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Abstract—Benders decomposition is widely used to solve large
mixed-integer problems. This paper takes advantage of machine
learning and proposes a variant of Benders decomposition to
tackle two-stage stochastic security-constrained unit commitment
(SCUC). The problem is decomposed into a master problem
and subproblems corresponding to individual load scenarios.
The primary objective is to mitigate computational expenses
and memory consumption associated with Benders decomposition
by generating tighter cuts and reducing the master problem’s
dimensions. A regressor reads load profile scenarios and predicts
objective function proxy values for the subproblems, enabling the
creation of tighter cuts for the master problem. The numerical
difference between cut values and proxy variable values serves
as the basis for identifying useful cuts. Analytical cut-filtering
and classification-assisted cut-filtering approaches are discussed
and compared. Useful cuts contain the necessary information to
form the feasible region and are iteratively added to the master
problem, whereas non-useful cuts are discarded, thus reducing
the computational burden at each Benders iteration. Simulation
studies conducted across various test systems demonstrate the
efficacy of the proposed learning-enhanced Benders decomposi-
tion in solving two-stage SCUC problems, showcasing superior
performance compared to conventional multi-cut Benders decom-
position and offering numerical advantages over cut classifier-
based Benders approaches.

Index Terms—Stochastic unit commitment, Benders decompo-
sition, useful cuts, machine learning.

NOMENCLATURE
Indices, Sets, and Parameters:
) Cut filtering criterion.
Ay Ramping limit for post contingency re-dispatch
of unit g .
€ Duality gap tolerance limit.
n{-} Random parameter.
10) List of filtered cuts.
T Probability of stochastic scenario w.
v{-} Numerical value of a cut.
b Accumulated cuts.
Dy, Nodal power demand at time ¢ under scenarios

w.
Generation cost function.
Indices for generators, time horizon, sample
demand scenarios, subsample of each demand
scenario, and contingency.
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Jup Master problem objective function.
Jsp Subproblem objective function.
k Benders iteration index.

RU4, RD; Ramp up and ramp down limits of unit g.

SF, Shift factor matrix under contingency c.

SU,,SD,  Startup and shutdown costs of unit g.

Tgm, T¢? Minimum ON and OFF time limits of unit g.

UT,, DT, Initial Up and down time of of unit g.

Variables:

Qy Proxy of subproblem w objective function.

Ag,tw Dual variables.

v, v Auxiliary continuous variable.

Dg,t,w,c Power generated by unit g at time ¢ under
demand scenarios w and contingency c.

Dyg,t,w Power generated by unit g at time ¢ under de-
mand scenarios w and no contingency condition.

Pti’;{ . Net nodal power injection matrix.

Ug,t ON/OFF status of generating unit g.

Yg.tr Zg,t Startup and shutdown binary variable indicators.

I. INTRODUCTION

A. Background

ECURITY-constrained unit commitment (SCUC) is a
S complex optimization problem solved daily to determine
the optimal schedule of generating units [1]. SCUC is a mixed-
integer program (MIP) that involves a mix of continuous and
integer decision variables. The challenge with mixed integer
problems is that the inclusion of integer variables often makes
the problem NP-hard. SCUC becomes even more complex un-
der input parameter (e.g., demand) uncertainty [2]-[4]. SCUC
is often formulated as a stochastic MIP problem, known as an
L-shaped optimization problem [5]. An L-shaped problem is
formulated as a two-stage stochastic optimization that involves
here-and-now and wait-and-see decision variables. It is a two-
stage optimization problem with a single integer recourse de-
cision in the second stage. This type of problem is commonly
encountered in decision-making under uncertainty, where a
decision-maker may face different scenarios or outcomes with
associated probabilities. Due to the block structure, the L-
shaped two-stage stochastic program is an effective method
for SCUC [6].

L-shaped optimization problems can be solved using spe-
cialized techniques such as Benders decomposition. Although
Benders decomposition solves L-shaped problems, it suffers



from exponential worst-case computational complexity. This
is due, in part, to the large number of successively added
cuts over iterations, which causes the size of Benders’ master
problem to grow excessively. Moreover, the master problem
takes over 90% of the time required to implement Benders
decomposition [7]. Also, as noted in [8], not every extreme
point in the feasible region of subproblems contributes equally
to limiting the optimal solution to the master problem. This
implies that a significant number of Benders cuts may not be
tight enough at the final optimal solution. Consequently, these
non-useful Benders cuts can make solving large-scale integer
programs challenging.

Various mathematical and heuristic approaches have been
presented in the literature to enhance Benders decomposition
performance. This study aims to accelerate the convergence
of Benders decomposition by taking advantage of machine
learning and cut filtering techniques.

B. Literature Review

It has been more than 50 years since the development of the
Benders decomposition algorithm by J. Bender (1962) [9]. The
algorithm is designed to address complicating variables that,
when temporarily fixed, simplify the problem significantly. It
distributes the computational load between a master problem
and a subproblem (SP). Benders decomposition has proven
successful in various fields, including planning and schedul-
ing, healthcare, transportation, telecommunications, energy
and resource management, and chemical process design [6].
The primary application of Benders decomposition is initially
focused on solving MIP problems. Once integer variables
are fixed, the problem is converted into a continuous linear
program, which can develop cuts using standard duality theory.
Many enhancements have been made to extend Benders’
applicability to a wider range of problems. As a result, Benders
decomposition has been widely used to solve linear, nonlin-
ear, integer, stochastic, multi-stage, and bilevel optimization
problems [10].

