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Fig. 1. Top Row: Equal-time comparison of our method against NBRDF [Sztrajman et al. 2021] and NeuSample [Xu et al. 2023] for sampling the specular metal
material COPPER-SHEET, under global illumination using BRDF sampling only. Bottom Row: (left) Rendering results for a rough dielectric material [Walter
et al. 2007] using our model and reference analytical sampling method at 2048 samples per pixel (spp). (right) PDF slices for a fixed incoming direction w;, that

is close to normal (top) and approaching the grazing angle (bottom).

Previous neural sampling methods, primarily using analytical lobe mixtures
and normalizing flows, often struggle with specular materials, particularly at
grazing angles. Furthermore, they are limited to reflection, and do not handle
transmission. Our key observation is that previous normalizing flows impose
significant restriction in their network architecture for easy computation of
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the Jacobian. However, for low-dimensional BSDF sampling, the Jacobian
computation is not the bottleneck. Therefore, we propose to use diffusion
models to importance sample full BSDFs. Our method has two variants, one
for most reflective materials that learns a distribution on a disk, and the other
for extremely specular reflective materials and full BSDFs, which learns a
distribution on a sphere. Our equal-time evaluations show that our method
outperforms normalizing flows and significantly surpasses them in certain
specular materials.
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1 Introduction

In physically-based rendering, while analytical BSDFs (Bidirectional
Scattering Distribution Functions) [Cook and Torrance 1982; Walter
et al. 2007] often come with efficient sampling routines, they usu-
ally do not capture the nuanced behaviors of complex real-world
materials [Dupuy and Jakob 2018; Matusik et al. 2003]. On the other
hand, the tabular, measured BSDFs [Dupuy and Jakob 2018; Jakob
et al. 2014] can be inefficient in terms of storage, consuming sub-
stantial GPU memory during rendering. Neural networks emerged
as an appealing solution to compress BSDFs [Bi et al. 2020; Fan
et al. 2022a,b; Guo et al. 2023; Sztrajman et al. 2021]. However, most
neural BSDFs do not come with an efficient sampling routine for
use in physically-based renderers. In this work, we demonstrate
that deterministic diffusion models [Song et al. 2021] can be a useful
option for importance sampling BSDFs.

Our work builds on the recent NeuSample [Xu et al. 2023] work
that shares the same motivation. Xu et al. investigated several gen-
eral purpose importance sampling strategies that can be used for
reflective Neural BSDFs. Among these, one option is to use a neural
network to predict a mixture of Gaussian lobes (Multilobe Mixtures
in Figure 1), and another option is to use normalizing flows [Kobyzev
etal. 2020] (Normalizing Flows in Figure 1). While normalizing flows
are considered the most accurate sampling methods by Xu et al.,
the flows usually put significant constraints on the network archi-
tectures so that the Jacobian can be easily computed for probability
density evaluation. Furthermore, existing methods focus on reflec-
tion and do not handle transmissive BSDFs.

Our key observation is that in a low-dimensional sampling prob-
lem like BSDF importance sampling, the Jacobian computation is
usually not a bottleneck, unlike machine learning applications. In-
spired by the recent progress in machine learning, we propose to
use a deterministic diffusion model to map a base distribution to
sampling directions. The deterministic diffusion model acts as an
ordinary differential equation (ODE) integrator that performs the
sampling transformation. This formulation results in a transfor-
mation that is expressive while also ensuring it is differentiable
and bijective. Furthermore, recent work on distilling diffusion mod-
els [Liu et al. 2023] allows us to fit a faster ODE integrator that
reaches the target with much fewer steps.

In this paper, we discuss the application of modern deterministic
diffusion models for BSDF sampling. This requires addressing a
few technical challenges, including defining a base distribution,
training data generation, the output domain of the diffusion model
and dealing with discontinuities and periodicity in the domains. We
also show a real-time implementation that can apply the diffusion
model BSDF sampling for 1024 X 1024 images at 60 frame per second
for 4 samples per pixel on an RTX 4090.

Our main contributions are:

(1) Compared to previous methods using normalizing flows, we
demonstrate that even when network size is small, the dif-
fusion model exhibits greater expressive power at the same
computational speed and achieves more accurate learning of
complex distributions.

(2) By extending the learning of the diffusion model to a unit
circle, we take into account the periodicity of the azimuth
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in spherical coordinates, achieving high-quality, full BSDF
sampling for both reflection and transmission (Figure 1).

(3) We evaluate the advantages and disadvantages of sampling
within the projected hemisphere domain and spherical do-
main, designing specialized methods for each.

