
Academic Editor: Jun Chen

Received: 9 December 2024

Revised: 3 January 2025

Accepted: 5 January 2025

Published: 9 January 2025

Citation: Milojković, J.; Brkić, S.;

Ivaniš, P.; Vasić, B. Generalized

Adaptive Diversity Gradient Descent

Bit-Flipping with a Finite State

Machine. Entropy 2025, 27, 49.

https://doi.org/10.3390/

e27010049

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Generalized Adaptive Diversity Gradient Descent Bit-Flipping
with a Finite State Machine
Jovan Milojković 1 , Srdjan Brkić 2 , Predrag Ivaniš 1,* and Bane Vasić 3

1 School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia;
mj205018p@student.etf.bg.ac.rs

2 Tannera Technologies LLC, Veljka Dugosevica 54, 11000 Belgrade, Serbia; srdjan@tannera.io
3 Department of ECE, University of Arizona, Tucson, AZ 85721, USA; vasic@ece.arizona.edu
* Correspondence: predrag.ivanis@etf.bg.ac.rs

Abstract: In this paper, we introduce a novel gradient descent bit-flipping algorithm with
a finite state machine (GDBF-wSM) for iterative decoding of low-density parity-check
(LDPC) codes. The algorithm utilizes a finite state machine to update variable node
potentials—for each variable node, the corresponding finite state machine adjusts the
update value based on whether the node was a candidate for flipping in previous iterations.
We also present a learnable framework that can optimize decoder parameters using a
database of uncorrectable error patterns. The performance of the proposed algorithm is
illustrated for various regular LDPC codes, both in a binary symmetric channel (BSC) and
the channel with additive white Gaussian noise (AWGN). The numerical results indicate a
performance improvement when comparing our algorithm to previously proposed GDBF-
based approaches.

Keywords: bit-flipping algorithm; gradient descent; iterative decoding; low-density parity-
check codes; momentum; finite state machine

1. Introduction
In contemporary communication systems, fast and reliable transmission of information

is usually provided by using error correction codes [1]. Low-density parity-check (LDPC)
codes [2] can achieve performance close to the Shannon limit, and it is known that the
codes can be efficiently decoded, in time linear in their block length [3]. Therefore, these
codes have been adopted in recent communication standards: the fifth generation standard
for broadband cellular networks (5G NR) uses LDPC codes for the data channels [4], and in
digital video broadcasting standards for satellite communications (DVB-S2 and DVB-S2X),
these codes are used in combination with Bose–Chaudhuri–Hocquenghem (BCH) codes [5].
They are also a mandatory part of Wi-Fi 6 (IEEE 802.11ax) [6]. In addition, these codes are
applied for reliable data storage in solid-state drives (SSDs) [7].

There are various types of decoders for LDPC codes, but the most well known are
message-passing (MP) decoders and bit-flipping (BF) decoders. MP decoders operate on a
bipartite graph [8], with the structure determined by the parity-check matrix. The bipartite
graph consists of two types of graph nodes: variable nodes (VNs) and check nodes (CNs),
and a set of edges between them. In the MP paradigm, messages are sent from VNs to the
neighbor CNs in one iteration, and vice versa. One of the MP principle’s most well-known
algorithms is the Belief Propagation (BP) algorithm [9]. The BP algorithm was introduced
on a structure called a tree, but it was later discovered that it can also be used on graphs
with cycles. Although the BP decoder has one of the best performances, its hardware

Entropy 2025, 27, 49 https://doi.org/10.3390/e27010049

https://doi.org/10.3390/e27010049
https://doi.org/10.3390/e27010049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0008-7555-3896
https://orcid.org/0000-0002-9815-0650
https://orcid.org/0000-0003-4565-1141
https://orcid.org/0000-0003-2365-4106
https://doi.org/10.3390/e27010049
https://www.mdpi.com/article/10.3390/e27010049?type=check_update&version=1

Entropy 2025, 27, 49 2 of 26

implementation is expensive. There are more cost-efficient algorithms that are also in the
MP paradigm, with inferior performance when compared to the BP but which are more
implementation friendly, such as the min-sum (MS) algorithm [10]. It is well known that
BP executes well on codes with long code lengths, while on shorter codes, its performance
is lacking. The performance of BP is mostly limited by the presence of trapping sets (TSs),
i.e., structures in the bipartite graph that prevent successful decoding. Recently, the Finite
Alphabet Iterative Decoders (FAIDs) [11,12] algorithm was proposed to minimize the effect
of TSs, which resulted in improved performance in the error floor region.

On the other hand, the original BF algorithm, introduced by Gallager [2], had very
poor performance, but it is a fast algorithm with low complexity. In each iteration of this
algorithm, the number of unsatisfied parity checks is calculated for every VN, compared to
a threshold, and the most critical VNs are flipped. This means that this algorithm is more
efficient for implementation, at the price of its performance capabilities. There are several
modifications of the BF algorithm that improve performance compared to the original
BF algorithm, with a small increase in complexity [13,14]. Wadayama et al. [15] applied
the gradient descent method to improve the performance of the bit-flipping algorithm.
The resulting algorithm is known as gradient descent bit-flipping (GDBF).

In this paper, we propose a new GDBF algorithm that is effective in the presence of TSs.
For short LDPC codes, we show that the concatenation of these decoders outperforms the BP
algorithm for a reasonable number of decoding iterations. This effect will be demonstrated
for the various lengths of codewords and the most important types of channels.

1.1. Related Works

Since the original GDBF algorithm [15] was presented, various modifications and
improvements of this algorithm have been proposed. In all of them, a nonlinear energy
function is defined for every VN in every iteration based on the received word from the
channel, the current codeword estimate, and the number of unsatisfied parity checks for
that VN. Only the nodes with the values of the objective function that are higher than the
predefined threshold are highlighted and potentially flipped in the corresponding iteration.

In [16], the authors add a new factor to the energy function based on current noise
power. This also solves the problem of TSs and introduces a random factor to the algorithm.
Another way of introducing randomness into the algorithm is as in [17] where the energy
function is not changed (it is only adapted for the binary symmetric channel), but rather,
highlighted VNs have some probability of flipping their value. This algorithm is called the
probabilistic gradient descent bit-flipping (PGDBF) algorithm.

In [18], information about the previous flipping activity of variable nodes was taken
into account in the decision process. Namely, if a VN was flipped in the past iteration, it
would not be flipped in the current iteration. In addition, randomness is incorporated into
the energy function to highlight the VNs that will be flipped. In [19], the Tabu-List random-
penalty GDBF (TRGDBF) algorithm is proposed, where the idea from [18] is combined with
a random penalty added to the energy function.

Furthermore, thresholds can be set to provide a flipping of the multiple bits in one
iteration. This speeds up the convergence of the algorithm, but there is a possibility that
the algorithm may never find a local maximum of the energy function. The information
storage bit-flipping (ISBF) [20] combines the basic idea from [19] with adaptive thresholds.
In [21], the thresholds change in order of some logic. In [22], the several sets of VNs all
have different probability factors for their flipping. In [23], the VNs are grouped into sets
depending on their degree, providing the modification suitable for the irregular codes.
In [24], energy functions based on previous energy values of the VN are considered. Here,

Entropy 2025, 27, 49 3 of 26

the authors use different weights in the energy function to achieve better results. Different
energy functions are also implemented in [25].

In [26], GDBF with momentum (GDBFwM) was introduced, adding a new factor to
the energy function. The new factor, named momentum, is used to overcome the problem
of TSs by using the previous history of highlighted VNs and removing a predefined chunk
of value from their energy function. Moreover, this algorithm supports various values for
the threshold that can be used to speed up the convergence. Combining GDBFwM with the
basic concept of PGDBF, i.e., flipping the highlighted VNs with some probability, resulted
in the PGDBFwM algorithm, also presented in [26]. It has been shown that PGDBFwM has
superior performance in the error floor region.

The performance of the GDBF-based algorithm that incorporates the randomness in the
decision process can be further improved by using random re-initializations [27]. Combined
with further modifications, this approach has the potential to approach the maximum
likelihood bound after a large number of iterations [28]. However, the complexity of the
probabilistic algorithms is increased as every VN needs an independent random number
generator. From the point of hardware implementation, this approach is cost-inefficient.

Therefore, there is a need for an algorithm that could improve the error performance
without using any random sequences. The authors in [29] observe that the TSs produce
loops in decoding and overcome the problem by using a history of decoded codewords
and applying a different algorithm if the loop is detected. Another approach was proposed
in [30], where the concept of re-initialization is combined with the information about
flipping history, as well as the information about the neighbor nodes. The number of
satisfied and unsatisfied checks that connect a suspicious node with other suspicious
variable nodes is determined in the first phase. This way, during the course of iteration,
such suspicious bits are “distilled” before the final flipping decision. This algorithm is
called the Suspicion Distillation Gradient Descent Bit-Flipping (SDGDBF) algorithm.

