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3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and
linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on
a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse
embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the
genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of
26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-
regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated
cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop
quantification and report that loops generally occur with low probabilities, generalizing recent live imaging
results to the whole genome.

INTRODUCTION

Chromatin looping, the process by which the
genome folds to bring two regions into physical proximity,
plays important roles in transcriptional regulation, DNA
repair, genome integrity, DNA replication, and somatic
recombination.'”” Loops between enhancers and promoters
are generally understood to facilitate transcription
activation, while loops between CTCF sites, held together
by the cohesin complex, mediate both insulation and
facilitation by separating the genome into topologically
associating domains (TADs).>*'* Disruption of both types
of looping has been shown to cause aberrant gene
regulation and lead to disease.'' " Nevertheless, a general
quantitative understanding of chromatin looping is currently
lacking.**

and low-throughput, only a few loops have been quantified,
and the general trends of looping probability across the
genome remain unknown.

Other methods have allowed chromatin looping to
be observed in a genome-wide manner, but the inference of
looping probabilities using these methods has been
challenging. DNA fluorescence in situ hybridization (FISH)
can be used to interrogate the 3D structure of chromatin in a
high-throughput manner,*** but it is challenging to obtain
precise looping probabilities from DNA FISH data due to
localization uncertainty, the non-Markovian nature of
chromatin loops, and the need for an arbitrary threshold.>*~
#2 Meanwhile, 3D genomics methods such as Hi-C and
Micro-C*™" also provide a genome-wide view of pairwise
interactions, but their measurements are relative. This is an
intrinsic limitation of all genomics methods, in which the

Recent live imaging studies of a few individual
chromatin loops have indicated that these loops are not
permanent, stable structures but instead occur sporadically
over time or across populations.”’ 2 Thus, the probability of
loop formation represents an important biophysical
quantity, which can be used to inform quantitative models
of chromatin looping and its downstream effects.””* For
example, it can be used to determine plausible parameter
sets for kinetic models of enhancer-mediated transcriptional
activation®®** and DNA double-strand break repair,”® as
well as polymer models of chromosome dynamics. 2831~
33 Rigorous quantification of looping probability is possible
by applying Bayesian Inference of Looping Dynamics
(BILD) on live imaging data with the necessary controls.*
However, since live imaging is experimentally intensive

signal is quantified from sequencing read counts, but
calibration techniques such as spike-in normalization in
RNA-seq®® and ChIP-seq®> have made absolute
quantification of genomics experiments possible. Therefore,
we sought to develop an absolute quantification method for
3D genomics experiments, allowing us to estimate absolute
looping probabilities genome-wide.

Here, we combine Micro-C with BILD on live
imaging data in mouse embryonic stem cells (mESCs) to
achieve absolute quantifications for 36,804 loops across the
genome. Our results indicate that loops occur with low
probabilities, with a mean of 2.3%, median of 1.6%, and
maximum of 26%. Looping probability varied between
different classes of loops: CTCF/cohesin loops formed with
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higher probabilities than enhancer-promoter (E-P),
promoter-promoter (P-P), and enhancer-enhancer (E-E)
loops; more generally, absolute looping probability can be
partially explained by the epigenomic features present at the
loop anchors. Lastly, we demonstrated that under certain
assumptions, our conclusion that the looped state is rare
also extends to human cells. Overall, our findings indicate
that rarity is a general property of all chromatin loops in
mESCs and potentially mammalian cells in general.

RESULTS

Estimating absolute chromatin looping
probabilities from Micro-C

We developed an approach to estimate the
probabilities of looping, on an absolute scale, for all
chromatin loops genome-wide from Micro-C data (Fig. 1a).
Chromatin loops appear as focal enrichments (“dots”) in
Micro-C maps.*** Since Micro-C maps quantify the
degree of pairwise contacts, the strength of these dots is
related to the underlying looping probability, i.e., the
average fraction of alleles in which the loop exists at a
given time. By measuring the dot strengths of loops whose
absolute looping probabilities are known from live imaging
and BILD?, we can obtain a calibration that allows us to
estimate the absolute looping probability of any other loop
in the genome from Micro-C alone (Fig. 1a).