The traditional implementation of Benders decomposi-
tion can be computationally expensive, time-consuming, and
memory-intensive, with problems such as poor feasibility and
optimality cuts, ineffective early iterations, and the zigzagging
behavior of primal solutions [7]. Researchers have explored
various strategies to speed up the convergence and reduce the
number of iterations and time spent on each iteration. The
master problem is usually solved using branch-and-bound,
with the simplex approach used to solve the subproblem.
However, a significant number of cuts generated do not
contribute to convergence, leading to memory occupation [8].
To address this problem, improvement criteria are proposed
to ensure that new and useful cuts are included in the master
problem [11]. Additionally, researchers have observed several
orders of improvement when using constraint programming to
solve the master problem [12]. Column generation has been
introduced to handle specific structures more effectively and

achieve tighter constraints at the root node of the branch-and-
bound tree [13], [14]. For large subproblems, decomposition,
parallelization, and column generation have been used to
reduce overall solution time. By adding valid inequalities to
the master problem, one can significantly reduce the number
of generated cuts and solution time [15]. Moreover, clustering
subproblems can decrease the number of iterations [16].

Recently, researchers have been exploring the use of ma-
chine learning (ML) to alleviate the computational complexity
of complex problems [17]-[19]. [20], [21] review the learning-
assisted algorithm for power systems optimization problems.
A survey of the application of ML to optimal power flow is
provided in [22].

Learning-based  algorithms
into three types: end-to-end learning (with label),
unsupervised/reinforcement learning (no ground truth),
and algorithm-specific hybrid learning, which leverages
the specific structure of the target problem to accelerate
the optimization process. We focus on ML applications to
Benders decomposition, particularly on cut classifications.
The literature in this field is limited. A support vector machine
is used in [23] to construct a cut classifier that identifies
valuable cuts in each Benders iteration, thus reducing the
size of the master problem and shortening the solution time.
Another strategy is to use the Lagrange multipliers of the
Benders subproblem to aggregate the optimality cuts [24]. In
[25], a cut classifier is used, and five features are designed to
characterize the generated cuts [26].

can be  categorized

C. Motivation

Reducing the computational burden of two-stage stochastic
SCUC models enables system operators to adopt them for real-
time and near-real-time decision-making. This is increasingly
vital for stochastic scheduling in environments with high
renewable energy penetration and significant uncertainties.
Solving two-stage stochastic SCUC with Benders decompo-
sition is still computationally challenging and needs further
investigation to pave the road for the adaptation by systems
operators. This problem has not been extensively studied, and
there is a lack of ML-based Benders approaches to accelerate
L-shaped two-stage stochastic SCUC. Generating a labeled
dataset for the classifier requires significant computational
costs, particularly in the context of multi-cut Benders decom-
position. The SCUC problem with intertemporal constraints
typically involves a high number of Benders iterations, result-
ing in a multiplicatively larger number of cuts. Determining
the Lagrange multiplier for each cut requires re-solving the
master problem after each Benders iteration [24], which makes
the cut labeling process computationally intensive. Similarly,
identifying the positive increment in the lower bound of the
master problem requires re-solving the master problem for
each individual cut [25], achieved by cumulatively adding
them one after another following the compilation of all cuts
upon convergence. This highlights the need for streamlined,



learning-enhanced methods to expedite the Benders decompo-
sition in solving L-shaped SCUC models.

D. Contribution

We present a combined machine learning and cut filtering
approach to enhance Benders decomposition for tackling L-
shaped two-stage stochastic SCUC challenges. This approach
generates tighter cuts and drops unuseful cuts from the Ben-
ders master problem to reduce its computational complexity.
Specifically, a regressor is trained to predict sub-problem
objective proxy values, enabling the creation of a more con-
strained feasible region for the master problem. Following each
Benders iteration, a criterion based on numerical distance is
used to identify useful cuts. Subsequently, a truncated master
problem is constructed by incorporating these useful cuts and
discarding non-useful ones. By combining this regressor and
cut filtering technique, the computational burden and mem-
ory requirements of Benders decomposition are significantly
reduced. Moreover, the inherent iterative nature of Benders
decomposition ensures the feasibility and optimality of the
obtained results by regenerating any discarded potentially
useful cut. The proposed accelerated Benders approach is
evaluated across various test systems.

E. Paper Organization

The rest of the paper is structured as follows. The problem
formulation is given in Section II. The proposed R-Benders
approach is presented in Section III. The existing C-Benders
and enhanced CR-Benders are discussed in Section IV. The
numerical simulations are discussed in Section V, and con-
cluding remarks are provided in Section VI.

II. TWO-STAGE STOCHASTIC SCUC

This study addresses a two-stage stochastic model for
security-constrained unit commitment, where power demand is
considered an uncertain variable and network security criteria
are incorporated. The resulting formulation is structured as a
MIP problem, which we solve using Benders decomposition.