The idea of concatenating various GDBFwM decoders was proposed in our paper [31].
In the resulting algorithm, named adaptive diversity gradient descent bit-flipping with
momentum (AD-GDBFwM), several decoders work in synergy. The value of a restart flag
determines whether the input of the next decoder is taken from the output of the previous
decoder or the received word from the channel.

In our recent conference paper [32], we showed that the concept from [31] can also
be applied to decoding BCH codes. In that paper, we also defined a general concept
of potential as the information from the channel that can be used to make more subtle
decisions. Basically, the potential is leaned to one side or another regarding highlighting a
bit. The resulting algorithm capable of decoding any irregular block code is generalized
adaptive diversity gradient descent bit flipping with momentum (gAD-GDBFwM).

1.2. Summary and Organization

The solution proposed in this paper contains two components. The first component
is a decoding synergy, inspired by [31], where multiple decoders are concatenated in
a chain, with the output of one decoder serving as the input for the next. In this way,
the decoders with different configuration parameters all work in synergy to produce
the decoded codeword. The second component is a variable node potential derived
from [32], where potentials are formally introduced concerning BCH codes. In addition,
both papers [31,32] incorporate the concept of momentum presented in [26].

The contributions of this study are articulated as follows:

• We propose a finite state machine for updates of potential, which defines which update
values should be used based on the previous highlighting activity of the VN. A VN is
assumed to be highlighted if its energy function in the current iteration is higher than

Entropy 2025, 27, 49 4 of 26

the predefined threshold. In contrast to the idea presented in Paper [32], the potentials
are no longer dependent on iteration but the state of a finite state machine.

• For the proposed algorithm, we present the numerical results for regular LDPC codes,
both on the AWGN channel and on the BSC. In [31], the authors presented numerical
results for the LDPC codes and the BSC, but the concept of potential was not used in
that paper. In [32], numerical results for the simplified algorithm that uses the concept
of potential for the BCH codes and the AWGN channel were presented. In that paper,
no finite state machine was used to determine the update of potential.

• A new rule that helps in the decoding process of the BSC is introduced. This rule is
called the θ rule and it helps the algorithm to overcome the problem related to the
formal definition of the sign function. The importance of this rule will be shown later.

The rest of the paper is organized as follows. In Section 2, the system and channel
model are presented, and the list of used symbols is given in Table 1. The LDPC codes
are formally introduced, and the GDBF algorithm for iterative decoding is also presented
in this section. In Section 3, we propose the algorithm that one component decoder runs,
a finite state machine for the update of the potential is defined, a typical trapping set for
the GDBF algorithm is depicted, and it is shown how GDBF with a finite state machine can
correct it. Furthermore, the concatenation of the decoders is presented, and the learnable
framework is explained in detail. The numerical results for three regular LDPC codes are
presented and discussed in Section 4. In the last section, the concluding remarks are given.

Table 1. Table of used symbols and their meaning.

Symbol Meaning

n codeword length
k number of information bits
R code rate

Hm×n parity-check matrix
hj,i element of a parity-check matrix
vi variable node associated to i-th column
cj parity-check equation related to the j-th row

P(vi) set of indices for vi
Q(cj) set of indices for cj

γ regular LDPC code, degree of vi
ρ regular LDPC code, degree of cj
x transmitted codeword
y received codeword
x̂ estimated codeword

Lmax,t maximum no. iterations for t-th decoder
Lmax maximum no. iterations for chained decoder
r(t)f lag

restart flag of the t-th decoder

E(ℓ)
i

Energy function for i-th VN in the ℓ-th iteration
w1, w2 learnable weights

mµi value of momentum for variable i
µi momentum state of the i-th variable
m momentum vector
L′ number of values in momentum vector
I maximum value in momentum vector

F (ℓ) set of highlighted variables in ℓ-th iteration
δ margin (threshold) parameter

r(ℓ)i
potential for variable vi in ℓ-th iteration

θ value for θ rule

Entropy 2025, 27, 49 5 of 26

Table 1. Cont.

Symbol Meaning

r(t)in
vector of potentials for t-th decoder

µ
(t)
in

vector of momentum states for t-th decoder

P(t)
in

vector of states for finite state machine
S finite state machine
S state in the finite state machine
s value of state in the finite state machine

S+ set of + states in the finite state machine
η number of states in S+

S− set of − states in the finite state machine
ζ number of states in S−
S0 neutral state

Sstart starting state
St function which converts finite state machines

2. Preliminaries
Let (n, k) be an LDPC code with a code length n and k information bits, where R = k/n

is the code rate. Let Hm×n be the parity-check matrix of a code. The elements of the matrix
H are denoted by hj,i, where j is the row index, and i is the column index. The variable
which is connected to the i-th column of a parity-check matrix is denoted by vi. The parity-
check equation related to the j-th row of the parity-check matrix is denoted by cj. Let P(vi)

be the set of indices that shows where variable vi is in which check equation, i.e., P(vi) =

{x|hx,i = 1}. Furthermore, let Q(cj) define a set of indices that shows which variables
vi are related to the parity-check equation cj, that is, Q(cj) = {x|hj,x = 1}. With | ∗ |, let
us define the cardinality of a set. The degree of a variable vi is |P(vi)|, and the degree of
a parity-check equation cj is |Q(cj)|. If |P(vi)| = γ, ∀i and |Q(cj)| = ρ, ∀j, then we have
(γ, ρ) as a regular LDPC code. In this paper, we will observe regular LDPC codes.

In this paper, a bipolar representation of the codewords will be used. This means that
the encoder output is {−1,+1}, so a transmitted codeword is x = (x1, x2, . . . , xN) where
xi ∈ {±1}. In this paper, we will analyze the transmission through two types of channels:

• If the AWGN channel is used, at the output of the channel the vector y =

(y1, y2, . . . , yN), y ∈ RN is received. The channel quality is determined by the re-
ceived signal-to-noise ratio (SNR).

• If the BSC is used, at the output of the channel the vector y = (y1, y2, . . . , yN), where
yi ∈ {±1}. This can be considered as the special case of the AWGN channel, where a
hard decision is applied prior to the decoding. The channel quality is determined by
the crossover probability, denoted by α.

The original GDBF algorithm, as defined in [15], steams to maximize the objective
function, defined as

f (x̂) =
N

∑
i=1

x̂iyi +
M

∑
j=1

∏
i∈Q(cj)

x̂i, (1)

where x̂ denotes the estimated codeword in the decoder. In the above expression, the first
term represents the correlation between the received codeword and the potential solution,
while the second term represents how many check equations are satisfied. The second
term has its maximum value only if all the check equations are satisfied and have a penalty
factor in Equation (1).

Entropy 2025, 27, 49 6 of 26

All BF-based iterative decoding algorithms use the same framework, i.e., they calculate
the local energies of all variables with the inversion function in every particular iteration.
The variables with minimum energy are highlighted, and some of the highlighted variables
are flipped to create the updated estimation of the codeword. The decoding is terminated if
all parity checks are satisfied, or if the maximum allowed number of iterations is reached.

The inversion function for the GDBF algorithm in the l-th iteration is defined as [15]

E(ℓ)
i = yi x̂

(ℓ−1)
i + ∑

j∈P(vi)
∏

o∈Q(cj)

x̂(ℓ−1)
o . (2)

The improvements of the GDBF algorithms were mostly related to the method selection
of the highlighted variables, which should be flipped in a certain iteration. In the PGDBF
algorithm, proposed in [17], the variable bits that should be flipped are chosen randomly
from the set of highlighted variables. In the TRGDBF algorithm, the variables flipped in the
previous iteration are not flipped, although they belong to the set of highlighted variables.
The GDBFwM algorithm extends the effect of memory in variable nodes, and the variables
that were flipped in the recent iteration are unstimulated to be flipped in the following
iterations. The other recent papers combined these approaches with re-initializations and
concatenation of the component decoders [27,30,31].

3. Framework
We assume that full decoder gAD-GDBFwM-wSM consists of T decoders in the chain,

and the maximum allowed number of iterations for the decoding is Lmax = ∑t=1...T Lmax,t,
where Lmax,t denotes the number of iterations of the t-th decoder that will run the algorithm.
Based on the flag restart value of the t-th decoder, denoted as r(t)f lag, the inputs of the
corresponding component decoder will be determined.

In the next subsections, the algorithm applied to every component decoder will be
explained, the method of concatenation of the component decoders will be described,
and the applied learning method for optimizing the decoder parameters will be presented.

3.1. Description of One Component Decoder

In a component decoder, the energy function for the i-th variable bit in the l-th iteration
is defined as

E(ℓ)
i = w1yi x̂

(ℓ−1)
i + w2 ∑

j∈P(vi)
∏

o∈Q(cj)

x̂(ℓ−1)
o + mµi . (3)

where w1 and w2 are learnable weights that have the same value for all variable bits (for the
regular codes; there is no need to specify separate values for various variables, as shown
in [31]).

