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Chromatin looping, the process by which the 

genome folds to bring two regions into physical proximity, 
plays important roles in transcriptional regulation, DNA 

repair, genome integrity, DNA replication, and somatic 

recombination.137 Loops between enhancers and promoters 
are generally understood to facilitate transcription 

activation, while loops between CTCF sites, held together 

by the cohesin complex, mediate both insulation and 

facilitation by separating the genome into topologically 
associating domains (TADs).2,8310 Disruption of both types 

of looping has been shown to cause aberrant gene 

regulation and lead to disease.11319 Nevertheless, a general 
quantitative understanding of chromatin looping is currently 

lacking.2,3 

 Recent live imaging studies of a few individual 
chromatin loops have indicated that these loops are not 

permanent, stable structures but instead occur sporadically 

over time or across populations.20326 Thus, the probability of 

loop formation represents an important biophysical 
quantity, which can be used to inform quantitative models 

of chromatin looping and its downstream effects.27334 For 

example, it can be used to determine plausible parameter 
sets for kinetic models of enhancer-mediated transcriptional 

activation30,34 and DNA double-strand break repair,35 as 

well as polymer models of chromosome dynamics.20,21,28,313

33 Rigorous quantification of looping probability is possible 
by applying Bayesian Inference of Looping Dynamics 

(BILD) on live imaging data with the necessary controls.20 

However, since live imaging is experimentally intensive 

and low-throughput, only a few loops have been quantified, 

and the general trends of looping probability across the 

genome remain unknown. 

 Other methods have allowed chromatin looping to 

be observed in a genome-wide manner, but the inference of 
looping probabilities using these methods has been 

challenging. DNA fluorescence in situ hybridization (FISH) 

can be used to interrogate the 3D structure of chromatin in a 

high-throughput manner,36338 but it is challenging to obtain 
precise looping probabilities from DNA FISH data due to 

localization uncertainty, the non-Markovian nature of 

chromatin loops, and the need for an arbitrary threshold.2,393
42 Meanwhile, 3D genomics methods such as Hi-C and 

Micro-C43351 also provide a genome-wide view of pairwise 

interactions, but their measurements are relative. This is an 
intrinsic limitation of all genomics methods, in which the 

signal is quantified from sequencing read counts, but 

calibration techniques such as spike-in normalization in 

RNA-seq52 and ChIP-seq53355 have made absolute 
quantification of genomics experiments possible. Therefore, 

we sought to develop an absolute quantification method for 

3D genomics experiments, allowing us to estimate absolute 

looping probabilities genome-wide. 

Here, we combine Micro-C with BILD on live 

imaging data in mouse embryonic stem cells (mESCs) to 
achieve absolute quantifications for 36,804 loops across the 

genome. Our results indicate that loops occur with low 

probabilities, with a mean of 2.3%, median of 1.6%, and 

maximum of 26%. Looping probability varied between 
different classes of loops: CTCF/cohesin loops formed with 
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higher probabilities than enhancer-promoter (E-P), 

promoter-promoter (P-P), and enhancer-enhancer (E-E) 

loops; more generally, absolute looping probability can be 
partially explained by the epigenomic features present at the 

loop anchors. Lastly, we demonstrated that under certain 

assumptions, our conclusion that the looped state is rare 
also extends to human cells. Overall, our findings indicate 

that rarity is a general property of all chromatin loops in 

mESCs and potentially mammalian cells in general. 

 

 

We developed an approach to estimate the 

probabilities of looping, on an absolute scale, for all 
chromatin loops genome-wide from Micro-C data (Fig. 1a). 

Chromatin loops appear as focal enrichments (<dots=) in 

Micro-C maps.45348,56 Since Micro-C maps quantify the 

degree of pairwise contacts, the strength of these dots is 
related to the underlying looping probability, i.e., the 

average fraction of alleles in which the loop exists at a 

given time. By measuring the dot strengths of loops whose 
absolute looping probabilities are known from live imaging 

and BILD20, we can obtain a calibration that allows us to 

estimate the absolute looping probability of any other loop 

in the genome from Micro-C alone (Fig. 1a). 

