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Abstract— We investigate a variation of the 3D registration

problem, named multi-model 3D registration. In the multi-model

registration problem, we are given two point clouds picturing a

set of objects at different poses (and possibly including points

belonging to the background) and we want to simultaneously

reconstruct how all objects moved between the two point clouds.

This setup generalizes standard 3D registration where one

wants to reconstruct a single pose, e.g., the motion of the sensor

picturing a static scene. Moreover, it provides a mathematically

grounded formulation for relevant robotics applications, e.g.,

where a depth sensor onboard a robot perceives a dynamic

scene and has the goal of estimating its own motion (from the

static portion of the scene) while simultaneously recovering the

motion of all dynamic objects. We assume a correspondence-

based setup where we have putative matches between the

two point clouds and consider the practical case where these

correspondences are plagued with outliers. We then propose a

simple approach based on Expectation-Maximization (EM) and

establish theoretical conditions under which the EM approach

converges to the ground truth. We evaluate the approach in

simulated and real datasets ranging from table-top scenes to

self-driving scenarios and demonstrate its effectiveness when

combined with state-of-the-art scene flow methods to establish

dense correspondences.

I. INTRODUCTION

3D registration is a foundational problem in robotics
and computer vision and arises in several applications,
including motion estimation and 3D reconstruction [1],
[2], [3], object pose estimation [4], [5], [6], and medical
imaging [7], [8]; rotation-only variations of the problem
also arise in panorama stitching [9] and satellite attitude
determination [10].

3D Registration. In its simplest form, 3D registration
looks for the rotation R → SO(3) and translation t → R3

that align two sets of points {ai}
n

i=1
and {bi}ni=1

. If the
correspondences between the two sets of points are known,
i.e., we know that point bi in the second point cloud
corresponds to point ai in the first point cloud after a rigid
transformation (R, t) is applied, then the problem can be
formulated as a nonlinear least squares problem and solved
in closed form [11], [12]. More formally, if we assume the
following generative model
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Fig. 1: We propose an Expectation-Maximization approach for
multi-model 3D registration, which aims to recover the motion of all
objects (and background) in a scene from point cloud observations.
The figure reports two results produced by our approach on the
KITTI dataset. Note that the two cars on the left of the bottom
figure are stationary, hence they are correctly deemed to be part of
the background.

bi = Rai + t+ ω, i = 1, . . . , n (1)

where ω is a noise term distributed according to an isotropic
Gaussian, then a maximum likelihood estimate for (R, t)
can be computed by solving the following nonlinear least
squares:

min
R→SO(3),t→R3

∑
n

i=1
↑bi ↓Rai ↓ t↑2 (2)

which admits a well-known closed-form solution via singular
value decomposition (SVD) [11], [12].

Robust 3D Registration. In practical problems, the mea-
surements contain spurious correspondences. For instance,
if the two point clouds represent two RGB-D scans at
consecutive time stamps and we are trying to estimate the
motion of the sensor between scans, we might attempt to
establish correspondences (bi,ai), i = 1, . . . , n, using de-
scriptor matching [13], optical flow [14], or scene flow [15].
As a result, some of the point pairs (bi,ai) may be well-
approximated by the measurement model (1), while others
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are outliers and largely deviate from (1), either because the
pairs of points are incorrectly associated by the algorithm that
establishes the correspondences, or because they do not lie
on a static portion of the scene. In this case, the measurement
model becomes:

bi = ωi(Rai + t) + (1↓ ωi)o+ ω, i = 1, . . . , n (3)
where the (unknown) binary variable ωi → {0, 1} decides
whether bi is a rigid transformation of ai (if ωi = 1) or
is an arbitrary vector o, independent of (R, t) (if ωi = 0).
A plethora of works has attacked robust registration with
outliers. While we refer the reader to Section II and [13] for
a more extensive discussion about related work, a popular
approach is to resort to M-estimation, which attempts to
compute an estimate for (R, t) by minimizing a robust loss
function. For instance, the work [13] considers a truncated
least squares loss:

min
R→SO(3),t→R3

,

ωi→{0;1},i=1,...,n

∑
n

i=1
ωi ↑bi ↓Rai ↓ t↑2 + (1↓ ωi)c̄

2 (4)

which computes a least squares estimate for measurements
with small residual errors (i.e., whenever ↑bi↓Rai↓ t↑< c̄

the optimization forces ωi = 1 and the second summand dis-
appears), while discarding measurements with large residuals
(when ωi = 0, the objective becomes constant and the i-th
measurement does not contribute to the estimate).