Factor mµi represents the momentum of the decoder, where µi represents the momen-
tum state of the i-th variable. Momentum can take any value from positive integers, that is,
mµi ∈ {0, 1, . . . , I}, I ∈ N+, and the momentum vector looks like m = (m1, m2, . . . , mL′ , 0),
where m1 ≥ m2 ≥ m3 . . . ≥ mL′ ≥ 0. The value for µi is calculated based on the past
highlighting activity of the variable vi; if the last time a variable vi was highlighted at q-th
iteration, then

µi = min(ℓ− q, L′ + 1). (4)

Let µ = (µi), where µ is a vector of all values of µi. We will refer to µ as the state
of momentum.

Entropy 2025, 27, 49 7 of 26

The set of highlighted variables is given as

F (ℓ) = {vi|E
(ℓ)
i ≤ E(ℓ)

min + δ}, (5)

where

E(ℓ)
min = min

i=1,2...n
(E(ℓ)

i), (6)

denotes minimum energy in the ℓ-th iteration, and δ ≥ 0 represents the margin (threshold)
that enables the highlighting of multiple bits.

Now, the potential of the variable vi is updated with the following rule

r(ℓ+1)
i = r(ℓ)i + sign(r(ℓ)i) ∗ svi , (7)

where svi is the updating value that corresponds to the state of the variable vi, as defined in

the next subsection. Here, r(ℓ)i represents the value of the potential for the i-th variable in
the ℓ-th iteration.

Note that in Equation (7), especially in the case where the BSC is used, the potential
may be equal to zero, that is, r(ℓ+1)

i = 0 . In such a case, a θ rule should be applied. A θ

rule is a rule in which if the potential was pushed from one side to another, and its potential
is equal to zero, then we add θ, a small number, to the side we are already pushing.

Formally speaking, θ rule can be represented as

(r(ℓ+1)
i = 0) ⇒ (r(ℓ+1)

i = −sign(r(ℓ)i)θ). (8)

After the potential is updated, the estimated codeword for the next iteration can be
updated as

x̂(ℓ+1)
i = sign(r(ℓ+1)

i), (9)

where x̂(ℓ)i represents the hard decision of the i-th bit of the codeword for the ℓ-th iteration,

while r(ℓ)i represents the potential (i.e., soft decision of the codeword). It can be seen here
that even though a variable is highlighted, its potential will change, but its hard decision
may stay the same.

Therefore, we can summarize that the input parameters of the t-th component decoder
are the received codeword y, the initial vector of potentials r(t)in , the momentum states

µ
(t)
in , and the potential states P(t)

in . The finite state machine is used to update the potential

states P(t)
in , as will be described in the next subsection. At this point, we can present an

algorithm that a single decoder executes (specified in Algorithm 1), as well as a method for
concatenation of decoders.

Entropy 2025, 27, 49 8 of 26

Algorithm 1 gAD-GDBFwM with Finite State Machine in one component decoder

Input: y = (yi, y2, . . . , yN) ∈ RN , r(t)in , µ
(t)
in , P(t)

in , δ

Output: x̂ = (x̂(ℓ)1 , x̂(ℓ)2 , . . . , x̂(ℓ)N) ∈ {±1}N , r(t)out, µ
(t)
out, P(t)

out

Initialization: ℓ = 1, r(1) = r(t)in , µ = µ
(t)
in , P = P(t)

in

x̂(1)i = sign(r(1)i), i = 1, 2, . . . , N

s(1)j = ∏i∈Q(cj)
x̂(1)i , j = 1, 2, . . . , M

while (ℓ ≤ Lmax,t) or (s(ℓ)j = 1, ∀j) do

E(ℓ)
min = +∞

for i = 1, . . . , N do
E(ℓ)

i = w(ℓ)
1 yi x̂

(ℓ)
i + w(ℓ)

2 ∑j∈P(vi)
s(ℓ)j + mµi

E(ℓ)
min = min{E(ℓ)

min, E(ℓ)
i }

end for
F (ℓ) = {vi|Ei ≤ Emin + δ}
update µ accordingly to F (ℓ)

update P accordingly to F (ℓ) and state machine
r(ℓ+1)

i = r(ℓ)i + svi sign(r(ℓ)i), i = 1, 2, . . . , N

apply rule θ if necessary and update r(ℓ+1)
i , i = 1, 2, . . . , N

x̂(ℓ+1)
i = sign(r(ℓ+1)

i), i = 1, 2, . . . , N

s(ℓ+1)
j = ∏i∈Q(cj)

x̂(ℓ+1)
i , j = 1, 2, . . . , M

ℓ = ℓ+ 1
end while
r(t)out = r(ℓ), µ

(t)
out = µ, P(t)

out = P

3.2. Description of the Finite State Machine

We now introduce the finite state machine S that will be used to update the potentials.
Each state S in S consists of an update value that corresponds to the state, denoted by s.
Among |S| states, there are three subsets of states: plus states S+ = {S+,1, S+,2 . . . S+,η},
minus states S− = {S−,1, S−,2 . . . S−,ζ}, and there is a neutral state S0. The subset S+ has
all update values s+ ≥ 0; the values in states S− have update values of s− < 0 and s0 = 0.
The starting state of a decoder, denoted by Sstart, can be any state in S.

The transitions between states are triggered by the event of highlighting the variables.
When the variable is highlighted, it is a candidate for flipping and its potential should be
pushed toward the opposite direction than its current value of potential, which means
that some state of S− should be chosen during the update procedure. If the variable is not
highlighted, then some state from the set {S+ ∪ S0} should be chosen. If η = 0, then if the
variable is not highlighted, it should go to the state S0. Here, it should be noted that ζ > 0
because if ζ = 0, the variable will never be flipped. If the variable in S0 is highlighted, then
it should go to a state in set S− and if not, it remains in the state S0. In Figure 1, the full line
represents the transition between states when the variable is highlighted, and the dashed
lines represent the transition when the variable is not highlighted.

Entropy 2025, 27, 49 9 of 26

Figure 1. Finite state machine used to update the potentials. The circles represent the states, while
the arrows represent a transition between them. The full lines represent transitions when the variable
is highlighted, while the dashed lines represent transitions when the variable is not highlighted.

In Figure 1, the more the variable goes to the left states, the more uncertain that
variable is. Therefore, moving in the direction from S0 towards S−,ζ corresponds to a
Hesitation phase, where uncertainty gets higher. In contrast to this concept, there is a
direction of Determination, where certainty gets higher. If the variable is not highlighted,
it is not a candidate for flipping in that iteration, and its potential value should remain
the same sign. If the variable is not highlighted in a few subsequent iterations, the more
certain the variable is, the more its potential needs to be pushed in the same direction.
After η consecutive iterations without highlighting, the variable enters the state S0 where
no further updates are necessary until the next highlighting of the variable. The transitions
between states can be configured differently, but it is important to follow the general rules
given above. As explained in Algorithm 1, the variable should be flipped at the moment
when the sign of its potential is changed.

3.3. Finite State Machine and Trapping Set Example

In this section, it will be shown how an error pattern that is uncorrectable by using
GDBF can be corrected by using GDBF with the finite state machine. This TS, obtained at
the output of the BSC, is given in Figure 2. The correct VNs are represented with white
circles, while erroneous VNs are represented with gray circles. Satisfied parity checks are
represented by white squares, while unsatisfied parity checks are represented by using
gray squares.

In the first iteration, the GDBF algorithm flips all highlighted VNs (v11, v24, v37, v89, v97,
v113, and v147). In the second iteration, the GDBF algorithm will highlight v24, v97, and v113.
After those variable bits are flipped in the GDBF algorithm, in the third iteration, the GDBF
algorithm highlights v11, v24, and v89 and flips them. After this iteration, the decoding
problem will occur; that is, the GDBF algorithm will now only flip nodes v24 and v110 in
each subsequent iteration and will never stop flipping these variable nodes.

Figure 2. An example of a trapping set. Here the circles represent the variable nodes. The first number
in the circle represents the VN number, the second number represents the value of the potential, and,
finally, the state for that variable is presented.

Entropy 2025, 27, 49 10 of 26

Therefore, the GDBF algorithm with a finite state machine and with learnable weights
will be used. It will be shown that only the finite state machine with learnable weights w1

and w2 without momentum can correct the given TS. In the case of the BSC, the received
word is y = (y1, y2, . . . , yN), where yi ∈ {±1}. The initial value of the potential is ri = yi.
In this example, we assume the values w1 = w2 = 3.2, and the finite state machine has
|S| = 5 states: the neutral state S0, η = 2 plus states S+ = {S+,1, S+,2}, and ζ = 2 minus
states S− = {S−,1, S−,2}, as illustrated in Figure 3. It is assumed that the starting state for
the finite state machine is S+,1, and all variable nodes will be in that state with potential

r(1)i = 1 at the start of the decoding process. In Figure 2, for every variable node, we wrote:
the VN number, the current state, and the corresponding value of the potential.

Figure 3. The finite state machine for the example used in Figure 2.

As the decoded codeword x̂(1)i = sign(r(1)i) has unsatisfied checks, the potentials of
the variables are updated according to the finite state machine.

