresponding to $S =$
156 +2 and 0, such as LR in Extended Data Fig. 4b), reproducing the observation at $kl_B \approx 0.05$. We also
157 examine angular momentum of Δ_m^0 by reversing the magnetic field direction and find that it
158 remains -2. These results demonstrate that angular momenta of Δ_m^0 keep constant and are equal to
159 -2 at long wavelength, confirming long-wavelength magnetorotons as chiral spin-2 modes at $\nu = 1/3$.

160 The CP-RILS spectra show that the energy ratio of the spin-2 mode to Δ_m^R reaches 2.07 at kl_B
161 ≈ 0.02 and decreases by 15% at $kl_B \approx 0.05$ (Extended Data Fig. 5). The results agree well with the
162 expected values^{9,29} for Δ_m^0 (ratios at $k \approx 0$ are in a range from 2.02 to 2.27 and diminish at larger k)
163 and exclude the alternative explanation of two-roton bound states (see Methods). Moreover, as kl_B
164 is reduced by a factor of 2.5, the measured intensities of Δ_m^0 remain comparable (Figs. 2c and 3a),
165 which is hard to be explained by the dipole picture for Δ_m^0 (see Methods). According to the graviton
166 picture^{5,7}, the mode intensity is determined by the spectral densities of the spin-2 components of the
167 kinetic stress tensor and remains finite even in the long-wavelength limit, which could account for
168 our experimental observations.

171 Chiralities of the spin-2 modes

172 The chirality of Δ_m^0 is further examined in the $\nu = 2/3$ state, the particle-hole symmetric
173 counterpart of the $\nu = 1/3$ state. Employing the same methodology as described above, the
174 magnetoroton modes are identified in the unpolarized RILS measurements (Supplementary Fig. 3).

175 Remarkably, the CP-RILS spectra of Δ_m^0 (Fig. 3b) demonstrate one peak only in the LL geometry
176 corresponding to $S = +2$ and PL backgrounds dominate the spectra in other CP geometries with no
177 RILS peaks found (such as LR in Supplementary Fig. 4), suggesting that Δ_m^0 has angular
178 momentum +2 at $\nu = 2/3$. Mention that if a mode exists, typically the overlapping strong PL
179 background would resonantly enhance the RILS peak, as seen for Δ_m^0 in RR at $\nu = 1/3$ (see
180 Methods); otherwise, despite the strong PL background, no RILS peak would appear, e.g., in LR at
181 $\nu = 1/3$ (Figs. 2c and 3a). On the other hand, in the absence of prominent PL, a collective mode if
182 existing should still lead to RILS peaks, albeit weak, such as Δ_m^0 in LL at $\nu = 2/3$. Notably, at $\nu =$
183 2/3, the energy of the spin-2 mode has the same value as that at $\nu = 1/3$ in the unit of E_c (0.048 E_c),
184 manifesting the same nature of the modes as long-wavelength magnetorotons.

185 The physics of the chiral spin-2 modes at $\nu = 1/3$ and 2/3 is applicable to the $\nu = 2/5$ and 3/5
186 Jain states^{8,19}. At $\nu = 2/5$, magnetoroton modes can be viewed as excitations of CFs from the second
187 filled CF Landau level to the next unoccupied one. Following the approach in Ref. 28, at $\nu = 2/5$ we
188 perform unpolarized RILS measurements that locate Δ_m^0 at 0.39 meV (Supplementary Fig. 5).
189 Figure 3c shows that Δ_m^0 in CP-RILS spectra has the circular polarization dependence in
190 resemblance to that at $\nu = 1/3$, i.e., the spectra exhibit a well-defined Δ_m^0 peak in the RR geometry
191 ($S = -2$) with no peaks appearing in other CP geometries. Correspondingly, at $\nu = 3/5$, the circular
192 polarization dependence of Δ_m^0 coincides with that at $\nu = 2/3$ and clearly exhibits a sharp peak only
193 in the LL geometry with $S = +2$ (Fig. 3d). Moreover, the Δ_m^0 energy at $\nu = 3/5$ has the same value
194 in the unit of E_c as that at $\nu = 2/5$, originating from the particle-hole symmetry. As summarized in
195 Fig. 4a, our results clearly demonstrate that long-wavelength magnetorotons have polarization states
196 with chirality of -2 (+2) in the $\nu = 1/3$ and 2/5 ($\nu = 2/3$ and 3/5) states, i.e., being chiral spin-2 modes.
197
198
199

200 **Long-wavelength magnetoroton nature**

201 Figure 4b displays the FWHM of these spin-2 modes, which are around 30 μ eV (see details of
202 PL background subtraction from CP-RILS spectra in Extended Data Fig. 6). Such sharp peaks
203 confirm the long-wavelength essence of these modes as discussed in Fig. 2f. In FQH states,
204 magnetoroton gap energies are determined by CFs moving in their orbits under effective magnetic
205 fields $B^* = B_{\perp} - B_{1/2}$ ($B_{1/2}$ is the perpendicular magnetic field at $\nu = 1/2$), which are proportional^{34,38,39}
206 to $E_c/|2p+1|$ (also see Extended Data Fig. 7). In our experiments, the spin-2 modes are gapped in
207 the FQH states with extracted energies shown in Fig. 4c, and disappear quickly at deviated filling
208 factors (see Figs. 4d and 4e, Extended Data Fig. 8). Remarkably, as illustrated in Fig. 4c and
209 Extended Data Fig. 7, the fitting of their energies at $\nu = 1/3, 2/3, 2/5$ and 3/5 reveals an excellent
210 linear scaling to $E_c/|2p+1|$, and the fitted energy is close to zero as p increases (ν approaches 1/2).
211 The results clearly corroborate that these modes have the same magnetoroton nature. Additionally,
212 similar to the case at $\nu = 1/3$, the mode intensities at $\nu = 2/3, 2/5$ and 3/5 quickly collapse at elevated
213 temperatures (Extended Data Fig. 9). The sensitivity of the modes on filling factors and temperature
214 not only is consistent with the long-wavelength magnetoroton feature, but also reveals that the
215 quantum metric dynamics that lead to the spin-2 geometry effect emerge from correlation.
216

217 In conclusion, our findings confirm that long-wavelength magnetorotons are chiral spin-2
218 modes in the FQH states. As summarized in Extended Data Table 1, the experimental observations

incorporate key elements of CGMs characterized by their specific gaps (“masses”), chiral and spin-
2 properties. In this light, our results provide evidence for emergent CGMs in the FQH liquids.
221 Moreover, our measurements give crucial support to the new geometrical degree of freedom and
222 offer opportunities to investigate exotic physics in the FQH effect from the aspect of quantum
223 geometry, e.g., cyclotron graviton modes²⁰, nematic quantum Hall states^{12,13,17,36} and partons^{8,19,20}.
224 In particular, the CP-RILS method provides a powerful way to identify the nature of the $\nu = 5/2$
225 state^{7,18}, known for its potential applications in topological quantum computation. Intriguingly, the
226 study uncovers non-negligible quantum metric effects in the topological order, facilitating
227 explorations of the interplay between geometry and correlation in a wide range of quantum systems
228 including atomic layers^{40,41}, Kitaev lattices²², cold atoms⁴² and excitonic liquids⁴³.

References

- 1 Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. *Phys. Rev. Lett.* **48**, 1559-1562 (1982).
- 2 Haldane, F. D. M. Geometrical description of the fractional quantum Hall effect. *Phys. Rev. Lett.* **107**, 116801 (2011).
- 3 Yang, B., Hu, Z.-X., Papić, Z. & Haldane, F. D. M. Model wave functions for the collective modes and the magnetoroton theory of the fractional quantum hall effect. *Phys. Rev. Lett.* **108**, 256807 (2012).
- 4 Son, D. T. Newton-Cartan geometry and the quantum Hall effect. *Preprint at* <https://arxiv.org/abs/1306.0638> (2013).
- 5 Golkar, S., Nguyen, D. X. & Son, D. T. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect. *J. High Energy Phys.* **021** (2016).
- 6 Liou, S.-F., Haldane, F. D. M., Yang, K. & Rezayi, E. H. Chiral gravitons in fractional quantum hall liquids. *Phys. Rev. Lett.* **123**, 146801 (2019).
- 7 Nguyen, D. X. & Son, D. T. Probing the spin structure of the fractional quantum Hall magnetoroton with polarized Raman scattering. *Phys. Rev. Res.* **3**, 023040 (2021).
- 8 Nguyen, D. X., Haldane, F. D. M., Rezayi, E. H., Son, D. T. & Yang, K. Multiple magnetorotons and spectral sum rules in fractional quantum hall systems. *Phys. Rev. Lett.* **128**, 246402 (2022).
- 9 Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Collective-excitation gap in the fractional quantum Hall effect. *Phys. Rev. Lett.* **54**, 581-583 (1985).
- 10 Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. Observation of collective excitations in the fractional quantum Hall effect. *Phys. Rev. Lett.* **70**, 3983-3986 (1993).
- 11 Yang, K. Geometry of compressible and incompressible quantum Hall states: Application to anisotropic composite-fermion liquids. *Phys. Rev. B* **88**, 241105 (2013).
- 12 Maciejko, J., Hsu, B., Kivelson, S. A., Park, Y. & Sondhi, S. L. Field theory of the quantum Hall nematic transition. *Phys. Rev. B* **88**, 125137 (2013).
- 13 You, Y., Cho, G. Y. & Fradkin, E. Theory of nematic fractional quantum hall states. *Phys. Rev. X* **4**, 041050 (2014).
- 14 Luo, X., Wu, Y.-S. & Yu, Y. Noncommutative Chern-Simons theory and exotic geometry emerging from the lowest Landau level. *Phys. Rev. D* **93**, 125005 (2016).