Based on our evaluation results, when the BSDF material is diffuse
or not extremely specular, we recommend sampling in the projected
hemisphere domain using fewer sampling steps. When the BSDF
material is a smooth mirror or metallic surface, we recommend
sampling in the spherical domain to better capture grazing angles,
while using more sampling steps to reduce fireflies.

2 Related Work

BSDF representation and compression. Due to the high memory
footprint required by tabulated BSDF measurements [Matusik et al.
2003; Ngan et al. 2005], different models are fitted as a way of com-
pression. Analytical BSDF models have been dominant in production
rendering [Burley 2012; Cook and Torrance 1982; He et al. 1991;
Heitz et al. 2015; Walter et al. 2007]. However, the extremely wide
variety of surface properties, such as highly specular highlights,
anisotropic features, layered structures, and iridiscence, make it
difficult to propose a general model. Moreover, it is especially chal-
lenging to handle specific measurement angles, such as grazing
angles. Neural representations for materials have lately emerged as
a promising direction, offering more flexibility while achieving com-
pactness. Among them, Sztrajman et al. [2021] encoded reflective
BSDFs using a lightweight neural network, and Fan et al. [2022b] fur-
ther incorporated layering operators using neural networks. Zheng
et al. [2021] used neural processes to compactly represent reflective
BSDFs while applying classifiers to tweak attributes and achieve
certain editability. We demonstrate our sampling method on the
RGL material dataset [Dupuy and Jakob 2018] which contains a
wide variety of measure materials.

BSDF Importance sampling. Neural representations of BSDFs have
recently gained popularity. In comparison, importance sampling
these neural representations is less explored, which hinders their ap-
plication in production. Earlier work importance sampled measured
BSDFs by applying tabular solutions [Lawrence et al. 2004] but it
requires large amounts of storage. Many previous works fitted para-
metric analytical models [Sun et al. 2018], which by construction
provided closed-form importance sampling solutions. Sztrajman
et al. [2021] fitted a parametric Blinn-Phong model to estimate the
density for their learned neural encodings. Fan et al. [2022b] learned
to fit a proxy distribution composed of one isotropic Gaussian lobe
and one Lambertian lobe. Xu et al. [2023] proposed several im-
portance samplers and achieved state-of-the-art performance for
importance sampling neural materials. We take their work as the
main baseline. Their histogram mixture method relies on training
under direct supervision of a ground-truth probability density; there-
fore, we compare our method with their multi-lobe mixtures and
normalizing flow methods. We further cover transmittance and are
not limited to reflective BSDFs as in previous works.

Normalizing flows. [Rezende and Mohamed 2015] are popular
models for density estimation and sampling (see surveys [Kobyzev



et al. 2020; Papamakarios et al. 2021] for an overview). The models
specify a series of bijective transformations T to map a (usually
simple) base distribution p,(z) to the target distribution px(x; 0)
such that x = T(z), where z ~ p;(z). The key property is that
the transformation T must be invertible and both T and T~ must
be differentiable. Moreover, the Jacobian of T is triangular form
to enable linear computational cost. Normalizing flows have been
applied to various rendering problems [Miiller et al. 2019; Zheng
and Zwicker 2019]. Xu et al. [2023] used a lighter-weight flow to
model the probability distribution of lighting directions for spatially
varying neural materials, conditioning on UV coordinates and view-
ing directions. Their work did not handle transmission due to the
projected hemisphere representation. Our work extends the domain
to the sphere and makes it possible to generalize to materials with
transmittance. More importantly, we show that diffusion models
allow us to construct more expressive mappings for sampling under
the same computation budget.

Diffusion model. Diffusion models have emerged as powerful deep
generative models [Yang et al. 2023]. The initial diffusion model [Ho
et al. 2020; Sohl-Dickstein et al. 2015] are probabilistic generative
models that degrade data by injecting noise, then learn to reverse
this process through Stochastic Differential Equations (SDEs). Later,
Song et al. [2021] demonstrated the existence of an ordinary differ-
ential equation (ODE), also named the probability flow ODE, whose
trajectories share the same marginal distributions as those of the
reverse-time SDE. Unlike SDE, ODE solvers follow deterministic
trajectories unaffected by stochastic fluctuations, typically converg-
ing much faster than stochastic counterparts, though with slighting
lower sample quality [Yang et al. 2023]. A large body of works [Al-
bergo et al. 2023; Heitz et al. 2023; Lipman et al. 2023; Liu 2022;
Liu et al. 2023] on faster diffusion samplers are based on solving
the probability flow ODE by constructing interpolations between
two distributions. However, most of these applications operate in
high-dimensional spaces and require large and complex networks,
focusing solely on sampling without exact likelihood calculation.
Our work demonstrates that for lower dimensional tasks requiring
exact PDF values, the deterministic diffusion model provides better
and more stable results compared to normalizing flows, using small
network size, which is suitable for BSDF sampling.