 To quantify looping, a precise definition of looping 

probability is required. An important consideration is that 

all pairs of DNA loci are subject to a background level of 
nonspecific interactions due to random polymer motion and 

actively extruding cohesins; the probability of these 

interactions is described by a P(s) curve, which is a function 
of the genomic separation s between the two loci (Fig. 1b). 

Loops are associated with a site-specific enrichment of 

interactions, presumably caused by mechanisms such as 

paused cohesin at CTCF sites and affinity-mediated 
interactions between transcription regulatory factors (Fig. 

S1). In this study, we explicitly define looping probability 

to only include the interactions above the background; this 
definition directly corresponds to what BILD quantifies in 

live-imaging data20. Therefore, the absolute looping 

probability is proportional to the sum of background-
subtracted normalized Micro-C signal contributing to this 

enrichment, with an unknown scaling factor k (Fig. 1b, 

! ∫ [#tot($)–  #bg($)] %$. Additionally, we note that Micro-C 

measures the fraction of alleles containing a loop at a single 

time point, whereas live imaging measures the fraction of 

time a loop is formed at a single allele (previously called 
looped fraction20). Here, we proceed by assuming that 

chromatin looping is an ergodic process, i.e., both quantities 

are equal, and we refer to them as the looping probability. 

 We developed a new method for quantifying 
Micro-C dot strength called AbLE (Absolute Looping 

Estimator) that sums the normalized Micro-C signal above 

background (Fig. 1c). Since the background P(s) curve is 
region-dependent, AbLE first estimates a local P(s) curve 

by fitting the values of the Micro-C map surrounding, but 

not including, the dot. The AbLE score is then calculated as 

the sum of background-subtracted values in a 10-kb circular 
region. AbLE is therefore designed to quantify the amount 

of Micro-C signal originating from looping events as 

previously defined. 

 To validate that AbLE measures looping 

probability, we performed 3D molecular dynamics 

simulations of a DNA polymer with CTCF/cohesin-
mediated looping and affinity-mediated looping, the latter 

being a plausible mechanism for loops between enhancers 

and/or promoters56,57 (Fig. 1d). We observe a strong linear 

relationship (R2 = 0.92) between the AbLE scores from the 
simulated Micro-C map and the ground-truth absolute 

looping probabilities calculated directly from the individual 

molecular trajectories in the simulation (Fig. 1e). The linear 
relationship is robust to changes in the capture radius used 

to generate the simulated Micro-C maps and the interaction 

radius used to call ground-truth enhancer/promoter looping 

events2 (Fig. S2). 

Next, we applied AbLE on experimental data. We 

performed deep Micro-C on two mESC cell lines (two 

replicates per cell line, ~1.8 billion unique interactions per 
replicate, ~7.4 billion unique interactions total; Fig. S3a), 

each containing a BILD-quantified loop: an endogenous 

505-kb loop containing the Fbn2 gene on chromosome 1820 
and a synthetic 164-kb loop near the Npr3 gene on 

chromosome 15 engineered to be extremely strong using 

triplets of high-occupancy CTCF sites21 (Fig. 1f). The 

Micro-C maps exhibited high reproducibility across 
replicates and cell lines (Fig. S3b). The empirically 

determined P(s) curves were approximately inversely 

proportional to the genomic separation s on average (Fig. 

S3c) but exhibited significant local variation (Fig. S3d-f), 

highlighting the need for the local background estimation 

step in AbLE. From our Micro-C data, we calculated the 
AbLE scores of the Fbn2 and Npr3 loops (Fig. S4) and 

compared them against their known looping probabilities 

from live imaging (Fig. 1g). As a negative control, we 

included the Fbn2 loop after depletion of cohesin subunit 
RAD2120, which exhibited near-zero looping probability in 

both Micro-C and live imaging data as expected. Fitting a  

line through the origin and the Fbn2 and Npr3 points 
resulted in a best-fit slope of k = 0.186 ± 0.047. In 

summary, we developed AbLE to measure the strength of 
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loops from Micro-C and calibrated it against loops with 

known absolute looping probabilities from live imaging. 

