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Abstract — In this paper, we analyze the performances of
iterative decoders for linear block codes. In particular, we
consider two modifications of the gradient-descent bit flipping
(GDBF) algorithm with momentum, where multiple component
decoders with different momentum values are concatenated to
improve the decoder performance. The learning parameters of
the component decoders are obtained by using a Genetic
algorithm based on the database of the uncorrectable error
patterns of the previous decoder. We present three optimization
strategies and provide a comparison with the state-of-the-art
decoders. The numerical results are presented on short Bose-
Chaudhuri-Hocquenghem (BCH) codes and the channel with
additive white Gaussian noise (AWGN).

Keywords— Iterative decoders, genetic algorithm, GDBF
decoder, error correction codes, optimization, BCH codes.

L INTRODUCTION

Contemporary communication systems' reliability is
usually provided by powerful error correction codes. In the
fifth-generation standard for broadband cellular networks (5G
NR) [1], low-density parity-check (LDPC) codes are applied
for error correction. In the European standards for satellite
digital video broadcasting (DVB-S2 and DVB-S2X) [2],
longer LDPC codes are concatenated with Bose—Chaudhuri—
Hocquenghem (BCH) codes, providing capacity-approaching
error correction capabilities.

The popularity of LDPC codes is mostly related to low-
complexity iterative decoding algorithms, which operate on a
bipartite graph. The state-of-the-art LDPC decoders are
usually based on the belief propagation (BP) algorithm that is
capable of achieving the maximum likelihood (ML) bound in
the case when the short cycles are absent in the bipartite graph,
which has regular or optimized irregular row and column
weight distributions [3]. Recent research results indicate that
further reduction in decoding complexity can be obtained if
algorithms based on the gradient descent bit flipping are
applied [4-7].
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Although both LDPC and BCH codes belong to the class
of linear block codes, achieving the ML bound for BCH codes
is not simple. Classic hard-decision BCH decoders have
modest correction capabilities. Soft-decision decoders, which
use channel measurements in the decoding process, usually
improve performance at the price of huge complexity [8].

An interesting approach for decoding of various BCH
codes using the BP algorithm was presented in [9,10].
Recently, it has been shown that the neural BP (NBP) decoder,
as a generalization of BP obtained by adding learnable weights
to messages passed between nodes of the bipartite graph, can
be applied in decoding BCH codes [11-13].

We proposed the adaptive diversity gradient-descent bit-
flipping (AD-GDBF) decoder for LDPC codes [14],
outperforming BP-based decoders for binary symmetric
channels. This decoder was realized as a concatenation of
multiple GDBF decoders with momentum (GDBF-w/M) [7].
In this approach, the momentum values and energy function
coefficients were optimized for every particular LDPC code,
based on the database of uncorrectable error patterns. The
generalized AD-GDBF (gAD-GDBF) algorithm was
proposed in our recent paper [15], where this approach was
extended to BCH codes and the channel with additive white
Gaussian noise (AWGN). The gAD-GDBF algorithm has
been shown to outperform the BP and NBP decoders for the
analyzed BCH codes. Furthermore, the proposed decoder is
less complex than the state-of-the-art decoders or its
improvements.

In this paper, we analyze the simplified version of AD-
GDBF algorithm, and we try to identify a simple optimization
strategy that should provide the best performance in the low
latency scenario.

II. INTRODUCTION

A. GDBF algorithm for linear block codes

Let H,,,«p, be the parity check matrix of a linear block
code (n, k). With h;; let us depict the element of the matrix
in j-th row and i-th column. Each row of the parity check
matrix represents a parity check equation c;, and each column
of the parity check matrix represents one variable bit v;. The
number of ones in i-th column of the parity check matrix
represents the degree of the variable bit v;. With P(v;) =
{j |hj; = 1} let us depict the set of indices that shows in which
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parity check equations variable bit v; is present. Also, it can
be seen that |P(v;)| is the degree of the variable bit v;.
Similarly, with Q(cj) = {i|hji = 1} let us depict the set of
indices that show which variable bits are coupled with parity
check equation c;.

We observe the bipolar codeword x = (x;|i =1..n),
where x; € {1, —1}, that is being transmitted over the AWGN
channel. The channel harms the transmitted codeword and
outputs a vector y = (y;|i = 1...n), where y; € R. It can be
seen that for every parity check equation c;, for a transmitted
bipolar codeword x, the next statement must be satisfied Vj,
[lieq(c)xi = 1.

The gradient descent method for decoding of LDPC codes
is presented in [4], and the same algorithm can be applied to
any linear block code. Here, the algorithm tries to optimize
an objective function, defined in [4, Eq. (5)]. The algorithm
does this by associating energy to variable bits and flips those
variable bits, which have energy below some threshold. This
is done in iterations, where a group of bits, or one bit, is
flipped in each iteration. Let us depict the current iteration of
the algorithm as [, and with L,,,, let us depict the maximum
number of iterations for the algorithm.

