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Abstract—This paper proposes two approaches for reducing
the impact of the error floor phenomenon when decoding
quantum low-density parity-check codes with belief propaga-
tion based algorithms. First, a low-complexity syndrome-based
linear programming (SB-LP) decoding algorithm is proposed,
and second, the proposed SB-LP is applied as a post-processing
step after syndrome-based min-sum (SB-MS) decoding. For the
latter case, a new early stopping criterion is introduced to
decide when to activate the SB-LP algorithm, avoiding executing
a predefined maximum number of iterations for the SB-MS
decoder. Simulation results show, for a sample hypergraph code,
that the proposed decoder can lower the error floor by two to
three orders of magnitude compared to SB-MS for the same
total number of decoding iterations.

Keywords—Quantum error correction, quantum LDPC codes,
linear programming based decoding.

I. INTRODUCTION

Quantum algorithms that involve a large number of qubits
(between thousands and millions) play a pivotal role in
advancing quantum computing, unlocking the ability to tackle
intricate problems that are beyond the reach of classical com-
puters [1]. However, noise in quantum systems, generated
by factors such as decoherence, crosstalk, and environmental
interference, represents a significant hurdle [2], making it
challenging to maintain the integrity of quantum computa-
tion, especially when the number of qubits scales [1]– [3].

To reduce the effects of noise, many new codes and
decoders for quantum error correction have been designed
over the past few decades [2]. Some of the most intensively
studied codes are surface codes [4], initially suggested for
noisy intermediate-scale quantum (NISQ) devices. Unfortu-
nately, these codes have some limitations when the objective
is to protect a large number of logical qubits, as they have
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a low code rate and consequently an impractical overhead in
terms of physical qubits.

As an alternative with a higher code rate, quantum low-
density parity-check (QLDPC) codes offer benefits by re-
ducing the qubit overhead and also improving the minimum
distance [5], [6]. Despite their potential, there are still open
problems such as the fault-tolerant implementation of the
encoding process on the quantum side and the design of
efficient decoders that can obtain very low logical error rates
[7]. This paper will focus on addressing the latter limitation.

One of the main problems in performing efficient decoding
for a QLDPC code is the existence of short cycles within the
code’s Tanner graph, which result in an error floor when
belief propagation (BP) based decoders are applied. This
error floor effect means that an improvement in the physical
error rate of the qubits does not translate into an improvement
in the logical error rate [8]. To mitigate this problem, two
main categories of approach have been followed: the use of
a new standalone decoder based on alternative approaches to
standard BP, and applying a post-processing technique after
BP decoding.

For the first category of approach, some more powerful
decoding techniques such as the syndrome-based generalized
belief propagation (GBP) algorithm [9] have been proposed
to improve the decoding performance. Unfortunately, these
require a high computational complexity, so additional sim-
plifications are necessary to obtain practical real-time so-
lutions. Some neural network based decoders for QLDPC
codes have also been explored [10]. However, training and
deploying these algorithms for large QLDPC codes can be
computationally intensive and resource-demanding when the
number of qubits grows.

For the second category, ordered statistics decoding (OSD)
was proposed in [11] as a post-processing technique for BP.
By seamlessly integrating OSD when BP decoding fails, this
technique can significantly enhance the error correction ca-
pability for some specific QLDPC codes, providing improved
error rates after post-processing. However, OSD decoders
are computationally complex and introduce an extremely
large latency due to the requirement, in one of the steps,
of performing Gaussian elimination for the inversion of a
dynamic submatrix of the code’s parity-check matrix; thus,
an efficient hardware implementation that can finish decoding

ar
X

iv
:2

31
1.

18
48

8v
2 

 [c
s.I

T]
  1

9 
Ja

n 
20

24



within the required time interval (of hundreds of nanoseconds
to several microseconds) is not feasible [12].

Stabilizer inactivation decoding for QLDPC codes was also
recently introduced in [13] as an alternative post-processing
method; this was shown to outperform OSD in lowering
the error floor while also reducing the decoding complexity.
However, it is a list decoding method (the list being computed
according to the BP output), the complexity of which grows
with the length of the list. Serial processing of the list
can lead to information loss due to the short decoherence
time, while parallel processing would require high power
consumption. This highlights the importance of continuing
the search for alternative decoding techniques.