3 preliminaries

BSDF Importance Sampling. Given a BSDF f(w,, @), importance
sampling aims to construct a probability distribution p(we|w;) o
f(wo, wi), where w, and w; are the outgoing and incoming direc-
tion respectively. To use p for importance sampling, we need to be
able to draw samples from it and evaluate it for arbitrary incoming
and outgoing directions.

Deterministic diffusion models. We model p using a linear interpo-
lation based deterministic diffusion model [Heitz et al. 2023; Liu et al.
2023]. These methods transform samples from a base distribution
Xo ~ po to a target distribution x; ~ p; through an ODE

dxt = F(xy, t)dt, 1

Here, F is a continuous function that determines how samples x;
are infinitesimally transformed via the diffusion process, and x; =
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tx1 + (1 — t)xp. The solution to this ODE [Heitz et al. 2023; Liu et al.
2023] is given by

F(x¢,t) =B [x1 —x0 | x4,t] . (2)

The diffusion model Dy (x;, t, @;) is trained to learn F. Once trained,
Dg can be used in place of F to transform samples from pg to p; by
numerically integrating Equation (1).

In Section 1 of the supplementary material, we show an alternate
derivation for the expression above by modeling the distributions
at intermediate timesteps ¢ as a convolution of the base py density
and target density p1. The convolution perspective sheds light on
an important property of diffusion models: while in theory they can
model discontinuous distributions, but in practice, since we do not
explicitly integrate the Dirac deltas at the boundary, it will never
converge to the final distribution. In BSDF sampling, they struggle to
handle discontinuities at domain boundaries, which is problematic
near grazing angles—we fix this by changing the domain over which

the BSDF is defined.

ODE integration and Reflow. To draw a sample x; ~ p1, we start
with a sample xo ~ po and perform Euler integration which evolves
samples as x;1p, = x¢ + Dg(xz,t, @) Ay, where A; is the step size.
This typically takes hundreds or thousands of integration steps,
which can be a bottleneck for real-time applications. We deal with
this by applying Reflow [Liu et al. 2023], a recent advance to accel-
erate diffusion model sampling. Reflow straightens the ODE trajec-
tories after training Dy without modifying the marginals po and p1;
this is helpful since straighter trajectories require fewer integration
steps. Practically, when applied to BSDF importance sampling, we
have found that this reduces the integration steps from hundreds to
just few steps, with minimal quality loss.

Deterministic diffusion and bijective mappings. Deterministic dif-
fusion models form bijections between the source and target distri-
butions [Liu et al. 2023; Song et al. 2021]. This property allows us
to both draw samples from the target distribution, and importantly,
evaluate the probability density of the sampling process by comput-
ing its Jacobian. Since BSDFs are low-dimensional, calculating the
Jacobian of Dy is not a computational bottleneck, enabling us to use
diffusion models for efficient importance sampling.

4  Our Method

We first introduce our model architecture, its training, sampling,
PDF evaluation and distillation using Reflow (Section 4.1). Next, we
describe how our method handles importance sampling of reflective
BSDFs (or Bidirectional Reflection Distribution Functions, BRDFs)
by learning a distribution on a disk domain (Section 4.2). This works
well for non-specular BSDFs, however, due to discontinuities as
well as extremely high BSDF value at the boundary, distributions
on a disk can cause problems at grazing angles for specular BS-
DFs. To further support specular BSDFs, we learn distributions on
a sphere (Section 4.3); the change of domain removes boundary
discontinuities and reduces the BSDF values at grazing angles via
the cosine term, and also extends our sampling to full BSDFs with
both reflectance and transmission.
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Fig. 2. Our diffusion model architecture for BSDF sampling. w, and w; are
samples drawn from the BSDF f(wo, @;), and t is the linear interpolation
term which follows the uniform distribution over the interval [0, 1].

4.1 Architecture, Training, Inference, and Distillation

We first discuss our architecture (Figure 2). Next, we specify the
diffusion model loss function used for training. We then discuss
the generation of the training data given a BSDF f, using a Markov
chain Monte Carlo sampler [Foreman-Mackey et al. 2013]. Subse-
quently, we discuss sampling and probability density function (PDF)
evaluation for both Monte Carlo integration and multiple impor-
tance sampling [Veach and Guibas 1995]. Finally, we discuss how
we apply Reflow [Liu et al. 2023] to distill the model to be orders of
magnitude faster, without losing much quality.