 

Having developed an approach to perform absolute 
3D genomics, we sought to apply it to understand general 

trends in looping probability across the genome. To call 

loops across the genome with high confidence, we first 
generated an extremely deep mESC Micro-C map (15.6 

billion unique interactions) by merging our Micro-C data 

with those from past studies in mESCs45,46,48,58 (Fig. 2a, 

datasets listed in Table S1), which we verified to be highly 

similar (Fig. S5a). The superior depth of this Micro-C map 

resulted in a greatly improved signal-to-noise ratio over 
maps from individual samples (Fig. S5b). From the merged 

Micro-C map, we identified 153,658 loops across the 

genome using the Mustache loop caller59 (Table S2). After 
removing loops with insufficient reads, missing data 

nearby, or interference from nearby loops or the diagonal of 

the Micro-C map (Fig. 2a, see Methods), we obtained a 

final set of 36,804 loops for quantification. 

Figure 1. Overall scheme for genome-wide absolute quantification of chromatin loops from Micro-C. a, Flowchart describing genome-wide absolute loop 
quantification by calibrating Micro-C dot strength against loops measured in live imaging. b, Absolute looping probability is defined as the probability of interactions 
excluding the expected background. The background is primarily a function of genomic separation. c, AbLE quantifies Micro-C dot strength by summing the Micro-
C signal originating from a chromatin loop excluding the local background, which is estimated in a separate step. The size of the local region, which can vary from 

25-200 kb, is chosen to be proportional to √" (see Methods). d, Diagram of simulated region with features (bottom) and simulated Micro-C map (top) from 3D 
polymer simulation. Micro-C bin size = 1 monomer, corresponding to 1 kb. Color scale is linear. e, Plot of ground-truth absolute looping probability from 3D 
polymer simulations vs. AbLE scores from the simulated Micro-C map. Gray dotted line indicates best-fit line of proportionality. Examples of simulated Micro-C 
dots corresponding to loops with various looping probabilities are shown on right. Micro-C color scale is linear. f, Micro-C dots corresponding to loops previously 
measured with live imaging; diagrams of engineered loci for live imaging shown below Micro-C maps. Micro-C bin size = 1 kb. Color scale is linear. Coordinates 
are given in terms of the modified genomes for the engineered cell lines (see Fig. S9a). g, Looping probability vs. AbLE score for Fbn2 loop, Npr3 loop, and 
control condition (Fbn2 with depletion of RAD21). Gray line indicates best-fit line of proportionality; light gray shaded area indicates 95% confidence interval. 
Circles indicate AbLE scores of individual Micro-C replicates; error bars indicate bootstrapped 95% confidence intervals in BILD estimates. 
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To estimate their absolute looping probabilities, we 

quantified these loops with AbLE in each of our four 

replicates of Micro-C independently, averaged the scores 
across replicates, and multiplied the scores by the 

previously obtained calibration factor, k = 0.186 (Fig. 1g; 

quantifications in Table S3). The AbLE scores showed high 
agreement across replicates and cell lines (Fig. S5c). As a 

negative control, we verified that on average, the AbLE 

score measured at random locations not corresponding to 

loops was equal to zero within statistical error (Fig. S5d). 
Further cross-validation with live imaging data was not 

possible due to the absence of other live imaging 

experiments containing the necessary controls for BILD, so 
we instead turned to DNA FISH studies.60,61 We quantified 

E-P looping probabilities of key E-P pairs in mESCs: 