Multi-Model 3D Registration. The robust registration
problem (4) looks for a single pose that explains the majority
of correspondences, while disregarding the others as outliers.
In this paper, we ask: can we instead find further patterns
in the outliers? or, in other words, can we simultaneously
recover the motion of all objects present in the point clouds?
More formally, we assume the following generative model:

bi =
∑

M

j=1
ωi,j(Rjai+tj)+ωi,0 o+ω, i = 1, . . . , n (5)

where for each measurement i, the vector εi =

[ωi,0 ωi,1 . . . ωi,M ] → {0; 1}
M+1 is an unknown binary

vector with a single entry equal to 1, M it the number of
objects (unknown a priori), and (Rj , tj) is the motion of
the j-th object, for j = 1, . . . ,M . In words, each point bi
in (5) is either generated by an object j (if ωi,j = 1 for a
j → {1, . . . ,M}) or is an outlier (if ωi,0 = 1). Clearly, when
M = 1, eq. (5) falls back to the robust setup in (3).

Contribution. We propose an approach to solve the multi-
model registration in eq. (5). The approach is based on an
Expectation-Maximization (EM) algorithm that computes the
assignments of measurements to objects (i.e., the vectors εi
in (5)) and retrieves the pose (Rj , tj) for each object. The
approach does not require prior knowledge of the number of
objects M and can also accommodate additional constraints
(e.g., that distant objects are distinct, even if they exhibit
similar motion). We provide a novel theoretical analysis of
the algorithm that suggests that the EM scheme converges
to the ground truth as long as the initialization of the
vectors εi is sufficient to capture all objects of interest.
We evaluate the EM scheme in simulated and real datasets
ranging from table-top scenes to large self-driving scenarios
(Fig. 1) and demonstrate its effectiveness when combined

with state-of-the-art scene flow methods to establish dense
correspondences.

II. RELATED WORK

Robust Estimation in Robotics and Vision. Robust esti-
mation is an active research area in robotics and vision [16],
[17], [18] and has been attacked using different frameworks,
including M-estimation [19], [20], [21], [22], consensus
maximization [23], [24] (typically solved using sampling-
based algorithms, such as RANSAC [25]), or graph-theoretic
methods [13], [26], [27], [28]. We refer the reader to [13]
for a review of robust 3D registration and to [18], [29] for
an overview of robust estimation across robotics and vision.

List-Decodable Regression. While standard robust esti-
mation computes an estimate that agrees with the majority
of the measurements, recent work in robust statistics has fo-
cused on recovering an estimate from a handful of inliers hid-
den among an overwhelming amount of outliers, e.g., [30],
[31], [32], [33], [34]. In this regime, returning a single
accurate hypothesis is information-theoretically impossible,
and one has to compute a list of hypotheses to guarantee
that at least one of them is accurate. This setup, typically
referred to as list-decodable regression, was first studied
in [31] and [32], which proposed and analyzed algorithms
based on semidefinite relaxations. The work [18] observes
that the algorithm in [31] can be easily adapted to solve a
multi-model rotation-only registration problem; however, the
resulting relaxation is impractically slow (e.g., 3 minutes to
solve a problem with 50 measurements).

Multi-Model Fitting in Computer Vision. Early work
in computer vision has studied the problem of simultane-
ously recovering multiple models from noisy measurements.
The corresponding literature includes clustering-based and
optimization-based methods. Clustering-based methods span
a variety of techniques, including hierarchical clustering [35],
[36], kernel fitting [37], [38], matrix factorization [39], [40]
and hypergraph partitioning [41], [42]. Optimization-based
methods include generalizations of RANSAC to the multi-
model setup, including Sequential RANSAC [43], Multi-
RANSAC [44], and RANSACOV [45]. Other methods such
as Pearl [46] and Progressive-X [47] take a step further by
incorporating additional priors into the objective function.