A. Problem Formulation

The two-stage SCUC problem is formulated in (1), which
includes two sets of variables pertaining to first-stage or here-
and-now decisions and second-stage or wait-and-see decisions
[27]. On/off status of generating units are first-stage decision
variables that are made before the realization of uncertainty.
Generation dispatches are second-stage decision variables that
are made after the realization of actual power demand. The first
term of (la) is the first-stage startup and shutdown costs, and
the second is the second-stage generation dispatch costs. The
first-stage scenario-independent unit commitment constraints
(1b)—(11) model generators’ on/off status and minimum up
and down time. The second-stage scenario-dependent oper-
ational constraints, including generating unit production and

ramp limitations and power flow equations, are formulated
in (1j)—(1t). N — 1 security constraints are included in the
model with index c. Constraints (1j)-(1n) are formulated for
every uncertainty scenario w under normal conditions, i.e.,
no contingency, and (1o)-(1t) are formulated for every w and
every contingency condition c.
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B. Benders Decomposition

The computational complexity of mixed-integer program
(1) increases with the increasing size of the network, number
of demand scenarios, and number of contingencies. Benders
decomposition is suitable for solving MIP problems with a
block structure over contingencies and uncertainty scenarios
[6]. We use a multi-cut variant of Benders decomposition that
converges faster than the classical single-cut approach [24],
[28]. The multi-cut technique decomposes a problem into mul-
tiple subproblems and generates multiple cuts in each iteration.
This multi-cut generation improves convergence performance
[29]. Problem (1) is decomposed into a master problem and €2
(the number of uncertainty scenarios) subproblems. The master
problem (MP) at iteration k is formulated in (2a)-(2c).
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The objective function (2a) consists of startup and shutdown
costs and a term as a proxy for the subproblems’ objective
function. Equation (2c) is the accumulation of all cuts gener-
ated up to iteration k — 2, (2d) denotes Benders cuts generated
at iteration k—1, and (2e) defines the bound on proxy variables
where o™ is set as a large negative constant.

Benders subproblem w (SP,) is formulated in (3a)-(3f).
Given the unit on/off statuses predetermined by the master
problem, a subproblem could encounter infeasibility due to
insufficient generation capacity to meet the load requirements.
To circumvent this issue, we use an ’always-feasible’ sub-
problem model [30]. This model ensures that, regardless of the
constraints set by the master problem, the subproblems remain
feasible. This model incorporates non-negative slack variables
v and 7 to mitigate infeasibility in SP,,. Auxiliary variables
v and 7 relax generation capacity constraints (3d) and (3e).
hg are large positive constants imposing a high penalty on the
auxiliary variables.
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The objective function (3a) consists of generation costs and
constraint violation penalty modeled by hy(v, ; ,, + Vgt.w)-
Constraint (3b) sets the first stage decisions, i.e., generator
unit status, as fixed values received from the master problem.
Inequalities (3f) set bound on auxiliary variables. The MP
and SPs are solved iteratively until convergence tolerance ¢
is smaller than a predetermined threshold.

UB - LB

5| )

€=
where

LB = Jyp, UB:JSP+JMP—Zaw

The two-stage stochastic SCUC with multi-cut Benders is
summarized in Algorithm L.

Algorithm 1 Two-stage stochastic SCUC with multi-cut Ben-
ders
1: Initialize convergence tolerance e, set iteration index k =
0, and set /™"

2: while ¢ > tolerance do

3: k+—k+1

4: if £ > 1 then

5 Form new cut, o, ZJSPw+thg Ak (uge—
]; £V

6 end if

7: Solve master problem (2) to obtain u’;,t

8 forn=1:wdo ‘

9 Solve SF,, to obtain Jgp,, and Ay ¢

10: end for
11: Calculate convergence tolerance, € = |M
12: end while
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Fig. 1. Benders convergence using «, V w in inequality (2b).

III. PROPOSED R-BENDERS

While the multi-cut Benders method outperforms single-
cut Benders in terms of convergence performance, its memory
usage and computational overhead still need enhancement. We
present a learning-aided approach to reduce the computational
costs of multi-cut Benders decomposition for solving two-
stage stochastic SCUC. We mainly focus on the master prob-
lem, which has a higher computational cost than subproblems.

The proposed approach uses a combination of a regression
learner to predict a proxy variable for each subproblem w
and an analytical cut filtering approach to drop non-useful
cuts from the master problem at each iteration. The regressor
forms a tighter bound for the master problem at the root node
starting from & = 1. We predict the optimal subproblem proxy
variables o, i.e., o, upon the convergence of Algorithm I
Knowing «,, or even a good approximation, makes inequali-
ties (2¢), (2d), and (2e) tighter and the lower bound LB closer
to the optimal subproblem cost. The analytical cut filtering
approach identifies and drops non-useful cuts during each
subsequent Benders iteration to reduce the size of the master
problem. Non-useful cuts do not affect the master problem
feasible region.