To quantify looping, a precise definition of looping
probability is required. An important consideration is that
all pairs of DNA loci are subject to a background level of
nonspecific interactions due to random polymer motion and
actively extruding cohesins; the probability of these
interactions is described by a P(s) curve, which is a function
of the genomic separation s between the two loci (Fig. 1b).
Loops are associated with a site-specific enrichment of
interactions, presumably caused by mechanisms such as
paused cohesin at CTCF sites and affinity-mediated
interactions between transcription regulatory factors (Fig.
S1). In this study, we explicitly define looping probability
to only include the interactions above the background; this
definition directly corresponds to what BILD quantifies in
live-imaging data®®. Therefore, the absolute looping
probability is proportional to the sum of background-
subtracted normalized Micro-C signal contributing to this
enrichment, with an unknown scaling factor k& (Fig. 1b,
k [ [Pu(s)- P.(s)] ds. Additionally, we note that Micro-C
measures the fraction of alleles containing a loop at a single
time point, whereas live imaging measures the fraction of
time a loop is formed at a single allele (previously called
looped fraction™). Here, we proceed by assuming that
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chromatin looping is an ergodic process, i.e., both quantities
are equal, and we refer to them as the looping probability.

We developed a new method for quantifying
Micro-C dot strength called AbLE (Absolute Looping
Estimator) that sums the normalized Micro-C signal above
background (Fig. 1¢). Since the background P(s) curve is
region-dependent, AbLE first estimates a local P(s) curve
by fitting the values of the Micro-C map surrounding, but
not including, the dot. The AbLE score is then calculated as
the sum of background-subtracted values in a 10-kb circular
region. AbLE is therefore designed to quantify the amount
of Micro-C signal originating from looping events as
previously defined.

To validate that AbLE measures looping
probability, we performed 3D molecular dynamics
simulations of a DNA polymer with CTCF/cohesin-
mediated looping and affinity-mediated looping, the latter
being a plausible mechanism for loops between enhancers
and/or promoters®®’ (Fig. 1d). We observe a strong linear
relationship (R* = 0.92) between the AbLE scores from the
simulated Micro-C map and the ground-truth absolute
looping probabilities calculated directly from the individual
molecular trajectories in the simulation (Fig. 1e). The linear
relationship is robust to changes in the capture radius used
to generate the simulated Micro-C maps and the interaction
radius used to call ground-truth enhancer/promoter looping
events® (Fig. S2).

Next, we applied AbLE on experimental data. We
performed deep Micro-C on two mESC cell lines (two
replicates per cell line, ~1.8 billion unique interactions per
replicate, ~7.4 billion unique interactions total; Fig. S3a),
each containing a BILD-quantified loop: an endogenous
505-kb loop containing the Fhn2 gene on chromosome 18%
and a synthetic 164-kb loop near the Npr3 gene on
chromosome 15 engineered to be extremely strong using
triplets of high-occupancy CTCF sites®' (Fig. 1f). The
Micro-C maps exhibited high reproducibility across
replicates and cell lines (Fig. S3b). The empirically
determined P(s) curves were approximately inversely
proportional to the genomic separation s on average (Fig.
S3c) but exhibited significant local variation (Fig. S3d-f),
highlighting the need for the local background estimation
step in AbLE. From our Micro-C data, we calculated the
ADbLE scores of the Fbn2 and Npr3 loops (Fig. S4) and
compared them against their known looping probabilities
from live imaging (Fig. 1g). As a negative control, we
included the Fbn2 loop after depletion of cohesin subunit
RAD21%, which exhibited near-zero looping probability in
both Micro-C and live imaging data as expected. Fitting a
line through the origin and the Fbn2 and Npr3 points
resulted in a best-fit slope of £k = 0.186 + 0.047. In
summary, we developed AbLE to measure the strength of
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loops from Micro-C and calibrated it against loops with
known absolute looping probabilities from live imaging.

Global analysis of chromatin looping probabilities

Having developed an approach to perform absolute
3D genomics, we sought to apply it to understand general
trends in looping probability across the genome. To call
loops across the genome with high confidence, we first
generated an extremely deep mESC Micro-C map (15.6
billion unique interactions) by merging our Micro-C data
with those from past studies in mESCs****** (Fig, 2a,