Besides these previous algorithms, linear programming
(LP) based decoding has also been recently explored as
a solution for quantum codes. As LP decoding proved to
be capable of reducing the error floor for classical LDPC
codes [14], some works such as [15] and [16] adapted
classical LP decoding algorithms to QLDPC codes, also
providing theoretical performance guarantees. Nevertheless,
these decoders require the solution of linear programs and
thus these algorithms are not attractive from a complexity
and latency perspective.

In this paper, a low-complexity iterative syndrome-based
linear programming (SB-LP) decoder is proposed for decod-
ing QLDPC codes, which can be used as a standalone de-
coding algorithm or as a post-processing step after syndrome-
based min-sum (SB-MS) decoding to improve the behavior in
the error floor region and the threshold of the code. Unlike the
standalone SB-MS decoder, which exhibits a high error floor
for several QLDPC code classes, the proposed combination
of SB-MS with SB-LP improves the error floor with lower
complexity than OSD and without the need for list decoding
as required by stabilizer inactivation. We also propose a new
early stopping criterion for the SB-MS decoder based on the
syndrome Hamming distance, using which the algorithm can
automatically detect misconvergence of the SB-MS decoder
and use this to trigger the SB-LP post-processing.

II. BACKGROUND

This section summarizes the depolarizing error model used
in our work, and provides a brief description of the SB-MS
decoder which is a de facto standard for low-complexity BP
based decoding. In the following, all vectors are assumed to
be row vectors.

A. Quantum Noise Model

Quantum gates, crosstalk, and other processes applied to
qubits (including maintaining them in an idle state) result
in bit-flip errors, phase-flip errors, or a combination of
both. The behavior of errors in a quantum processor can be
described by using a depolarizing noise model [17]. Errors
resulting from bit-flips are described by Pauli X operators
and have a probability of occurrence denoted by pX. Phase-
flip errors are described by Pauli Z operators and have

a probability of occurrence pZ. Errors involving both bit-
flips and phase-flips are described by Pauli Y operators and
occur with probability pY. We consider an i.i.d. symmetric
depolarizing error model for the qubits, such that each qubit
experiences an independent depolarizing error probability p
and pX = pY = pZ = p/3. Bit-flip and phase-flip errors are
represented by binary error vectors eX and eZ, respectively,
in which the j-th entry is equal to 1 in the presence of a
corresponding error on the j-th qubit, and is equal to 0 if
there is no such error. An [[n, k]] QLDPC code, where k
logical qubits are encoded using n physical qubits, can be
characterized by two m × n binary parity-check matrices
HX and HZ; the corresponding length-m binary syndrome
vectors sX = eXHZ

T and sZ = eZHX
T are measured from

the quantum system and can be used to correct X and Z
errors, respectively [5]. For ease of exposition, in the rest of
this paper we will focus on correction of only one type of
error, and we will use the simpler notations H, e and s in
place of HZ, eX and sX, respectively. Also, we will assume
the syndrome measurement to be error-free.

B. Tanner Graph

The Tanner graph serves as a graphical representation
of the m × n parity-check matrix H = (Hij). This graph
consists of n variable nodes (VNs) and m check nodes (CNs),
connected by a set of edges E . For each i ∈ {1, 2, . . . ,m}
and j ∈ {1, 2, . . . , n}, the i-th CN is connected to the j-th
VN by an edge (i.e., (i, j) ∈ E) if and only if Hij = 1.
Ni denotes the set of neighbors of the i-th CN, while Nj

denotes the set of neighbors of the j-th VN. For ease of
exposition, we assume that the Tanner graph is regular, i.e.,
all CNs have the same degree dc and all VNs have the same
degree dv . In the QLDPC decoding context, VNs correspond
to entries of the estimated error pattern e = (e1 e2 · · · en)
while CNs correspond to the entries of the syndrome vector
s = (s1 s2 · · · sm).

C. Syndrome-Based Min-Sum (SB-MS) Algorithm

The SB-MS algorithm is a low-complexity approximation
to BP which replaces the complex CN operation with a
simpler minimum operation [18]. Its operation is given in
Algorithm 1.

