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Abstract—Recently, Lin and Pryadko [1] presented the quan-
tum two-block group algebra codes, a generalization of bicycle
codes obtained from Cayley graphs of non-Abelian groups. We
notice that their construction is naturally suitable to obtain a
quantum equivalent of the well-known classical Margulis code. In
this paper, we first present an alternative description of the two-
block group algebra codes using the left-right Cayley complex;
then, we show how to modify the construction of Margulis to
get a two-block group algebra code. Finally, we construct several
quantum Margulis codes and evaluate their performance with
numerical simulations.

Index Terms—Quantum LDPC, bicycle codes, two-block group
algebra codes, Margulis code, quantum error correction.

I. INTRODUCTION

In the last two years, asymptotically good quantum LDPC
codes have finally been shown to exist, and explicit construc-
tions were given in [2]–[4]. However, there are still questions
on the applicability of this class of codes in realistic scenarios.
Moreover, it is not clear how these codes could perform in the
finite length regime. Recently, a class of codes called bivariate
codes [5] has been constructed and utilized in an experimental
setup of fault tolerance. Bivariate codes belong to the wider
class of generalized bicycle (GB) codes [6], a class of quantum
LDPC codes obtained from a pair of two circulant blocks.
Although GB codes have not the same desirable asymptotic
properties of the codes presented in [2]–[4], the experiment of
[5] motivates their study, as they are particularly suitable for
hardware implementation, and have good minimum distance
and code rate for finite blocklengths.

Recently, GB codes were further generalized into the so-
called two-block group algebra (2BGA) codes [1]. The parity
check matrices of this class of codes are obtained from the
Cayley graphs of some group, generated by a given set of
generators, and GB codes can be seen as special cases of
2BGA codes. The authors in [1] have derived bounds on the
minimum distance, and have enumerated all the 2BGA codes
with optimal parameters (up to permutations) for blocklengths
less than 200, showing an increase of the minimum distance
with the square root of the blocklenght. The considered groups
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were products and semi-products of cyclic groups and the
dihedral group.

We notice that the 2BGA construction is naturally suitable
to extend the well-known classical LDPC construction from
Margulis [7], as well as other similar constructions such
as the Margulis-Ramanujan construction [8], [9], to obtain
quantum LDPC codes. The classical codes obtained from
these constructions have rate R = 1/2, and their parity
check matrix is composed by two square blocks corresponding
to the incidence matrix of Cayley graphs of the special
linear group SL(2,Z) in the case of Margulis codes, and
the projective general linear PGL(2,Z) and projective special
linear PSL(2,Z) groups in the case of Margulis-Ramanujan
codes.

In this paper, we first present an alternative description of
2BGA codes using the left-right Cayley complex. Then, we
modify the construction of Margulis to obtain a class of 2BGA
codes with blocklength larger than 200, and we show that the
same result on the girth of the code of [7] is applicable to our
construction. Finally, we construct several examples of quan-
tum Margulis codes, with different blocklengths, girth and
variable/check node degree, and evaluate their performance
via numerical simulation under depolarizing noise.

This paper is organized as follows: in Section II, we present
the preliminaries and introduce the notation, in Section III we
describe 2BGA codes over the left-right Cayley complex, in
Section IV we recall the construction of Margulis and extend
it to get quantum Margulis codes and finally, in Section V we
construct several quantum Margulis codes and show Monte
Carlo simulation results for logical error rate.

II. PRELIMINARIES

Let Fn
2 be the field of the binary vectors of length n; the

Hamming weight (or simply weight) of an element in Fn
2 is

the number of its non-zero entries. An [n, k, d] linear code
C ⊂ Fn

2 is a linear subspace of Fn
2 generated by k elements,

such that each element in C has Hamming weight at least
d. A code C can be represented by an (n − k) × n parity
check matrix H such that C = kerH. If H is sparse, i.e.,
its row and column weights are less than log n, the code C
is a low-density parity check code. A graph Γ = (V,E) is
a collection of vertices V and edges E, such that each edge
connects two distinct vertices vi, vj and can be represented
by the pair (vi, vj). To a parity check matrix is associated a
bipartite graph called Tanner graph T = (V ∪ C,E) [10],
where the nodes in V are called variable nodes, the nodes in
C are called check nodes, and there is an edge between vj ∈ V
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and ci ∈ C if hij = 1, where hij is the element in the i-th row
and j-th column of H. The degree of a node is the number of
incident edges to that node. If all the variable (check) nodes
have the same degree we say the code has regular variable
(check) degree, and we denote it with dv (dc). A cycle is a
closed path in the Tanner graph, and we denote its length by
the number of variable and check nodes in the cycle. The girth
g of a Tanner graph is the length of its shortest cycle.