a General scheme for genome-wide absolute loop quantification
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datasets listed in Table S1), which we verified to be highly
similar (Fig. S5a). The superior depth of this Micro-C map
resulted in a greatly improved signal-to-noise ratio over
maps from individual samples (Fig. S5b). From the merged
Micro-C map, we identified 153,658 loops across the
genome using the Mustache loop caller™ (Table S2). After
removing loops with insufficient reads, missing data
nearby, or interference from nearby loops or the diagonal of
the Micro-C map (Fig. 2a, see Methods), we obtained a
final set of 36,804 loops for quantification.
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Figure 1. Overall scheme for genome-wide absolute quantification of chromatin loops from Micro-C. a, Flowchart describing genome-wide absolute loop
quantification by calibrating Micro-C dot strength against loops measured in live imaging. b, Absolute looping probability is defined as the probability of interactions
excluding the expected background. The background is primarily a function of genomic separation. ¢, AbLE quantifies Micro-C dot strength by summing the Micro-
C signal originating from a chromatin loop excluding the local background, which is estimated in a separate step. The size of the local region, which can vary from
25-200 kb, is chosen to be proportional to /s (see Methods). d, Diagram of simulated region with features (bottom) and simulated Micro-C map (top) from 3D
polymer simulation. Micro-C bin size = 1 monomer, corresponding to 1 kb. Color scale is linear. e, Plot of ground-truth absolute looping probability from 3D
polymer simulations vs. AbLE scores from the simulated Micro-C map. Gray dotted line indicates best-fit line of proportionality. Examples of simulated Micro-C

dots corresponding to loops with various looping probabilities are shown on right.

Micro-C color scale is linear. f, Micro-C dots corresponding to loops previously

measured with live imaging; diagrams of engineered loci for live imaging shown below Micro-C maps. Micro-C bin size = 1 kb. Color scale is linear. Coordinates
are given in terms of the modified genomes for the engineered cell lines (see Fig. S9a). g, Looping probability vs. AbLE score for Fbn2 loop, Npr3 loop, and
control condition (Fbn2 with depletion of RAD21). Gray line indicates best-fit line of proportionality; light gray shaded area indicates 95% confidence interval.
Circles indicate AbLE scores of individual Micro-C replicates; error bars indicate bootstrapped 95% confidence intervals in BILD estimates.
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To estimate their absolute looping probabilities, we
quantified these loops with AbLE in each of our four
replicates of Micro-C independently, averaged the scores
across replicates, and multiplied the scores by the
previously obtained calibration factor, £ = 0.186 (Fig. 1g;
quantifications in Table S3). The AbLE scores showed high
agreement across replicates and cell lines (Fig. S5c¢). As a
negative control, we verified that on average, the AbLE
score measured at random locations not corresponding to
loops was equal to zero within statistical error (Fig. S5d).
Further cross-validation with live imaging data was not
possible due to the absence of other live imaging
experiments containing the necessary controls for BILD, so
we instead turned to DNA FISH studies.®*®' We quantified
E-P looping probabilities of key E-P pairs in mESCs:
19.8% for Sox2 (integrating the entire ~7-kb Sox2 control
region (SCR)%), 12.7% for Mycn, 5.8% for KIf4, and 5.3%
for Nanog (Fig. SS5e). Despite significant differences

a Loop calling and classification
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between our method and DNA FISH and the exact
definitions of the genomic regions involved, the results
generally agree within a factor of two (Fig. S5f). More
generally, in our experimental data, we estimate the
fractional uncertainty in our looping estimates to be ~30-
40%, which arises from uncertainty in the AbLE score
(affected by biological noise and Micro-C read count noise)
and uncertainty in the scaling factor k& (Fig. S5g). For the
weakest loops (<0.5%), the fractional uncertainty increases
to beyond 40%. Uncertainty among very weak loops results
in a small fraction of loops with an apparent negative
looping probability; however, we emphasize that this is a
technical artifact due to noise.