A. SP Objective Proxy Prediction

In the multi-cut Benders formulation (2), oy, is a variable
and ™" is a bound where a,, > ™" constitutes a master
problem constraint. The value of «,, increases after each
iteration and reaches its optimal value o, upon convergence.
The value of ™" can be selected by analyzing the physical
and economic aspects of the SCUC problem. Setting a suitable
a™™ reduces the search space and enhances Benders conver-
gence performance. An ideal case is to set /" corresponding
to each subproblem w as the optimal value of «,, instead of us-
ing a large negative value. Fig. 1 shows the advantage of using
optimal ;. The master problem objective reaches its optimal
value in the very initial iterations. We use machine learning to
predict o for each subproblem w by reading power demand

before implementing multi-cut Benders Algorithm 1.

B. Training Dataset Preparation

Power demand scenarios are input to two-stage SCUC. The
optimal values of proxy variables o and thus the formation

Mw

___a| Adding randomness 3
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Time Time Time

Shifted curve using (5) Shifted and perturbated
curves according to (6)

Base demand curve

Fig. 2. Demand scenario generation.

of useful Benders cuts are correlated with the power demand
profile of each subsample w. Thus, we use demand information
as the input to a supervised learning model whose output is
a’f. One can incorporate other problem-dependent features
such as generation cost functions (which are assumed to be
non-variable in this paper) along with the demand profile.

To account for potential system operation scenarios in
the training phase, we generate a set of daily load profile
samples D? according to (5). To follow the concept of demand
uncertainty modeling in the two-stage SCUC problem, each
sample D? is used to generate w subsample D; generated by

(6).

D® = Dbase[ﬁﬁ + 775(775 - ,’75)] Vs (5)
D = D*[ng + (1 —ng)] Yw, Vs 6)

where D* € R'* and D¢ € R¥*!. ny{-} and n,{-} follow
a uniform distribution between 0 and 1. Indices for samples
and subsamples are denoted by s and w. Two stages of
randomness are carried out to consider a range of realistic
operational conditions. The load point is shifted using the
random parameter 7s{-} to model its daily and seasonal
volatility within the range [V, nL]. Y and nl can be
determined by historical data and load growth projection or
to the point when any further increase or decrease renders
unit commitment infeasible. The uncertainty in subsamples is
modeled using the random parameter 7,,{-} within a specified
range [nY, nL]. Subsamples model the hourly load randomness
by multiplying D*® with random parameters and creating D).
Fig. 2 illustrates the load scenario generation.

For a given system, Algorithm I is executed for each
demand profile sample D®. Optimal values of proxy variables
upon Benders convergence are labeled as «®* and stored.
Expressions (7) and (8) are, respectively, the input and target
of the supervised learning model.

Input : D = [Dj, D3, D5, ... DT Vs (7)

Target : o = [o*, 3", a5, ...,a5]T Vs (8)

C. Supervised Learning Strategy

We use neural networks (NN), an efficient tool to capture the
complexity and nonlinearity of a function by utilizing various
activation functions. The regressor uses a fully connected
NN with mini-batch gradient descent and Rectified Linear
Units (ReL.U) activation functions for hidden layers. The loss



TABLE I
HYPERPARAMETERS OF NN REGRESSOR

Hidden layer=1, Batch size=300 500, Activation = ReLU, Loss func-
tion = MSE, Optimizer = Adam

DNN a’

Fig. 3. NN regressor reads demand profiles and predicts proxy variables a.

function, mean squared error (MSE), provides a quantitative
measure of prediction accuracy and how well the model’s
predictions align with the actual observed values.
MSE — 2nl0n = dn)® )
n
where «,, and «,, are, respectively, the ground truth and
predicted value of the subproblem proxy, and n is the number
of samples. We use Adam optimizer to train the learner and
determine optimal weights. Various batch sizes, epochs, and
layer counts are tested to determine the best architecture. A
single hidden layer is selected to have a minimalistic model.
Table I shows the architecture and hyperparameters used in this
study. Although more sophisticated structures may improve the
results, we obtained promising outcomes with this minimalistic
architecture. Fig. 3 illustrates a conceptual schematic of the
learner model.

D. Data Scaling

Normalization plays a crucial role in mitigating biases
arising from differing scales among features. By ensuring con-
sistent feature scales, normalization stabilizes gradient descent
steps, allowing for the use of higher learning rates, which
in turn leads to faster convergence. The data samples are
normalized using equation (10).

d— dmzn

dnormalized = d

(10)
maxr dmzn

where d is the target value of demand in the training dataset
and d,,,;,, and d,,,4, are minimum and maximum values of the

demand used to normalize the data.

E. Useful Cut Identification

The master problem still retains all cuts generated after
carrying out each Benders iteration. As a result, the master
problem size grows at every iteration, calling for a consid-
erable computational memory requirement. In most cases, a
subset of Benders cuts generated at each iteration contains
the necessary information to build the feasible search space
of the master problem. Currently, a lack of practical and

Cumulative increment of MP objective value
x 10

MP Objective value
” =

1

5 " " " " " . .
0 1000 2000 3000 4000 5000 6000 7000
Cuts

Fig. 4. Benders lower bound improvement with cuts added cumulatively; a
case of IEEE 118-bus system.

systematic approach exists for classifying useful and non-
useful cuts for large-scale problems [10]. Several features
are suggested in [23]-[25], such as cut violation, cut depth,
cut order, cut producing scenario, and Lagrange multiplier to
identify approximately useful cuts.