19.8% for Sox2 (integrating the entire ~7-kb Sox2 control 
region (SCR)62), 12.7% for Mycn, 5.8% for Klf4, and 5.3% 

for Nanog (Fig. S5e). Despite significant differences 

between our method and DNA FISH and the exact 

definitions of the genomic regions involved, the results 

generally agree within a factor of two (Fig. S5f). More 
generally, in our experimental data, we estimate the 

fractional uncertainty in our looping estimates to be ~30-

40%, which arises from uncertainty in the AbLE score 
(affected by biological noise and Micro-C read count noise) 

and uncertainty in the scaling factor k (Fig. S5g). For the 

weakest loops (<0.5%), the fractional uncertainty increases 

to beyond 40%. Uncertainty among very weak loops results 
in a small fraction of loops with an apparent negative 

looping probability; however, we emphasize that this is a 

technical artifact due to noise. 

Having cross-validated our approach, we turned to 

global trends among the 36,804 quantified loops (Fig. 2b). 

Overall, looping probabilities ranged from much less than 
1% to 26%, with a mean of 2.3% and a median of 1.6% 

(Fig. 2b). Thus, the well-known SCR-Sox2 E-P loop is 

Figure 2. Global analysis of chromatin looping probabilities. a, Flowchart of methods used to perform global analysis of chromatin looping probabilities. Five 
mESC Micro-C datasets were combined to form a merged dataset with superior signal-to-noise ratio compared to the deepest dataset previously available.45 
Then, loops were called using Mustache and filtered for quantifiability. Filtered loops were quantified and classified for further analysis. b, Distribution of looping 
probabilities and relationship between probability vs. size among 36,804 filtered loops. In the box plot, whiskers extend to 0.5th and 99.5th percentiles; all outliers 
beyond the whiskers are plotted as individual points. c, Distribution of loop classes as determined by presence of CTCF/cohesin, enhancers, or promoters at loop 
anchors. <Other= refers to anchors that did not overlap any of these features. d, Distributions of looping probabilities and relationship between probability vs. size 
among pure CTCF-CTCF loops and pure cis-regulatory loops. e, Mean looping probability for all possible combinations of loop anchor classes. Under the 
<inclusive= definition, a loop anchor is said to be a CTCF- and cohesin-bound site, enhancer, or promoter if that feature is present, regardless of whether other 
features are present. Under the <exclusive= definition, a loop anchor is said to have a feature if only that feature is present; loops with two or more features at 
either anchor are omitted from the analysis. C = CTCF/cohesin, E = enhancer, P = promoter, and O = other. Among all CTCF-CTCF loops (defined with the 
inclusive definition), the effect of CTCF motif orientation is also analyzed. 
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among the strongest in the genome (Fig. S5b,e). We also 

note a loop selection bias: had we been able to quantify all 

153,658 loops, which includes many very weak loops, the 
mean and median would likely have been lower. 

Conversely, had we quantified only the strongest loops, the 

mean and median looping probability would have been 
higher. Nevertheless, our results clearly show that in 

mESCs, all loops only exist in a fraction of cells at a given 

time, and most loops occur very rarely. 

We also compared our absolute loop quantifications 
against a commonly-used metric of relative loop strength, 

the logarithm of observed signal divided by expected signal. 

The two quantities were generally positively correlated, but 
the log-ratio metric was disproportionately greater for larger 

loops, likely due to the very low expected background (Fig. 

S5h). 

Next, we classified loops based on whether their 

anchors were near CTCF- and cohesin-bound sites, 

enhancers, or promoters. CTCF- and cohesin-bound sites 

were identified using CTCF and SMC1A ChIP-seq peaks 
and CTCF binding motifs, promoters were defined as 

regions ±2 kb from transcription start sites,63 and enhancers 

were defined as regions of overlapping H3K4me1 and 
H3K27ac ChIP-seq peaks. We detected 7,961 pure CTCF-

CTCF loops (containing only CTCF/cohesin at the 

anchors), 5,084 pure cis-regulatory loops (containing only 
enhancers and/or promoters at the anchors), 15,788 mixed 

loops (containing both CTCF/cohesin and cis-regulatory 

elements at the anchors), and 7,971 other combinations 

(Fig. 2c; classifications in Table S3). All loop classes 
exhibited a wide range of looping probabilities (diverse 

examples shown in Fig. S6a), though CTCF-CTCF loops 

were stronger than cis-regulatory loops on average, with a 
mean looping probability of 3.2% versus 1.1% (Fig. 2d). 