The overall architecture (Figure 2) of our model remains con-
sistent whether applied to a BRDF or a full BSDF. Depending on
the sampling domain, some variations in the inputs and the loss
functions are used which are detailed in the Section 4.3.

Architecture and training. A diffusion model learns a mapping
between two distributions. The base distribution should be a dis-
tribution easy to sample from and compute the PDF. Since the
corresponding BSDF distributions can vary significantly in shape
and variance, a simple fixed base distribution like a Gaussian with
zero mean and unit variance is not an optimal choice.

We improve upon this by first training a small pretrain network
(Figure 2, top) to capture the rough shape of the BSDF distribu-
tion by predicting the parameters for a parametric base distribution
based on the input incident direction w;. For example, if a Gauss-
ian distribution is used as the base distribution, then the network
predicts the mean and covariance of the Gaussian. We specify the
base distributions we use in the following subsections. We train this
network by maximizing the log likelihood.

Next, the diffusion model maps the generated base distribution
to our target (Figure 2, bottom). The model network Dy is used
to predict the slope F in Equation (2). Recall that the slope F is
defined as an expectation. For a given incoming direction w;, we can
compute this expectation by generating a large number of samples
from three distributions, xg ~ po, wo ~ p (wo | i), andt ~ U(0,1),
where py is the base distribution obtained from the pretrain network,
and U(0, 1) is the uniform distribution on [0, 1]. We generate the
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samples x; that follow the convolution distribution p; using the
relation x; = (1 — t)xg + tx1, where x1 = wo.

Our diffusion model Dy takes x;, t, and the incoming direction
w; for condition as inputs, and outputs the prediction for the ODE
slope F. Following the approach by Heitz et al. [2023], the model
can be trained by the loss:

loss = [|Dg (x¢, t, @i) = (x1 = x0)||* (3

Training data generation through Markov chain Monte Carlo sam-
pling. To generate the samples for training, previous methods [Xu
et al. 2023] first randomly select values for w;, and then use them
to sample online from the BSDF distribution p (w, | @;) for each
training batch. This process, while feasible, is slow since it requires
building a high-resolution histogram and perform inverse CDF sam-
pling each time. Moreover, as we train multiple networks, reusing
the generated samples would be ideal.

We propose a faster method for sampling (e, ®;) from pre-
computed sample pairs, which are generated through an MCMC
sampler [Foreman-Mackey et al. 2013].

When the previous method randomly selected w;, it has inher-
ently defined a distribution p(w;) based on the random distribution
it used. The sample pairs (wo, @;) generated by the online sampling
method will follow the joint distribution of w, and w;, given that
plwo, i) = p (wo | ®;) p(@i).

We can use an MCMC sampler to sample from the 4D joint dis-
tribution p(we, w;), generating the sample pairs. We then draw
samples for each training iteration from these pairs. To achieve this,
we treat the BSDF f(wo, ®;) as a 4D unnormalized joint distribu-
tion, proportional to p(we, @;). We set p(w;) to be uniform. During
training, we sample from these precomputed pairs by randomly
selecting the index of each pair.

We replace the previous complex process [Xu et al. 2023] of build-
ing histograms and inverse CDF sampling with an offline MCMC
sampling. During training, we require only random numbers gen-
eration each time, and the samples can be reused for all networks,
significantly accelerating our model’s training.

Sampling. Once we have the model Dy, sampling is done in two
steps. First, we generate the xo samples using the pretrain network
given incoming direction w;. Then, we simulate the ODEs using
Euler integration with a constant step size of A; = 1/N for N steps.
Specifically, we compute:

Ry = Rt + Dolint@i)/N (4)

wheret € {0,..., N—1}/N, with x samples drawn from the pretrain
base distribution pg. The output x; from the ODE solver follow the
distribution p (w, | @;)-

PDF evaluation. As the ODE values are predicted using a neural
network, their derivatives with respect to the input x; are easily
obtainable through automatic differentiation. Each discrete step in
the ODE can be regarded as an invertible transform. Hence, we can
compute the PDF by computing the Jacobian determinant through
network gradient for each step, without an extra marginalization
process. We accumulate Jacobian computed through the forward
ODE trajectory and then multiply it by the PDF pg of the base
samples xj to get the exact PDF value.
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Ground Truth

Originalmodel Originalmodel Originalmodel Reflow model Reflow model
256 steps 8 steps 4 steps 8 steps

KL Dlvergence
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Fig. 3. Comparison on METAL-PAPER-COPPER material between orginal
model and Reflow model with the same ODE sampling steps. The Reflow
model, with fewer ODE steps, is significantly faster than the original model
while accurately capturing the distribution.