263 15 Johri, S., Papić, Z., Schmitteckert, P., Bhatt, R. N. & Haldane, F. D. M. Probing the geometry
264 of the Laughlin state. *New J. Phys.* **18**, 025011 (2016).

265 16 Gromov, A. & Son, D. T. Bimetric theory of fractional quantum hall states. *Phys. Rev. X* **7**,
266 041032 (2017).

267 17 Yang, B. Microscopic theory for nematic fractional quantum hall effect. *Phys. Rev. Res.* **2**,
268 033362 (2020).

269 18 Haldane, F. D. M., Rezayi, E. H. & Yang, K. Graviton chirality and topological order in the half-
270 filled landau level. *Phys. Rev. B* **104**, L121106 (2021).

271 19 Balram, A. C., Liu, Z., Gromov, A. & Papić, Z. Very-high-energy collective states of partons in
272 fractional quantum hall liquids. *Phys. Rev. X* **12**, 021008 (2022).

273 20 Wang, Y. & Yang, B. Geometric fluctuation of conformal Hilbert spaces and multiple graviton
274 modes in fractional quantum Hall effect. *Nat. Commun.* **14**, 2317 (2023).

275 21 Kirmani, A. *et al.* Probing geometric excitations of fractional quantum hall states on quantum
276 computers. *Phys. Rev. Lett.* **129**, 056801 (2022).

277 22 Farjami, A., Horner, M. D., Self, C. N., Papić, Z. & Pachos, J. K. Geometric description of the
278 Kitaev honeycomb lattice model. *Phys. Rev. B* **101**, 245116 (2020).

279 23 Gianfrate, A. *et al.* Measurement of the quantum geometric tensor and of the anomalous Hall
280 drift. *Nature* **578**, 381-385 (2020).

281 24 Gao, A. *et al.* Quantum metric nonlinear Hall effect in a topological antiferromagnetic
282 heterostructure. *Science* **381**, 181-186 (2023).

283 25 Wang, N. *et al.* Quantum-metric-induced nonlinear transport in a topological antiferromagnet.
284 *Nature* **621**, 487-492 (2023).

285 26 Jain, J. K. *Composite fermions*. (Cambridge University Press, 2007).

286 27 Davies, H. D. M., Harris, J. C., Ryan, J. F. & Turberfield, A. J. Spin and Charge Density
287 Excitations and the Collapse of the Fractional Quantum Hall State at $v = 1/3$. *Phys. Rev. Lett.*
288 **78**, 4095-4098 (1997).

289 28 Kang, M., Pinczuk, A., Dennis, B. S., Pfeiffer, L. N. & West, K. W. Observation of Multiple
290 Magnetorotons in the Fractional Quantum Hall Effect. *Phys. Rev. Lett.* **86**, 2637-2640 (2001).

291 29 Scarola, V. W., Park, K. & Jain, J. K. Rotons of composite fermions: Comparison between theory
292 and experiment. *Phys. Rev. B* **61**, 13064-13072 (2000).

293 30 Platzman, P. M. & He, S. Resonant Raman scattering from mobile electrons in the fractional
294 quantum Hall regime. *Phys. Rev. B* **49**, 13674-13679 (1994).

295 31 Fierz, M. & Pauli, W. On relativistic wave equations for particles of arbitrary spin in an
296 electromagnetic field. *Proc. R. Soc. London, Ser. A* **173**, 211-232 (1939).

297 32 Bergshoeff, E. A., Hohm, O. & Townsend, P. K. Massive gravity in three dimensions. *Phys. Rev.*
298 *Lett.* **102**, 201301 (2009).

299 33 Bergshoeff, E. A., Rosseel, J. & Townsend, P. K. Gravity and the Spin-2 Planar Schrödinger
300 Equation. *Phys. Rev. Lett.* **120**, 141601 (2018).

301 34 Kang, M. *et al.* Inelastic Light Scattering by Gap Excitations of Fractional Quantum Hall States
302 at $1/3 \leq v \leq 2/3$. *Phys. Rev. Lett.* **84**, 546-549 (2000).

303 35 Wurstbauer, U., West, K. W., Pfeiffer, L. N. & Pinczuk, A. Resonant inelastic light scattering
304 investigation of low-lying gapped excitations in the quantum fluid at $v = 5/2$. *Phys. Rev. Lett.*
305 **110**, 026801 (2013).

306 36 Du, L. *et al.* Observation of new plasmons in the fractional quantum Hall effect: Interplay of

307 topological and nematic orders. *Sci. Adv.* **5**, eaav3407 (2019).

308 37 Liu, Z. *et al.* Domain textures in the fractional quantum Hall effect. *Phys. Rev. Lett.* **128**, 017401
309 (2022).

310 38 Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. *Phys. Rev. B* **47**,
311 7312-7343 (1993).

312 39 Simon, S. H. & Halperin, B. I. Finite-wave-vector electromagnetic response of fractional
313 quantized Hall states. *Phys. Rev. B* **48**, 17368-17387 (1993).

314 40 Park, H. *et al.* Observation of fractionally quantized anomalous Hall effect. *Nature* **622**, 74-79
315 (2023).

316 41 Zeng, Y. *et al.* Thermodynamic evidence of fractional Chern insulator in moiré MoTe₂. *Nature*
317 **622**, 69-73 (2023).

318 42 Léonard, J. *et al.* Realization of a fractional quantum Hall state with ultracold atoms. *Nature*
319 **619**, 495-499 (2023).

320 43 Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in
321 imbalanced electron–hole bilayers. *Nature* **619**, 57-62 (2023).