Also, CTCF-CTCF looping probabilities showed no 

dependence on loop size, whereas cis-regulatory looping 

probabilities showed a weak negative correlation with loop 

size (Fig. 2d). 

Because many loops were anchored by a mixture of 

CTCF sites and cis-regulatory elements, we next calculated 
the mean looping probabilities for all possible combinations 

of loop anchor classes (Fig. 2e). The highest mean looping 

probability was found among pure CTCF-CTCF loops 
(3.2%), while the lowest was found among pure P-P loops 

(0.9%). The finding that P-P loops were weaker than E-P 

and E-E loops differs from prior work45,46 and is primarily 

driven by many weak P-P loops newly identified in this 
study (Fig. S6b). For loops anchored by CTCF sites, the 

orientation of the CTCF binding motifs strongly affected 

absolute looping probability, with convergent motifs 

forming the strongest loops as expected43,64367 (Fig. 2e). 

Having observed the differences in chromatin 

looping probabilities between known loop classes, we next 

sought to characterize the quantitative relationship between 
looping probabilities and a broader set of epigenomic 

features at the loop anchors in an unsupervised manner. 

We examined the degree to which absolute looping 

probability is governed by epigenomic features at the loop 

anchors such as histone modifications, looping factors, and 

transcription factor (TF) binding (determined by ChIP-seq), 

chromatin accessibility (ATAC-seq), and active transcription 

(GRO-seq). In total, we considered 43 features from publicly 

available datasets (listed in Table S4), quantifying the signal 

from each feature within 5-kb windows centered on the left 

and right anchors of each loop (Fig. 3a; quantifications in 

Table S5). The feature strengths at both loop anchors affected 

the mean probability of looping; for example, the strengths of 

CTCF and the cohesin subunits SMC1A and RAD21 at loop 

anchors were positively correlated with looping probability 

(Fig. 3b). The variation of these features spanned a wide range 

of absolute looping probabilities; for example, loops with 

RAD21 binding in the highest decile at both loop anchors had 

a mean looping probability of 4.9% (90th percentile among all 

loops), whereas loops with binding in the lowest decile at both 

anchors had a mean looping probability of 1.5% (46th 

percentile among all loops). Other features such as H3K27ac, 

H3K4me3, and RNA Pol II were negatively correlated with 

looping probability (Fig. 3b). Similar heatmaps for the 

remaining 37 features are shown in Fig. S7. In general, our 

results showed that the probability of a loop is correlated with 

the strengths of epigenomic features at its anchors. 

We next asked how well absolute looping probability 

could be predicted from the strengths of epigenomic features 

at the anchors. We employed a simple linear model with all the 

strengths of all 43 features at left and right anchors as inputs 

(log-transformed and standardized; see Methods for details). 

Furthermore, since loop size was observed to vary with 

looping probability for cis-regulatory loops (Fig. 2d), we 

included loop size as an additional regressor, resulting in 87 

regressors in total. We fitted the model using ordinary least 

squares (OLS) on a randomly selected training dataset 

consisting of 23,858 filtered loops; the model predicted 

absolute looping probability in a testing dataset of 5,964 loops 

with R2 = 0.284 (Fig. 3c). Thus, epigenomic features at loop 

anchors alone are somewhat predictive of absolute looping 

probability, but there is still significant unexplained 

variability. This suggests that looping probability is highly 

dependent on other contextual factors beyond what exists at 

the loop anchors; for example, these could be nearby CTCF 

sites, TADs, or synergy/competition between loci that 

participate in multiple loops. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.13.632736doi: bioRxiv preprint 