To support multiple importance sampling [Veach and Guibas
1995], it is necessary to revert the trajectory from the BSDF p (w, | w;)
back to the base pg. We can obtain the reverse trajectory by inte-
grating the ODE from t = 1 to t = 0. For specific PDF calculation
formulae, please refer to our supplementary materials.

Fast and Accurate Reflow. Reflow [Liu et al. 2023] needs samples
generated using a pretrained diffusion model for training. This in-
volves performing hundreds or thousands of Euler steps/network
evaluations to ensure near-convergence. Reflow then uses the sam-
ples generated from the diffusion model to straighten the ODE
trajectory, ultimately reducing the Euler steps for solving the ODE
to a single digit. We use TINYCUDANN [Miiller 2021] to accelerate
evaluation. While TINYCUDANN restricts precision to float16, this is
acceptable since we mostly do basic addition, and we only generate
samples without PDF calculation.

By reusing the samples generated from MCMC, we can quickly
train several models. Consequently, we train two diffusion models
on a single pretrained network: a small network for the base weights
used for further training and a large network to better capture the
distribution. The large network is used solely for network inference,
generating ODE value predictions for online sampling. The small
network uses samples generated from large network for the Re-
flow process. Figure 3 demonstrates the effectiveness of the Reflow
method, significantly reducing the required sampling steps while
achieving accurate distributions.

4.2 BRDF on Projected Hemisphere

We first consider sampling for a BRDF without transmission. Our
goal is to sample proportional to the product of the BRDF defined
on the unit hemisphere 4 and the cosine foreshortening term.

Typically, we transform w € H to another domain that is more
convenient for sampling. An option is to project the unit hemisphere
H onto the unit disk 7, . This requires multiplying by the Jacobian,
the inverse of the cosine term. This is equivalent to sampling the
projection of the BRDF (without cosine) onto the unit disk H, .

To fit BRDF distributions of unit-disk projections w, € H, , we
select a 2D Gaussian distribution as our base distribution pg. Our
pretrain network outputs a 2D mean location and a 2D standard
deviation for the two axes.
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Mean Square Error 0.0280 0.0384 0.0131 0.0032

N
Mean Square Error
Ground Truth

0.0091
Disk 32 spp

0. 0042 0.0013 0.0003
Spherical 32 spp  Disk 516 spp  Spherical 516 spp

Fig. 4. Rendering results of COPPER-SHEET, an anisotropic conductor ma-
terial, only using our diffusion model BSDF sampling methods in the unit
disk domain and the spherical domain with 32 samples per pixel (spp) and
516 spp. Disk domain sampling suffers from fireflies at the grazing angles.

;i close to grazing angle

Spherical Domain

@i close to the normal

i close to grazing angle

@i close to the normal

Unit Disk Domain

Fig. 5. PDF slices for a conductor material, comparing scenarios when the
incoming direction w; is near the normal (away from the grazing angle)
and close to the grazing angle. In the unit disk domain, the PDF performs
well outside the boundary but reaches extremely high values near the disk
boundary (see the color bar on the right). In contrast, within the spherical
domain, all PDF values remain within a reasonable range; however, the
distribution’s shape becomes considerably more complex.

For most diffuse and (not extremely) specular materials, our ex-
periments in Figure 11 show that learning on the unit disk domain
is sufficient for BRDF sampling.

Problems with boundary discontinuities. We find that this ap-
proach fails near the boundary of the unit disk, making it difficult
to accurately learn the BRDF at grazing angles. As we approach the
grazing angle for w;, the energy over w, tends to be concentrated
at the boundary of the disk, see Figure 5. For materials like mirrors
or conductors with very low roughness the grazing angle contains
a significant amount of information. Thus, imperfect fitting leads
to fireflies, see Figure 4. For a perfect fit, the diffusion model would
need to model a discontinuous distribution that sharply transitions
from the boundary values to zero at the disks’ boundary, which it
cannot do, see Section 3. In practice, it approximates the discontinu-
ous jump a smooth transition, see the supplementary document for
more details.