Our idea of useful cut identification is based on Fig. 4.
which shows the incremental progression of master problem
objective value with cumulatively added cuts. It can be ob-
served that not all cuts contribute equally to the improvement
of the lower bound and optimality gap. Several cuts provide
a positive increase in the lower bound. Such cuts can be
classified as useful cuts. Other cuts do not contribute to
the lower bound improvement and can be classified as non-
useful. Our experimental observation shows that the numerical
difference between cut values ¢ (uf ;) and proxy values af, can
be used for useful cut identification. If an inequality constraint
is satisfied as equality upon solving optimization, it is typically
referred to as a binding or strictly useful constraint. Thus, if
ok - UJ(UI;,t) = 0, the cut is useful.

However, some cuts that are not exactly satisfied as equality
may contain the necessary information to form the master
problem feasible region. Such cuts should also be considered
useful. As an inequality constraint approaches equality, its
importance in forming a feasible region is expected to increase.
Consider a demand profile sample D?. To capture all cuts that
contain necessary information at each iteration k, we label
cuts as "useful" if the difference between o and w(u’;t) is
less than a threshold §, which is selected through experimental
observation. We have tested various cases and observed that
§ within the range [0, 100] works well for the studied cases.
Once all cuts are generated at iteration k — 1, we add them to
MP and solve the updated MP at iteration k to obtain u’;,t and
o . We check (11) to identify useful cuts generated at iteration
k —1. Cuts that satisfy (11) contain necessary information and
are useful. We repeat this process at each iteration k£ to detect
useful cuts generated at iteration £ — 1. Non-useful cuts are
dropped from MP before moving to iteration k + 1.

s (ug.p, a)? < ol — (uf )] <6 (11)

where w(u§7t) is the numerical value of the right-hand side of
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Fig. (5) illustrates the cut ﬁltermg concept, with dotted lines
representing non-useful cuts and solid lines denoting useful
cuts that must be retained in the master problem. Even if a
cut is labeled useful in iteration k, it is possible that another
cut, found to be useful in a subsequent iteration k + n, might
supersede the earlier cut. Therefore, at every iteration k, the
usefulness of all cuts accumulated from the first iteration up to
the current one should be reassessed to ensure their continued
relevance.

F. Avoiding Information Loss

Selecting a small § results in labeling fewer cuts as useful.
A large J yields more cuts in the master problem, and thus
less computational cost reduction is gained. Depending on the
value of hyperparameter §, we have observed cases with no
cut labeled as useful at a few iterations. Retaining at least one
cut from each iteration is crucial; otherwise, the proposed R-
Benders may not converge due to loss of information from
that particular iteration. To prevent this, we keep several cuts
generated from high-load scenarios at each iteration, most of
which may already be on the useful cut list. The number of
retained cuts is determined through experimentation.

G. Reduced MP Formulation

The R-Benders master problem at iteration k is as follows:
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where (12¢) denotes the list of all useful cuts detected until it-
eration k—2. (12d) includes all cuts generated at iteration k—1.
The value of «,, successively progresses to reach the optimal
value. To maintain the quality of the lower bound solution,
we should ensure «,,>a;,. Given the possibility of machine
learning error, the regressor predictions ¢, are reduced by
a factor o, and o>, is replaced with a,,>ayo),. The
reduction factor «, is determined by analyzing the regressor
prediction error.

The R-Benders approach is summarized in Algorithm II
and Fig. 5. The only learner embedded in R-Benders is an
NN regressor to predict «,. One can train a classification
learner, as in the C-Bender approach presented in Section IV,
to identify useful cuts. However, the R-Benders approach does
not use any classifier, instead opting to analytically filter cuts
with a one-iteration delay. The proposed analytical cut filtering
approach is versatile and can identify and eliminate non-useful
cuts from the master problem, irrespective of varying factors
in the SCUC model such as demand, the number of scenarios,
and generation cost, as well as the number of cuts generated
at each iteration.

Algorithm 2 Proposed R-Benders decomposition

1: Initialize convergence tolerance ¢, set iteration index k =
0.

2: Feed demand scenarios to the trained regressor to predict
*

al.

3: while € > tolerance do

4: k< k+1

5: if £ =1 then

6: Solve master problem, (12a)-(12b), (12e).

7: end if

8: if £ > 1 then

9: Form new cut, o, > SPW LY, Zg ot w(ugyt —
uggl)Vw

10: Solve master problem (12) to obtain uf , and af.

11: Identify the useful cuts from iteration k£ — 1 using
(an.

12: Store the useful cuts, (12c).