Having cross-validated our approach, we turned to
global trends among the 36,804 quantified loops (Fig. 2b).
Overall, looping probabilities ranged from much less than
1% to 26%, with a mean of 2.3% and a median of 1.6%
(Fig. 2b). Thus, the well-known SCR-Sox2 E-P loop is
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Figure 2. Global analysis of chromatin looping probabilities. a, Flowchart of methods used to perform global analysis of chromatin looping probabilities. Five
mESC Micro-C datasets were combined to form a merged dataset with superior signal-to-noise ratio compared to the deepest dataset previously available.*
Then, loops were called using Mustache and filtered for quantifiability. Filtered loops were quantified and classified for further analysis. b, Distribution of looping
probabilities and relationship between probability vs. size among 36,804 filtered loops. In the box plot, whiskers extend to 0.5"" and 99.5™ percentiles; all outliers
beyond the whiskers are plotted as individual points. ¢, Distribution of loop classes as determined by presence of CTCF/cohesin, enhancers, or promoters at loop
anchors. “Other” refers to anchors that did not overlap any of these features. d, Distributions of looping probabilities and relationship between probability vs. size
among pure CTCF-CTCF loops and pure cis-regulatory loops. e, Mean looping probability for all possible combinations of loop anchor classes. Under the
“inclusive” definition, a loop anchor is said to be a CTCF- and cohesin-bound site, enhancer, or promoter if that feature is present, regardless of whether other
features are present. Under the “exclusive” definition, a loop anchor is said to have a feature if only that feature is present; loops with two or more features at
either anchor are omitted from the analysis. C = CTCF/cohesin, E = enhancer, P = promoter, and O = other. Among all CTCF-CTCF loops (defined with the

inclusive definition), the effect of CTCF motif orientation is also analyzed.
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among the strongest in the genome (Fig. SSb,e). We also
note a loop selection bias: had we been able to quantify all
153,658 loops, which includes many very weak loops, the
mean and median would likely have been lower.
Conversely, had we quantified only the strongest loops, the
mean and median looping probability would have been
higher. Nevertheless, our results clearly show that in
mESCs, all loops only exist in a fraction of cells at a given
time, and most loops occur very rarely.

We also compared our absolute loop quantifications
against a commonly-used metric of relative loop strength,
the logarithm of observed signal divided by expected signal.
The two quantities were generally positively correlated, but
the log-ratio metric was disproportionately greater for larger
loops, likely due to the very low expected background (Fig.
SSh).

Next, we classified loops based on whether their
anchors were mnear CTCF- and cohesin-bound sites,
enhancers, or promoters. CTCF- and cohesin-bound sites
were identified using CTCF and SMCI1A ChIP-seq peaks
and CTCF binding motifs, promoters were defined as
regions +2 kb from transcription start sites,* and enhancers
were defined as regions of overlapping H3K4mel and
H3K27ac ChIP-seq peaks. We detected 7,961 pure CTCF-
CTCF loops (containing only CTCF/cohesin at the
anchors), 5,084 pure cis-regulatory loops (containing only
enhancers and/or promoters at the anchors), 15,788 mixed
loops (containing both CTCF/cohesin and cis-regulatory
elements at the anchors), and 7,971 other combinations
(Fig. 2c¢; classifications in Table S3). All loop classes
exhibited a wide range of looping probabilities (diverse
examples shown in Fig. S6a), though CTCF-CTCF loops
were stronger than cis-regulatory loops on average, with a
mean looping probability of 3.2% versus 1.1% (Fig. 2d).
Also, CTCF-CTCF looping probabilities showed no
dependence on loop size, whereas cis-regulatory looping
probabilities showed a weak negative correlation with loop
size (Fig. 2d).

Because many loops were anchored by a mixture of
CTCEF sites and cis-regulatory elements, we next calculated
the mean looping probabilities for all possible combinations
of loop anchor classes (Fig. 2e). The highest mean looping
probability was found among pure CTCF-CTCF loops
(3.2%), while the lowest was found among pure P-P loops
(0.9%). The finding that P-P loops were weaker than E-P
and E-E loops differs from prior work**® and is primarily
driven by many weak P-P loops newly identified in this
study (Fig. Séb). For loops anchored by CTCF sites, the
orientation of the CTCF binding motifs strongly affected
absolute looping probability, with convergent motifs
forming the strongest loops as expected***’ (Fig. 2e).

ARTICLE PREPRINT

Having observed the differences in chromatin
looping probabilities between known loop classes, we next
sought to characterize the quantitative relationship between
looping probabilities and a broader set of epigenomic
features at the loop anchors in an unsupervised manner.