• If the variable is not highlighted in the first iteration, it will reach the state S+,2,
according to the diagram shown in Figure 3 following the dashed lines. The updated
potentials for these VNs are r(2)86 = −1.1, r(2)99 = 1.1, r(2)110 = 1.1, and r(2)153 = 1.1.

• If the VN is highlighted in the first decoding iteration, then it will go from the state S+,1

to the state S−,1, according to the diagram shown in Figure 3 following the full lines.

The corresponding update is −1sign(r(1)i), and therefore, r(2)i = 0 for all highlighted
VNs. In this case, the θ rule has to be applied to enable a correct codeword estimation.
As an example, if the potential for the variable node v113 after the update would be
equal to r(2)113 = 0, it is not clear how to calculate x̂(2)113. When this scenario occurs,
the parameter θ is used to push it a bit more to the opposite side when compared to
the potential from the previous iteration, and the potential will be equal to r(1)113 = +θ.
The modification according to the θ rule is denoted as 0 → ±θ in Figure 4. We set
the value θ = 0.1 in this example, and therefore r(2)11 = −0.1, r(2)24 = −0.1, r(2)37 = 0.1,

r(2)89 = −0.1, r(2)97 = 0.1, r(2)113 = 0.1, and r(2)147 = 0.1.

After the first iteration, all highlighted bits are flipped, and the estimated codeword
is presented in Figure 4, for ℓ = 2. We emphasize that the same codeword estimation
is obtained for the case when the original GDBF algorithm is applied. However, in our
algorithm, the real-valued potential is assigned for every VN, and it can be used to obtain
more reliable decisions in the next iterations.

In the second iteration, the highlighted VNs are v24, v97, and v113, and Equation (7)
was applied to all VNs to update the corresponding values of potential. The VNs that are
not highlighted in this iteration can be divided into two groups: one that reaches the state
S+,1 and the other group of VNs that reaches the state S0, but in both cases, there is no
update of the potential. The next state for all highlighted VNs will be S−,2, with the update
of potential equal to s−,2 = −0.7. Therefore, we finally obtain r(3)24 = −0.6, r(3)97 = −0.6,

and r(3)113 = −0.6, and these bits are flipped again in the second iteration. The same VNs
would be flipped in the GDBF algorithm.

Entropy 2025, 27, 49 11 of 26

Figure 4. Trapping set analysis with the finite state machine. The ℓ represents the current iteration,
and the parameters inside VNs represent the parameters at the beginning of that iteration.

Entropy 2025, 27, 49 12 of 26

In ℓ = 3, the algorithm highlights VNs v11, v24, and v89. Two highlighted variables
which were in state S+,1 will go to state S−,1. On the other hand, the variable v24 that was
in state S−,2 will remain in that state. It can be seen that all the VNs that are highlighted
will be flipped, as their potential will change the sign. Although the same flipping decision
would be made in the GDBF algorithm, the potential for v24 indicates that the reliability of
this decision is not so high.

For iteration ℓ = 4, VNs v24 and v110 are highlighted. Now, since v110 was in the
state S0 it will go to the state S−,1 which has the update value −1. The updated potential

r(5)110 = 0.1 will not change sign, i.e., it will not be flipped. On the other hand, when looking
at the GDBF algorithm all those highlighted VNs will be flipped. In the algorithm we
proposed in this paper, the finite state machine slows down the flipping decisions. As a
result, even if this pattern is uncorrectable by using GDBF, it does not represent the trapping
set for the GDBF algorithm with the finite state machine.

For the iteration ℓ = 5, the difference when compared to GDBF is visible. VN v110

is no longer highlighted, and its potential remains the same as in the previous iteration.
Now, the highlighted VNs are v24, v97, and v113. Since VNs v97 and v113 were in state S+,2

and highlighted, they will go to state S−,2, and for them, the θ is applied and they will be
flipped. The VN v24 remains in the state S−,2 and will also be flipped.

Looking at the iteration ℓ = 6, now only two VNs are erroneous, v24 and v86. Firstly,
v24 will be highlighted because its energy function has the first parameter equal to w1 ∗ (−1)
(see Equation (3)), which is added to the number of unsatisfied parity checks. This variable
v24 remains in the same state S−,2 and will be flipped.

In the next iteration (ℓ = 7), only one VN is in an incorrect state, and that VN is
v86. Since that VN is highlighted, it will first go to state S−,1 where its potential will

be updated by value −1 and its potential will be r(8)86 − 0.1 at the beginning of the eight
iteration. Although this is an erroneous VN and is highlighted, it will not be flipped in this
iteration, as the sign of the corresponding potential is unchanged. In the eight iteration,
the same variable node v86 is highlighted again. Therefore, it will reach the state S−,2 and
will be flipped.

Here, it took eight iterations for the GDBF algorithm with the presented finite state
machine (without momentum) to correct this TS of GDBF. The most crucial iteration is the
fourth iteration in which VN v110 is not flipped, but rather its potential is leaned to one side.

In the previous example, it has been shown that the highlighted VN will not be flipped
in some situations. Therefore, the GDBF algorithm that uses a finite state machine to update
the potentials can slightly slow down the decoding process. However, the numerical
results presented in the next section indicate that the benefits of this approach justify this
minor drawback.

It can be noticed that the GDBF-based algorithms that incorporate randomness in the
decision process can result in a similar effect. For example, in the PGDBF algorithm with
parameter p = 0.7 [17], in every particular iteration, about 70 percent of the highlighted
VNs are randomly selected for the flipping. In our algorithm, we avoid random selection
and there is no need for the implementation of the multiple independent random sequences
in the variable nodes (that is known as a complex task). On the contrary, we use the
deterministic finite state machine to obtain the soft information that helps us obtain a
reliable decision.

3.4. Concatenation of the Component Decoders

Here, we discuss how to connect the component decoders, and the corresponding
inputs and outputs will be defined. These parameters mostly depend on the position in the
chain, denoted by t, and the value of the corresponding restart flag r(t)f lag, as follows:

Entropy 2025, 27, 49 13 of 26

• For the first decoder (t = 1), the input vector of the potentials is equal to the received

word, i.e., r(1)in = y. Furthermore, momentum states and potential states are equal for

all variables, µ
(t)
in,i = L′ + 1, i = 1, 2, . . . , N, and P(t)

in,i = S(t)
start, i = 1, 2, . . . , N.

• If t > 1 and r(t)f lag = 1, the inputs are also defined with the expressions: r(t)in = y,

µ
(t)
in,i = L′ + 1, i = 1, 2, . . . , N, and P(t)

in,i = S(t)
start, i = 1, 2, . . . , N.

• If t > 1 and r(t)f lag = 0, the input vector of the potentials is equal to the output vector of

potentials from the previous decoder: r(t)in = r(t−1)
out , and using the similar approach

µ
(t)
in = µ

(t−1)
out , and P(t)

in = P(t−1)
out .

It can be noticed that the momentum state µ(t) can be longer than the momentum
state for the previous decoder µ(t−1). In such a case, the zeros can be added to expand
the momentum vector of the t-th decoder. Moreover, the decoders do not need to have
the same number of states, and the transitions between the states of the decoders can be
defined. A function St : St−1 → St can be defined to provide the mapping of the states of
the (t − 1)-th decoder to the t-th decoder. This function can be used to connect vectors P(t)

in

into P(t)
out, even in the case when corresponding finite state machines do not have an equal

number of states.

3.5. Learnable Framework

In this section, the learnable framework used to obtain all parameters for the decoders
will be described. The process of the learnable framework can be seen in Figure 5.

In the first step of the optimization process, the Monte Carlo simulation method is
used to acquire a set of error patterns that cannot be corrected by using the original GDBF
decoder (as defined in [15]). The simulation must be run for the channel conditions that
correspond to the error floor region (a small crossover probability α in the BSC or a high
SNR in the AWGN channel), as the error patterns in this region are mostly uncorrectable due
to the trapping sets. Every transmitted codeword should be decoded for a large number
of iterations, and the number of sent codewords is adjusted to collect a few thousand
uncorrectable error patterns. The resulting database set of uncorrectable error patterns is
denoted as the initial error log.

In the next step, the learnable parameters of the first component decoders have to
be optimized using an optimization algorithm based on the initial error log. As most
optimization algorithms are random by nature and depend on the starting point in the
optimization process, the algorithm may be run for different speeds to improve the opti-
mization efficiency. In such a case, the decoder that corrects the largest number of error
patterns in the initial error log is selected as the first component decoder.

In the third step of the learnable procedure, all error patterns correctable by using
the chosen decoder during Lmax,1 have to be removed from the initial error log. As the
optimization accuracy depends on the size of the error log, new error patterns that are
uncorrectable by the first component decoder should be added. Therefore, the first step of
this procedure will be repeated to acquire additional error patterns that cannot be corrected
by the first component decoder, obtained in the previous step. Finally, we update the error
by merging the remaining error patterns from the initial error log (still uncorrectable by
using the first decoder in the chain) with the new error patterns acquired in this step.