Given a group G and a set of generators S, it is possible to
construct the Cayley graph Cay(G,S) of G with respect of
S, such that Cay(G,S) = (G,ES) is a graph where there is a
vertex for every element g ∈ G, and there is an edge for every
pair (g, gs), with s ∈ S, if S acts on the right. Alternatively,
if S acts on the left, the edges have the form (g, sg).

Let (C2)⊗n be the n-dimensional Hilbert space, and Pn

be the n-qubit Pauli group; a stabilizer group is an Abelian
subgroup S ⊂ Pn, and an Jn, k, dK stabilizer code is a 2k-
dimensional subspace C of (C2)⊗n that satisfies the condition
si |Ψ⟩ = |Ψ⟩ , ∀ si ∈ S, |Ψ⟩ ∈ C. An Jn, kX − kZ , dK
Calderbank-Shor-Steane (CSS) code C is a stabilizer code
constructed using two classical [n, kX , dX ] and [n, kZ , dZ ]
codes CX = kerHX and CZ = kerHZ , respectively, where
d ≥ min{dX , dZ} and CZ ⊂ CX [11]. Note that kX , kZ and
dX , dZ correspond to the dimensions and minimum distances
of CZ and CX , respectively.

A chain complex

· · · ∂i+1−−−→ Ci
∂i−→ Ci−1

∂i−1−−−→ · · ·
is a sequence of abelian groups and morphisms called bound-
ary maps such that ∂i ◦ ∂i+1 = 0 for all i ∈ Z [2]. This
property implies that im∂i+1 ⊆ ker∂i, thus one can consider
the quotient group Hi(C) = ker∂i/im∂i+1, called the i-th
homology group of C. Alternatively, it is possible to define a
co-chain complex

· · · ∂i+1

←−−− Ci+1 ∂i

←− Ci ∂i−1

←−−− · · ·
to be the dual of a chain complex. Here the morphisms ∂i

are called co-boundary maps and ∂i+1 ◦ ∂i = 0, which
is equivalent to im∂i ⊆ ker∂i+1, allows us to consider
the quotient group Hi(C) = ker∂i+1/im∂i called the i-th
cohomology group.

A classical linear code can be interpreted as a 2-term chain
complex C : Fn

2
H−→ Fn−k

2 such that its first homology group
H1(C) corresponds to kerH.

A quantum CSS code can be represented by the 3-term
chain complex C : Fmx

2
∂2−→ Fn

2
∂1−→ Fmz

2 , with ∂2 ∈ Fmx×n
2

and ∂1 ∈ Fn×mz
2 being the first and the second boundary

maps, respectively; the space Fmx
2 (resp. the space Fmz

2 )
corresponds to the space of the Z-checks (resp. the X-checks),
while the space Fn

2 correspond to the space of the n qubits.
Alternatively, we can represent the quantum code by its dual

chain C∗ : Fmx
2

∂1

←− Fn
2

∂2

←− Fmz
2 . We can identify the code

CZ with the subcomplex Fn
2

∂1−→ Fmz
2 , and its dual C⊥

Z with

the subcomplex Fn
2

∂2

←− Fmz
2 ; similarly, we can identify CX

with the subcomplex Fmx
2

∂1

←− Fn
2 , and its dual C⊥

X with

the subcomplex Fmx
2

∂2−→ Fn
2 . It follows that the length of

the quantum code is equal to n, and its dimension k is the
dimension of the first homology group H1(C) (or of its first
cohomolgy group H1(C∗)). We naturally identify HX ≜ ∂1

and HZ ≜ ∂1
1.

III. ALTERNATIVE DESCRIPTION OF THE TWO-BLOCK
GROUP ALGEBRA CODES

In this section we present an alternative description of the
two-block group algebra codes using the left-right Cayley
complex proposed in [12]. This representation highlights the
strong relation between this class of codes and other classes
of quantum LDPC codes: it is known, for instance, that two-
block group algebra codes are the smallest lifted product codes
[1]. Although a description of lifted product codes on the left-
right Cayley complex is exploited in [2], there is no such
a description of bicycle codes and two-block group algebra
codes. Moreover, quantum Tanner codes [3] are also defined
on a left-right Cayley complex, with the only difference on
how qubits and checks are assigned over the graph. Thus, our
goal is to fill this gap by showing that it is possible to define
two-block group algebra codes on left-right Cayley complexes
as well, as this may enable new methodologies for the study
of these codes such as expander arguments, as done in [2],
[3].