Mixture of Linear Regression in Applied Mathematics.

In the problem of learning a mixture of linear regressions,
each measurement is generated from one of several unknown
linear regression components, and one has to associate
measurements to components and estimate the components.
This problem is known to be NP hard in general [48].
However, under certain assumptions on the underlying dis-
tribution (e.g., the regressors follow a standard Gaussian
distribution, or there are only two mixture components),
several approaches have successfully tackled the problem,
including algorithms based on the method of moments [49],
[50], alternating-minimization [48], [51], and Expectation-
Maximization [52], [53], [54]. Contrary to this line of work,
in this paper we do not make a Gaussian assumption on the
regressors, and we consider a 3D registration problem rather
than a linear regression setup.
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Learning-based Methods for Motion Tracking.

Learning-based methods have recently demonstrated
excellent performance in 2D and 3D motion tracking.
Optical flow methods [55], [56] estimate the pixel
displacement between two frames, which can be used to
segment moving objects from a video. Scene flow estimates
dense 3D motion for each pixel from a pair of stereo or
RGB-D frames. Other approaches, such as DRISF [57]
and RigidMask [58], divide scene flow estimation into
multiple subtasks and build modular networks to solve each
subtask. RAFT-3D [59] computes the scene flow by using
feature-level fusion. CamLiRAFT [60], [61] proposes a
multi-stage pipeline to better fuse multi-modal information
without suffering from accuracy loss due to voxelization.

III. AN EXPECTATION-MAXIMIZATION APPROACH TO
MULTI-MODEL REGISTRATION

The Expectation-Maximization (EM) algorithm [62] it-
eratively estimates parameters in statistical models given
noisy data, by alternating an Expectation (E) step and a
Maximization (M) step, which solves estimation problems
in robotics [63], [64], [65], [66]. Here we use a variation of
the EM algorithm known as the “Classification Expectation-
Maximization” algorithm (e.g., [52]), see Algorithm 1. We

Algorithm 1: Expectation-Maximization (EM)
Input: Point clouds S := {(ai, bi)}

n
i=1, Initial clusters

H := {Hj → S | j ↑ [K]}, Distance threshold ω ,
Number of iterations T , Minimum cluster size
mmin

Output: Hj ,R
(r)
j , t(r)j , ↓j ↑ [K]

1 for r ↑ [T ] do

2 % Compute a pose, weight, and variance for each
cluster for j ↑ [K] do

3 (R(r)
j , t(r)j ) := Horn(Hj). ε

(r)
j := |Hj |/n.

4 Ej := {b↔R(r)
j a↔ t(r)j | (a, b) ↑ Hj}

5 ϑ̂
(r)
j :=

√
1
3 tr (cov(Ej))

6 end

7 E-step: % Compute weighted likelihood:
8 for j ↑ [K] and i ↑ [n] do

9 W
(r)
i,j;ω := eq. (6)

10 end

11 % Remove small clusters Hj from H

12 for j ↑ [K] do

13 if |Hj |< mmin then

14 remove cluster j from H,ε
(r)
j , ϑ̂

(r)
j ,W

(r)
i,j;ω

K := K ↔ 1
15 end

16 end

17 M-Step: % Regenerate clusters according to
likelihoods

18 for i ↑ [n] do

19 if j
ε = argmaxj→[k] W

(r)
i,j;ω then

20 add (ai, bi) to cluster Hjω

21 end

22 end

23 end

start by observing that finding the associations εi can be

equivalently thought of as a clustering problem, where we
try to cluster together measurements corresponding to the
same object. We will refer to our clusters with Hj ↔ S,
where S is the given set of correspondences {(ai, bi)}ni=1

and Hj indicates the correspondences (putatively) associated
with object j. Note that this interpretation is consistent
with (5), and by definition Hj := {(ai, bi) → S | ωi,j =

1}. Accordingly, in Algorithm 1, rather than updating the
indicator vectors εi, we update the clusters Hj for all objects
j, at each iteration.