The corresponding energy function can be defined as in
[15], where for the l-th iteration and for the i-th variable bit,
we calculate

Eil = W1,i3’i’"il_1 + wy, ZjeP(vi) HoEQ(cj) X5+ my;, (1)

where %}~ is the estimated codeword in the [ — 1 iteration,
%) = sign(y;), and i=1, 2,..., n. Weight factors wy ; and w,;
are learnable weights, and m,;, is the momentum factor
defined as in [15].

It can be seen that every variable bit can have different
weight factors. In our work, we consider only the case when
a group of variable bits which have the same degree has the
same weight factors, ie. wy; = W1, 1p(v))| and w,; =
W p(vp|- It is interesting to notice that the energy function
used in the GDBF-w/m algorithm (introduced in the paper
[7]) can be obtained as a special case of Eq. (1) if we set
wy; = wy and wy; = 1, Vi. Furthermore, Eq. (1) reduces to
the energy function from the GDBF algorithm (presented in
the paper [4]) if w;; =1, wy; = 1, and when the
momentum does not exist.

B. Learning of the component decoders

The decoder parameters are optimized for the specific
linear block code and the channel conditions. Before the
decoder design, the parity check matrix H of the linear block
code is specified, and we fixed the value of E,/Ny (denoting
the energy per bit divided by the power spectrum density of
the AWGN channel).

At the beginning of the learning process, a simple GDBF
algorithm is used to decode the linear block code specified
with matrix H. Monte Carlo simulation is performed in not
more than L, iterations (L; denotes the maximum number of
iterations for the k-th decoder), to collect the database of
uncorrectable error patterns for the given Ey/Ny. For the first
decoder, the set of learnable parameters in the decoder is
specified (for the algorithm presented in the previous section,

these parameters are wy ;, w,;, and my,, for i=1, 2,..., n), and
possible values of these parameters have to be specified. An
optimization algorithm is used to choose the optimal values of
these parameters from the predefined sets, based on the
previously created database of uncorrectable patterns.

When the first decoder in the chain is specified, some error
patterns in the previous database must be removed if this
decoder can correct them. After L, iterations, Monte Carlo
simulation is started to identify a new set of uncorrectable
error patterns that should be used to extend the previous
database. The updated database will be used for the
optimization of the second decoder in the chain. The
procedure described in this paragraph is repeated for the next
decoders in the chain.

C) The application of the genetic algorithm

The Genetic Algorithm (GA) is an algorithm that can be
used for optimization problems. It is a population-based
algorithm where every solution to the problem is represented
by a chromosome [16]. Each solution of the problem has its
fitness value, and the higher fitness values correspond to
better optimization. In the first generation, the chromosomes
are chosen randomly, and individuals are chosen in a
selection phase. The best individuals are transferred to the
next generation (elitism). The chosen individuals begin a
combination process in which their genes are combined to
generate a new solution to the problem. After the mutation
phase, a new population is created. After several generations,
we terminate the algorithm and use the best chromosome as
the solution to the given problem.

In our case, the chromosomes represent parameters for one
decoder, i.e., one solution to the problem. By GA for one
decoder and some initial number of iterations, we learn
weights for energy function and momentum values. In order
to use the GA for optimization, learnable weights, and
momentum are represented by bits. The values of weights
W1 pwp| @nd Wy py) are quantized, and those values are
used for their representation. The weights should not be zeros,
so the counting starts with one. For one weight, we get some
integer value from the bits, add one, and then divide that value
with some normalizing factor and obtain the value for that one
weight. A different approach is applied for the momentum
with the length L’. Before optimization, a matrix M,u ;s, where
2% is the number of momentums used in optimization, is
constructed. The construction consists of making all possible
momentums with predefined values. The number of unique
momentums is less than 2%*. Since the number of unique
momentums is less than 2%, we fill the rest of the elements of
M with already used momentums starting from momentum at
the first row of the matrix M. Then we use u bits to select one
momentum vector, one row of the matrix M, which will be
used in a decoder solution.

III. NUMERICAL RESULTS

This paper will present the numerical results for a short
right-regular BCH code with n=63 and k=36 (given in [17]).
The codewords are transmitted through the AWGN channel,
and a real-valued channel measurement vector y appears at
the decoder's input. Iterative decoding based on the algorithm
described in Section II is performed for different strategies of
the parameters’ adaptation.
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Fig. 1. Convergence speed of the various decoders.

We first show how frame error rate (FER) depends on the
parameter L,.. The corresponding numerical results for
various decoders and E»/Ny=7 dB are presented in Figure 1.
It is obvious that the GDBF algorithm (without momentum)
only corrects errors in the first few iterations. Even if the
momentum is optimized in the GDBF-w/M, the performance
improvement diminishes after 50 iterations.