ARTICLE PREPRINT 

 

6 

Since epigenomic features are often correlated, we 

asked what specific combinations of features were most 

predictive of absolute looping probability. We performed 

dimensionality reduction on the features using projection to 

latent structures (PLS). By taking the first four PLS 

components and applying a varimax rotation to simplify the 

interpretation of the results68, we found two linear 

combinations of the original regressors that were sufficient to 

predict absolute looping probability with R
2 = 0.267, 

performing nearly as well as the original OLS model (Fig. 3c). 

We designate these linear combinations as latent variables z1 

and z2. 

Plotting the loops in the latent variable space, we 

observe that higher values of z1 and z2 are associated with 

higher looping probabilities (Fig. 3d). Furthermore, the known 

loop classes formed distinct clusters in the latent variable 

space, primarily separating along the z1-axis (Fig. 3e). We also 

considered the weights of the original features in the latent 

variables: z1 contains strong positive weights for CTCF, 

SMC1A, and RAD21 and weak negative weights for many 

histone modifications, ATAC-seq, TFs, and other features 

associated with transcription regulation (Fig. 3f). This result 

explains the separation of CTCF/cohesin-bound vs. cis-

regulatory loops along z1 and is consistent with our result that 

CTCF/cohesin-bound loops form with higher probabilities 

(Fig. 2d). The next component z2 contained strong positive 

weights for H4ac and ATAC-seq and strong negative weights 

for H3K9me2, HP1b, and loop size. This suggests that some 

signatures of active enhancers and promoters are associated 

with higher looping probability, whereas heterochromatin and 

larger loop sizes are negatively associated with looping 

probability. 

Figure 3. Chromatin looping probabilities are correlated with epigenomic features at loop anchors. a, Epigenomic features at each anchor of each loop are 
quantified by summing the values from the associated assay (ChIP-seq, ATAC-seq, or GRO-seq) in a 5-kb window centered on the anchor. Micro-C and select 
tracks are shown for an example loop. Micro-C bin size = 1 kb. Color scale is linear. b, Looping probability vs. feature strengths at anchors for six ChIP-seq 
features. x- and y- values represent ChIP signals at left (L) and right (R) anchors and are binned into deciles; color scale represents the mean absolute looping 
probability within each bin. Bins in which the standard error of the mean (Ã/n) exceeds 0.2 are colored white due to their high uncertainty. c, Schematic of linear 
models for predicting looping probability from epigenomic features. Top: OLS linear regression model with 87 regressors. Bottom: dimensionality-reduced model 
with 2 latent variables. Models are trained on a subset containing 80% of loops; R2 values are calculated the remaining 20% of data. d, Scatter plot of all filtered 
loops in latent variable space, colored by absolute looping probability. e, Scatter plots of loops in latent variable space, with loops in specific classes highlighted in 
black and other loops colored gray. f, Weight vectors defining the transformation to latent variable space. Due to symmetry between the left and right anchors, the 
weights for each feature represents both the weight for the left and right anchors (e.g., <CTCF= represents the weights for regressors CTCFL and CTCFR). g, 
Goodness-of-fit R2 of OLS models for predicting absolute looping probability from all 87 regressors, within loop classes individually. Models are trained on a subset 
containing 80% of loops; R2 values are calculated the remaining 20% of data. 
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 Lastly, we asked whether looping probabilities could 

be predicted within the individual loop classes: pure CTCF-

CTCF loops, pure cis-regulatory loops, and mixed loops. For 

each class of loops, we trained a linear model using OLS 

employing all 87 features without dimensionality reduction. 