13: end if

14: forn=1:wdo

15: Solve subproblem (3) to obtain J§p, and ¥,

16: end for

17: Calculate tolerance value, € = |[VB=LE|,

18: end while




H. Subproblem Acceleration

Two non-binding transmission line constraint removal
strategies can be used to accelerate subproblem solutions,
particularly for large SCUC problems. In the first learning-
aided strategy, two classifiers can be trained to identify non-
binding branch constraints and generation ramp constraints
at each Benders iteration and remove them from the model
[31]. Another more straightforward but less efficient strategy
is to solve a relaxed subproblem without branch constraints.
The relaxed subproblem solution and shift factors are used to
check branch constraints. The violated constraints are added
to the relaxed subproblem, which is repeated until all branch
constraints are satisfied [32]. These two strategies reduce
computation time and memory usage. We have used the second
strategy.

IV. LEARNING CLASSIFICATION-BASED BENDERS

In this section, we discuss a recently developed method
that leverages machine learning to classify Benders cuts after
each iteration [25]. We then draw comparisons between this
method and our proposed R-Benders approach. Key features
that define a cut’s utility, as identified in existing research,
are discussed, along with the computational costs involved
in cut labeling. Furthermore, we highlight how our approach
incorporates regression-based proxy prediction into the C-
Benders framework, improving the efficacy of the two-stage
SCUC solution process.

A. C-Benders

We conducted performance evaluations of the cut classifier
approach, during which we created a dataset specifically
designed for training the classifier. Upon generating the cut co-
efficients from the subproblem, a trained supervised classifier
is deployed to detect useful cuts prior to resolving the master
problem at each iteration k. The classifier’s input comprises
features extracted from cuts generated at iteration k, while its
output is binary cut labels (i.e., useful (1) or non-useful(0)).
Only the useful cuts are retained, while the remainder are
excluded from the set of cuts forming the master problem.
A neural network is trained with F-score as the loss function,
and the model architecture and hyperparameters are outlined
in Table L.

In order to prepare a training dataset for the classifier, all
cuts must undergo labeling as either useful or non-useful. This
necessitates the extraction of cut features. According to exist-
ing literature [25], a Benders cut qualifies as useful if it yields
a positive increment in the lower bound (i.e., cut violation as
discussed earlier) of the master problem. To accomplish this,
we execute Benders decomposition for each demand sample
and compile all cuts from all iterations upon convergence.
Subsequently, we re-solve the master problem to ascertain
the lower bound improvement attributable to each cut. We
augment the initial master problem with one of the stored
cuts and measure its impact on the lower bound improvement.

Demand scenarios

Solve master problem
(12a)-(12d), (2e)

Use ML-based classifier to
identify useful cuts and
discard non-useuful ones

Set of all cuts generated
at iteration k

Solve subproblems (3)

Fig. 7. C-Benders flowchart.

This process is iterated, with cuts being cumulatively added
one after another, to label all cuts based on their contribution.
An alternative approach might be initially forming the master
problem with all cuts and subsequently removing cuts one by
one to observe their effect on the lower bound.

Generating a labeled dataset for C-Benders is computation-
ally expensive, particularly for multi-cut Benders decomposi-
tion while the proposed R-Benders approach does not require
such dataset generation. The number of Benders iterations
is relatively high for the SCUC problem with intertemporal
constraints, leading to a multiplicatively larger number of
cuts that should be individually checked. The number of
cuts generated at each iteration depends on the number of
demand scenarios. This is another factor that increases the
computational cost of cut labeling. For instance, consider
solving the 118-bus system with a 4-hour commitment horizon
and a load profile sample with 40 stochastic scenarios. This
case takes 289 iterations to converge with a less than 1%
gap. The total number of cuts generated for each sample
is 40x289 =11,560. To determine the label of each cut, we
must solve the master problem 11,560 times. However, C-
Benders provides comparatively more accurate cut labels than
R-Benders, which estimates labels using (11). Fig. 7 shows
the C-Benders flowchart. The master problem is formulated
in (12a)-(12d), and (2e). Useful cuts in (12c) are identified
using the classifier. The training process is offline. Although
the overall accuracy of the C-Benders is slightly better than
the proposed R-Benders approach, the computational overhead
of C-Benders associated with cut labeling is higher compared
to R-benders proxy prediction.

Another study [24] uses the same cut classification principle
but adopts a slightly different approach to cut labeling. It
leverages the dual value, specifically the Lagrange multiplier
of constraints from consecutive iterations, to distinguish be-
tween useful and non-useful cuts. If the Lagrange multiplier
associated with a Benders cut is non-zero, it is categorized as
useful; otherwise, it is classified as non-useful and discarded.
However, determining the Lagrange multiplier necessitates
re-solving the master problem after each Benders iteration,
rendering the cut labeling process computationally intensive.
In contrast, the proposed R-Benders algorithm only requires
solving algebraic operations instead of resolving the optimiza-
tion problem to determine the Lagrange multiplier, resulting
in significantly reduced computational overhead.



Demand scenarios

Trained regression
learner

Use ML-based classifier to
identify useful cuts and
discard non-useuful ones

Set of all cuts generated

v
Solve master problem
(12a)-(12d), (2e)
atiteration k

Solve subproblems (3)

Fig. 8. CR-Benders flowchart.