Chromatin looping probabilities are correlated
with epigenomic features at loop anchors

We examined the degree to which absolute looping
probability is governed by epigenomic features at the loop
anchors such as histone modifications, looping factors, and
transcription factor (TF) binding (determined by ChIP-seq),
chromatin accessibility (ATAC-seq), and active transcription
(GRO-seq). In total, we considered 43 features from publicly
available datasets (listed in Table S4), quantifying the signal
from each feature within 5-kb windows centered on the left
and right anchors of each loop (Fig. 3a; quantifications in
Table S5). The feature strengths at both loop anchors affected
the mean probability of looping; for example, the strengths of
CTCF and the cohesin subunits SMC1A and RAD21 at loop
anchors were positively correlated with looping probability
(Fig. 3b). The variation of these features spanned a wide range
of absolute looping probabilities; for example, loops with
RAD?21 binding in the highest decile at both loop anchors had
a mean looping probability of 4.9% (90th percentile among all
loops), whereas loops with binding in the lowest decile at both
anchors had a mean looping probability of 1.5% (46th
percentile among all loops). Other features such as H3K27ac,
H3K4me3, and RNA Pol II were negatively correlated with
looping probability (Fig. 3b). Similar heatmaps for the
remaining 37 features are shown in Fig. S7. In general, our
results showed that the probability of a loop is correlated with
the strengths of epigenomic features at its anchors.

We next asked how well absolute looping probability
could be predicted from the strengths of epigenomic features
at the anchors. We employed a simple linear model with all the
strengths of all 43 features at left and right anchors as inputs
(log-transformed and standardized; see Methods for details).
Furthermore, since loop size was observed to vary with
looping probability for cis-regulatory loops (Fig. 2d), we
included loop size as an additional regressor, resulting in 87
regressors in total. We fitted the model using ordinary least
squares (OLS) on a randomly selected training dataset
consisting of 23,858 filtered loops; the model predicted
absolute looping probability in a testing dataset of 5,964 loops
with R* = 0.284 (Fig. 3c). Thus, epigenomic features at loop
anchors alone are somewhat predictive of absolute looping
probability, but there is still significant unexplained
variability. This suggests that looping probability is highly
dependent on other contextual factors beyond what exists at
the loop anchors; for example, these could be nearby CTCF
sites, TADs, or synergy/competition between loci that
participate in multiple loops.
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a Analyzing biochemical features
at loop anchors

b Looping probability vs. epigenomic features at anchors
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Figure 3. Chromatin looping probabilities are correlated with epigenomic features at loop anchors. a, Epigenomic features at each anchor of each loop are
quantified by summing the values from the associated assay (ChIP-seq, ATAC-seq, or GRO-seq) in a 5-kb window centered on the anchor. Micro-C and select
tracks are shown for an example loop. Micro-C bin size = 1 kb. Color scale is linear. b, Looping probability vs. feature strengths at anchors for six ChIP-seq
features. x- and y- values represent ChIP signals at left (L) and right (R) anchors and are binned into deciles; color scale represents the mean absolute looping
probability within each bin. Bins in which the standard error of the mean (o/n) exceeds 0.2 are colored white due to their high uncertainty. ¢, Schematic of linear
models for predicting looping probability from epigenomic features. Top: OLS linear regression model with 87 regressors. Bottom: dimensionality-reduced model
with 2 latent variables. Models are trained on a subset containing 80% of loops; R? values are calculated the remaining 20% of data. d, Scatter plot of all filtered
loops in latent variable space, colored by absolute looping probability. e, Scatter plots of loops in latent variable space, with loops in specific classes highlighted in
black and other loops colored gray. f, Weight vectors defining the transformation to latent variable space. Due to symmetry between the left and right anchors, the
weights for each feature represents both the weight for the left and right anchors (e.g., “CTCF” represents the weights for regressors CTCFL and CTCFR). g,
Goodness-of-fit R? of OLS models for predicting absolute looping probability from all 87 regressors, within loop classes individually. Models are trained on a subset

containing 80% of loops; R? values are calculated the remaining 20% of data.

Since epigenomic features are often correlated, we
asked what specific combinations of features were most
predictive of absolute looping probability. We performed
dimensionality reduction on the features using projection to
latent structures (PLS). By taking the first four PLS
components and applying a varimax rotation to simplify the
interpretation of the results®®, we found two linear
combinations of the original regressors that were sufficient to
predict absolute looping probability with R? 0.267,
performing nearly as well as the original OLS model (Fig. 3c).
We designate these linear combinations as latent variables z;
and z3.