On mixed loops, the model achieved R2 = 0.236, whereas the 

R
2 values for pure CTCF-CTCF loops and pure cis-regulatory 

loops were 0.131 and 0.129, respectively (Fig. 3g). We 

conclude that the predictability of looping probability from 

epigenomic features at loop anchors primarily arises from the 

classification of loops into the two primary mechanisms 

(CTCF loops and E-P/P-P/E-E loops), and predictability 

decreases significantly when only considering loops arising 

from a single mechanism. 

Next, we sought to test the generality of our mESC 

findings in human cells. Although coupled Micro-C with the 

necessary controls and live imaging data in human cells is not 

available, high-resolution Micro-C data is available in H1 

hESCs and human foreskin fibroblasts (HFFs).47 These data 

were generated using the same experimental protocol as the 

mESC data in this study. We again called loops in these 

Micro-C datasets using Mustache
59 and filtered them for 

quantifiability to obtain 19,763 loops in hESCs and 40,550 

loops in HFFs (Fig. 4a, filtered loops in Table S6). To obtain 

rough estimates of the absolute looping probabilities, we 

calculated the AbLE scores of these loops and multiplied them 

by k = 0.186, applying the conversion factor from our mESC 

calibration (Fig. 1e). Since the same Micro-C experimental 

procedure was used to generate the mouse and human data, the 

values in the Micro-C matrices likely exist on a similar scale. 

Indeed, the P(s) curves of the mESC, hESC, and HFF data are 

very similar (Fig. S8). Therefore, we proceeded to apply our 

mESC conversion factor to the human data, though we stress 

that the uncertainty in our absolute looping probability 

estimates is substantially higher and that the results should be 

only considered as rough ballpark figures. 

 Under these assumptions, we found that the looping 

probabilities in human cells had a similar distribution to those 

of mESCs, also occurring with low probabilities, with the 

majority being less than 10% (Fig. 4b, loop quantifications in 

Table S6). The mean looping probability was 4.2% in hESCs 

and 3.8% in HFFs. Among the loops detected, 11,391 loops 

were shared among both cell types. Among these loops, the 

mean looping probability was 5.0% in hESCs vs. 6.5% in 

HFFs (Fig. 4b), and 67% of loops had a higher looping 

probability in HFFs than in hESCs (Fig. 4c). Using publicly 

available ChIP-seq data to classify CTCF-CTCF loops, we 

found that CTCF-CTCF loops had higher than average looping 

probabilities, generalizing the result from mESCs (Fig. 4b). 

These results suggest that the low probabilities with which 

chromatin loops occur may be a general property of mouse and 

human stem cells and differentiated cells, and some 

differentiated cells may have slightly stronger loops than 

embryonic stem cells. 

 

In this study, we showed that absolute quantification 

of chromatin loops can be achieved by integrating deep Micro-

C data quantified with AbLE coupled with live imaging data 

quantified with BILD20. Using this approach, we estimated 

absolute looping probabilities for 36,804 loops in mESCs and 

found that loops generally form with low probabilities, with a 

mean of 2.3% and maximum of 26% (Fig. 2b). 

A major goal of the 4D nucleome project has been to 

integrate genomics and imaging data.69 Our results 

demonstrate that quantitatively integrating sequencing-based 

3D interaction data and imaging data is feasible, provided the 

quantities being measured are consistent and rigorously 

Figure 4. Human embryonic stem cells (hESCs) and human foreskin fibroblast cells (HFFs) exhibit similar chromatin looping trends as mESCs. a, 
Flowchart of method to estimate absolute looping probabilities in hESC and HFF cells. In each cell type, loops are called from Micro-C maps using Mustache, 
filtered for quantifiability, and quantified using AbLE. Quantifications are converted to absolute units using the mESC calibration. b, Looping probability 
distributions and statistics for mESC loops (Fig. 2b,d) hESC loops, HFF loops, and shared loops (loops common to both hESCs and HFFs) in hESCs and HFFs 
for all loops and for CTCF-CTCF loops. Box plot whiskers extend to 0.5th and 99.5th percentiles; outliers beyond the whiskers are plotted as individual points. Due 
to their high uncertainty, some loops with extremely low probabilities (below 1033-1034) are not shown, but these account for less than 3% of loops in each 
category. c, Scatter plot of looping probabilities of shared loops in HFFs vs. hESCs. Dashed line indicates the line x = y. 
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defined. We acknowledge that the constant of proportionality 

that converts AbLE scores from Micro-C into absolute units 

cannot be derived theoretically. However, we show that AbLE 

is linearly correlated with absolute looping regardless of the 

interaction radius used in the 3D polymer simulations (Fig. 