Using the updated error log, the same optimization algorithm that is used in the
second step is applied to optimize the parameters of the next component decoder. Using
the rules defined in the previous subsection, this component decoder is added to the chain.

The two previous steps are repeated until the required number of component decoders
is reached (where the t-th component decoder is optimized based on the error log updated

Entropy 2025, 27, 49 14 of 26

by using the (t − 1)-th decoder), or until the maximum allowed number of iterations is
reached. The decoders are learned one by one, which can also be seen from the procedure
presented in Figure 5.

In this paper, the genetic algorithm (GA) is used to optimize the learnable parameters
of every particular decoder. The GA is a population-based algorithm, where every problem
solution is represented by a chromosome [33]. Each problem solution has its fitness value,
and the higher fitness values correspond to better optimization. In the first generation,
the chromosomes are chosen randomly and then the individuals are chosen in a selection
phase. The best individuals are transferred to the next generation (elitism). The chosen
individuals begin a combination process in which their genes are combined to generate a
new solution to the problem (combination), and after the mutation phase, a new population
is created. After some number of generations, we terminate the algorithm and use the best
chromosome as the solution to the given problem.

Figure 5. Process for learnable framework.

Entropy 2025, 27, 49 15 of 26

In order to use some machine-type optimization procedures, there is a need to quantize
all of the learnable parameters. This means that they are in some range and can have some
values only from a set of discrete values. Then, we can represent those values with bits,
append all bits together, and use a genetic algorithm to obtain a set of parameters for
one decoder.

In our optimization problem, there are three types of decoder parameters as follows:

• The parameters which are heuristically chosen for the t-th component decoder, such

as the starting state S(t)
start, the maximum number of iterations Lmax,t, and the margin

δ. These are parameters which are known before the machine learning optimization
procedure.

• The basic parameters of the t-th decoder are the number of states for the finite state
machine St, the length of the momentum vector L′, the maximum value which mo-
mentum can take I, and the value of the flag restart rt

f lag. For one combination of these
parameters, one GA optimization has to be run.

• The parameters obtained as a result of the GA optimization are learnable weights w1

and w2, state values s for states in the finite state machine, and momentum vector m.

The GA optimization gives us some parameters for w1, w2, s, and m, for one combina-
tion of the basic parameters. The efficiency of optimization is measured with the achieved
fitness rate (FR), which corresponds to the percentage of corrected error patterns in the
error log used for the learning of the GA. Therefore, the highest GA value is achieved for
the optimal combination of the basic parameters. This way, the optimal combination of
parameters St, L′, I, and rt

f lag can also be determined.

4. Numerical Results
In this section, we will compare the performance of the gAD-GDBFwM-wSM algo-

rithm with the previously analyzed algorithms. Frame error rate (FER) after the decoding
is estimated by comparing the transmitted codewords and the estimated codewords at the
output of the decoder, by using the Monte Carlo simulation process [34]. The numerical
results are presented for the case when the number of transmitted codewords is adjusted
to detect at least 100 errors. The maximum number of iterations for the analyzed iterative
algorithms is set to Lmax = 300, if it is not specified otherwise.

The starting state Sstart = S+,1. If η = 0, then Sstart = S0. The starting position for the
momentum, when restart is active, should always be L′ + 1, i.e., we chose m(L′ + 1) = 0.
Regarding the learning procedure and the momentum vector, several sets of momentum
vectors are used for GA optimization. One set of momentum vectors is used in one
GA optimization. In Table 2, we give the parameters of momentum sets used in the
GA optimization.

Table 2. Momentum set parameters used in GA optimization.

Momentum Set Name L′ I

MS1 2 3
MS2 3 2
MS3 4 2
MS4 3 3

The results that will be shown are for three codes: Tanner (155, 64) code, i-RISC (1296,
648) code, and IEEE 802.3an (2048,1720) code. Details about these codes are given in the
following sections. FER performance was analyzed for the BSC and AWGN channels.
For each code and each channel, we will give a detailed description of the methods and

Entropy 2025, 27, 49 16 of 26

parameters used throughout the procedure for producing the gAD-GDBFwM-wSM decoder.
Furthermore, the optimized parameters of gAD-GDBFwM-wSM in all analyzed scenarios
are given online in the address specified in [35].

4.1. Tanner Code

First, we present the numerical results for the Tanner (155, 64) code with the code rate
R = 0.4129, for the case where the BSC is used for transmission. This code is regular with
variable node degree γ = 3, the degree of parity-check equations ρ = 5, the minimum
Hamming distance dmin = 20, and the construction method described in [36]. This code
will be called the Tanner code in the rest of the paper.

The FER as a function of parameter Lmax for the Tanner code is presented in Figure 6,
for the fixed BSC crossover probability α = 0.01. As shown in [26], the incorporation of
momentum in the energy function improves the performance of the GDBF decoder. There-
fore, GDBF is far inferior to GDBFwM (for any value of Lmax). If statistically independent
random sequences are incorporated in every VN, as proposed in PGDBF, the FER can be
highly reduced after a large number of iterations [17,27,28]. The convergence speed can
be improved if a binary random sequence is added in the energy function, and the VNs
flipped in the previous iteration are prevented from flipping in the current iteration, as in
the tabu-list random GDBF (TRGDBF) [19]. The FER performance can be further improved
using a complex but completely deterministic algorithm proposed in [30]. The performance
of the gAD-GDBFwM-wSM algorithm proposed in this paper is presented for the case
where the momentum vector and the decoder coefficients are optimized to achieve the
minimum FER. It is assumed that every component decoder has to complete decoding after
Lmax,t = 30 iterations, and every decoder can take momentum values from the predefined
momentum sets (MS1, MS2, MS3, MS4).

0 50 100 150 200 250 300

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Maximum number of iterations, L

F
ra

m
e
 E

rr
o
r

R
a
te

,
F

E
R

GDBF

PGDBF, p=0.7

MUDRI

TRGDBF,σ=0.9

GDBFwM

SDGDBF

BP

gAD−GDBFwM−wSM

Figure 6. Performance as a function of Lmax, BSC, Tanner code (155, 64), γ = 3 and ρ = 5.

In the optimization process, four combinations of basic parameters were investigated,
as it is assumed that the finite state machine has parameters like SM1 and SM2 from Table 3,
and two flag restart values were considered (r f lag = 0, r f lag = 1). For every particular
combination of the basic parameters, the optimization of the momentum vector and the

Entropy 2025, 27, 49 17 of 26

decoder coefficients is performed by using the GA, where the optimization is performed
with 40 chromosomes in 40 generations. The combination with the highest fitness value
is chosen as the optimal, and the chosen momentum and coefficients completely define
that component decoder. The procedure is repeated according to Figure 5 to specify the
optimal parameters of all component decoders. The corresponding numerical results are
also presented in Figure 6. It is obvious that the gAD-GDBFwM-wSM algorithm achieves
much lower FER values compared to the GDBF algorithm when α = 0.01. In addition,
it outperforms all analyzed probabilistic algorithms (the PGDBF, the MUDRI, and the
TRGDBF) for any value of Lmax.

Table 3. Finite state machine, dimension parameters used.

Finite State
Machine Name No. State |S| ζ η

SM1 5 2 2
SM2 3 1 1
SM3 2 1 0
SM4 4 2 1

The gAD-GDBFwM-wSM algorithm is based on the concatenation of optimized com-
ponent GDBFwM-based decoders. It is obvious that this concatenation approach prevents
the saturation that is visible for the single GDBFwM decoder (that does not reduce FER
after 50 iterations, as shown in Figure 6. However, it can be noticed that a single GDBFwM
decoder for certain values of parameters Lmax outperforms the gAD-GDBFwM-wSM algo-
rithm. This surprising effect can be easily explained if we observe that every component
decoder is optimized to minimize FER at the output of the t-th decoder after Lmax,t itera-
tions. If Lmax,t = 30 for any value of i, this decoder is forced to be optimal after 30, and 60,
iterations, and there is no guarantee that it will be optimal for Lmax = 45. This side effect
can be mitigated if the value for Lmax,t is further reduced for the first decoders in the chain,
or the optimization criterion is slightly changed.

The proposed algorithm has performance comparable to that of the SDGDBF algorithm.
It should be noted that the optimization procedure for gAD-GDBFwM-wSM, does not
require the additional hardware overhead as in the SDGDBF (as explained in Section 4.2
in [30]). In our framework, the optimization process of the gAD-GDBFwM-wSM decoder
parameters can be performed offline. Therefore, the same hardware is used in every
component decoder, while the adaptation of the momentum values and the decoder
coefficients are performed by their refreshment after Lmax,t iterations.