The SB-MS decoder seeks to find an error pattern ê that
matches the measured syndrome s. It does this by iteratively
exchanging messages between the VNs and CNs (lines 4
to 7), making hard decisions to produce an estimate of the
error vector ê (line 8), and generating the corresponding syn-
drome ŝ (line 9). The algorithm terminates when either this
syndrome matches the measured syndrome or the maximum
number of iterations I (MS)

max is reached.
Here ui,j represents the message from the i-th CN to the

j-th VN, and vi,j denotes the message sent from the j-th VN
to the i-th CN. The hard decision operation is defined as

HD(x) =

{
0 if x > 0,
1 otherwise.



and we also define the function

sgn(x) = 1− 2HD(x) =

{
1 if x > 0,
−1 otherwise.

λj = log
(

P (ej=0)
P (ej=1)

)
represents the a priori log-likelihood

ratio (LLR) of ej , while α is a scaling factor that accelerates
the convergence of the algorithm.

Algorithm 1: Syndrome-Based Min-Sum (SB-MS)
Algorithm

1: Input: syndrome s
2: Initialize parameters:

λj = ln
(

1−(2p/3)
2p/3

)
, ∀j ∈ {1, 2, . . . , n}

ui,j = 0, ∀(i, j) ∈ E
I = 0, ŝ = 0

3: while s ̸= ŝ and I ≤ I (MS)
max do

4: for all (i, j) ∈ E (in parallel) do

vi,j = λj + α
∑

i′∈Nj\{i}

ui′,j

5: end for
6: for all (i, j) ∈ E (in parallel) do

ui,j = sgn(si) ·
∏

j′∈Ni\{j}

sgn(vi,j′) · min
j′∈Ni\{j}

|vi,j′ |

7: end for
8: êj = HD(λj + α

∑
i∈Nj

ui,j), ∀j ∈ {1, 2, . . . , n}
9:

ŝ = êHT

10: I = I + 1
11: end while
12: return ê

In the case of certain QLDPC codes, the SB-MS decoder
is unable to improve the error rate of the qubits even as
the depolarizing error probability improves; this results in an
error floor. The presence of this error floor can be attributed to
the presence of short cycles within the code’s Tanner graph
which the SB-MS decoding algorithm struggles to handle.
These cycles lead to oscillations between different candidate
error vectors during the decoding process so that the SB-
MS decoder cannot converge to a unique error pattern that
matches the syndrome. In the next section, we propose an
approach to reduce or eliminate this error floor phenomenon.

III. PROPOSED METHOD

Linear programming based decoding, originally proposed
for classical LDPC codes in [14], relies on a linear program-
ming relaxation approach to achieve a high-performance de-
coding solution with theoretical guarantees on performance.
In [19], Vontobel and Koetter proposed low-complexity iter-
ative decoding algorithms that exploited the unique structure
of the linear program to be solved (in particular, exploiting
the sparsity of H). In the following, we propose an LP-based

decoder which is based on modifying Algorithm 1 in [19] to
align with the unique features and requirements of QLDPC
codes.

A. Proposed Syndrome-based Linear Programming (SB-LP)
Decoder

The details of the proposed SB-LP decoder are given
in Algorithm 2. This algorithm iteratively updates the es-
timated error vector ê, guided by the measured syndrome
s, until convergence is achieved or the maximum number
of iterations I (LP)

max has been reached. Unlike the SB-MS
decoder, the SB-LP decoder does not perform VN-to-CN
and CN-to-VN updates alternately; instead, it simultaneously
updates a single value ui,j for each edge (i, j) ∈ E (line 9).
This parallel update approach can significantly improve the
decoding speed. Also, α1 serves as a scaling factor designed
to expedite the algorithm’s convergence.

Algorithm 2: Proposed Syndrome-Based Linear Pro-
gramming (SB-LP) Algorithm

1: Input: syndrome s
2: Initialize parameters:

λj = ln
(

1−(2p/3)
2p/3

)
, ∀j ∈ {1, 2, . . . , n}

ui,j = 0, ∀(i, j) ∈ E
I = 0, ŝ = 0

3: while s ̸= ŝ and I ≤ I (LP)
max do

4: for all (i, j) ∈ E (in parallel) do
5:

Si,j = λj +
∑

i′∈Nj\{i}

ui′,j

6: if si = 0 then

T
(0)
i,j = max

b∈Bi,bj=0
ui,j b̃

T

j

T
(1)
i,j = max

b∈Bi,bj=1
ui,j b̃

T

j

7: else
T

(0)
i,j = max

c∈Ci,cj=0
ui,j c̃Tj

T
(1)
i,j = max

c∈Ci,cj=1
ui,j c̃Tj

8: end if
9: ui,j =

α1

2 (T
(0)
i,j − T

(1)
i,j − Si,j)

10: end for
11: êj = HD(λj +

∑
i′∈Nj

ui′,j), ∀j ∈ {1, 2, . . . , n}
12:

ŝ = êHT

13: I = I + 1
14: end while
15: return ê

In lines 6 and 7, Bi denotes the single parity-check code of
length dc consisting of all 2|dc|−1 binary sequences having
even parity, while Ci = {0, 1}|dc|\Bi represents the set of



all 2|dc|−1 binary sequences having odd parity (note that
these vectors are indexed by the set Ni). Also, b̃j and c̃j
correspond to the vectors b and c with the j-th element
removed, respectively. Also, we define the check-perspective
edge value vector ui,j = (ui,j′)j′∈Ni\{j}.

With respect to Algorithm 1 in [19], which was proposed
for decoding classical LDPC codes, we have introduced some
modifications that enable the algorithm to decode QLDPC
codes. First, we have modified the expressions for T

(0)
i,j and

T
(1)
i,j in lines 6 and 7, as they depend on the i-th syndrome

bit si; in classical coding, we always have si = 0, while
in QLDPC coding we may have si = 1 which necessitates
performing the corresponding minimization over the com-
plement Ci of the single parity check code Bi. Second, we
have replaced the “soft minimum” operator in [19] with the
minimum operator in order to reduce the complexity (this
was found to give negligible loss in performance). Finally, we
have replaced the successive edge value update rule in [19]
by a fully parallel update rule, and we have made some other
minor simplifications including removing the (unnecessary)
dual variables of the LP.

B. SB-LP as Post-Processing after SB-MS Decoding
We can further improve the error floor behavior while

reducing the overall decoding complexity by combining the
SB-MS and SB-LP decoders. Algorithm 3 describes our
proposed methodology for this. First, we note that the SB-
MS decoder exhibits an oscillatory behavior when it becomes
stuck in a trapping set of the QLDPC code [8]. In such
cases, the decoder is not able to identify an error pattern that
matches the measured syndrome, and hence the number of
unmatched syndrome elements begins to oscillate as it seeks
to converge to more than one error vector within the trapping
set. If this behavior can be identified automatically by the
decoding algorithm (through an appropriately designed early
stopping criterion, as described in Subsection III-C), the SB-
LP decoder can then be invoked to complete the decoding
successfully (as the SB-MS decoder alone will usually not
be capable of converging to a solution in such cases).

Moreover, to facilitate faster convergence of the iterative
SB-LP decoder, we take advantage of the calculations pro-
vided by the SB-MS decoder in the first stage. Specifically,
we use the a posteriori LLR values obtained after the SB-
MS decoder satisfies the proposed stopping criterion (these
are computed in line 8 of Algorithm 3 by adding the CN-
to-VN and VN-to-CN messages) as initial values for the
edge variables ūi,j of the SB-LP decoder. This provides an
improved initialization of the post-processing decoder.

The SB-MS decoder, which has a faster convergence than
SB-LP in general, allows the decoding process to reach a
good starting point, reducing considerably the number of
errors; if it encounters issues during this process (as detected
by the early stopping criterion), the SB-LP decoder is then
invoked to remove the small set of residual errors, which are
linked to trapping sets.

Fig. 1. Evolution of the number of unmatched syndrome elements with
successive decoding iterations for a sample error vector. Plots are shown
for the SB-MS (blue) and SB-LP (red) decoders for the [[882, 24]] QLDPC
code B1 from [11].

