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Abstract — In this paper, we analyze the performances of 

iterative decoders for linear block codes. In particular, we 

consider two modifications of the gradient-descent bit flipping 

(GDBF) algorithm with momentum, where multiple component 

decoders with different momentum values are concatenated to 

improve the decoder performance. The learning parameters of 

the component decoders are obtained by using a Genetic 

algorithm based on the database of the uncorrectable error 

patterns of the previous decoder. We present three optimization 

strategies and provide a comparison with the state-of-the-art 

decoders. The numerical results are presented on short Bose-

Chaudhuri-Hocquenghem (BCH) codes and the channel with 

additive white Gaussian noise (AWGN). 

Keywords— Iterative decoders, genetic algorithm, GDBF 

decoder, error correction codes, optimization, BCH codes. 

I. INTRODUCTION  

Contemporary communication systems' reliability is 
usually provided by powerful error correction codes. In the 
fifth-generation standard for broadband cellular networks (5G 
NR) [1], low-density parity-check (LDPC) codes are applied 
for error correction. In the European standards for satellite 
digital video broadcasting (DVB-S2 and DVB-S2X) [2], 
longer LDPC codes are concatenated with Bose–Chaudhuri–
Hocquenghem (BCH) codes, providing capacity-approaching 
error correction capabilities. 

The popularity of LDPC codes is mostly related to low-
complexity iterative decoding algorithms, which operate on a 
bipartite graph. The state-of-the-art LDPC decoders are 
usually based on the belief propagation (BP) algorithm that is 
capable of achieving the maximum likelihood (ML) bound in 
the case when the short cycles are absent in the bipartite graph, 
which has regular or optimized irregular row and column 
weight distributions [3]. Recent research results indicate that 
further reduction in decoding complexity can be obtained if 
algorithms based on the gradient descent bit flipping are 
applied [4-7].   

Although both LDPC and BCH codes belong to the class 
of linear block codes, achieving the ML bound for BCH codes 
is not simple. Classic hard-decision BCH decoders have 
modest correction capabilities. Soft-decision decoders, which 
use channel measurements in the decoding process, usually 
improve performance at the price of huge complexity [8]. 

An interesting approach for decoding of various BCH 
codes using the BP algorithm was presented in [9,10]. 
Recently, it has been shown that the neural BP (NBP) decoder, 
as a generalization of BP obtained by adding learnable weights 
to messages passed between nodes of the bipartite graph, can 
be applied in decoding BCH codes [11-13]. 

We proposed the adaptive diversity gradient-descent bit-
flipping (AD-GDBF) decoder for LDPC codes [14], 
outperforming BP-based decoders for binary symmetric 
channels. This decoder was realized as a concatenation of 
multiple GDBF decoders with momentum (GDBF-w/M) [7]. 
In this approach, the momentum values and energy function 
coefficients were optimized for every particular LDPC code, 
based on the database of uncorrectable error patterns. The 
generalized AD-GDBF (gAD-GDBF) algorithm was 
proposed in our recent paper [15], where this approach was 
extended to BCH codes and the channel with additive white 
Gaussian noise (AWGN). The gAD-GDBF algorithm has 
been shown to outperform the BP and NBP decoders for the 
analyzed BCH codes. Furthermore, the proposed decoder is 
less complex than the state-of-the-art decoders or its 
improvements.  

In this paper, we analyze the simplified version of AD-
GDBF algorithm, and we try to identify a simple optimization 
strategy that should provide the best performance in the low 
latency scenario. 

II. INTRODUCTION  

A. GDBF algorithm for linear block codes 

Let ×  be the parity check matrix of a linear block 

code (, ). With ℎ, let us depict the element of the matrix 

in -th row and -th column. Each row of the parity check 

matrix represents a parity check equation , and each column 

of the parity check matrix represents one variable bit . The 

number of ones in -th column of the parity check matrix 

represents the degree of the variable bit  . With () =
|ℎ = 1 let us depict the set of indices that shows in which 
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parity check equations variable bit  is present. Also, it can 

be seen that |()|  is the degree of the variable bit  . 

Similarly, with  = |ℎ = 1 let us depict the set of 

indices that show which variable bits are coupled with parity 

check equation . 

We observe the bipolar codeword  = (| = 1 … ) , 

where  ∈ 1, −1, that is being transmitted over the AWGN 
channel. The channel harms the transmitted codeword and 

outputs a vector  = (| = 1 … ), where  ∈ ℛ. It can be 

seen that for every parity check equation , for a transmitted 

bipolar codeword , the next statement must be satisfied ∀,
∏ ∈ = 1. 

The gradient descent method for decoding of LDPC codes 
is presented in [4], and the same algorithm can be applied to 
any linear block code. Here, the algorithm tries to optimize 
an objective function, defined in [4, Eq. (5)]. The algorithm 
does this by associating energy to variable bits and flips those 
variable bits, which have energy below some threshold. This 
is done in iterations, where a group of bits, or one bit, is 
flipped in each iteration. Let us depict the current iteration of 

the algorithm as , and with   let us depict the maximum 
number of iterations for the algorithm. 