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

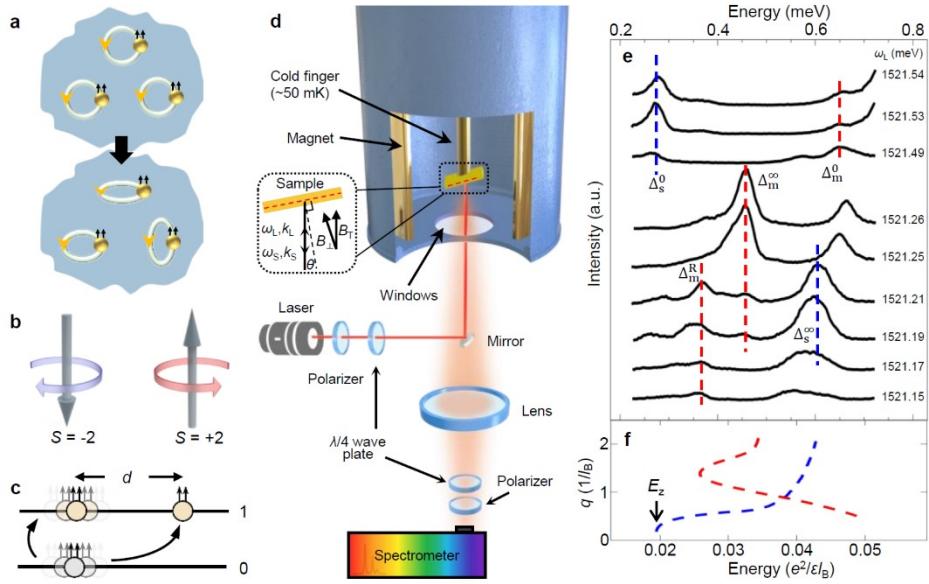
342

343

344

345

346

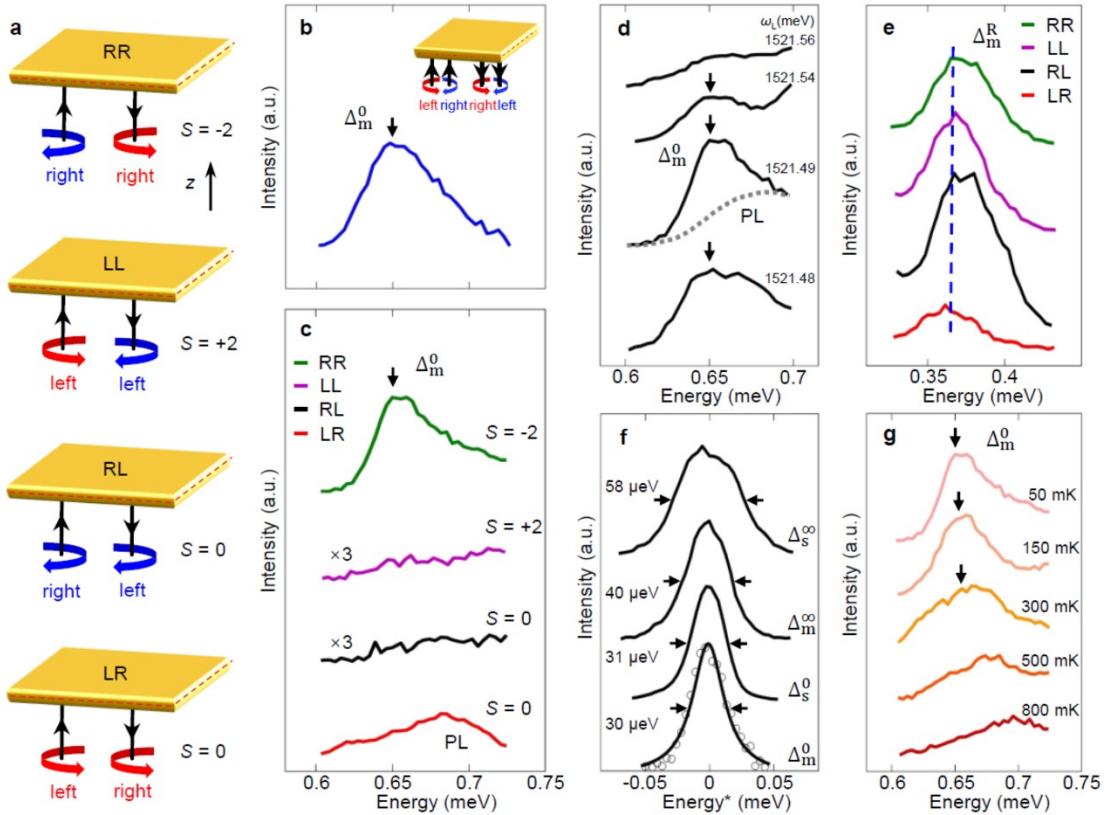

347

348

349

350

351 **Main figure legends**

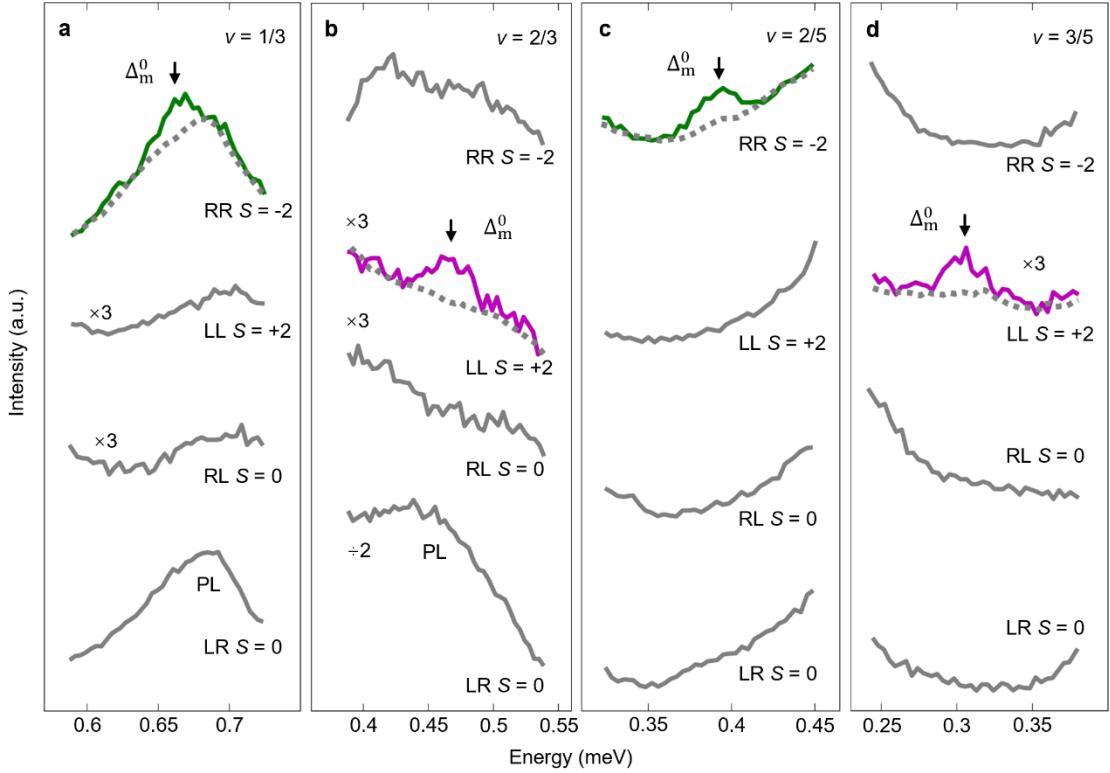


352

353 **Fig. 1. Graviton modes and inelastic light scattering.** **a**, The cartoon representation describes the
 354 dynamics of the internal metric. At $\nu = 1/3$, each CF moves in a circular orbit and the spatially
 355 dependent metric could be phenomenologically considered to deform the shape of CF orbits. **b**,
 356 Depiction of the chiral spin-2 characteristic of CGMs. In FQH states around $\nu = 1/2$, CGMs of
 357 electron states carry angular momentum $S = -2$ while those of the particle-hole conjugates exhibit
 358 the reversed chirality with $S = +2$. **c**, At $\nu = 1/3$, CFs are excited from the topmost occupied CF
 359 Landau level to the next empty one. As the distance d between each CF (yellow) and its quasi-hole
 360 (grey) approaches zero, CGMs are triggered by metric fluctuations. **d**, The experimental setup for
 361 RILS performed in a dilution refrigerator. Two polarizers are used to generate orthogonal linear
 362 polarizations of incident and scattered lights in the unpolarized geometry. In CP-RILS, additional
 363 $\lambda/4$ wave plates are positioned after the laser and in front of the spectrometer to generate and detect
 364 CP lights. Inset: A depiction of the backscattering geometry at a tilted angle θ . Incident and scattered
 365 lights have energies ω_L and ω_S with wavevectors k_L and k_S , respectively. The total magnetic field
 366 B_T and its perpendicular component B_\perp are shown. **e**, RILS spectra at $\nu = 1/3$ in the unpolarized
 367 geometry with $\theta = 25^\circ$. Red and blue dashed lines indicate magnetoroton and spin-wave excitations,
 368 respectively. **f**, Calculated dispersions of collective excitations at $\nu = 1/3$. The red dashed line is
 369 scaled down from the ideal zero-width result of magnetoroton modes²⁹ by a constant of 0.33 to
 370 account for the finite-thickness effect. E_Z is the Zeeman energy. The blue dashed line represents a
 371 generic dispersion of spin-wave excitations.

372

373

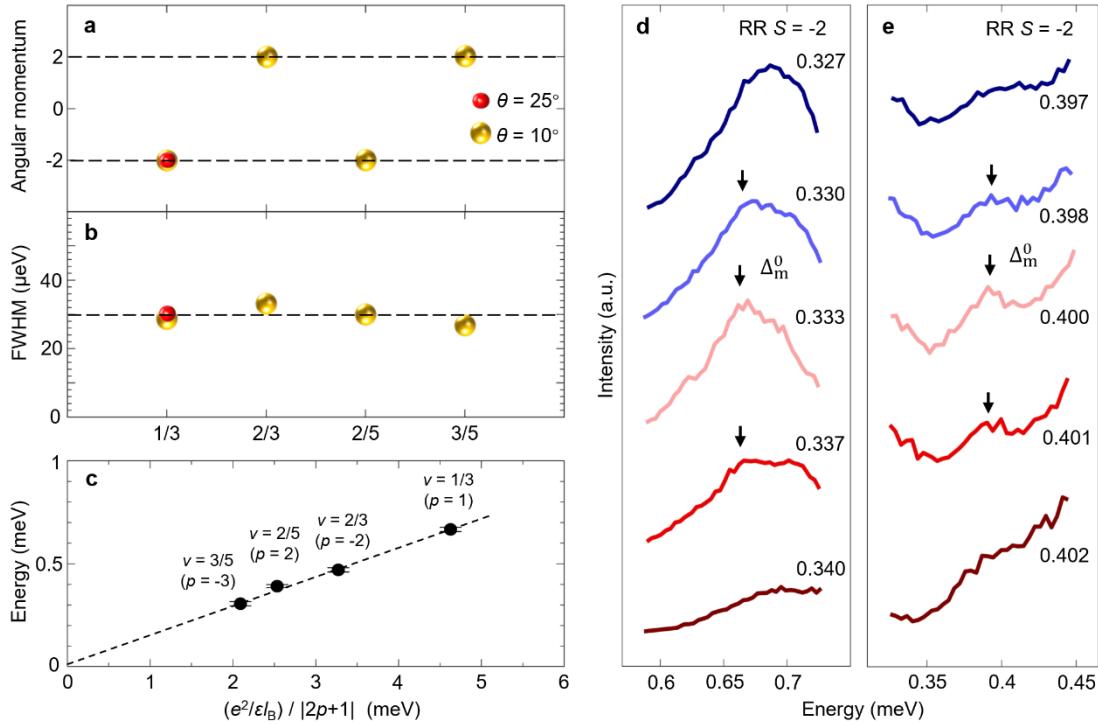


374

375 **Fig. 2. CP-RILS measurements at $\nu = 1/3$ with $\theta = 25^\circ$.** **a**, CP-RILS geometries are depicted.
 376 Right (left) handedness represents right- (left-) CP photons, defined as clockwise (anticlockwise)
 377 rotation of the electric field vector in a plane from the point of view of the receiver. Blue (red)
 378 curved arrows indicate incident or scattered photons with spin -1 (+1) in the magnetic field (z)
 379 direction. The transferred spin to the FQH liquid is marked for each geometry. **b**, RILS spectrum of
 380 Δ_m^0 at resonance in the unpolarized geometry at $\nu = 1/3$. The incident and scattered lights contain
 381 both left- and right-circular-polarized photons. We note that this mode does not emerge at other
 382 resonances throughout the entire range of investigated incident photon energies. **c**, Δ_m^0 spectra in
 383 four CP geometries at $\nu = 1/3$ with the same incident photon energy as that in **b**. RILS peaks are
 384 marked by vertical black arrows. The signals in LR are attributed to PL background (Supplementary
 385 Fig. 1). Spectral intensities in LL and RL are multiplied by a factor of 3. **d**, Resonant enhancement
 386 of RILS signals of Δ_m^0 in RR. The dashed line represents the smoothed PL background in this
 387 geometry. **e**, Δ_m^R spectra in four CP geometries. RILS peaks are marked by the blue dashed line. In
 388 contrast to Δ_m^0 , Δ_m^R does not possess a specific chirality^{5,7}. The RILS peak in LR is weak, since
 389 weak PL background affects the resonant enhancement. **f**, FWHM of several collective modes in
 390 RR. Values of FWHM are displayed. Energy* refers to normalized energy with the peak energy set
 391 to zero. Open dots for Δ_m^0 are experimental data with PL background subtracted (Extended Data Fig.
 392 2), which are fitted with a Lorentzian peak. **g**, Marked temperature dependence of Δ_m^0 in RR.