Plotting the loops in the latent variable space, we
observe that higher values of z; and z are associated with
higher looping probabilities (Fig. 3d). Furthermore, the known
loop classes formed distinct clusters in the latent variable

space, primarily separating along the z;-axis (Fig. 3e). We also
considered the weights of the original features in the latent
variables: zi contains strong positive weights for CTCEF,
SMCI1A, and RAD21 and weak negative weights for many
histone modifications, ATAC-seq, TFs, and other features
associated with transcription regulation (Fig. 3f). This result
explains the separation of CTCF/cohesin-bound vs. cis-
regulatory loops along z; and is consistent with our result that
CTCF/cohesin-bound loops form with higher probabilities
(Fig. 2d). The next component z, contained strong positive
weights for H4ac and ATAC-seq and strong negative weights
for H3K9me2, HP1b, and loop size. This suggests that some
signatures of active enhancers and promoters are associated
with higher looping probability, whereas heterochromatin and
larger loop sizes are negatively associated with looping
probability.
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Figure 4. Human embryonic stem cells (hESCs) and human foreskin fibroblast cells (HFFs) exhibit similar chromatin looping trends as mESCs. a,
Flowchart of method to estimate absolute looping probabilities in hESC and HFF cells. In each cell type, loops are called from Micro-C maps using Mustache,
filtered for quantifiability, and quantified using AbLE. Quantifications are converted to absolute units using the mESC calibration. b, Looping probability
distributions and statistics for mESC loops (Fig. 2b,d) hESC loops, HFF loops, and shared loops (loops common to both hESCs and HFFs) in hESCs and HFFs
for all loops and for CTCF-CTCF loops. Box plot whiskers extend to 0.5 and 99.5™ percentiles; outliers beyond the whiskers are plotted as individual points. Due
to their high uncertainty, some loops with extremely low probabilities (below 10-3-10*) are not shown, but these account for less than 3% of loops in each
category. ¢, Scatter plot of looping probabilities of shared loops in HFFs vs. hESCs. Dashed line indicates the line x = y.

Lastly, we asked whether looping probabilities could
be predicted within the individual loop classes: pure CTCEF-
CTCF loops, pure cis-regulatory loops, and mixed loops. For
each class of loops, we trained a linear model using OLS
employing all 87 features without dimensionality reduction.
On mixed loops, the model achieved R?> = 0.236, whereas the
R? values for pure CTCF-CTCF loops and pure cis-regulatory
loops were 0.131 and 0.129, respectively (Fig. 3g). We
conclude that the predictability of looping probability from
epigenomic features at loop anchors primarily arises from the
classification of loops into the two primary mechanisms
(CTCF loops and E-P/P-P/E-E loops), and predictability
decreases significantly when only considering loops arising
from a single mechanism.

Human dataset exhibits similar trends in
chromatin looping

Next, we sought to test the generality of our mESC
findings in human cells. Although coupled Micro-C with the
necessary controls and live imaging data in human cells is not
available, high-resolution Micro-C data is available in H1
hESCs and human foreskin fibroblasts (HFFs).*” These data
were generated using the same experimental protocol as the
mESC data in this study. We again called loops in these
Micro-C datasets using Mustache’®® and filtered them for
quantifiability to obtain 19,763 loops in hESCs and 40,550
loops in HFFs (Fig. 4a, filtered loops in Table S6). To obtain
rough estimates of the absolute looping probabilities, we
calculated the AbLE scores of these loops and multiplied them
by k£ = 0.186, applying the conversion factor from our mESC
calibration (Fig. 1e). Since the same Micro-C experimental
procedure was used to generate the mouse and human data, the
values in the Micro-C matrices likely exist on a similar scale.
Indeed, the P(s) curves of the mESC, hESC, and HFF data are
very similar (Fig. S8). Therefore, we proceeded to apply our
mESC conversion factor to the human data, though we stress
that the uncertainty in our absolute looping probability

estimates is substantially higher and that the results should be
only considered as rough ballpark figures.

Under these assumptions, we found that the looping
probabilities in human cells had a similar distribution to those
of mESCs, also occurring with low probabilities, with the
majority being less than 10% (Fig. 4b, loop quantifications in
Table S6). The mean looping probability was 4.2% in hESCs
and 3.8% in HFFs. Among the loops detected, 11,391 loops
were shared among both cell types. Among these loops, the
mean looping probability was 5.0% in hESCs vs. 6.5% in
HFFs (Fig. 4b), and 67% of loops had a higher looping
probability in HFFs than in hESCs (Fig. 4¢). Using publicly
available ChIP-seq data to classify CTCF-CTCF loops, we
found that CTCF-CTCEF loops had higher than average looping
probabilities, generalizing the result from mESCs (Fig. 4b).
These results suggest that the low probabilities with which
chromatin loops occur may be a general property of mouse and
human stem cells and differentiated cells, and some
differentiated cells may have slightly stronger loops than
embryonic stem cells.