TABLE 11
PARAMETER RANGE FOR DEMAND DATASET GENERATION

System Load

[n, nY1 [n5. nJ1
24-bus 70%-130% 95%-105%
118-bus 70%-130% 95%-105%
1354-bus 70%-110% 95%-105%

B. CR-Benders

We have incorporated certain features of the R-Benders
method into the C-Benders approach, creating a hybrid tech-
nique we call CR-Benders. Illustrated in Fig. 8, CR-Benders
uses a regressor to predict the initial values of subproblem
proxy variables o, and uses a trained classifier to filter cuts
before the master problem is solved in each iteration k.
This combined strategy outperforms the traditional C-Benders
approach in terms of efficiency.

V. NUMERICAL SIMULATIONS

We evaluate the effectiveness of the proposed R-Benders
approach and demonstrate its performance comparison with
C-Benders on multiple test systems. For the implementation
of Benders decomposition, we use the YALMIP toolbox and
CPLEX solver [33]. Neural network models are constructed
using PyTorch. All simulations are carried out on a computer
equipped with an Intel(R) Xeon(R) CPU at 2.10 GHz and 512
GB of RAM.

A. Test Systems and Data Preparation

Three test systems with various scheduling horizons are
used, including the IEEE 24-bus, 118-bus, and 1354-bus
systems [34]. The 24-bus system includes ten generators and
34 transmission lines. The 118-bus system consists of 54 gen-
erators and 186 lines. The 1354-bus system has 270 generators
and 1991 branches. Each case includes 40 equiprobable load
profile scenarios. Table II shows the range of load perturbation
with respect to base case demand values to incorporate daily
and hourly load uncertainty. The convergence tolerance is set
to 1% for all cases.

B. Useful Cut Statistics

Table V shows the average number of total cuts and useful
cuts for different systems where h stands for horizons. To

TABLE III
AVERAGE NUMBER OF BENDERS ITERATIONS, MP SOLVE TIME, AND
USEFUL CUTS FOR DIFFERENT NUMBERS OF DEMAND SCENARIOS

# demand scenarios 10 20 30 40

# iter 53 51 55 49

# cuts 532 1029 1643 1951

MP time (sec) 62.5 63 75 39
TABLE IV

VARIATION IN NUMBER USEFUL CUTS AND ITERATIONS UNDER VARYING
GENERATION COST FUNCTION

70% ~ 130%
43 ~ 73
437 ~ 1397

Cost variation range
# iterations
# cuts

determine the usefulness of a cut, we have calculated the
contribution of each cut to improving the objective value of
the master problem. A cut is useful if it results in a non-zero
increase in the objective value. The percentage of the number
of useful cuts to total cuts reduces as the size of the system
and the number of scheduling horizons increase. For instance,
for the IEEE 118-bus system with three time periods, only
13% of cuts are labeled as useful, and the rest of 87% are
non-useful. Filtering non-useful cuts significantly reduces the
computational burden of the master problem.

While we have considered the demand profile with 40 load
profile scenarios, one can use a different number of scenarios
and also another varying factor such as the generation cost
function. To evaluate the impact of the number of scenarios on
cut generation, we have selected ten stochastic samples, each
comprising 40 scenarios over a 12-hour horizon of the IEEE
24-bus system. From these, we have extracted subsamples with
10, 20, and 30 scenarios evenly spaced between the highest and
lowest total load. Subsequently, we have executed the proposed
accelerated Benders decomposition for each subset and the
complete set of 40 scenarios. Table III shows that the number
of iterations, master problem solve time, and the number of
useful cuts vary depending on the number of scenarios. As
expected, increasing the number of scenarios increases the
total number of cuts and, thus, the number of useful cuts
determined by the proposed cut filtering approach.

One can also consider varying generation cost profiles when
forming cuts. For the 24-bus system, we generated multiple
distinct generation cost scenarios, where each generator’s cost
fluctuated randomly between 70% and 130% of the base value
while keeping demand and network topology constant. Table
IV shows that generation cost impacts on Benders cuts forma-
tion and thus the usefulness of a cut. Although these factors
affect the number of Bender cuts and iterations, the proposed
analytical cut filtering approach can identify and eliminate
non-useful cuts from the master problem, irrespective of the
number of cuts generated at each iteration.



TABLE V
COMPARISON OF TOTAL CUTS AND USEFUL CUTS

0 [ R-Benders C-Benders CR-Benders

Average number  Average number

Test case of total cuts of useful cuts % of useful cuts
24-bus,1h 224 103 46%
24-bus,12h 1872 220 12%
118-bus,1h 308 109 35%
118-bus,3h 2280 288 13%
1354-bus,2h 5520 795 15%

TABLE VI

AVERAGE SOLVER TIME (AND IMPROVEMENT PERCENTAGE)
COMPARISON IN SECONDS

— Hile |

"24bus (Th)'  "24-bus(12h)"  "118-bus (1h)'  "118-bus (3n)" '1354-bus (2h)"

System Benders R-Benders C-Benders CR-Benders  Fig. 9. Average number of iterations.