393

394



395

396

Fig. 3. **Circular polarization dependence of the Δ_m^0 modes in FQH states with $\theta = 10^\circ$.** At extremely small k_B , Δ_m^0 spectra in four CP geometries are displayed: **a** for $\nu = 1/3$, **b** for $\nu = 2/3$, **c** for $\nu = 2/5$, and **d** for $\nu = 3/5$. At $\nu = 1/3$ and $2/5$, the Δ_m^0 modes are observable in the RR geometry (marked by arrows in green spectra), while at $\nu = 2/3$ and $3/5$, the modes are found in the LL geometry (marked by arrows in purple spectra). Grey dashed lines represent smoothed PL signals in the corresponding CP geometries. At these FQH states, the Δ_m^0 modes are absent in other geometries where PL signals contribute to the spectra intensities (shown in grey). Specifically, Extended Data Fig. 4b and Supplementary Fig. 4 show that the signals in the LR geometry in **a** and **b** are from PL background, respectively. For clarity, the spectra intensities in some geometries are rescaled as specified.

406

407

408 **Fig. 4. Chiral spin-2 long-wavelength magnetoroton modes in FQH states.** **a**, Angular momenta
 409 of the Δ_m^0 modes at $\nu = 1/3, 2/3, 2/5$ and $3/5$ with $\theta = 25^\circ$ (red) and $\theta = 10^\circ$ (gold). **b**, FWHM of
 410 the Δ_m^0 modes in the FQH states with $\theta = 25^\circ$ (red) and $\theta = 10^\circ$ (gold). Dashed lines in **a** and **b**
 411 are guides to the eye. **c**, Energies of the Δ_m^0 modes plotted against $(e^2/\epsilon l_B)/|2p+1|$ at $\theta = 10^\circ$. The
 412 error bars indicate the uncertainty in determining the energy positions in RILS spectra. The mode
 413 energies at $\nu = 1/3$ ($p = 1$), $2/5$ ($p = 2$), $2/3$ ($p = -2$) and $3/5$ ($p = -3$) are found proportional to
 414 $(e^2/\epsilon l_B)/|2p+1|$ very well. The dashed line is from the fitting with details available in Extended Data
 415 Fig. 7. **d** and **e** display the filling factor dependence of the Δ_m^0 modes around $\nu = 1/3$ and $2/5$ in the
 416 RR geometry, respectively. RILS peaks are marked by vertical black arrows.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434 **Methods**

435 **Low-temperature optical measurements**

436 The 2DEG is confined in a modulation-doped 58.5 nm GaAs single QW. The electron mobility
437 at 300 mK in a sample from the same wafer reaches $14 \times 10^6 \text{ cm}^2/\text{Vs}$ at density $n = 7.2 \times 10^{10} \text{ cm}^{-2}$.
438 The ultra-high-mobility 2DEG under magnetic fields provides a clean platform to explore correlated
439 many-body physics. The high sample quality enables RILS observations of collective modes of
440 FQH states.

441 The sample is mounted on the cold finger of a $^3\text{He}/^4\text{He}$ dilution refrigerator (Bluefors LD400,
442 base temperature of about 50 mK), which is inserted into the cold bore of a 14 T superconducting
443 magnet. To ensure good thermal contact, the sample is attached to the cold finger using copper-
444 loaded grease. Gold wires are connected from the QW to the copper finger to further enhance
445 thermal contact with the 2DEG.

446 Optical windows are installed at the bottom of the dilution refrigerator to provide the direct
447 optical access, as illustrated in Fig. 1d. In measurements, we employ a conventional backscattering
448 geometry with a small tilt angle θ between the incident (scattered) photons and the normal of the
449 sample surface^{10,28,34,44}. We note that since the 2DEG is embedded within the QW, the refraction
450 between the vacuum and the GaAs/AlGaAs-based QW with small θ renders the incident light nearly
451 normal to the 2DEG plane. The perpendicular magnetic field applied to the sample is $B_{\perp} = B_{\text{T}} \cos\theta$,
452 where B_{T} represents the total magnetic field. For a different θ , B_{T} is adjusted to retain B_{\perp} of the
453 corresponding FQH state. A tunable Ti:sapphire laser is utilized and the incident photon power
454 density is kept below 10^{-4} W/cm^2 to prevent significant heating of the sample at the base temperature.
455 For unpolarized RILS measurements that suppress parasitic reflected lights at the laser wavelength,
456 a linear polarizer is used to rotate the light polarization so that the incident linearly-polarized light
457 becomes perpendicular to the scattered linearly-polarized light and the direction of the entrance slit
458 in the spectrometer⁴⁵. As shown in Supplementary Fig. 6a, scattered lights are collected by lenses
459 and focused onto the entrance slit of the spectrometer. Another linear polarizer, aligned parallel to
460 the entrance slit, is placed in front of the spectrometer to improve the selectivity for polarized lights.
461 In the case of CP-RILS measurements (Supplementary Fig. 6b), additional $\lambda/4$ wave plates are
462 inserted behind the linear polarizer and in front of the spectrometer to generate CP lights and convert
463 CP lights to linearly polarized lights, respectively. We use a triple grating spectrometer equipped
464 with holographic gratings to disperse and record the scattered signals. Photons are detected with a
465 charged coupled device with a liquid nitrogen cooling system, offering a high spectral resolution
466 with low readout noise. The system achieves a high combined spectral resolution $< 16 \text{ \mu eV}$.
467 Compared with the case at 25° , we narrow down the entrance slit of the spectrometer at 10° to
468 mitigate a stronger stray light effect. This adjustment, while necessary, also results in a general
469 suppression of the observed intensities of the scattered lights.

470 Spectra are displayed as a function of energy difference $\omega = \omega_{\text{L}} - \omega_{\text{s}}$, where ω_{L} is the incident
471 photon energy and ω_{s} is the scattered photon energy. In this framework, RILS spectra are obtained
472 by tuning ω_{L} to the resonance conditions. Low-lying RILS peaks do not shift with ω , distinguishing
473 them from PL bands. In RILS experiments, a small wavevector k is transferred from photons to the
474 sample, $k = (2\omega_{\text{L}}/c)\sin\theta \approx 2.67 \times 10^6 \text{ m}^{-1}$ at $\theta = 10^\circ$. In this case, $k \approx 0.02/l_{\text{B}}$ enables long-
475 wavelength excitations with $q = k$ under wavevector conservation. In our experiments at $v = 1/3$, k
476 can be tuned from ≈ 0.02 to ≈ 0.05 . At larger wavevectors, i.e., $0.05 < kl_{\text{B}} < 0.1$, the magnetoroton
477 was found to split into two peaks⁴⁴ that might be attributed^{5,7,37} to mixed modes comprising spin $+2$

478 and spin -2. Additionally, weak residual disorder could break wavevector conservation, allowing
479 RILS to probe modes with $q/l_B \gtrsim 1$ in the magnetoroton dispersion^{27,28,45}. We determine the magnetic
480 field for $\nu = 1$ which establishes the filling factor dependence of the magnetic fields (see below).

485 **Determination of filling factors**

486 Filling factors of FQH states in the lowest Landau level are determined from RILS
487 measurements of the long-wavelength spin-wave modes Δ_s^0 around $\nu = 1$. The modes are
488 exclusively at the Zeeman energy E_Z . Significant enhancement of the Δ_s^0 mode is expected at $\nu =$
489 1 when the magnetic field is tuned to define this fully spin polarized state⁴⁶. The determination of
490 the magnetic field strength at $\nu = 1$ enables the accurate calculation of magnetic fields for other
491 filling factors.

492 Supplementary Figure 7 presents the RILS spectrum of the Δ_s^0 mode under maximized
493 resonance enhancement at $\nu = 1$, which is obtained in the unpolarized geometry. It is worth noting
494 that the very sharp spin-wave mode at $\nu = 1$ is observed only under extreme resonance conditions.
495 The very intense spin-wave peak completely disappears when the incident photon energy is tuned
496 away by approximately 95 μ eV.

497 Supplementary Figure 7 illustrates that a deviation of the filling factor from $\nu = 1$ significantly
498 reduces the mode intensity. Specifically, a small deviation in filling factor of $\Delta\nu = \pm 0.01$ from $\nu =$
499 1 results in a reduction of the mode intensity by about 5% and a change of $\Delta\nu = \pm 0.02$ from $\nu = 1$
500 leads to a decrease of the intensity by more than 10%. This reduction is due to decreased spin
501 polarization⁴⁶ as the filling factor is away from $\nu = 1$. Following this procedure, we can precisely
502 determine the magnetic field for $\nu = 1$ based on the spin-wave mode intensity in RILS measurements.
503 Consequently, the accurate filling factor can be identified as a function of magnetic fields in the
504 lowest Landau level. In our measurement, the magnetic field for $\nu = 1$ is found to be 3.6 T at $\theta = 25^\circ$
505 and correspondingly, the electron density of the investigated sample yields $n = 7.9 \times 10^{10} \text{ cm}^{-2}$. The
506 case at $\theta = 10^\circ$ is similar.

507 **Identification of collective modes**

509 Figure 1e presents RILS spectra from intra-Landau-level collective excitations at $\nu = 1/3$ in the
510 unpolarized geometry with $\theta = 25^\circ$. RILS peaks, observed at E_Z (at $\nu = 1/3$ and other filling factors),
511 are identified as the long-wavelength spin-wave mode Δ_s^0 (ref. 10). The Δ_s^0 mode determined by
512 the Zeeman energy suggests that the wavevector is conserved in the light scattering process ($q = k$
513 $\ll 1/l_B$) and thus the mode is in the long-wavelength limit. Wavevector conservation is further
514 confirmed by its sharp peak¹⁰. We mention that the similar peak sharpness of the spin-2 mode and
515 Δ_s^0 , as illustrated in Fig. 2f, indicates that wavevector conservation also applies to the spin-2 mode,
516 placing it in the long-wavelength limit with $q = k \ll 1/l_B$. Moreover, a broader mode observed at 0.6
517 meV persists to non-FQH filling factors (e.g., $\nu = 0.3$ and 0.38) and is insensitive to temperature up
518 to 800 mK at $\nu = 1/3$, suggesting that it is the large- q spin-wave excitation Δ_s^∞ activated by disorder
519 scattering^{27,45}.