Algorithm 3: Combined SB-MS + SB-LP Decoding
Algorithm

1: Input: syndrome s
2: Initialize parameters:

λj = ln
(

1−(2p/3)
2p/3

)
, ∀j ∈ {1, 2, . . . , n}

ui,j = 0, ∀(i, j) ∈ E
I = 0, ŝ = 0

3: do
4: ŝpre = ŝ
5: Execute lines (4-11) of Algorithm 1
6: I = I + 1
7: while dH(ŝpre, ŝ) > dv and I ≤ I (MS)

max
8: ui,j = ui,j + vi,j , ∀(i, j) ∈ E
9: I = 0

10: Execute lines (3-15) of Algorithm 2

C. Early Stopping Criterion for the SB-MS Decoder

As explained in the previous subsection, an appropriately
designed early stopping criterion can reduce the number of
decoding iterations by exiting the SB-MS decoder when it
becomes trapped and at the same time provide an improved
initialization to the SB-LP decoder. Fig. 1 shows an example
of the evolution of the number of unmatched syndrome
elements during SB-MS decoding in the case where the
decoder becomes stuck in a trapping set. An oscillatory
pattern is observed, indicating that the SB-MS decoder is
unable to converge to an error pattern that matches the
measured syndrome. In contrast, the proposed SB-LP decoder
can converge in such cases; however, a high number of
iterations is required.

From Fig. 1 we can conclude that operating the SB-MS
decoder for a fixed number of iterations is not an efficient



Fig. 2. Performance of the SB-MS decoder, the SB-LP decoder, and the
combined SB-MS and SB-LP decoder with and without early stopping
criterion, for the [[882, 24]] QLDPC code B1 from [11].

approach; instead, the SB-MS decoding procedure should
terminate when such oscillatory behavior is detected. In
Algorithm 3, we terminate the SB-MS decoding when the
Hamming distance dH(ŝ, ŝpre) between the current syndrome
estimate ŝ and the previous syndrome estimate ŝpre is less
than or equal to the VN degree dv; this approach was found
to be more robust that attempting to locate the first local min-
imum of the number of unmatched syndrome elements. By
providing the SB-LP decoder with an improved initialization,
this early stopping criterion leads to fewer required decoding
iterations while also improving the logical error rate.

It is worth mentioning that this early stopping criterion
can be applied when using SB-MS in conjunction with any
other post-processing technique, such as OSD or stabilizer
inactivation, to activate the post-processing exactly when
required and reduce the total number of decoding iterations.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the simulated performance of
the proposed SB-LP decoder with that of SB-MS, and we also
evaluate the performance of the combined SB-MS and SB-
LP decoders. Simulations are performed for the [[882, 24]]
QLDPC code designated as code B1 in [11] (similar results
were found for the [[1922, 50]] QLDPC code C2 in [11]; these
are omitted due to space limitations). The correction of bit-
flip (Pauli X) errors is considered under the i.i.d. symmetric
depolarizing noise model.

Fig. 2 shows the performance curves for the different de-
coders, with a maximum number of iterations I (MS)

max = I (LP)
max =

100 for the SB-MS and SB-LP algorithms respectively; the
corresponding scaling factors are α = 0.75 and α1 = 0.9. For
the case where the SB-MS and SB-LP decoders are combined
(Algorithm 3), the first decoder has I (MS)

max = 25 iterations
while the second decoder is configured with I (LP)

max = 75. For
each point in the figure, 10, 000 logical errors were simulated
in order to ensure that the results are statistically significant.

Fig. 3. Convergence behavior of the combined SB-MS and SB-LP decoder,
with and without early stopping criterion, for the same sample error vector
as in Fig.1.

Fig. 4. Average number of iterations for the SB-MS decoder, the SB-LP
decoder, and the combined SB-MS and SB-LP decoder with and without
early stopping criterion, for the [[882, 24]] QLDPC code B1 from [11].

The results reveal that the SB-MS decoder introduces an
error floor at a logical error of 10−2, and is significantly
outperformed by the proposed SB-LP decoder. While the SB-
LP decoder exhibits a worse threshold behavior, it improves
the logical error rate for any depolarizing error probability
lower than 0.07, providing almost two orders of magnitude
of improvement in the logical error rate at a depolarizing
error probability of 0.04.

The figure also shows the performance of the combination
of the SB-MS and SB-LP algorithms, both with and with-
out the early stopping criterion for SB-MS. Both solutions
achieve a good logical error rate for high depolarizing error
probabilities (greater than 0.06), but without the application
of the early stopping criterion an error floor is introduced
due to the poorer quality of the information passed by the
SB-MS decoder to the SB-LP decoder.