Initialization. The algorithm takes as input, an initial
guess for the clusters H := {Hj ↔ S | j → [K]} of the
correspondences S, where for each object j → [K], Hj is the
set of correspondences associated to j. In the next section,
we provide conditions on the initialization under which the
EM algorithm converges to the ground truth.

EM Algorithm. Each iteration of Algorithm 1 performs
an E-step and M-step. At each iteration r, the algorithm first
computes a transform (R(r)

j
, t(r)

j
) for each cluster (line 3);

this is done using Horn’s method [12] given the measure-
ments in that cluster. The algorithm also computes a weight
ε
(r)

j
(quantifying the relative size of cluster j) and an intra-

cluster variance ϑ̂
(r)

j
for each cluster (lines 3-5). Then, the

E-step estimates the posterior probability that the data point
(ai, bi) belongs to the cluster j according to the weighted
likelihood:

W
(r)

i,j;ε
:=

ε
(r)

j
ϖ
(r)

(bi|ai)

∑
k

j=1
ε
(r)

j
ϖ(r)(bi|ai)

·1(dcluster(Hj , (ai, bi)) < ϱ).

(6)
Here ϖ

(r)

j
(bi|ai) denotes the likelihood of bi↓R(r)

j
ai↓t(r)

j

with respect to the multivariate Gaussian density with mean
0 and covariance ϑ̂

2

j
I3. The first term of the likelihood es-

sentially quantifies how well the transformation (R(r)

j
, t(r)

j
)

agrees with the correspondence (bi,ai); the weighted like-
lihood also accounts for the cluster size (i.e., the weight
εj). The second term 1(dcluster(Hj , (ai, bi)) < ϱ) assigns
zero likelihood to points that are far away (farther than a
distance ϱ ) from cluster j, where dcluster(Hj , (ai, bi)) :=

mina→→Hj ↑a
↑
↓ ai↑. This term avoids to cluster objects that

have the same motion, but are far away from each other.
The M-step updates the assignment of samples to the clus-

ters by assigning each (bi,ai) to the cluster Hj maximizing
W

(r)

i,j;ε
. This particular variation of the M-step is called the

“Classification M-step”, see, e.g., [52]. Before executing the
M-step, the algorithm removes overly small clusters (line 12).

We remark that Algorithm 1 is almost parameter free,
and only requires setting the distance ϱ beyond which we
consider two objects to be distinct, the minimum “size”
mmin of what we would consider an object, and the number
of iterations T . In particular, the weighted likelihood only
depends on ϱ and does not require setting a noise bound,
e.g., as done in RANSAC. We also remark that the number
of clusters K is estimated during the iterations, and ideally
will converge to the true number of objects M , see eq. (5).

In the following section, we derive conditions under which
Algorithm 1 converges to the ground truth clusters.
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IV. THEORETICAL ANALYSIS

In this section, we sketch a proof demonstrating that
Algorithm 1 recovers the ground truth clusters under suitable
condition on the initial clusters. In the following, we say
that a set of points P is ϱ -connected if between any pair
of points x,y → P there is a sequence of points in P such
that each pair of consecutive points in the sequence are at
most at distance ϱ from each other. Then we say that a
set of correspondences S := {(ai, bi)}ni=1

is ϱ -connected
if {ai}

n

i=1
is ϱ -connected.

We make the following assumptions on the ground truth.

Definition 1 (Ground Truth). We are given a set of cor-
respondences S := {(ai, bi)}ni=1

, which can be partitioned
into M ϱ -connected parts G1, . . . , GM such that there are
functions g1, . . . , gM of the form gj = Rja + tj where
(Rj , tj) is a rigid transformation, satisfying:

1) Uniform Bounded Noise: For all j → [M ] and (a, b) →
Gj , gj(a) + ω = b, where ω is drawn from the uniform
distribution over [↓ϑ,ϑ]

3.
2) Object Separation: For all distinct i, j → [M ],

min(a,b)→Gi,(a→,b→)→Gj
↑a↓ a↑

↑ > ϱ .
3) Bounded Point Cloud: For all i → [n], ↑ai↑ ↗ B.
4) Outliers: Some of the samples may be “outliers”. We

say that a point (ao, bo) is an outlier if, for all j → [M ],
dcluster(Gj , (ao, bo)) > ϱ .