520 In contrast, we identify three other low-lying modes in Fig. 1e, which vanish with increasing
521 temperatures below 800 mK (as shown in Extended Data Figs. 1b, 1d and 1f) and quickly collapse

522 for filling factors away from $\nu = 1/3$ (as shown in Extended Data Figs. 1a, 1c and 1e). The
523 characteristic temperature and filling factor dependence suggest that they are collective
524 magnetoroton excitations of the FQH liquid^{10,27}. At $\nu = 1/3$, there are three characteristic features in
525 the magnetoroton dispersion: the roton minimum Δ_m^R , the magnetoroton Δ_m^∞ at large wavevectors
526 and the long-wavelength magnetoroton Δ_m^0 . Δ_m^R can be understood as a quasiparticle-quasihole
527 pair and has been observed. Δ_m^∞ corresponds to the activation gap in transport and has been studied
528 intensively. Δ_m^0 is linked to the macroscopic coherence and the predicted CGMs, but its
529 understanding is far from complete.

530 Then we compare the experimental results with the calculated dispersion scaled down by a
531 constant from the ideal 2D result²⁹ (the dashed red line of Fig. 1f), to facilitate specific assignments
532 of the observed modes. Within the three modes, the mode at the highest energy (0.65 meV) is
533 interpreted as Δ_m^0 . The modes at 0.36 meV and 0.45 meV are ascribed to Δ_m^R and Δ_m^∞ , respectively.
534 The observed energies are smaller than those measured in the $\nu = 1/3$ state host in narrow QWs, due
535 to larger finite-thickness effects that soften short-range Coulomb interactions^{9,10,29,47}. The softened
536 interactions would lower energies of the magnetoroton modes. Remarkably, the scaled constants
537 that account for finite-thickness effects are found close across various FQH states, as shown in Fig.
538 1f, Extended Data Fig. 3b, Supplementary Figs. 3b and 5b.

539 Furthermore, at $kl_B \approx 0.05$, the energy ratio of Δ_m^0 to Δ_m^R in our experiments shows a
540 discrepancy as large as 20%, compared to theoretical calculations at $q \approx 0$ (in the expected range
541 from 2.02 to 2.27). We attribute it to the effect of the relatively large wavevector^{29,45}. As shown in
542 Extended Data Fig. 5, at a smaller wavevector ($kl_B \approx 0.02$), this discrepancy is greatly suppressed
543 and the observed ratio falls within the expected range. Such agreement in mode energies is
544 remarkable and confirms our assignments.

547 Alternative explanations

548 Theories^{9,48,49} suggest that at $\nu = 1/3$ two Δ_m^R with opposite momenta might form a two-roton
549 bound state with zero (total) momentum. The energy ratio of the two-roton state to Δ_m^R is
550 expected^{48,49} to be below two (specifically 1.8 at $k \approx 0$) and to increase with larger k . In our
551 experiments, at $\nu = 1/3$, the energy ratio of the spin-2 mode to Δ_m^R reaches 2.07 at $kl_B \approx 0.02$ and
552 decreases by 15% at $kl_B \approx 0.05$, as shown in Extended Data Fig. 5. Apparently, the observed mode
553 behaviors are distinct from the expectation for the two-roton state. Similarly, at $\nu = 2/3$, the observed
554 energy ratio of the spin-2 mode to Δ_m^R about 2.2 at $\nu = 2/3$ (Extended Data Fig. 5) notably surpasses
555 that predicted for the two-roton bound state, again ruling out the latter as a plausible explanation.

556 In previous theoretical treatments of the single mode approximation^{9,30}, the intensity of Δ_m^0
557 would be associated with the dynamical structure factor in the lowest Landau level; it is expected
558 to vanish quickly with $(kl_B)^4$, in accordance with Kohn's theorem which claims that the cyclotron
559 mode exhausts the dipole spectral weight at long wavelength. For kl_B reduced by a factor of 2.5, the
560 Δ_m^0 intensity would be suppressed by a factor of $\approx 1/40$, causing the mode to be optically invisible.
561 However, in our experiments, the measured intensities of Δ_m^0 remain comparable (Figs. 2c and 3a),
562 which cannot be explained by this dipole picture.

565 Resonant enhancement of inelastic light scattering

566 Collective excitations of FQH liquids are delicate emergent phenomena which can be observed
 567 by RILS¹⁰. It is achieved by tuning ω_L to the resonance conditions. Resonant enhancements occur
 568 when the photon energy matches intermediate inter-band optical transitions that involve conduction
 569 and valence bands of the GaAs QW. Under a strong magnetic field, the complex structure of Landau
 570 levels in valence bands modifies optical matrix elements⁵⁰.

571 RILS by collective excitations can be described using 3rd order time-dependent perturbation
 572 theory. Three virtual transitions are involved: In the first step, through light-matter interactions H_{ep}
 573 an incident photon of energy ω_L is annihilated, promoting an electron from a valence band state $|v\rangle$
 574 to an intermediate state $|m\rangle$ which is in a conduction band. ω_m is the energy of the transition from
 575 $|v\rangle$ to $|m\rangle$. In the second step, electron-electron interactions H_{ee} cause the scattering from $|m\rangle$ to
 576 the second intermediate state $|n\rangle$. A collective mode (quasiparticle) of the electron liquid is created
 577 and coupled to such scattering. In the third step, the recombination of the final conduction $|n\rangle$ and
 578 valence states $|v\rangle$ emits a scattered photon with energy ω_s . The transition from $|n\rangle$ to $|v\rangle$ has
 579 energy ω_n . Due to energy conservation, the energy of the collective mode probed in RILS is given
 580 by the energy shift during the light scattering $\omega = \omega_L - \omega_s$. The three-step process and the scattering
 581 intensity can be written as⁵¹:

$$582 I(\omega) \propto \left| \sum_{m,n} \frac{\langle v | H_{ep} | n \rangle \langle n | H_{ee} | m \rangle \langle m | H_{ep} | v \rangle}{(\omega_s - \omega_n)(\omega_L - \omega_m)} \right|^2$$

583 where we find a maximized light scattering intensity at resonance conditions, i.e., when the
 584 denominator in the above expression is vanishingly small. In our experiments, when the
 585 intermediate inter-band optical transitions from $|n\rangle$ to $|v\rangle$ overlap PL transitions of X , RILS is
 586 enhanced by the resonance with X transitions⁵¹. As more X transitions are involved, which give
 587 stronger PL signals, the scattering intensity would be expected larger. The strength of the PL
 588 background in different circular polarization setups depends on the relevant optical transitions
 589 between conduction-band and valence-band Landau levels. We have to mention that although the
 590 strength of PL background affects the resonant enhancement of RILS peaks, the appearance of RILS
 591 peaks is determined by the presence of a collective mode, not by the strength of PL background.

594 Method references

595 44 Hirjibehedin, C. F. *et al.* Splitting of long-wavelength modes of the fractional quantum Hall
 596 liquid at $\nu = 1/3$. *Phys. Rev. Lett.* **95**, 066803 (2005).

597 45 Rhone, T. D. *et al.* Higher-energy composite fermion levels in the fractional quantum Hall effect.
 598 *Phys. Rev. Lett.* **106**, 096803 (2011).

599 46 Gallais, Y., Yan, J., Pinczuk, A., Pfeiffer, L. N. & West, K. W. Soft Spin Wave near $\nu = 1$:
 600 Evidence for a Magnetic Instability in Skyrmion Systems. *Phys. Rev. Lett.* **100**, 086806 (2008).

601 47 Zhang, F. C. & Sarma, S. D. Excitation gap in the fractional quantum Hall effect: Finite layer
 602 thickness corrections. *Phys. Rev. B* **33**, 2903-2906 (1986).

603 48 Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. *Phys. Rev.*
 604 *Lett.* **84**, 5576-5579 (2000).

605 49 Ghosh, T. K. & Baskaran, G. Modeling two-roton bound state formation in the fractional
 606 quantum Hall system. *Phys. Rev. Lett.* **87**, 186803 (2001).

607 50 Goldberg, B. B. *et al.* Optical transmission spectroscopy of the two-dimensional electron gas in

608 GaAs in the quantum hall regime. *Phys. Rev. B* **38**, 10131-10134 (1988).
609 51 Hirjibehedin, C. F. *et al.* Resonant enhancement of inelastic light scattering in the fractional
610 quantum Hall regime at $\nu = 1/3$. *Solid State Commun.* **127**, 799-803 (2003).

611
612
613 **Acknowledgements**

614 We gratefully acknowledge illuminating discussions with Bo Yang, Dung Xuan Nguyen, Dam Thanh
615 Son, Kun Yang, Jainendra K. Jain and Rui-Rui Du. We thank Bo Yang for comments on the
616 manuscript. We thank Yifan Wang and Xinyu Lu for assistance in low-temperature measurements.
617 This work is supported by the National Natural Science Foundation of China (Grant No. 12074177),
618 Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302600), Program
619 for Innovative Talents and Entrepreneur in Jiangsu and the start-up funding of Nanjing University.
620 The work at Columbia University is funded by the National Science Foundation, Division of
621 Materials Research under Grant DMR-2103965. The Princeton University portion of this research
622 is funded in part by the Gordon and Betty Moore Foundation's EPiQS Initiative, Grant
623 GBMF9615.01 to Loren Pfeiffer. U. W. acknowledges support from German Science Foundation
624 under Grants WU 637/7-1 and 7-2.