24-bus,1h 2.1 1.4 (33%) 0.73 (65%) 0.66 (69%)

24bus,12h 377 320 (13%) 9.7 (1A%) 94 (15%) TABLE VII

118-bus, 1h 2.8 2.6 (7%) 2.5 (1 ]%) 2.5 (1 ]%) COSTGAP INDEX (%)

118-bus,3h 236 30 (87%) 57 (76%) 24 (90%)

1354-bus,2h 110 74 (33%) 65 (41%) 62 (44%) System R-Benders C-Benders CR-Benders
24-bus,1h 0 0.13 0.07
24-bus,12h 0.05 0.8 0.03
118-bus, 1h 0.6 0.01 0.01

C. Master Problem Runtime and Solution Quality 118-bus,3h 0 0.02 0.02

1354-bus,2h 0.04 0.05 0

Table VI reports the average solver time of the master
problem and the percentage of time improvement obtained
by the proposed R-Benders approach and two other classifier-
based approaches, i.e., C-Benders and CR-Benders, compared
to the conventional multi-cut Benders. During each iteration of
R-Benders, C-Benders, and CR-Benders, we tackle a signifi-
cantly smaller problem, resulting in considerable time savings.
The time saving becomes more significant as the size of the
optimization model increases. For instance, R-Benders reduces
the master problem solution time from 236 seconds to 30 for
the 118-bus system, an 87% improvement. The time-saving of
CR-Benders is better than R-Benders and C-Benders.

The average number of Benders iterations is shown in Fig.
9. The three proposed approaches, particularly C-Benders and
CR-Benders, take roughly the same number of iterations as
conventional Benders decomposition. A comparison of the
solution time and the number of iterations shows that R-
Benders, C-Benders, and CR-Benders can capture the nec-
essary information to build a computationally less expensive
master problem.

We use a CostGap index to assess the quality of the solution.
CostGap measures the difference between the objective values
generated by the proposed approach f? and the conventional
Benders fBP.

[f7 = fP7
CostGap% = e x 100 (13)
Table VII presents the average CostGap index for all cases.
The average cost gap for all test cases is negligible. For
instance, the gap is less than 0.02% for the 118-bus system
with a 3-hour horizon. We have observed several cases for

which the proposed approaches obtain even a better solution

than the conventional Benders. This is due to a warm start
with stronger cuts in the first iteration.

D. Memory Usage

The memory usage of the proposed R-Benders approach
is compared with that of conventional Benders as well as
the classifier-based C-Benders and CR-Benders. The memory
occupied to form the constraint set from Benders cuts is
illustrated in Fig. 10. The memory requirement is reduced
significantly by filtering out non-useful cuts from the model.
For example, Fig. 10.d shows that for the 118-bus system with
a 3h horizon, the memory usage of CR-Benders is 87.5% less
than that of the conventional Benders decomposition. Fig. 11
demonstrates the number of cuts added to the master problem

BD

M R-Benders
B C-Benders 43%
M CR-Benders 84%
"24-bus (1h) "24-bus (12h)" "118-bus (1h)"

66% 61%

"118-bus (3h)" "1354-bus (2h)”

Fig. 10. Memory usage comparison. A) 24-bus (1h), b) 24-bus (12h), c¢) 118-
bus (1h), d) 118-bus (3h), and e) 1354-bus (2h).
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Fig. 11. Cumulative increment of the number of cuts for IEEE 118-bus 3h
case.

per iteration. The slope of the increment for the conventional
Benders is steeper than that of RC-Benders.

E. Non-convergent case analysis

In specific situations, the conventional Benders decom-
position technique struggles to achieve convergence within
the allocated timeframe, even in the presence of an optimal
solution. Through our experiments, we have demonstrated
that the utilization of a predicted subproblem proxy can
effectively address these scenarios and enhance the duality
gap. We focused on two particular scenarios involving a 118-
bus system and a 3-hour horizon, where the original multi-
cut Benders approach failed to converge within 400 iterations.
By employing the R-benders method, we observed an average
convergence within 59 iterations for these same scenarios. It
is evident that the incorporation of the proxy value yields
superior performance.

VI. CONCLUSION

The proposed algorithm aims to reduce the computational
costs of two-stage SCUC by taking advantage of machine
learning. Given the iterative nature of the learning-aided
Benders algorithm, potentially discarded useful cuts will
be regenerated in subsequent iterations, and the proposed
algorithm will provide high-quality solutions. Conventional
Benders decomposition suffers from slow convergence and
might not reach an optimal point within a specified time. Not
all cuts generated through Benders iterations contain useful
information to form the feasible region of the master problem.
Removing non-useful cuts and forming stronger cuts enhance
Benders decomposition performance. The proposed approach
uses a regressor to initialize the subproblem objective proxy
variables, along with cuts being filtered based on the compar-
ison between the numerical values of cuts and proxy variables
obtained in a specific iteration. Furthermore, we introduced a
scheme where the regressor for subproblem objective proxy
value, along with a cut classifier, can be seamlessly integrated
within the Benders decomposition algorithm. The proposed
approaches are applicable to many MIP problems.

Simulation results on various test systems show CR-Benders
outperform R-Benders and C-Benders in terms of solution

time and memory saving. On average, CR-Benders leads to
58% time saving and 77% memory saving, which is higher
than the other two approaches. Although C-Benders and CR-
Benders might save more time than R-Benders, they need
computationally expensive cut labeling for classifier training,
which in turn demands excessive offline overhead compared
to R-Benders.
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