4.3 BSDF on Spherical Domain

In the previous subsection, we saw that learning distributions on a
disk causes failures near the grazing angle. We fix these by learn-
ing a distribution on a sphere instead of a disk; this also extends
our method’s capability to handle full BSDF sampling including
reflection and transmission.
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We denote the differential solid angle in spherical coordinates as
dw = |sin 0| dOd¢, where w is the solid angle, and 6 € [0, 7], ¢ €
[—m, 7] are the elevation and azimuthal angles respectively. Thus,
importance sampling in the spherical domain can be written as

pP(wo | ®i) < f(wo, w;) - |[cosB| - |sin 6] .

The inclusion of both cos 6 and sin 6 ensures that the PDF value of
distribution is 0 at both normal incidence 8 = 0 (as well as 8 = 7 for
BSDF on whole sphere) and at grazing angles 6 = /2 (for BRDF on
hemisphere), which satisfies the convolution distribution property.
The latter also ensures that extremely high values near grazing
angles are removed since cos 6 approaches zero.

The azimuthal angle requires special care; as we approach its
boundary, near ¢ = —x and ¢ = 7, p is non-zero. However, it is
periodic, with a period of 2. We exploit this by joining the two
endpoints of the domain, transforming it into a unit circle, and
learn p directly on this domain, thereby making the distribution
continuous on ¢.

Let p(¢) denote the marginal distribution of ¢. It satisfies p(¢) =
p(¢ + 27) and is normalized fjr p($)dp = 1. These make it a
wrapped probability distribution on a unit 1-sphere. Its CDF, denoted
as c(z), is given by ¢(z) = /_an((j))dgb, where z = (z mod 2x) — 7.
Consequently, since the definitions of PDF and CDF remain con-
ceptually unchanged in the range [—, 7], our derivations in sup-
plementary materials for Equation 2 still hold within the periodic
domain, and the ODE for ¢ is given by

dxt

W=E[x1—x0|xt,t],

where x; = (1—1t)x0 +t¢, and x is sampled from a base distribution
po, which also needs to be a wrapped probability distribution due
to the constraints of the unit circle. Importantly, the term x; — xg is
not measured using Euclidean distance, but rather using geodesic
distance on the unit circle. The geodesic distance is straightforward
to compute on a unit circle, and it is given by d = (x1—x9) mod 27—
7, which ensures d € [—, ].

The architecture used for training is consistent with the one pre-
sented in Figure 2 albeit with a few modifications. For the pretrained
base distribution, we opt for a combination of two independent 1D
distributions. For the elevation 6, we use a Gaussian distribution.
For the azimuth ¢, due to its periodic nature, we use the von Mises
distribution (also known as the circular normal distribution); for it
the pretrained network predicts its mean y and its concentration
k € [0, +o0], which is analogous to the variance in a Gaussian.

When training the diffusion model, we modify the input to ensure
that ¢ remains constrained on the unit 1-sphere. This is achieved
through a simple positional encoding, setting @inpyus = (sin @, cos ¢).
Additionally, the loss function computes the geodesic distance for
¢, and the treatment of 6 remains unchanged.

5 Results

We implemented our method in PyTorch [Paszke et al. 2019] and
integrated it into Mitsuba 3 [Jakob et al. 2022]. We also implemented
a real-time megakernel path tracer with inline neural network in-
ference in a custom renderer using the Vulkan API with hardware-
accelerated ray tracing. Our training code is written in PyTorch and
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we use TINYCUDANN [Miiller 2021] to accelerate training during Re-
flow. Automatic differentiation was used for Jacobian computation
in PyTorch, while it was manually implemented in Vulkan.

Our model’s training process is designed to be independent of
the BSDF’s nature, whether measured or as a neural representation.
It solely requires the BSDF values, along with incident and outgoing
directions, to directly learn the distribution.

Architecture details. For the incoming direction w;, which serves
as the conditional vector, we apply positional encoding before in-
putting it to the network. For the pretraining network, we use the
same network size for both the disk and spherical domains: a very
small multilayer perceptron with one hidden layer containing 16
neurons. For the actual diffusion model network, we observed that
learning in the spherical domain is more challenging than in the
disk domain. Consequently, we use an MLP with 3 hidden layers
and 32 neurons for the disk domain, and an MLP with 4 hidden
layers and 32 neurons for the spherical domain.