625
626
627 **Author contributions**

628 L. D. supervised the project, L. D. and J. L. designed and set up the low-temperature optical facility,
629 L. D. and Z. L. conceived the experiments, K. W. W. and L. N. P. grew the heterostructure, J. L., Z.
630 L., Z. Y., Y. H. and L. D. performed the optical measurements, L. D., J. L., Z. L. and Z. Y. analyzed
631 the data, A. P., Z. L., U. W. and L. D. discussed the scientific objectives, L. D., Z. L. and J. L. wrote
632 the paper. J. L., Z. L., Z. Y., U. W., C. R. D. and L. D. commented on the paper during the writing
633 process.

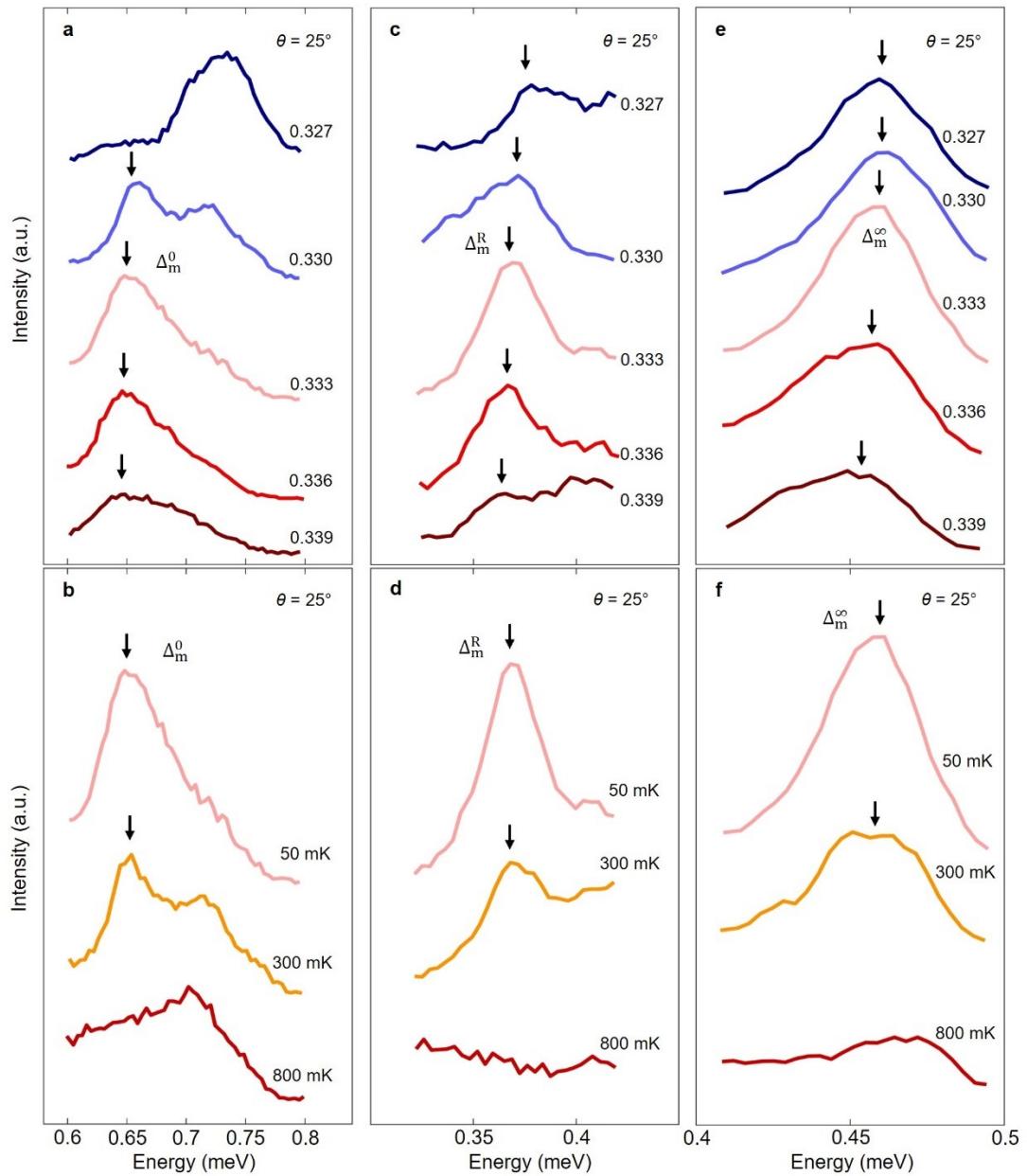
634
635 **Competing interests**

636 The authors declare no competing interests.

637
638 **Additional information**

639 **Supplementary information** The online version contains supplementary material available online.

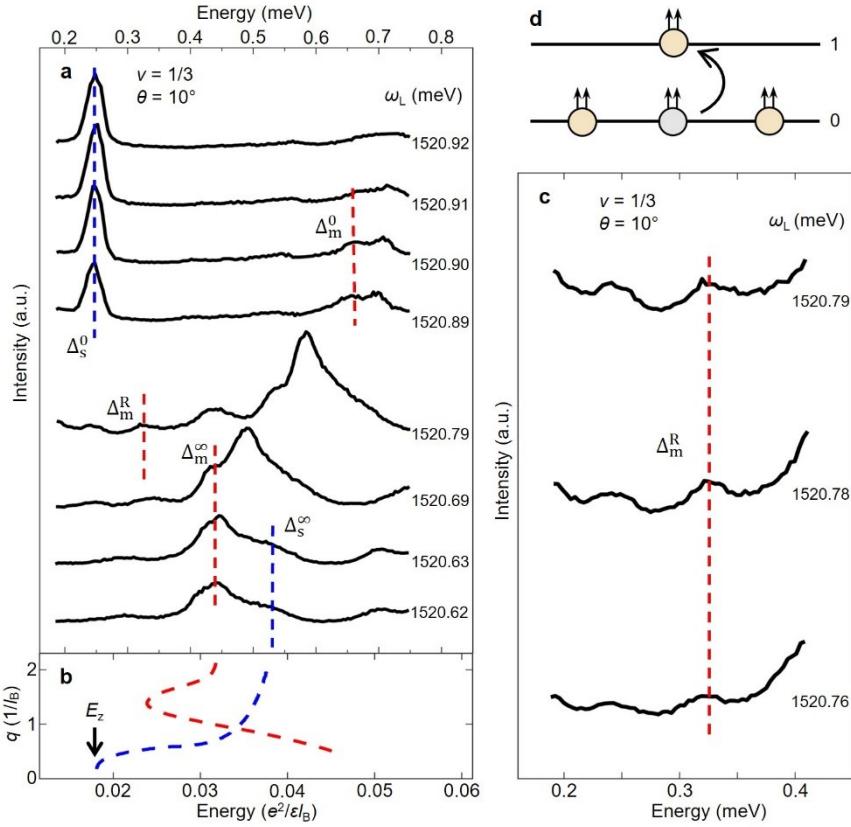
640 **Correspondence and requests for materials** should be addressed to Lingjie Du.


641 **Reprints and permission information** is available online.

642
643 **Data availability**


644 All data needed to evaluate the conclusions in the paper are included in this paper. Additional data
645 that support the plots and other analysis in this work are available from the corresponding author
646 upon request.

647
648
649
650
651


Extended data figure legends

654 Extended Data Fig. 1. **Filling factor and temperature dependence of magnetoroton modes at ν**
 655 **= 1/3 in the unpolarized geometry with $\theta = 25^\circ$.** Spectra of Δ_m^0 , Δ_m^R and Δ_m^∞ at filling factors
 656 around $\nu = 1/3$ are shown in a, c and e, respectively. The mode intensities reach their maxima at $\nu =$
 657 1/3, and rapidly decrease as filling factors deviate from $\nu = 1/3$. The observations suggest that as the
 658 system becomes more compressible, the quantum liquid supporting magnetoroton excitations
 659 appears to vanish. Temperature dependence of Δ_m^0 , Δ_m^R and Δ_m^∞ at $\nu = 1/3$ is shown in b, d and f,
 660 respectively. With increased temperatures, the intensities of the magnetoroton modes decrease and
 661 vanish at temperatures below 800 mK. The behaviors indicate that the magnetoroton modes are
 662 highly temperature-sensitive collective excitations, further highlighting their roles in characterizing
 663 the properties of the FQH states. RILS peaks are marked by vertical black arrows.

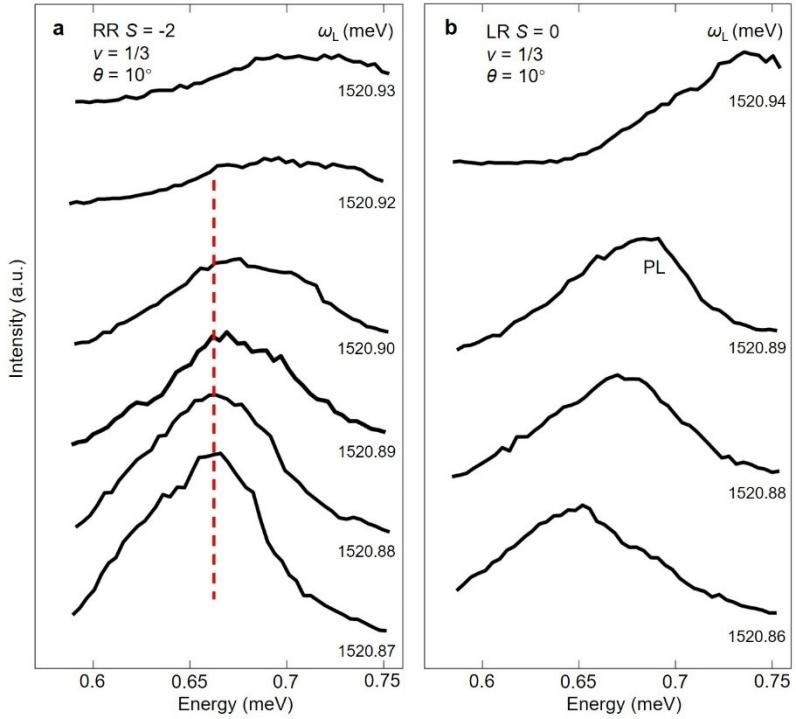
666
667 **Extended Data Fig. 2. Peak fitting of the Δ_m^0 mode at $\nu = 1/3$ in the RR geometry with $\theta = 25^\circ$.**
668 The measured Δ_m^0 mode at resonance (black open dots) includes contribution from PL background.
669 The red open dots show the Δ_m^0 mode after subtracting smoothed PL background (the grey dashed line), which are fitted by a Lorentzian peak (the black line) with FWHM of 30 μeV . The combination
670 (the red dashed line) of the fitted Lorentzian peak and PL background gives a remarkable match
671 with the measured signals in the RR geometry. The relatively narrow peak width of this mode
672 suggests wavevector conservation in the scattering process with $q = k \ll 1/l_B$, confirming its long-
673 wavelength nature.
674
675
676