For Algorithm 1 to converge, we will require good initial
clustering (in Section V, we show that using a simple
Euclidean clustering or more modern alternatives, like Seg-
mentAnything (SAM) [67], suffices). Here we formalize
what it means to have good initial clustering:

Definition 2 (Good Clustering). In the setting of Definition
1, we say that the initial clustering H := {H1, . . . , HK}

with K ↘ M is (ϱ,ς,m0)-good, if it is a partition of the
correspondences S (as defined in Definition 1) satisfying:

1) ϱ -connected: For all j → [K], Hj is ϱ -connected.
2) Large Initial Clusters: For all j → [K], |Hj |↘ m0.
3) Identifying cluster: For each ground truth cluster G,

let HG := {H → H | |H ≃ G|> 0} and H
↓

:=

argmax
H→HG

|H|. Then, for some ς > 1, |H
↓
|>

ςmaxH→HG\{H↑}|H|.

Intuitively, the last condition captures the idea that for any
ground truth cluster G, the largest cluster having a nonzero
intersection with G, namely H

↓, is notably larger than all
other initial clusters having a nonzero intersection with G.

Theorem 3 (Expectation-Maximization Guarantee). In the
setting of Definition 1, assume that the initial clustering H

is (ϱ,ς,m0)-good in the sense of Definition 2, for some
sufficiently large m0. Then, running Algorithm 1, with high
probability (dependent on m0), returns H

↑, a partition of
the set of correspondences S, containing each of the ground
truth clusters (i.e., the objects and background).

Intuition: The proof of theorem 3 follows by noting that
the initial clustering results in a partition of each ground

truth cluster such that one of the partitions is notably larger
than the rest. As the algorithm progresses, the M-step assigns
more points to the biggest estimated cluster until it exactly
matches the ground truth object which contains it. This
happens because the likelihood Wi,j;ε is maximized by the
largest cluster, due to the presence of the weight εj (i.e., the
cluster size).

Proof Sketch: We make the following observations, which
together imply that the final clusters produced by Theorem 3
include the ground truth clusters. First, each ground truth-
cluster is partitioned by the initial clustering. This is because
the ϱ -connected subsets of the data either consist of samples
that are entirely contained in one of the Gj or (possibly)
the set of outliers. Since the initial clustering H exclusively
consists of ϱ -connected subsets, each element of H is either
a subset of Gj for some j or entirely consists of outliers.

Now suppose the weights for the clusters are given
by ε1, . . . ,εK . Without loss of generality, suppose
{H1, . . . , Ht} form a partition of G1 with ε1 ↘ . . . ↘ εt.
Since H is (ϱ,ς,m0)-good, we know that ε1 > ςε2 because
of Item 3 in Definition 2. Our second claim is that in each
iteration of the M -step, elements of S that are ϱ -close to the
largest cluster H1 are assigned to H1. To see this, consider a
point (ai, bi) → G1 \H1 which is ϱ -close to H1 (if no such
point exists, then H1 = G1). We show that for the point
(ai, bi), the likelihood Wi,j;ε is maximized when j = 1.

Since Horn’s Method is consistent (i.e., for a suffi-
ciently large sample size, the algorithm converges to the
true solution in the presence of zero-mean noise) and the
domain of the point-cloud is bounded by a ball of ra-
dius B, hj := R(r)

j
ai + t(r)

j
and ϑj estimate g1 and

ϑ up to an additive error of φ
↑, according to standard

concentration results. Choosing sufficiently large mmin and
m0 ensures that the sample size is large and conse-
quently that φ↑ is small. This is enforced by the algorithm,
which deletes candidate clusters of size less than mmin.
Now note that argmax