DISCUSSION

In this study, we showed that absolute quantification
of chromatin loops can be achieved by integrating deep Micro-
C data quantified with AbLE coupled with live imaging data
quantified with BILD?. Using this approach, we estimated
absolute looping probabilities for 36,804 loops in mESCs and
found that loops generally form with low probabilities, with a
mean of 2.3% and maximum of 26% (Fig. 2b).

A major goal of the 4D nucleome project has been to
integrate genomics and imaging data.® Our results
demonstrate that quantitatively integrating sequencing-based
3D interaction data and imaging data is feasible, provided the
quantities being measured are consistent and rigorously



bioRxiv preprint doi: https://doi.org/10.1101/2025.01.13.632736; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

8

defined. We acknowledge that the constant of proportionality
that converts AbLE scores from Micro-C into absolute units
cannot be derived theoretically. However, we show that AbLE
is linearly correlated with absolute looping regardless of the
interaction radius used in the 3D polymer simulations (Fig.
S2). Therefore, determining the constant of proportionality
empirically is sufficient to bridge genomics and imaging, even
though the underlying physical parameters remain unknown.

What are the implications of low looping
probabilities? Since Micro-C is a population-averaged
snapshot at the time of the experiment, two interpretations are
possible: either that loops occur infrequently in all cells, or
that loops are permanent and stable in a certain subpopulation
of cells and nonexistent in others. The significant variability
needed for the latter explanation is unlikely in homogeneous
cell populations. Therefore, our results support the notion that
loops are short-lived, constantly forming and disappearing in
single cells, generalizing the findings of recent live imaging
studies of two specific loops.2*?!

Our results showed that cis-regulatory loops,
including E-P loops, occur with lower probabilities than
CTCF-CTCF loops on average (Fig. 2d,e). This result agrees
with previous studies.!**#75657 Considering the absolute
numbers revealed in this study, the probabilities for cis-
regulatory loops are strikingly low, only ~1-2% on average
(Fig. 2d,e). While several imaging studies have focused on the
SCR-Sox2 E-P loop due to its high biological interest,-*¢:60-6!
this loop is one of the strongest in the genome. Beyond Sox2
and other classical examples (Fig. S5e,f), the vast majority of
cis-regulatory loops across the genome are generally
extremely weak (Fig 2d,e). Given a typical mESC cell cycle of
~600 minutes and looping probabilities of ~1-2%, most cis-
regulatory elements loop for a total ~6-12 min per cell cycle
beyond background chromosomal interactions. Thus, unless
cis-regulatory loops form extremely infrequently, our results
suggest that the lifetime of cis-regulatory loops is likely
shorter than the ~20 min lifetime of CTCF loops.?®*! The
predominance of these low-probability loops suggests that E-P
interactions may not require sustained contact to perform their
transcription regulatory function, but instead form more
frequently and very transiently.

Finally, we state the limitations and future directions
of our work. First, we are currently limited to only two data
points in our calibration (Fig. 1g), and our absolute loop
quantifications are therefore associated with high uncertainty
and should only be considered estimates. We look forward to
extending our approach by incorporating more live imaging
data as they become available. Another second limitation is
that we are only able to report on the background-subtracted
probability of looping (Fig. 1b) because this is what can be
rigorously quantified using BILD.?® For some functional
interactions such as E-P looping, transcription likely depends
on total looping probability (without background subtraction).
Third, to rigorously apply our absolute 3D genomics approach
to other species and cell types, parallel live imaging and
Micro-C experiments are required. Nevertheless, subject to the

ARTICLE PREPRINT

strong assumption of a constant calibration factor for Micro-C
data which is aided by the robustness to capture radius (Fig.
S2), our approach can approximately be applied to any cell
type for which Micro-C data exists (Fig. 4). Fourth, it is
impossible to determine loop lifetimes from fixed-cell data
such as Micro-C and DNA FISH. Live imaging data will
therefore always be required to understand the underlying
dynamics that contribute to the low chromatin looping
probabilities we observe.

In summary, by integrating live imaging with Micro-
C, we present an absolute 3D genomics approach that reveals
genome-wide absolute looping probabilities, finding that
nearly all loops occur with low probabilities.
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