In Figure 7, we present FER as a function of α, where the maximum number of itera-
tions is Lmax = 300 if not specified otherwise. It is obvious that the gAD-GDBFwM-wSM
algorithm’s performance is far superior when compared to the BF, the GDBF, the PGDBF,
and the GDBFwM algorithms. In the error floor region, the proposed algorithm also outper-
forms the TRGDBF algorithm and the state-of-the-art BP algorithm. For the analyzed range
of the parameter α, the gAD-GDBFwM-wSM decoding algorithm has a similar performance
as the recently proposed SDGDBF algorithm.

Entropy 2025, 27, 49 18 of 26

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

m
e

 E
rr

o
r

R
a

te
,

F
E

R

 BF

GDBF

PGDBF, p=0.7

GDBF w/m, ρ=[2, 1]

TRGDBF, σ=0.9

SDGDBF

BP, L
max

=50

AD−GDBF

gAD−GDBFwM−wSM

Figure 7. Performance of the various decoders, BSC, Tanner code (155, 64), γ = 3 and ρ = 5.

4.2. i-RISC Code

Next, we compare the FER performance of the proposed algorithm with the other
GDBF-based algorithms for the (1296, 648) QC-LDPC code with code rate R = 0.5. The con-
struction method for this regular code is presented in [37]. This code has the variable degree
γ = 4, and the parity-check equation degree ρ = 8. In the rest of the paper, this code will be
denoted as i-RISC code. The numerical results will be presented for the maximum number
of iterations Lmax = 300, if not specified otherwise.

The FER performance for the i-RISC code and BSC is presented in Figure 8. Incorporat-
ing momentum into the energy function improves the GDBF decoder performance, and if it
is combined with the randomness (as in the PGDBFwM), it can additionally reduce FER in
the error floor region. The GDBF and the PGDBF algorithms are inferior to the GDBFwM
and the PGDBFwM algorithms. The information storage bit flipping (ISBF) algorithm
additionally improves performance compared to the PGDBFwM algorithm, but it also in-
corporates randomness in the decision process. On the other hand, the AD-GDBF algorithm
achieves superior performance by concatenating completely deterministic decoders.

The performance of the gAD-GDBFwM-wSM algorithm for the BSC is presented
for the case where the momentum vector and the decoder coefficients are optimally cho-
sen. In the optimization process, three predefined momentum sets are used (MS1, MS2,
and MS3), the cases with SM1 and SM2, and both flag restart options were considered.
In total, 12 combinations of the basic parameters were investigated, and the optimization
of the momentum vector and the decoder coefficients was performed by using the GA for
each combination. Finally, the combination with the highest fitness rate is chosen. The cor-
responding numerical results indicate that gAD-GDBFwM-wSM outperforms PGDBFwM,
although it does not require statistically independent random sequences in the variable
nodes. In addition, the gAD-GDBFwM-wSM algorithm achieves a similar performance as
the AD-GDBF algorithm, as the effect of applying potential is less visible for the BSC.

The performance of the gAD-GDBFwM-wSM algorithm for various parameter values
Lmax, for the BSC and the i-RISC code, can be seen in Figure 9. In this case, all component
decoders terminate decoding after Lmax,t = 50 iterations, and the FER curves correspond to
the case of various numbers of component decoders. For the second decoder, the fitness

Entropy 2025, 27, 49 19 of 26

rate achieved is FR = 1.90, which means that the decoder corrects 90 percent of the error
patterns that were uncorrectable by the first component decoder. The difference between
the FER curves for Lmax = 50 and Lmax = 100 is one decade at α = 0.03. Generally, at the
beginning of the cascade, the decoders greatly improve the performance compared to the
case before applying that decoder. After the initial stages, performance improvement slows
down, as the corresponding fitness rate has lower values (e.g., for the sixth decoder in
the cascade, FR = 1.40 is achieved, corresponding closely to 29 percent of corrected error
patterns from the corresponding error log).

0.03 0.035 0.04 0.045
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BSC crossover probability, α

F
ra

te
 E

rr
o
r

R
a
te

,
F

E
R

 GDBF

PGDBF

GDFBwM

PGDBFwM

ISBF

AD−GDBF

BP, L
max

=50

gAD−GDBFwM−wSM

Figure 8. Performance of the various decoders, BSC, i-RISC code (1296, 648), γ = 4 and ρ = 8.

In Figure 10, the performance is presented for the same code and the AWGN channel.
For each combination of the predefined sets of the parameters (MS1, MS2, and MS3),
(SM3, SM4) and (r f lag = 0, r f lag = 1), the GA with 40 chromosomes and 40 generations
is performed. For the decoders with the best fitness score, the FER(SNR) curves were
plotted for Lmax,i = 50, i = 1, 2, . . . , 6, and the decoder with a minimal value of FER is
chosen. The error patterns that are correctable by using the chosen decoder are removed
from the original database of the error patterns. After concatenation to the previously
chosen decoders, the Monte Carlo simulation is performed for high SNR values to update
a database of the error patterns. This database is used for the optimization of the next
component decoder as input for the GA. It should be noticed that the database is updated
after the new component decoder is chosen—as it can correct some patterns, these patterns
are removed, and when the database becomes small, the new error patterns are added to
provide a sufficient number of error patterns for an accurate optimization. In Figure 10, it is
shown that our solution surpasses the existing PGDBFwM decoder by 0.1 dB, without using
any probabilism in the decoding algorithm.

The performance of the gAD-GDBFwM-wSM algorithm for various values of the
parameter Lmax is also given for the case of the AWGN channel. The corresponding numer-
ical results are presented in Figure 11. After adding the new decoders, the performance
improvement starts steeply and then starts to slow down. The difference between two
decoders in the chain and three decoders in the chain is larger than the difference between
the four decoders in the chain and five decoders in the chain. This means that the fitness

Entropy 2025, 27, 49 20 of 26

scores we obtain for the next decoders in the chain are decreasing. For example, for the
second decoder in the chain, the fitness rate was FR = 1.95, while for the fifth decoder in
the chain, the fitness rate was FR = 1.42.

0.03 0.035 0.04 0.045
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

BSC crossover probability, α

F
ra

te
 E

rr
o
r

R
a
te

,
F

E
R

gAD−GDBFwM−wSM, L
max

=50

gAD−GDBFwM−wSM, L
max

=100

gAD−GDBFwM−wSM, L
max

=150

gAD−GDBFwM−wSM, L
max

=200

gAD−GDBFwM−wSM, L
max

=250

gAD−GDBFwM−wSM, L
max

=300

Figure 9. Performance of the various Lmax, BSC, i-RISC code (1296, 648), γ = 4 and ρ = 8.

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio, SNR

F
ra

te
 E

rr
o

r
R

a
te

,
F

E
R

GDBF

PGDBF

GDFBwM

PGDBFwM

gAD−GDBFwM−wSM

BP, L
max

=50

Figure 10. Performance of the various decoders, AWGN, i-RISC code (1296, 648), γ = 4 and ρ = 8.

Entropy 2025, 27, 49 21 of 26

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio, SNR

F
ra

te
 E

rr
o
r

R
a
te

,
F

E
R

gAD−GDBFwM−wSM, L
max

=50

gAD−GDBFwM−wSM, L
max

=100

gAD−GDBFwM−wSM, L
max

=150

gAD−GDBFwM−wSM, L
max

=200

gAD−GDBFwM−wSM, L
max

=250

gAD−GDBFwM−wSM, L
max

=300

Figure 11. Performance of the various Lmax, AWGN, i-RISC code (1296, 648), γ = 4 and ρ = 8.

Furthermore, FER steadily decreases by adding new decoders to the chain. This
also has an impact on the adequate database of the error logs, since the error logs are
produced for the higher SNR values (in those codewords, mostly TSs are present). However,
with such an approach it becomes computationally complex to collect large numbers of
error logs. Moreover, by observing Figures 10 and 11, it can be seen that our solution
with four decoders (200 iterations) exceeds the performance of the PGDBFwM decoder
from [26] with 300 iterations. The significance of this result is related to the fact that the
deterministic decoder outperforms the decoder with applied randomness for a smaller
number of iterations.

4.3. IEEE 802.3an Code

Finally, the numerical results for the (2048, 1723) code from the IEEE 802.3an stan-
dard [38] will be presented. This is a (γ, ρ) = (6, 32) regular LDPC code with code rate
R = 0.8413. The length of the codewords is n = 2048, with m = 384 parity-check equations.
The performance results of this code can be seen in Figure 12. In the remainder of the paper,
this code will be called the IEEE 802.3an code. The numerical results will be presented for
the maximum number of iterations Lmax = 300, if not specified otherwise.

Here, the learning process was performed only for the finite state machine with four
states, i.e., SM4. The experiments were performed using only one type of momentum set,
M1, because this momentum set tended to give the best results. The learning process also
consisted of collecting several thousand error logs and learning from them several first
decoders. When the error log was small, a new error log with several hundred error logs
was obtained for higher SNR values, and the learning process continued with the new error
log. The metric used here was only the number of corrected errors in the error log, i.e., the
percentage of corrected error logs. This decoder is made out of six decoders, each with
Lmax,t = 50 iterations.