j
Wi,j;ε = argmax

j
εjϖj(bi |

ai) = argmax
j
εj exp(↓↑bi ↓ hj(ai)↑

2
/ϑj

2
)/ϑj . Since

φ
↑ is sufficiently small for large sample size, we get Wi,j;ε =

εj(1 ± φ) exp(↓↑bi ↓ g1(ai)↑
2
/ϑ

2
)/ϑ, where φ is a func-

tion of φ
↑
,ϑ, and B. Since exp(↓↑bi ↓ g1(ai)↑

2
/ϑ

2
)/ϑ

is a constant with respect to j, it does not affect the
maximization. This implies argmax

j
Wi,j;ε is essentially

determined by argmax
j
εj(1 ± φ). Choosing small φ to

ensure (1 + φ)/(1 ↓ φ) < ς and recalling that ε1 > ςε2,
we see argmax

j
Wi,j;ε = argmax

j
εj(1±φ) = 1. Since ε1

keeps increasing in size at each iteration, eventually all the
elements of G1 will collect into H1.

Remark 4 (Novelty). Similar to theoretical analyses of the
EM algorithm in prior work in the context of learning a mix-
ture of linear regressions, we require a good initialization,
see, e.g., [54]. However, contrary to related work, we do not
assume the regressors (roughly speaking, the vectors ai) to
follow a Gaussian distribution, which would be too strict in
practical multi-modal registration problems.
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V. EXPERIMENTS

We conduct a wide range of experiments on both synthetic
and real-world datasets. The synthetic datasets are PAS-
CAL3D+ [68] and FlyingThings3D [69] and the real-world
dataset is from KITTI [70]. We test the proposed approach
against Sequential RANSAC [43] and T-Linkage [35], and
show it dominates these baselines on the multi-model 3D
registration problem, and its performance is further improved
by using SegmentAnything (SAM) [67] as initialization.

A. Baselines and Initialization
We compare our approach against T-Linkage [35] and

Sequential RANSAC (SRANSAC) [43]. We also include a
Naive baseline that applies Horn’s method [12] to compute
a pose estimate for each initial cluster.

T-Linkage [35]. T-Linkage computes the distance between
pairs of clusters and iteratively merges the closest pair of
clusters. For each cluster j (with associated pose (Rj , tj)),
T-Linkage defines a preference function for point i as

↼j,i = e
↔dj,i/εt if dj,i ↗ 5ϱt or 0 otherwise, (7)

where dj,i := ↑bi↓Rjai↓tj↑. It then uses the preference
functions to compute distances between pairs of clusters, and
terminates when the distance between every pair is large.

Sequential RANSAC [43]. This baseline sequentially
applies RANSAC and tries to recover one object at a time.
After each RANSAC execution, the correspondences selected
as inliers by RANSAC are used to compute a pose estimate
and then removed to facilitate the search for other objects.

Initialization. SRANSAC does not require an initial guess
for the clusters, while T-Linkage and our approach do. In
PASCAL3D+ we use Euclidean clustering on {ai}

n

i=1
to

obtain initialization for both T-Linkage and EM. In KITTI
and FlyingThing3D, we ablate the effect of initial clustering,
by initializing T-Linkage [35] and our method with Segmen-
tAnything (SAM) [67] or Euclidean clustering. We tune both
initialization approaches to generate around 100 clusters.
B. Metrics

We use three main performance metrics for evaluation.
Per-Point Error (⇐). This metric evaluates the average

mismatch between the ground-truth and estimated point
clouds of each object (including the background). It first
segments the first point cloud according to the ground-truth
clusters to obtain a(i)

, i = 1, . . . ,M , and then applies the
ground-truth transformation to each object to obtain b(i), i =
1, . . . ,M . It repeats the same process using the estimated
clusters and transforms to compute b̂(j), j = 1, . . . ,K. Then,
each estimated object i is associated with the ground truth
object j that has the largest intersection with i (i.e., the
largest number of points in common), and the Chamfer
distance between i and j is recorded. The point error is
defined as the average Chamfer distance across objects.