The corresponding energy function can be defined as in 

[15], where for the -th iteration and for the i-th variable bit, 
we calculate 

 


 = ,

 + , ∑ ∏ 
∈∈() + 

,  (1) 

 

where 
 is the estimated codeword in the  − 1 iteration, 


 = (), and i=1, 2,…, n. Weight factors ,  and , 

are learnable weights, and 
 is the momentum factor 

defined as in [15]. 
It can be seen that every variable bit can have different 

weight factors. In our work, we consider only the case when 
a group of variable bits which have the same degree has the 

same weight factors, i.e.  , =  ,|()|  and , =
 ,|()|.  It is interesting to notice that the energy function 

used in the GDBF-w/m algorithm (introduced in the paper 
[7]) can be obtained as a special case of Eq. (1) if we set 

, =   and , =  1, ∀. Furthermore, Eq. (1) reduces to 

the energy function from the GDBF algorithm (presented in 

the paper [4]) if , =  1  , , =  1 , and when the 

momentum does not exist. 

B. Learning of the component decoders 

The decoder parameters are optimized for the specific 
linear block code and the channel conditions. Before the 
decoder design, the parity check matrix H of the linear block 
code is specified, and we fixed the value of Eb/N0 (denoting 
the energy per bit divided by the power spectrum density of 
the AWGN channel).  

At the beginning of the learning process, a simple GDBF 
algorithm is used to decode the linear block code specified 
with matrix H. Monte Carlo simulation is performed in not 
more than L1 iterations (Lk denotes the maximum number of 
iterations for the k-th decoder), to collect the database of 
uncorrectable error patterns for the given Eb/N0. For the first 
decoder, the set of learnable parameters in the decoder is 
specified (for the algorithm presented in the previous section, 

these parameters are , ,  ,, and 
, for i=1, 2,…, n), and 

possible values of these parameters have to be specified. An 
optimization algorithm is used to choose the optimal values of 
these parameters from the predefined sets, based on the 
previously created database of uncorrectable patterns. 

When the first decoder in the chain is specified, some error 
patterns in the previous database must be removed if this 
decoder can correct them. After L2 iterations, Monte Carlo 
simulation is started to identify a new set of uncorrectable 
error patterns that should be used to extend the previous 
database. The updated database will be used for the 
optimization of the second decoder in the chain. The 
procedure described in this paragraph is repeated for the next 
decoders in the chain.  

C) The application of the genetic algorithm  

The Genetic Algorithm (GA) is an algorithm that can be 
used for optimization problems. It is a population-based 
algorithm where every solution to the problem is represented 
by a chromosome [16]. Each solution of the problem has its 
fitness value, and the higher fitness values correspond to 
better optimization. In the first generation, the chromosomes 
are chosen randomly, and individuals are chosen in a 
selection phase. The best individuals are transferred to the 
next generation (elitism). The chosen individuals begin a 
combination process in which their genes are combined to 
generate a new solution to the problem. After the mutation 
phase, a new population is created. After several generations, 
we terminate the algorithm and use the best chromosome as 
the solution to the given problem. 

In our case, the chromosomes represent parameters for one 
decoder, i.e., one solution to the problem. By GA for one 
decoder and some initial number of iterations, we learn 
weights for energy function and momentum values. In order 
to use the GA for optimization, learnable weights, and 
momentum are represented by bits. The values of weights 
,|()|  and ,|()|  are quantized, and those values are 

used for their representation. The weights should not be zeros, 
so the counting starts with one. For one weight, we get some 
integer value from the bits, add one, and then divide that value 
with some normalizing factor and obtain the value for that one 
weight. A different approach is applied for the momentum 
with the length ’. Before optimization, a matrix ,, where 

2  is the number of momentums used in optimization, is 
constructed. The construction consists of making all possible 
momentums with predefined values. The number of unique 
momentums is less than 2 . Since the number of unique 
momentums is less than 2, we fill the rest of the elements of 
 with already used momentums starting from momentum at 
the first row of the matrix . Then we use  bits to select one 
momentum vector, one row of the matrix , which will be 
used in a decoder solution.  

III. NUMERICAL RESULTS 

This paper will present the numerical results for a short 
right-regular BCH code with n=63 and k=36 (given in [17]). 
The codewords are transmitted through the AWGN channel, 
and a real-valued channel measurement vector y appears at 
the decoder's input. Iterative decoding based on the algorithm 
described in Section II is performed for different strategies of 
the parameters’ adaptation. 
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Fig. 1. Convergence speed of the various decoders. 

 

We first show how frame error rate (FER) depends on the 
parameter Lmax. The corresponding numerical results for 
various decoders and Eb/N0=7 dB are presented in Figure 1. 
It is obvious that the GDBF algorithm (without momentum) 
only corrects errors in the first few iterations. Even if the 
momentum is optimized in the GDBF-w/M, the performance 
improvement diminishes after 50 iterations.   