Baselines. For the method using neural network sampling, we
compare our method with approaches presented in NBRDF [Sz-
trajman et al. 2021] and NeuSample [Xu et al. 2023]. NBRDF fits
a parametric Blinn-Phong model, which is isotropic. The first ap-
proach in NeuSample employs a combination of a Lambertian lobe
and Gaussian mixtures to predict the target distribution. Network
outputs the parameters for each Gaussian and the weights for each
lobe. The second approach uses Normalizing Flows to map between
a base distribution and the target distribution. This architecture is
similar to ours, as it also involves pretraining the base distribution
and then performing normalizing flow sampling. However, their
implementation is limited to the unit disk domain and supports only
BRDF. For comparison, we naively extended their output domain
from the disk to the spherical domain without accounting for the
periodicity of ¢. Additionally, we compared our method with the
sampling procedure provided by the RGL dataset [Dupuy and Jakob
2018], which uses a specially designed compressed lookup table.

Materials for BSDF sampling. For BRDF sampling, we evaluate
on the RGL dataset [Dupuy and Jakob 2018] which includes a di-
verse collection of complex, real-world BRDFs. This dataset presents
particularly challenging materials, especially at grazing angles. No-
tably, certain neural compressed BRDFs for RGL dataset [Sztrajman
et al. 2021], demonstrate significant difficulties in accurately simu-
lating materials like COPPER-SHEET at grazing angles, often failing
entirely. To emphasize our model’s enhanced ability to effectively
handle grazing angles, and only for better comparison purposes, we
train directly on these complex original BRDFs. This does not imply
that our model is limited to measured BRDFs. On the contrary, by
addressing situations more complex than neural BRDFs, we high-
light our model’s superior capability to accurately sample grazing
angles and complex BRDFs, as Figure 9 shows.

For BSDFs, due to the lack of a measured BSDF dataset or neural
BSDF work with much more complex distributions, and the absence
of specifically designed sampling methods for BSDFs, we only test on
rough dielectric [Walter et al. 2007] and Disney BSDFs [Burley 2015].
Figure 6 compares our method with the analytical sampling solution.
We demonstrate our capability for accurate full BSDF sampling, and
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Fig. 6. The rendering results of two rough dielectric materials [Walter et al.
2007] with roughnesses 0.3 (top) and 0.5 (bottom) using our diffusion model
with 8 sampling steps. We compare our method with the analytical sampling
of rough dielectric in Mitsuba 3 (Ref.) and the results are comparable.

Table 1. Running times including generating samples and calculating their
PDF of NeuSample and our method (4 sampling steps) on disk and spherical
domains. The NeuSample methods are implemented purely using PyTorch.
This table presents the sampling times (ms) for generating 1024x1024 reso-
lution images with 1 sample per pixel.

Time NeuSamp. NeuSamp. Ours Ours Ours Ours

(ms) Mixt. Norm. Torch Torch Vulkan  Vulkan
lobes Flows Disk Spher. Disk Spher.

Running 13.89 52.66 52.08 72.57 4.30 5.77

shows the potential for sampling more complex BSDFs without
perfect analytical solution.

Rendering results and quantitative metrics for diverse materials
(synthetic and real-world captured) under various lighting condi-
tions (point and environmental) are presented in the supplementary
materials. We refer readers to the supplementary materials for a
comprehensive evaluation.

Time statistics. Table 1 shows the sampling time using our method
and NeuSample on the same pytorch platform and our method solely
on Vulkan using a single RTX 4090 GPU. Table 2 further shows the
actual rendering FPS using Vulkan. Notably, our real-time imple-
mentation has achieved remarkable performance improvements.
This makes it a viable option for real-time rendering of neural BSDF
sampling. Training times per material averaged 3 hours for disk
domain and 3.5 hours for spherical domain. Detailed timings for
each step are provided in the supplementary material.

Better expressiveness and robustness. Compared to the two neural
sampling methods in NeuSample, our model demonstrates greater
robustness and expressiveness for most materials. Figure 11(a) shows
the comparison between our method and the NeuSample baselines.

Our model is more flexible. Unlike mixture lobes and normalizing
flows, having their expressive capabilities constrained by predefined
parameters, our model does not impose such limitations during
training. Expressiveness is adjustable by varying sampling steps.

In Figure 9, we selected four materials for detailed demonstration.
Previous neural sampling methods struggled with these kinds of
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Table 2. Comparison of FPS (frames per second) and storage size between
RGL Tabular and our method using RTX 3070 and RTX 4090 GPUs on
anisotropic materials. RGL Tabular is faster on the RTX 4090 compared to
3070, likely due to the greatly increased L2 cache size of the 4090 (4090 has
72 MB L2 cache while 3070 only has 4 MB). On RTX 4090, we tested on 4
samples per pixel because 1 samples per pixel will be CPU-bounded.