Rotation and Translation Error (⇐). This metric eval-
uates the distance between the estimated and ground-truth
poses. For each estimated object Hj , we find every ground-
truth object Gk that has a non-zero intersection with Hj .
Then, we compute the translation error as the Euclidean

TABLE I: Results for synthetic PASCAL3D+ dataset. Experiment 1:
Noiseless. Experiment 2: with additive Gaussian noise. Experiment
3: with additive Gaussian noise and 2 objects with the same motion.

Metric Method
(Mean) Naive SRANSAC T-Linkage Ours (Vanilla) Ours

1

Per-point Error [m] 0.0454 9.56e-15 0.163 9.56e-15 9.56e-15

Rotation error [deg] 46.8 8.69e-7 19.6 8.69e-7 8.69e-7

Translation error [m] 0.487 3.81e-15 0.242 3.81e-15 3.81e-15

IoU 0.698 1.0 0.723 1.0 1.0

2

Per-point Error [m] 0.0550 0.332 0.199 0.0135 0.00516

Rotation error [deg] 81.6 74.2 27.6 2.42 1.53

Translation error [m] 0.858 0.796 0.287 0.0286 0.0165

IoU 0.668 0.450 0.785 0.908 0.964

3

Per-point Error [m] 0.0104 0.321 0.215 0.00860 0.00776

Rotation error [deg] 75.3 67.3 15.9 1.48 1.12

Translation error [m] 5.83 1.33 0.300 0.0200 0.0499
IoU 0.755 0.398 0.729 0.825 0.970

distance between the estimated and ground-truth translation;
the rotation error is the angular distance [71] between the
estimated and ground-truth rotation. The final translation and
rotation errors are the weighted averages of the errors, where
the weights are computed as |Hj ≃Gk|/|Hj |.

Intersection over Union (⇒). This metric evaluates the
quality of the estimated clusters by assigning a ground-truth
cluster to each estimated cluster with the largest intersection
and calculating the average Intersection over Union (IoU).
C. PASCAL3D+

Experimental Setup. PASCAL3D+ [68] is a synthetic
dataset for 3D object understanding. We choose 7 objects
from the dataset and downsample the vertices of their CAD
models to form object point clouds (22,395 points overall).
To generate point cloud pairs {(ai, bi)}ni=1

, we randomly
sample 7 transformation matrices and apply them to each
point cloud. In this dataset, there are no outliers, and we
want to test the capability of the compared techniques to tell
the 7 objects apart and estimate their motion (Experiment 1).
We also repeat in two more challenging settings, where we
add zero-mean Gaussian noise with standard deviation 0.03m
to the point cloud {(bi)}ni=1

(Experiment 2), and where, in
addition to the noise, we assume 2 of the 7 objects have the
same motion (Experiment 3). We test our method with and
without the distance term in (6); we denote the latter as “Ours
(Vanilla)”. We use Euclidean clustering (with 100 clusters)
to obtain the initial clusters for Naive, T-Linkage, and our
methods. For our method, we set ϱ = 1.5m, mmin = 4,
T = 10. We set ϱt = 0.2m in T-Linkage. For SRANSAC, we
use 0.01m as the inlier threshold for experiment 1 (noiseless
case) and 0.5m for the others and use 1000 max iterations.
Results are averaged over 100 runs.

Results. Table I shows the results obtained with the
compared techniques in the three settings described above.
In the noiseless case, SRANSAC and our methods achieve
perfect scores (i.e., errors are numerically zero). However, in
the noisy experiments, our method outperforms other meth-
ods across metrics. This is because our method adjusts the
noise variance at each iteration and computes the likelihood
function accordingly. In Experiment 3, where we enforce
two objects’ motion to be identical, although both variants
of our methods still estimate the poses with similar errors,
the one with the distance term (“ours”) stands out in terms
of IoU: with the distance term, our method can identify two
objects that are relatively far apart even if they have the same
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(a) FlyingThings3D Results (b) KITTI Results