Further, we consider a concatenation of the GDBF-w/M 
decoders, where the component decoders have different 
momentum vectors m and energy function coefficients w1. In 
this scenario, L1=15, L2=30, Lk=50 for k=3,4,..,6, and L7=55. 
The next decoder learns the optimum values of m, w1 using 
the genetic algorithm applied to the database of uncorrectable 
error patterns of the previous decoder in the chain. Although 
a certain improvement is visible, the performance is not 
comparable with the BP algorithm for the same number of 
iterations. 

The same learning procedure can be repeated when the 
parameters m, w1, and w2 are optimized, with the modification 
that the same weighting coefficients are determined for the 
group of the variable bits with the same weight. This 
approach is a simplified version of the AD-GDBF algorithm 

[14], which considers the code irregularity and Lk=50, ∀. 
This decoder outperforms the BP algorithm for Lmax>240. 
However, it is interesting that the GDBF-w/M algorithm 
without concatenation of decoders outperforms the AD-
GDBF algorithm for Lmax<60.  

Therefore, we propose the modification of the AD-
GDBF, on the basis of the hybrid approach. This approach is 
described as follows. The first decoder in the chain is the 
GDBF-w/M decoder, with optimized parameters m and w1, 
where these parameters are optimized based on the database 
of uncorrectable error patterns of the GDBF decoder. The 
remaining decoders in the concatenation are optimized as in 
the AD-GDBF algorithm. The maximum number of 
iterations for every component decoder is determined to 
avoid the saturation of FER. This approach results in 
performance comparable with BP for any value of Lmax, as 
presented in Fig. 1. This is an important conclusion, as it is 
known that the AD-GDBF is a less complex algorithm when 
compared to BP [14]. 

The first decoder in the chain has the simplified energy 
function (denoted by EF1), with the same values of the w1 for 
all variable nodes, and we do not take into account w2 (i.e. 
, =  1, ∀). Although this represents a special case of the 

general energy function, given in Eq. (1) and denoted by EF2, 
the GA does not find this optimal solution if the number of 
optimization parameters is too large. In Fig. 2, fitness factors 
for various generations are presented when we apply 40 
chromosomes. If EF2 with more learnable parameters is used, 
the fitness factor increases even after 150 generations. If EF1 
is used, the fitness factor is usually smaller, but the optimal 
solution is achieved after not more than 30 generations.      

The results presented in Fig. 2 also indicate that the 
performance improvement due to the use of EF2 is smaller 
for the decoder at the beginning of the chain. This is why EF1 
can be used in the first decoder without sacrificing the error 
performance and reducing the optimization space. Even if 
EF2 is used, fitness factors generally decrease if the decoder 
is closer to the end of the chain. About 70% of the errors 
remaining after the first decoding stage are corrected by the 
second decoder. Only 33% of the remaining error patterns 
from the previous decoder are corrected by the seventh 
decoder in the chain.  

 
Fig. 2. Achieved fitness rate for the two approaches.  

 
Fig. 3. Performance of the component decoders. 
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Fig. 4. Performance of the various decoding algorithms. 

 
Fig. 3 presents the performance improvement after 

applying each of the seven component decoders. The bit error 
rate (BER) for the first decoder corresponds to the 
GDBF/w/m [7], where the momentum vector m and 
coefficient w1 are optimally chosen. The concatenation of the 
decoders reduces the BER, but the improvement decreases 
for every additional component decoder.  

Finally, in Figure 4, we present BER as a function of 
Eb/N0. It is obvious that the AD-GDBF decoder is far superior 
to the GDBF and GDBF-w/M decoders. If the adaptation of 
the momentum in 300 iterations (as proposed in [14]) is 
combined with the energy function EF1 (as proposed in [7]), 
the achieved performance of the corresponding cascade 
GDBF-w/M algorithm is comparable with that of the BP 
algorithm with 50 iterations.  

The AD-GDBF decoder with optimized weighting 
coefficients that take into account the irregularity of the BCH 
code, with the proposed modification, outperforms the BP 
decoder with coding gain close to 0.25 dB for the same 
number of iterations (Lmax=300). Furthermore, we can see that 
the proposed decoder outperforms the NBP and neural offset 
min-sum (NOMS) decoders, designed for Lmax=5 iterations. 
Decoders obtained by GA and used parity check matrix are 
given in [17].   

IV. CONCLUSION 

In this paper, we have analyzed the performance of BCH 
codes when iterative decoding algorithms are applied. We 
have used the main idea from AD-GDBF, and the importance 
of the decoder parameters is investigated. Furthermore, we 
have proposed one modification of the optimization 
procedure, which reduces the problem space and, by doing so, 
improves the decoder performance. The modification is based 
on combining two energy functions in a decoder, one with a 
smaller problem space and another with a bigger one. It can 
be seen that the given hybrid approach can improve the 
performance of the overall decoder in Figures 1 and 4 when 
compared to other approaches, where the synergy of the 
decoders is also implemented, but only one energy function is 
used. 

 

 

 

For fuIn true research, we open several questions in this 
paper. It will be interesting to investigate if there is any other 
optimization algorithm besides GA that should yield better 
results. Also, we will try to identify another method to further 
reduce the problem space so that AD-GDBF yields better 
decoders with fewer generations. 
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