FPS/Size RGL Tabular ~ Ours Disk Ours Spher.
RTX 3070 (1 spp) 44.2 52.7 45.0
RTX 4090 (4 spp)  122.7 765 643
Size (float nums.) 282880 3328 4256

specular and anisotropic materials, but our approach shows sig-
nificant improvement in these cases. Overall, the disk domain has
the lowest Mean Square Error (MSE), indicating its easier-to-learn
characteristics. However, at grazing angles, the spherical domain
performs better, exhibiting fewer fireflies and demonstrating its
ability to handle discontinuities.

Figure 8 demonstrates our method’s effectiveness in scenes with
diverse materials. Results indicate the superior stability and quality
of our methods in complex material compositions. While NBRDF
struggles with highly anisotropic materials and NeuSample shows
limitations for specular materials, our approach exhibits robust
performance across all material types. Furthermore, we showcase
near-identical results to ground truth sampling for transmissive
BSDFs, underscoring the accuracy of our method.

In Figure 11(a), we present the graph of samples per pixel versus
log(MSE). Theoretically, when we can perfectly importance sample
the distribution, the result should be a straight line. For diffuse
materials, our model shows little difference from the NeuSample
methods. However, as the material becomes more complex and
specular, the noise from learning failures increases, causing the
graph to deviate. The NeuSample method exhibits instability with
specular materials. When the material becomes highly specular, our
method significantly outperforms theirs.

Better compression. We also compare our method with the tabular
approach using the RGL dataset. Figure 7 shows that our sampling
results are comparable to the tabular method, while achieving sig-
nificant compression in storage space.

Table 2 shows the frames per second of our Vulkan renderer and
the compression comparison between our method and the RGL tabu-
lar sampling for anisotropic materials. We separately calculated the
number of floats used for the RGL tabular sampling and compared
it with our method. Our model achieves a compression ratio of 85X
for disk and 66.5% for spherical. If considering that our renderer
uses float16, the compression ratio would be even higher.

Spherical vs. Disk. Figure 4 shows that the unit disk sampling
exhibits noticeable fireflies at grazing angles, whereas the spherical
sampling method effectively mitigates these artifacts. The results of
Figures 9 and 11 show that, due to the more complex distribution
on a spherical domain, the MSE is higher compared to the disk
domain. Our experiments in Figure 10 show that projecting onto
the unit disk makes the learning easier except the part near the disk
boundary, since the general KL Divergence is smaller. One intuitive
explanation is that most BRDFs are centered around an outgoing
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Fig. 7. Rendering results using our method (disk 4 steps) and RGL tabular
methods under direct illumination with only BRDF sampling.

direction w,, with energy spreading relatively evenly around it. The
results are more uniformly distributed in all directions compared to
the spherical domain, where the curvature causes the distribution
to take on a more complex shape, like Figure 5 shows.

Therefore, we recommend using the disk domain for most com-
plex BRDFs. However, for learning BSDFs or materials in highly
specular situations where one wants to avoid excessive fireflies, we
suggest using the spherical domain.

6 CONCLUSION AND FUTURE WORK

We propose a more expressive and robust method for BRDF impor-
tance sampling and extend our model to full BSDF by supporting
diffusion model learning on the spherical domain.

Using the von Mises distribution in spherical domain can cause
numerical issues when rendering highly specular materials like
ANISO-MIRROR with float16 precision. Simpler and easily sam-
plable base distributions on the unit sphere are worth to find.

While our method performs robustly across a wide range of ma-
terials, it shows increased noise for near-perfect transmissive ma-
terials due to numerical instability. Extremely large PDF values in
these cases degrade MCMC sample quality, and an efficient way to
handle such corner cases are interesting to explore.

We only have tested and evaluated our model on 4D BSDFs; while
theoretically straightforward, extending to SVBRDF is more chal-
lenging due to higher dimensions of conditions. Network capacity
is the primary constraint; larger networks can effectively learn
SVBRDFs, but rendering efficiency demands necessitate network
compression, posing the main obstacle for SVBRDF extension. A
possible approach involves constraining model flexibility by pre-
defining sampling steps, learning complete diffusion model with
larger network, storing specific steps using a more compact network.

Finally, we believe our method is not limited to BSDF sampling.
Our approach may also provide insights for other importance sam-
pling problems in lower dimension, such as path guiding, complex
luminaire sampling, and portal sampling.
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Fig. 9. An equal time Rendering results and grazing angle slices of four specular materials using various BRDF sampling methods. All renderings are
performed using only BRDF sampling and global illumination. We set the time of our model on disk domain with 32 spp as baseline.
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