Fig. 2: Results (IoU, per-point error, rotation error, and translation error) on (a) FlyingThings3D and (b) KITTI. We evaluate two variations
of our method with two different initializations (SAM and Euclidean) and four baselines: Naive, Sequential RANSAC (SeqR), T-Linkage
with SAM initialization (T-L (SAM)), and T-Linkage with Euclidean initialization (T-L (Euc.)).

motion. Naive reflects the quality of the initial clustering and
typically leads to poor IoU. T-Linkage consistently improves
over Naive in all experiments, but is not competitive with
SRANSAC and our methods. The runtime for SRANSAC is
30ms, while T-Linkage takes about 2s. Our method without
the distance term takes about 800ms in Python on a Macbook
Pro with M1 Pro chip. Adding the distance term in our
method increases the runtime to a couple of seconds, since
we have not optimized the distance computation.
D. FlyingThings3D

Experimental Setup. The FlyingThings3D [69] dataset
has randomly moving objects from ShapeNet [72]. The
dataset provides RGB images, segmentation masks, depth
maps, and disparity maps. We construct the point clouds with
ground-truth scene flows by back-projecting pixels to 3D
points using disparity maps. In our method, to construct cor-
respondences, we use the state-of-the-art scene flow model
CamliRAFT [60] on RGB images and downsampled point
cloud a with 32,768 points to get predicted scene flow f
and add predicted scene flow on the point cloud to get the
next frame’s point cloud (b = a+f). Using the segmentation
masks, we obtain ground-truth poses for each object cluster
by running Horn’s method on each object’s point cloud and
its counterpart displaced by the ground-truth scene flow.

We set the distance threshold in our method to be 5m,
since the diameters of most objects are about 3m in the
FlyingThings3D dataset. Then, for T-Linkage we set the
constant ϱt to be 1m in (7). For SRANSAC, we use 0.2
as the residual threshold and 1000 (maximum) iterations.

Results. We show the comparison between our method
and other baselines on FlyingThings3D in Fig. 2a. As shown
in the boxplots, our method outperforms other baselines. In
particular, our method recovers the object clusters consis-
tently (highest IoU) and works well with different kinds of
initialization methods. SRANSAC achieves a very low IoU
score because it recovers over 50 clusters which is a lot more
than the ground truth (about 10 clusters). T-Linkage clusters
the point cloud better using Euclidean clustering which is
considered as a weaker initialization method than SAM. This

is because, in the FlyingThings3D dataset, since the objects
are relatively far apart, the initial clusters from Euclidean
clustering are significantly better than SAM. For our method,
IoU scores are almost the same. This shows that our method
is less sensitive to the quality of initial clustering.
E. KITTI

Experimental Setup. The KITTI [73], [70] scene flow
dataset consists of 400 scenes split into training, validation,
and testing datasets with RGB images and depth. We only
use the validation set because no ground-truth optical flow
is provided in the testing set for us to evaluate.

To run our method, we follow the same steps done for
the FlyingThings3D dataset to construct correspondences and
obtain initial clustering. Since KITTI only provides seman-
tic masks, to compute ground truth poses and (instance-
level) clusters we perform Euclidean clustering only on the
point clouds with the car label in the ground-truth semantic
segmentation and merge everything else as background,
resulting in a masked point cloud with a cluster for each car
and another cluster for the background. Then, we calculate
the pose for each cluster, similar to FlyingThings3D. We
use the same parameters as in Section V-D since the main
moving objects here are cars which are also about 3m long.

Results. In Fig. 2b, we compare our method and other
baselines on the KITTI dataset, where our method outper-
forms. SRANSAC still suffers from over-segmenting as in
the FlyingThings3D experiment. Since SAM performs better
on KITTI (compared to Euclidean clustering), T-Linkage
exhibits slightly better performance with SAM.

VI. CONCLUSION

We investigated a variation of the 3D registration prob-
lem, named multi-model 3D registration, that simultaneously
recovers the motion of multiple objects in point clouds.
We proposed a simple approach based on Expectation-
Maximization (EM) and established theoretical conditions
under which the EM scheme recovers the ground truth. We
evaluated the EM scheme in both synthetic and real-world
datasets ranging from table-top scenes to large self-driving
scenarios and demonstrated its effectiveness.
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