Entropy 2025, 27, 49 22 of 26

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio, SNR

F
ra

te
 E

rr
o
r

R
a
te

,
F

E
R

GDBF

PGDBF

GDFBwM

PGDBFwM

AD−GDBF

gAD−GDBFwM−wSM

BP, L
max

=50

Figure 12. Performance of the various decoders, AWGN, IEEE 802.3an code (2048, 1723), γ = 6 and
ρ = 32.

Similarly to previous results for the AWGN channel and i-RISC code, it can be seen
that the GDBF and the PGDBF algorithms have inferior performance when compared with
the GDBFwM and the PGDBFwM algorithms. Using the combination of momentum and
probabilism, the performance of the code can be significantly improved, especially in the
error floor region. Performance can be further increased by using the gAD-GDBFwM-wSM
principle. When compared to the PGDBF algorithm the proposed algorithm provides the
additional improvement of almost 0.1 dB, as presented in Figure 12. We point out again
that gAD-GDBFwM-wSM does not use any probabilistic principle, and there is no need for
random generators in the implementation of the decoder. Comparison with the AD-GDBF
algorithm, which uses the same parameters as the gAD-GDBFwM-wSM algorithm, is also
given. It can be noticed that the gAD-GDBFwM-wSM algorithm proposed in this paper
outperforms the other analyzed decoding algorithms.

5. Complexity Analysis
In this section, the complexity analysis will be described. Regarding the AD-GDBF

algorithm, there is a complexity analysis for it in the work [31]. Our solution incorporates
the state machine, but we show that the state machine does not add much complexity.

For every variable bit, there is a need to have additional memory resources regarding
the state and the potential for every bit. Regarding potential, since the operations are
performed in floating-point arithmetic, the solution needs one floating-point adder and
one floating-point register for every bit, which will save the variable bit’s current potential.

For the state machine, every variable bit needs to have a memory item that shows in
which state that variable bit is. This memory element can be used to store integer values in
binary format. This can be performed with a simple register, the length of which depends
on η and ζ. The first bit in the register can represent the sign, while the other bits can
represent the value. Let us assume that the value of the state register represents the state
of the variable bit, for example, if the variable bit is in the S−,1 state, then in the register,
the value −1 is written.

Entropy 2025, 27, 49 23 of 26

Depending on whether the variable bit is highlighted or not, similar operations are
required. When the state changes, two comparisons are necessary, which compare the
current state of the bit to 0 and check its sign. The comparison with zero can be conducted
like an operation that checks if all the bits in the register are zeros (for example, multiple
input NOR gate), and there is no need for a comparator there. To check the sign of
the variable bit, we can only check the first bit in the register that shows in which state
the variable bit is, so this operation does not require a comparator as well. After those
operations, there is either a need to increment or decrement what is inside the state register,
or to rewrite the state register. Increment and decrement operations are simple operations,
while rewriting is more complex. However, when the register is rewritten, it is always
written to the same value or only its sign changes, which makes the operation more
complex friendly.

A comparator to compare the current value of the state of the variable bit with η or ζ

depending on whether the variable bit is highlighted is needed. This needs to be carried
out because the value in the register can be in some state that does not exist. This means
that one comparator per bit is required.

In summary, for every variable bit, in addition to the AD-GDBFwM, there is a need
for as follows:

• One floating-point register;
• One floating-point adder;
• One register for the state of that variable;
• One comparator.

6. Conclusions
In this paper, we have proposed the gAD-GDBFwM-wSM algorithm where the con-

catenation of several decoders with momentum is combined with the concept of variable
node potential. The update of the potential has been realized with the deterministic finite
state machine, where the state transitions are dictated by the past highlighting activity of
the variable node. We have illustrated the proposed update mechanism in the case of a
rather complex trapping set. We have also proposed a general learnable framework for
the optimization of the decoder parameters. The optimization by using the GA has been
described in detail, and the corresponding numerical results have been given.

It can be seen that the proposed algorithm achieves superior performances when
compared to the previously proposed GDBF-based algorithms. The gAD-GDBFwM-wSM
algorithm outperforms its probabilistic counterparts (e.g., PGDBF, PGDBFwM, TRGDBF,
ISBF) for the same number of iterations. As no randomness was used in our algorithm, there
is no need to incorporate random generators during the implementation of the decoder.
For short codes, the proposed algorithm even outperforms the state-of-the-art BP algorithm.
The proposed framework is applicable to any regular LDPC code, both for the BSC and the
AWGN channel.

The limitations of the gAD-GDBFwM-wSM algorithm are mostly related to the time-
consuming learning process. In order to find the decoder with the optimal parameters,
the error logs with a few thousand error patterns have to be generated and regularly up-
dated before the design of every particular component decoder. Even if the GA is applied
for the optimization, it is necessary to run it for various combinations of the system param-
eters. However, it is important to notice that the optimization can be performed offline.
Once determined, the optimal parameters of the gAD-GDBFwM-wSM decoder enable high
reliability of the transmission. In our future work, we will concentrate on developing faster
and more effective optimization using the GA or its competitive algorithms.

Entropy 2025, 27, 49 24 of 26

Furthermore, the GDBF algorithm has oscillatory behavior when TSs are present,
as shown in our example in Section 3. In our examples and simulations, we did not notice
that gAD-GDBFwM-wSM has oscillatory behavior. The exact analysis of possible oscillatory
behavior for the gAD-GDBFwM-wSM algorithm is a complex task and will be the topic of
our future work.

Author Contributions: Conceptualization, S.B. and J.M.; methodology, S.B. and J.M.; software,
S.B. and J.M.; validation, S.B., J.M. and P.I.; formal analysis, P.I.; investigation, S.B. and J.M.; re-
sources, P.I. and B.V.; data curation, J.M. and P.I.; writing—original draft preparation, J.M. and P.I.;
writing—review and editing, P.I., S.B. and B.V.; visualization, P.I.; supervision, P.I and B.V.; project ad-
ministration, P.I. and B.V.; funding acquisition, P.I. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Science Fund of the Republic of Serbia, under grant No.
7750284 (Hybrid Integrated Satellite and Terrestrial Access Network—hi-STAR). This work was also
supported by the Serbian Ministry of Science, Technological Development and Innovation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available in web
page https://github.com/jovan94/MDPI_StateMachineForPotentials (accessed on 1 December 2024).

Acknowledgments: Bane Vasić acknowledges support from the NSF under grants CIF-2106189,
CCF-2100013, ECCS/CCSS-2027844, ECCS/CCSS-2052751, and in part by the CoQREATE program
under grant ERC-1941583. The work of Srdjan Brkić was performed while he was at the University
of Belgrade.

Conflicts of Interest: Bane Vasić has disclosed an outside interest in his startup company, Codelucida,
to The University of Arizona. Conflicts of interest resulting from this interest are being managed by
The University of Arizona in accordance with its policies. Author Srdjan Brkić was employed by the
company Tannera Technologies LLC. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

References
1. Lin, S.; Costello, D.J. Error Control Coding, Fundamentals and Applications, 2nd ed.; Prentice Hall: Upper Saddle River, NJ,

USA, 2004.
2. Gallager, R.G. Low Density Parity Check Codes. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1963.
3. Richardson, T.; Shokrollahi, M.; Urbanke, R. Design of capacity-approaching irregular low-density parity-check codes. IEEE

Trans. Inf. Theory 2002, 47, 619–637. [CrossRef]
4. Standard ETSI TS 138 101-1 V16.5.0 (2020-11); 5G; NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1

Standalone (3GPP TS 38.101-1 Version 16.5.0 Release 16). European Telecommunications Standards Institute: Sophia Antipolis,
France, 2020.

5. Standard ETSI EN 302 307-2 V1.2.1 (2020-05); Digital Video Broadcasting (DVB); Second Generation Framing Structure, Chan-
nel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite
Applications; Part 2: DVB-S2 Extensions (DVB-S2X). European Telecommunications Standards Institute: Sophia Antipolis,
France, 2020.

6. IEEE. IEEE SA—IEEE 802.11ax-2021. Available online: https://standards.ieee.org/ieee/802.11ax/7180/ (accessed on 12
November 2024).

7. Zhao, K.; Zhao, W.; Sun, H.; Zhang, T.; Zhang, X.; Zheng, N. LDPC-in-SSD: Making Advanced Error Correction Codes Work
Effectively in Solid State Drives. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST 13),
San Jose, CA, USA, 12–15 February 2013; pp. 243–256.