677

678 Extended Data Fig. 3. **RILS measurements at $\nu = 1/3$ with $\theta = 10^\circ$.** **a**, RILS spectra at $\nu = 1/3$ in
679 the unpolarized geometry as a function of ω_L . Similar to those in Fig. 1e, the red and blue dashed
680 lines indicate magnetoroton and spin-wave excitations, respectively. Compared with the result at θ
681 = 25° , Δ_s^0 at $\theta = 10^\circ$ has a lower energy but remains at E_z , confirming its assignment. **b**, Calculated
682 dispersions of collective excitations at $\nu = 1/3$ that support the assignment of the modes. The red
683 dashed line is scaled down from the ideal zero-width result²⁹ by a factor of 0.305, accounting for the
684 finite-thickness effect. The blue dashed line represents a generic dispersion for the spin-wave
685 excitations. **c**, RILS spectra of the Δ_m^R excitation at $\nu = 1/3$ in the unpolarized geometry at different
686 ω_L . The well-resolved peaks are marked by the vertical red dashed line. We mention that the Δ_m^R
687 mode energy at 25° is larger than that at 10° , since a larger tilted angle induces a higher in-plane
688 magnetic field, causing the electrons to behave in a more 2D manner. On the other hand, the Δ_m^0
689 energies at two tilted angles are closed. It is because a smaller tilted angle also gives a reduced $k l_B$
690 in the magnetoroton dispersion, which corresponds to an increased Δ_m^0 energy, as shown in the red
691 dashed line in **b**. The two factors interplay in the case of Δ_m^0 . **d**, At $\nu = 1/3$, magnetoroton modes
692 could be understood as excitations of CFs from the topmost (the lowest) occupied CF Landau level
693 to the next unoccupied one.

694

695

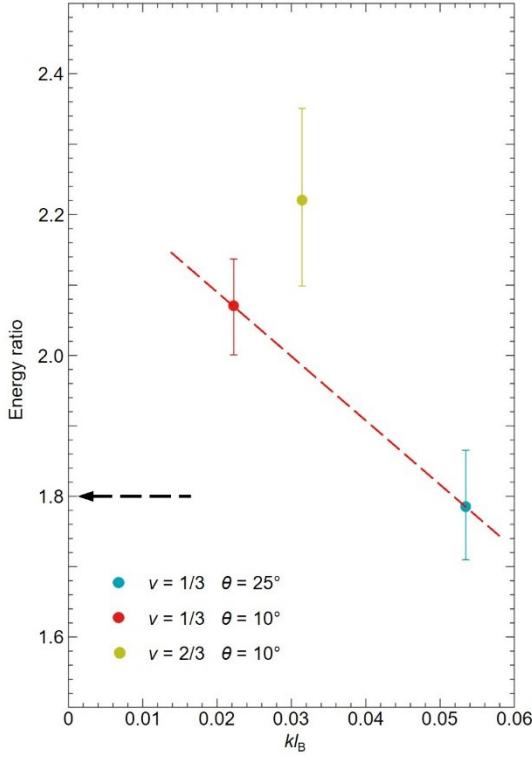

696

697

698

699

700

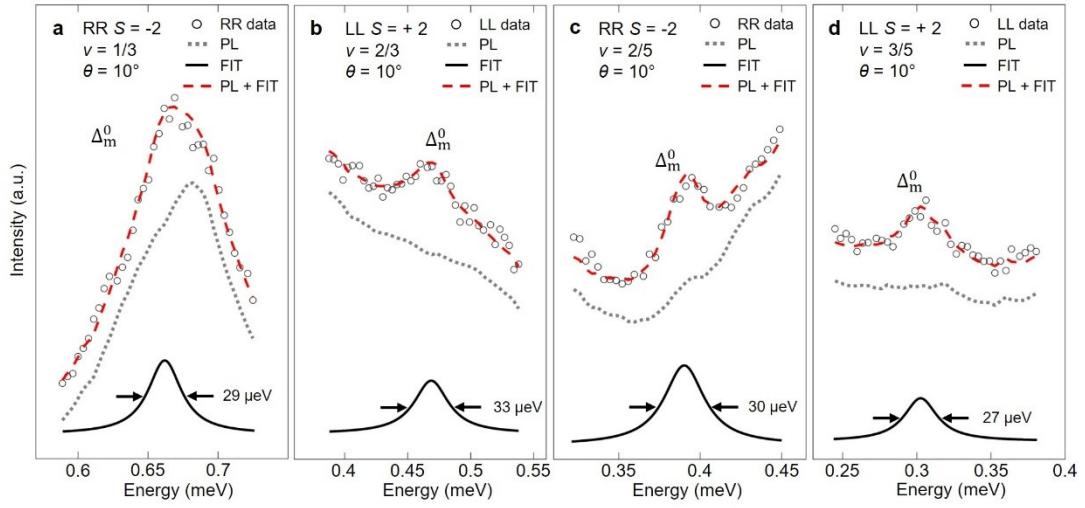


701

702 **Extended Data Fig. 4. Optical spectra at $\nu = 1/3$ measured at different ω_L in the RR and LR**
 703 **geometries with $\theta = 10^\circ$.** **a**, Resonant enhancement of RILS signals of the Δ_m^0 mode in the RR
 704 geometry. The RILS peaks maintain a consistent energy shift at different ω_L . The resonant
 705 enhancement of Δ_m^0 is clearly demonstrated by the marked intensity dependence on ω_L . RILS
 706 peaks are marked by the dashed red line. **b**, Optical spectra measured in the LR geometry. The
 707 feature of the spectrum measured at $\omega_L = 1520.89$ meV (that also appears in the LR geometry in
 708 Fig. 3a) shifts as ω_L varies, which is identified as PL signals. No RILS signals are found in the
 709 spectra in the LR geometry.

710

711



712

713 **Extended Data Fig. 5. Energy ratios of the measured spin-2 modes to Δ_m^R in the $\nu = 1/3$ and $2/3$ states.** In RILS experiments, the wavevector $k = (2\omega_L/c)\sin\theta$ transferred to the system can be
714 adjusted by altering θ . At $\nu = 1/3$, a reduction of θ from 25° to 10° results in a decrease of kl_B from
715 ≈ 0.05 to an extremely small value ≈ 0.02 , effectively approaching the long-wavelength limit ($q = k$
716 = 0). At $\nu = 1/3$, the energy ratio of the spin-2 mode to Δ_m^R reaches 2.07 at $kl_B \approx 0.02$ (Fig. 3a and
717 Extended Data Fig. 3) and decreases by 15% as kl_B increases to ≈ 0.05 (Figs. 1e and 2c), as guided
718 in the red dashed line. At $\nu = 2/3$, the energy ratio reaches 2.2 at $kl_B \approx 0.03$ with $\theta = 10^\circ$ (Fig. 3b
719 and Supplementary Fig. 3). The error bars originate from the uncertainty in determining the energy
720 positions of these two modes in RILS spectra. Notably, at extremely small wavevectors, the
721 measured energy ratios at $\nu = 1/3$ and $2/3$ are larger than the value (1.8 at zero wavevector) expected
722 for a two-roton bound state (the black dashed arrow). The ratio for the two-roton bound state would
723 increase with wavevectors but have to be lower than two because of its two-roton characteristic. We
724 would like to mention that the large energy ratio at $\nu = 2/3$ indicates that Δ_m^0 could be in the
725 continuum of excitations. Interestingly, in CP-RILS measurements, Δ_m^0 is well resolved in the LL
726 geometry, which indicates that the continuum does not have a large contribution in this geometry.
727

728

729

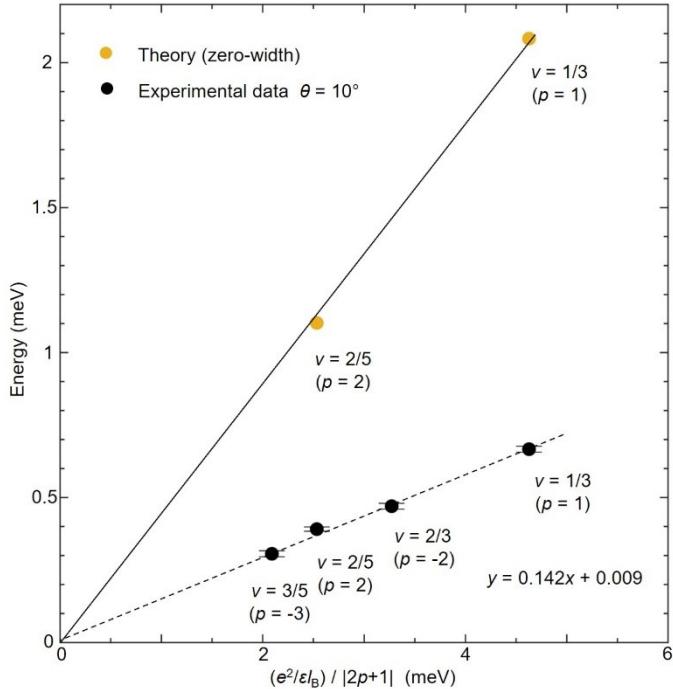
730

731 **Extended Data Fig. 6. Peak fitting of the Δ_m^0 modes at $\nu = 1/3$, $\nu = 2/3$, $\nu = 2/5$ and $\nu = 3/5$ with**
 732 **$\theta = 10^\circ$.** The black open dots represent the experimental signals of the Δ_m^0 modes in CP geometries
 733 (RR for $\nu = 1/3$ and $\nu = 2/5$, LL for $\nu = 2/3$ and $\nu = 3/5$). The grey dash lines indicate smoothed PL
 734 background signals. The black lines are the fitted Lorentzian peaks with small FWHM (29 μeV for
 735 $\nu = 1/3$, 33 μeV for $\nu = 2/3$, 30 μeV for $\nu = 2/5$ and 27 μeV for $\nu = 3/5$). The combination of these
 736 fitted Lorentzian peaks and PL background signals (the red dashed lines) gives a remarkable
 737 agreement to the measured RILS spectra. The sharpness of these peaks is noteworthy, as it indicates
 738 wavevector conservation in the scattering.