Fig. 3 illustrates the effect of the early stopping criterion
on the result achieved by the SB-MS algorithm. In the case
where the early stopping criterion is not employed (dashed
line), the SB-MS algorithm will stop when it reaches the
maximum number of iterations, while in the case of early
stopping (solid line) it can be observed that the SB-MS
algorithm will stop near the first local minimum of the
number of unmatched syndrome elements.

Note that, even if the SB-MS decoder is halted after a fixed
number of iterations (25 in this example), convergence of the
subsequent SB-LP algorithm can still be achieved. However,
this comes at the cost of a high overall number of iterations
(36 in this example); in particular, a high number of SB-
LP decoder iterations is required because the initialization
provided by the SB-MS algorithm is far from optimal. These
additional iterations can be sufficient to prevent the decoder’s
convergence in some cases, introducing the undesirable error
floor in Fig. 2. On the other hand, for the same error pattern,
employing the early stopping criterion in SB-MS avoids the
subsequent oscillations, reducing the number of iterations and
providing the SB-LP decoder with a better initialization. For
this example, only 7 SB-MS iterations are required to meet
the stopping criterion, followed by 4 further iterations of the
proposed SB-LP decoder.

Fig. 4 shows the average total number of iterations as
a function of the depolarizing error probability p. It can
be observed that the average number of iterations of the
proposed combined SB-MS and SB-LP with early stopping
criterion is always lower than that obtained with SB-MS or
SB-LP alone. From the figure, two important conclusions
can be drawn. The first is that for high values of depolarizing
error probability, the combined SB-MS and SB-LP with early
stopping criterion requires a significantly lower number of
iterations for convergence than that of the SB-MS or SB-LP
decoder alone (note that at these values of p, this combined
decoder also provides the best logical error rate, as shown in
Fig. 2). The second is that for low values of the depolarizing
error probability, while there is not a substantial difference
in the total number of iterations of the different decoders,
the logical error rate of the combined decoder with early
stopping criterion sees a significant improvement as shown
in Fig. 2; while approximately 10 iterations are required for
all three decoders, the combined decoder provides more than
three orders of magnitude improvement in the logical error
rate at p = 0.04.

V. CONCLUSION

We have proposed a novel low-complexity syndrome-
based decoder for QLDPC codes based on linear program-
ming, which can be used either as a standalone decoder or
as a post-processing decoding step for SB-MS decoding.
We also proposed an early stopping criterion for the SB-
MS decoder based on the syndrome Hamming distance that
judiciously triggers the transition between the two decoding
algorithms. The proposed approach was shown to be capable

of providing a significant improvement in the logical error
rate performance as well as reducing the total number of
decoding iterations.
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based Min-sum vs OSD-0 decoders: FPGA Implementation and Anal-
ysis for Quantum LDPC codes,” IEEE Access, vol. 9, pp. 138 734–
138 743, 2021.

[13] J. Du Crest, M. Mhalla, and V. Savin, “Stabilizer inactivation for
message-passing decoding of quantum LDPC codes,” in 2022 IEEE
Information Theory Workshop (ITW). IEEE, 2022, pp. 488–493.

[14] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear
programming to decode binary linear codes,” IEEE Transactions on
Information Theory, vol. 51, no. 3, pp. 954–972, 2005.

[15] J. X. Li and P. O. Vontobel, “LP decoding of quantum stabilizer codes,”
in 2018 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2018, pp. 1306–1310.

[16] O. Fawzi, L. Grouès, and A. Leverrier, “Linear programming decoder
for hypergraph product quantum codes,” in 2020 IEEE Information
Theory Workshop (ITW). IEEE, 2021, pp. 1–5.

[17] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[18] M. P. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Transactions on communications, vol. 47, no. 5,
pp. 673–680, 1999.

[19] P. O. Vontobel and R. Koetter, “Towards Low-Complexity Linear-
Programming Decoding,” in 4th International Symposium on Turbo
Codes & Related Topics; 6th International ITG-Conference on Source
and Channel Coding, 2006, pp. 1–9.


	INTRODUCTION
	Background
	Quantum Noise Model
	Tanner Graph
	Syndrome-Based Min-Sum (SB-MS) Algorithm

	Proposed Method
	Proposed Syndrome-based Linear Programming (SB-LP) Decoder
	SB-LP as Post-Processing after SB-MS Decoding
	Early Stopping Criterion for the SB-MS Decoder

	Simulation Results and Discussion
	Conclusion
	References