8. Tanner, R. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 1981, 27, 533–547. [CrossRef]
9. Pearl, J. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In Proceedings of the AAAI National

Conference on AI, Pittsburgh, PA, USA, 18–20 August 1982; pp. 133–136.

https://github.com/jovan94/MDPI_StateMachineForPotentials
http://doi.org/10.1109/18.910578
https://standards.ieee.org/ieee/802.11ax/7180/
http://dx.doi.org/10.1109/TIT.1981.1056404

Entropy 2025, 27, 49 25 of 26

10. Chen, J.; Fossorier, M. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans.
Commun. 2002, 50, 406–414. [CrossRef]

11. Planjery, S.K.; Declercq, D.; Danjean, L.; Vasic, B. Finite Alphabet Iterative Decoders—Part I: Decoding Beyond Belief Propagation
on the Binary Symmetric Channel. IEEE Trans. Commun. 2013, 61, 4033–4045. [CrossRef]

12. Declercq, D.; Vasic, B.; Planjery, S.K.; Li, E. Finite Alphabet Iterative Decoders—Part II: Towards Guaranteed Error Correction of
LDPC Codes via Iterative Decoder Diversity. IEEE Trans. Commun. 2013, 61, 4046–4057. [CrossRef]

13. Zhang, J.; Fossorier, M. A modified weighted bit-flipping decoding of low-density Parity-check codes. IEEE Commun. Lett. 2004,
8, 165–167. [CrossRef]

14. Chang, T.C.Y.; Su, Y.T. Dynamic Weighted Bit-Flipping Decoding Algorithms for LDPC Codes. IEEE Trans. Commun. 2015,
63, 3950–3963. [CrossRef]

15. Wadayama, T.; Nakamura, K.; Yagita, M.; Funahashi, Y.; Usami, S.; Takumi, I. Gradient descent bit flipping algorithms for
decoding LDPC codes. IEEE Trans. Commun. 2010, 58, 1610–1614. [CrossRef]

16. Sundararajan, G.; Winstead, C.; Boutillon, E. Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes. IEEE Trans. Commun.
2014, 62, 3385–3400. [CrossRef]

17. Rasheed, O.A.; Ivaniš, P.; Vasić, B. Fault-Tolerant Probabilistic Gradient-Descent Bit Flipping Decoder. IEEE Commun. Lett. 2014,
18, 1487–1490. [CrossRef]

18. Cui, H.; Lin, J.; Song, S.; Wang, Z. A New Probabilistic Gradient Descent Bit Flipping Decoder for LDPC Codes. In Proceedings
of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [CrossRef]

19. Cui, H.; Lin, J.; Wang, Z. An Improved Gradient Descent Bit-Flipping Decoder for LDPC Codes. IEEE Trans. Circuits Syst. I Regul.
Pap. 2019, 66, 3188–3200. [CrossRef]

20. Cui, H.; Lin, J.; Wang, Z. Information Storage Bit-Flipping Decoder for LDPC Codes. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 2020, 28, 2464–2468. [CrossRef]

21. Jiang, M.; Fan, D. A Low-Latency BF Decoding of LDPC Codes With Dynamic Thresholds. IEEE Commun. Lett. 2021, 25, 2781–2785.
[CrossRef]

22. Chen, Y.; Cui, H.; Lin, J.; Wang, Z. Fine-Grained Bit-Flipping Decoding for LDPC Codes. IEEE Trans. Circuits Syst. II Express Briefs
2020, 67, 896–900. [CrossRef]

23. He, C.; Deng, K.; Song, S.; Wang, Z. Column-Weighted Probabilistic GDBF Decoder for Irregular LDPC Codes. In Proceedings of
the 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Foz do Iguacu, Brazil, 20–23 June 2023. [CrossRef]

24. Dai, B.; Liu, R.; Gao, C.; Mei, Z. Noisy Gradient Descent Bit-Flipping Decoder Based on Adjustment Factor for LDPC Codes.
IEEE Commun. Lett. 2018, 22, 1152–1155. [CrossRef]

25. Deng, K.; Chen, Y.; Song, S.; Wang, Z. Sign Aided Adaptive Noisy Gradient Descent Bit-Flipping Algorithm for LDPC Codes. In
Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12
December 2022. [CrossRef]

26. Savin, V. Gradient Descent Bit-Flipping Decoding with Momentum. In Proceedings of the 2021 11th International Symposium on
Topics in Coding (ISTC), Montreal, QC, Canada, 30 August–3 September 2021. [CrossRef]

27. Ivanis, P.; Al Rasheed, O.; Vasić, B. MUDRI: A fault-tolerant decoding algorithm. In Proceedings of the 2015 IEEE International
Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4291–4296. [CrossRef]

28. Vasić, B.; Ivaniš, P.; Declercq, D.; LeTrung, K. Approaching maximum likelihood performance of LDPC codes by stochastic
resonance in noisy iterative decoders. In Proceedings of the 2016 Information Theory and Applications Workshop (ITA), La Jolla,
CA, USA, 31 January–5 February 2016; pp. 1–9. [CrossRef]

29. Chang, T.C.Y.; Wang, P.H.; Su, Y.T. Multi-Stage Bit-Flipping Decoding Algorithms for LDPC Codes. IEEE Commun. Lett. 2019,
23, 1524–1528. [CrossRef]

30. Ivaniš, P.; Brkić, S.; Vasić, B. Suspicion Distillation Gradient Descent Bit-Flipping Algorithm. Entropy 2022, 24, 558. [CrossRef]
31. Brkic, S.; Ivanis, P.; Vasić, B. Adaptive Gradient Descent Bit-Flipping Diversity Decoding. IEEE Commun. Lett. 2022, 26, 2257–2261.

[CrossRef]
32. Milojković, J.; Brkic, S.; Ivanis, P.; Vasić, B. Learning to Decode Linear Block Codes using Adaptive Gradient-Descent Bit-Flipping.

In Proceedings of the 2023 12th International Symposium on Topics in Coding (ISTC), Brest, France, 4–8 September 2023.
[CrossRef]

33. Mirjalili, S. Evolutionary Algorithms and Neural Networks Theory and Applications; Springer: Cham, Switzerland, 2019.
34. Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S. Simulation of Communication Systems: Modeling, Methodology and Techniques; Springer

Science & Business Media: New York, NY, USA, 2006.
35. Decoders and Matrices for the Given Numerical Results. Available online: https://github.com/jovan94/MDPI_StateMachineFo

rPotentials (accessed on 21 November 2024).
36. Tanner, R.; Sridhara, D.; Sridharan, A.; Fuja, T.; Costello, D. LDPC block and convolutional codes based on circulant matrices.

IEEE Trans. Inf. Theory 2004, 50, 2966–2984. [CrossRef]

http://dx.doi.org/10.1109/26.990903
http://dx.doi.org/10.1109/TCOMM.2013.090513.120443
http://dx.doi.org/10.1109/TCOMM.2013.090513.120444
http://dx.doi.org/10.1109/LCOMM.2004.825737
http://dx.doi.org/10.1109/TCOMM.2015.2469780
http://dx.doi.org/10.1109/TCOMM.2010.06.090046
http://dx.doi.org/10.1109/TCOMM.2014.2356458
http://dx.doi.org/10.1109/LCOMM.2014.2344031
http://dx.doi.org/10.1109/ISCAS.2019.8702143
http://dx.doi.org/10.1109/TCSI.2019.2909653
http://dx.doi.org/10.1109/TVLSI.2020.3009270
http://dx.doi.org/10.1109/LCOMM.2021.3088579
http://dx.doi.org/10.1109/TCSII.2020.2980846
http://dx.doi.org/10.1109/ISVLSI59464.2023.10238556
http://dx.doi.org/10.1109/LCOMM.2018.2824803
http://dx.doi.org/10.1109/ICCC56324.2022.10065989
http://dx.doi.org/10.1109/ISTC49272.2021.9594128
http://dx.doi.org/10.1109/ICC.2015.7248997
http://dx.doi.org/10.1109/ITA.2016.7888185
http://dx.doi.org/10.1109/LCOMM.2019.2924210
http://dx.doi.org/10.3390/e24040558
http://dx.doi.org/10.1109/LCOMM.2022.3195026
http://dx.doi.org/10.1109/ISTC57237.2023.10273470
https://github.com/jovan94/MDPI_StateMachineForPotentials
https://github.com/jovan94/MDPI_StateMachineForPotentials
http://dx.doi.org/10.1109/TIT.2004.838370

Entropy 2025, 27, 49 26 of 26

37. Le, K.; Declercq, D.; Ghaffari, F.; Kessal, L.; Boncalo, O.; Savin, V. Variable-Node-Shift Based Architecture for Probabilistic
Gradient Descent Bit Flipping on QC-LDPC Codes. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2183–2195. [CrossRef]

38. IEEE. IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—
LAN/MAN—Specific Requirements Part 3: CSMA/CD Access Method and Physical Layer Specifications—Amendment: Physical
Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T. Available online: https://standards.ieee.org/ieee/
802.3an/3560/ (accessed on 9 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSI.2017.2777802
https://standards.ieee.org/ieee/802.3an/3560/
https://standards.ieee.org/ieee/802.3an/3560/

	Introduction
	Related Works
	Summary and Organization

	Preliminaries
	Framework
	Description of One Component Decoder
	Description of the Finite State Machine
	Finite State Machine and Trapping Set Example
	Concatenation of the Component Decoders
	Learnable Framework

	Numerical Results
	Tanner Code
	i-RISC Code
	IEEE 802.3an Code

	Complexity Analysis
	Conclusions
	References