S2). Therefore, determining the constant of proportionality 

empirically is sufficient to bridge genomics and imaging, even 

though the underlying physical parameters remain unknown. 

What are the implications of low looping 

probabilities? Since Micro-C is a population-averaged 

snapshot at the time of the experiment, two interpretations are 

possible: either that loops occur infrequently in all cells, or 

that loops are permanent and stable in a certain subpopulation 

of cells and nonexistent in others. The significant variability 

needed for the latter explanation is unlikely in homogeneous 

cell populations. Therefore, our results support the notion that 

loops are short-lived, constantly forming and disappearing in 

single cells, generalizing the findings of recent live imaging 

studies of two specific loops.20,21 

Our results showed that cis-regulatory loops, 

including E-P loops, occur with lower probabilities than 

CTCF-CTCF loops on average (Fig. 2d,e). This result agrees 

with previous studies.1,6,45347,56,57 Considering the absolute 

numbers revealed in this study, the probabilities for cis-

regulatory loops are strikingly low, only ~1-2% on average 

(Fig. 2d,e). While several imaging studies have focused on the 

SCR-Sox2 E-P loop due to its high biological interest,23,26,60,61 

this loop is one of the strongest in the genome. Beyond Sox2 

and other classical examples (Fig. S5e,f), the vast majority of 

cis-regulatory loops across the genome are generally 

extremely weak (Fig 2d,e). Given a typical mESC cell cycle of 

~600 minutes and looping probabilities of ~1-2%, most cis-

regulatory elements loop for a total ~6-12 min per cell cycle 

beyond background chromosomal interactions. Thus, unless 

cis-regulatory loops form extremely infrequently, our results 

suggest that the lifetime of cis-regulatory loops is likely 

shorter than the ~20 min lifetime of CTCF loops.20,21 The 

predominance of these low-probability loops suggests that E-P 

interactions may not require sustained contact to perform their 

transcription regulatory function, but instead form more 

frequently and very transiently. 

 Finally, we state the limitations and future directions 

of our work. First, we are currently limited to only two data 

points in our calibration (Fig. 1g), and our absolute loop 

quantifications are therefore associated with high uncertainty 

and should only be considered estimates. We look forward to 

extending our approach by incorporating more live imaging 

data as they become available. Another second limitation is 

that we are only able to report on the background-subtracted 

probability of looping (Fig. 1b) because this is what can be 

rigorously quantified using BILD.20 For some functional 

interactions such as E-P looping, transcription likely depends 

on total looping probability (without background subtraction). 

Third, to rigorously apply our absolute 3D genomics approach 

to other species and cell types, parallel live imaging and 

Micro-C experiments are required. Nevertheless, subject to the 

strong assumption of a constant calibration factor for Micro-C 

data which is aided by the robustness to capture radius (Fig. 

S2), our approach can approximately be applied to any cell 

type for which Micro-C data exists (Fig. 4). Fourth, it is 

impossible to determine loop lifetimes from fixed-cell data 

such as Micro-C and DNA FISH. Live imaging data will 

therefore always be required to understand the underlying 

dynamics that contribute to the low chromatin looping 

probabilities we observe. 

In summary, by integrating live imaging with Micro-

C, we present an absolute 3D genomics approach that reveals 

genome-wide absolute looping probabilities, finding that 

nearly all loops occur with low probabilities. 
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