Further, we consider a concatenation of the GDBF-w/M
decoders, where the component decoders have different
momentum vectors m and energy function coefficients wi. In
this scenario, L1=15, L,=30, L;=50 for k=3,4,..,6, and L;=55.
The next decoder learns the optimum values of m, w using
the genetic algorithm applied to the database of uncorrectable
error patterns of the previous decoder in the chain. Although
a certain improvement is visible, the performance is not
comparable with the BP algorithm for the same number of
iterations.

The same learning procedure can be repeated when the
parameters m, wi, and w; are optimized, with the modification
that the same weighting coefficients are determined for the
group of the variable bits with the same weight. This
approach is a simplified version of the AD-GDBF algorithm
[14], which considers the code irregularity and L=50, Vk.
This decoder outperforms the BP algorithm for L,.>240.
However, it is interesting that the GDBF-w/M algorithm
without concatenation of decoders outperforms the AD-
GDBF algorithm for L.<60.

Therefore, we propose the modification of the AD-
GDBF, on the basis of the hybrid approach. This approach is
described as follows. The first decoder in the chain is the
GDBF-w/M decoder, with optimized parameters m and w;,
where these parameters are optimized based on the database
of uncorrectable error patterns of the GDBF decoder. The
remaining decoders in the concatenation are optimized as in
the AD-GDBF algorithm. The maximum number of
iterations for every component decoder is determined to
avoid the saturation of FER. This approach results in
performance comparable with BP for any value of L, as
presented in Fig. 1. This is an important conclusion, as it is
known that the AD-GDBF is a less complex algorithm when
compared to BP [14].

The first decoder in the chain has the simplified energy
function (denoted by EF1), with the same values of the w; for
all variable nodes, and we do not take into account w; (i.e.
w,; = 1, Vi). Although this represents a special case of the
general energy function, given in Eq. (1) and denoted by EF2,
the GA does not find this optimal solution if the number of
optimization parameters is too large. In Fig. 2, fitness factors
for various generations are presented when we apply 40
chromosomes. If EF2 with more learnable parameters is used,
the fitness factor increases even after 150 generations. If EF1
is used, the fitness factor is usually smaller, but the optimal
solution is achieved after not more than 30 generations.

The results presented in Fig. 2 also indicate that the
performance improvement due to the use of EF2 is smaller
for the decoder at the beginning of the chain. This is why EF1
can be used in the first decoder without sacrificing the error
performance and reducing the optimization space. Even if
EF2 is used, fitness factors generally decrease if the decoder
is closer to the end of the chain. About 70% of the errors
remaining after the first decoding stage are corrected by the
second decoder. Only 33% of the remaining error patterns
from the previous decoder are corrected by the seventh
decoder in the chain.
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Fig. 3. Performance of the component decoders.
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Fig. 3 presents the performance improvement after
applying each of the seven component decoders. The bit error
rate (BER) for the first decoder corresponds to the
GDBF/w/m [7], where the momentum vector m and
coefficient w; are optimally chosen. The concatenation of the
decoders reduces the BER, but the improvement decreases
for every additional component decoder.

Finally, in Figure 4, we present BER as a function of
Ew/Ny. It is obvious that the AD-GDBF decoder is far superior
to the GDBF and GDBF-w/M decoders. If the adaptation of
the momentum in 300 iterations (as proposed in [14]) is
combined with the energy function EF1 (as proposed in [7]),
the achieved performance of the corresponding cascade
GDBF-w/M algorithm is comparable with that of the BP
algorithm with 50 iterations.

The AD-GDBF decoder with optimized weighting
coefficients that take into account the irregularity of the BCH
code, with the proposed modification, outperforms the BP
decoder with coding gain close to 0.25 dB for the same
number of iterations (L,»=300). Furthermore, we can see that
the proposed decoder outperforms the NBP and neural offset
min-sum (NOMS) decoders, designed for L..=5 iterations.
Decoders obtained by GA and used parity check matrix are
given in [17].

IV. CONCLUSION

In this paper, we have analyzed the performance of BCH
codes when iterative decoding algorithms are applied. We
have used the main idea from AD-GDBF, and the importance
of the decoder parameters is investigated. Furthermore, we
have proposed one modification of the optimization
procedure, which reduces the problem space and, by doing so,
improves the decoder performance. The modification is based
on combining two energy functions in a decoder, one with a
smaller problem space and another with a bigger one. It can
be seen that the given hybrid approach can improve the
performance of the overall decoder in Figures 1 and 4 when
compared to other approaches, where the synergy of the
decoders is also implemented, but only one energy function is
used.

For fuln true research, we open several questions in this
paper. It will be interesting to investigate if there is any other
optimization algorithm besides GA that should yield better
results. Also, we will try to identify another method to further
reduce the problem space so that AD-GDBF yields better
decoders with fewer generations.
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