739

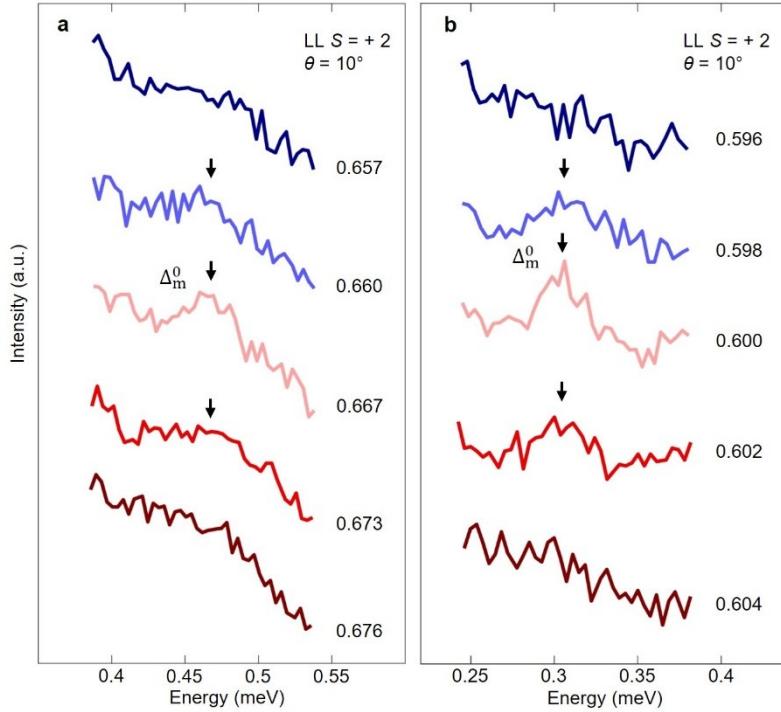
740

741


742

743

744

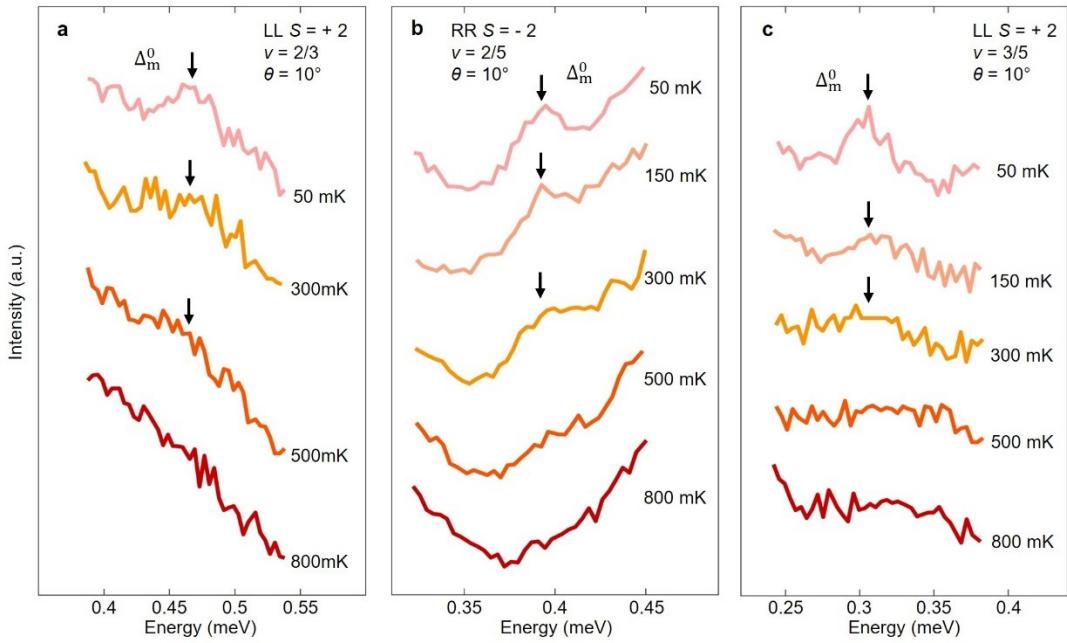

745

746

747

748 Extended Data Fig. 7. **Comparison of the measured Δ_m^0 energies to theoretical calculations.**
 749 The yellow dots represent theoretical calculations of the Δ_m^0 energies at $v = 1/3$ ($p = 1$) and $v = 2/5$
 750 ($p = 2$), obtained from Ref. 29 for zero-width 2D systems. Theoretical values given in the reference
 751 in the unit of E_c are converted to meV scale using the density of our sample. The black dots represent
 752 experimental results obtained in our RILS measurements. These experimental results are taken at θ
 753 = 10° and correspond to filling factors $v = 1/3$ ($p = 1$), $2/3$ ($p = -2$), $2/5$ ($p = 2$) and $3/5$ ($p = -3$). The
 754 error bars indicate the uncertainty in determining the energy positions in the RILS spectra. Both
 755 theoretical (yellow dots) and experimental (black dots) gap energies are found proportional to
 756 $(e^2/\varepsilon l_B)/|2p+1|$, characteristic of CFs moving under effective magnetic fields in the orbits, which
 757 determine the magnetoroton gaps. The dashed line represents an excellent linear fit of the
 758 experimental data, yielding a slope of 0.142 and y-intercept of 0.009 meV. The solid line is the
 759 guide to the eye.
 760

761


762 Extended Data Fig. 8. **Filling factor dependence of the Δ_m^0 modes at $\nu = 2/3$ and $3/5$ in the LL**
 763 **geometry with $\theta = 10^\circ$.** **a**, RILS spectra of the Δ_m^0 mode at filling factors around $\nu = 2/3$. The mode
 764 intensity rapidly decreases as the filling factor deviates from $\nu = 2/3$. **b**, RILS spectra of the Δ_m^0
 765 mode at filling factors around $\nu = 3/5$. A similar rapid decline in the mode intensity is observed as
 766 the filling factor moves away from $\nu = 3/5$. The FQH effect is known for its incompressible behavior
 767 at specific fractional filling factors, and deviations from these filling factors make the system more
 768 compressible. The observed pronounced sensitivity to filling factors is characteristic of the FQH
 769 effect. RILS peaks are marked by vertical black arrows.

770

771

772

773

774

775 Extended Data Fig. 9. **Temperature dependence of the Δ_m^0 modes at FQH states with $\theta = 10^\circ$.**
 776 **a, b** and **c** present temperature dependence of the Δ_m^0 modes at $v = 2/3$ (in the LL geometry), $v =$
 777 $2/5$ (in the RR geometry) and $v = 3/5$ (in the LL geometry), respectively. As the temperature
 778 increases, the mode intensities are suppressed in all the three cases and the modes eventually vanish
 779 at 800 mK. In the FQH states, the formation of incompressible liquids results from strong electron-
 780 electron interactions with the presence of energy gaps. However, as the temperature rises, thermal
 781 excitations could disrupt the delicate correlated ground states, leading to the observed reduction in
 782 the mode intensity. RILS peaks are marked by vertical black arrows.

783

784

785

786

787

	Magnetoroton	Long wavelength	Spin-2	Chiral
Description	Determine 'masses' of the CGMs		Associated with the geometrical nature of the CGMs	Determined by the direction of B^* seen by the CFs
Experimental results	Linear energy scaling (Fig. 4c)			
	Temperature and filling factor dependence (Figs. 2g, 4d, 4e, Supplementary Fig. 2, Extended Data Figs. 8 and 9)	Sharp line-shape of the observed modes (Figs. 2f and 4b)	In prominent FQH states around half filling, each Δ_m^0 is dominated by one polarized component with total angular momentum of 2 (Figs. 2c and 3).	As shown in Fig. 4a, at $v = p/(2p+1)$, the modes carry $S = -2$ for electron states under positive B^* (for $p > 0$) and $S = +2$ for their particle-hole conjugates under negative B^* (for $p < -1$).
	Compare mode energies with magnetoroton dispersions to identify Δ_m^0 (Figs. 1e, Extended Data Fig. 3, Supplementary Figs. 3 and 5)			
	At $v = 1/3$ and $2/3$, energy ratios of such modes to Δ_m^R exclude the two-rotor explanation and agree with the expectation for Δ_m^0 .			

788

789 Extended Data Table 1. **Summary of the experimental results.** CGMs are characterized by their
 790 specific gaps (“masses”), spin-2 and chiral properties. In this table, we show that the experimental
 791 results capture these key elements.