We begin by summarizing the construction of the traditional
bicycle codes. Let A,B ∈ Fℓ×ℓ

2 be two circulant matrices. The
CSS code is defined by the two parity check matrices

HX = [A,B], HZ = [BT ,AT ], (1)

and has length n = 2ℓ. Because of the fact that circulant
matrices always commute, we have

HXHT
Z = [A,B] ·

[
B
A

]
= AB+BA = 0. (2)

Let now G be a group and A,B ⊂ G two sets of generators,
A acting on the left and B acting on the right. Let us recall
the construction of the left-right Cayley complex associated
to G [12], in its quadripartite version. We take 4 copies of
G, and we call them respectively V0, V1, CX , CZ . Next, we
construct ΓA1

= (CX ∪ V0, EA), ΓA2
= (CZ ∪ V1, EA),

ΓB1
= (CX ∪ V1, EB) and ΓB2

= (CZ ∪ V0, EB), such that
ΓA1

is isomorphic to ΓA2
, and ΓB1

is isomorphic to ΓB2
,

with ΓA1 and ΓB1 being double covers of the Cayley graph
of G with respect to A and B. The left-right Cayley complex
is obtained as Γ = ΓA1

∪ΓA2
∪ΓB1

∪ΓB2
. Note that, in this

paper, we do not assume A−1 = A and B−1 = B, thus the
constructed Cayley graphs may be digraphs. The complex can
be visualized as illustrated in Fig.1.

We can now associate a chain complex to the left-right
Cayley complex we have constructed. Let X be a 3-term chain
complex over the group algebra F2G such that

X : FCX
2

∂2−→ FV0
2 ⊕ FV1

2
∂1−→ FCZ

2 , (3)

1Note that ∂1 = ∂T
2 and ∂2 = ∂T

1 .
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Fig. 1: Left-right Cayley complex with code assignments.

with
∂2 ≜ (acX , cXb), ∀cX ∈ FCX

2

∂1 ≜ v0b+ av1, ∀v0 ∈ FV0
2 , v1 ∈ FV1

2 ,
(4)

where with FG
2 we denote the space of all the formal linear

combinations of elements of G with binary coefficients. In
other words, ∂2 is a map between CX and the direct sum of
V0 and V1, such that each element in its image is a pair of
elements of G, and ∂1 is a map between V0⊕V1 and CZ such
that each element in its image is the sum over F2G of the two
elements in its input. It is straightforward to see that X is a
well-defined chain complex, i.e., ∂1 ◦ ∂2 = 0. Indeed, for any
cX ∈ CX we first compute ∂2(cX) = (acX , cXb), then we
compute ∂1(∂2(cX)) = ∂1(acX , cXb) = acXb + acXb = 0.
We notice that ∂2 and ∂1 have a natural binary representation,
which we denote with ∂2 and ∂1, respectively, such that ∂2 =

[A,B], where A,B ∈ F|G|×|G|
2 are the biadjacency matrices

of the double covers of the Cayley graphs of G in respect of
A and B, respectively, and ∂1 = [B,A]T . Similarly we can
consider the cochain complex

X∗ : FCX
2

∂1

←− FV0
2 ⊕ FV1

2
∂2

←− FCZ
2 , (5)

such that ∂1 = [AT ,BT ]T and ∂2 = [BT ,AT ]. Note that
AT ,BT correspond to the incidence matrices of the double
covers of the Cayley graphs of G in respect of A−1 and B−1,
respectively; indeed, we can represent the cochain complex
X∗ by reversing the arrows in Fig. 1, and substituting a and
b with a−1 and b−1. Because the corresponding Cayley graphs
are directed, the biadjacency matrices may not be symmetric.

We are now able to associate a quantum CSS code to the
complex, such that HX = ∂2, HZ = ∂2. Having defined A
and B acting respectively on the left and on the right, we now
have that their action commute, thus

HXHT
Z = [A,B] · [B,A]T = AB+BA = 0.

IV. QUANTUM MARGULIS CODES

In this section, we recall the construction of classical LDPC
codes from Margulis, and show how it can be adapted to
construct quantum Margulis codes. Moreover, we show that
the same result on the girth of the code can be applied to the
quantum case.

A. Classical Margulis construction

Margulis codes [7] are a well-known class of classical
LDPC codes constructed from Cayley graphs of certain
groups. Let G be SL(2, p) the Special Linear Group whose

elements consist of 2× 2 matrices of determinant 1 over Zp,
being p prime. Let S be a set of generators of SL(2,Zp)
chosen according to the construction we report below, and let
S−1 be the inverse of S. Let Γ = (G×F2∪G,E) be a bipartite
graph, with the set of left vertices being two distinct copies
of G, and the set of right vertices to be G. The subgraph
Γ0 = (G× 0∪G,ES) is the Cayley graph of G with respect
of the generators S, and the subgraph Γ1 = (G×1∪G,ES−1)
is the Cayley graph of G with respect of the generators S−1.
The LDPC code is constructed by assigning the left vertices to
be bits and the right vertices to be checks; it has blocklength
n = 2(p2 − 1)p, rate R = 1/2, variable degree dv = |S| and
check degree dc = 2|S|. A similar construction is based on
Ramanujan graphs by Lubotzky et al. [9], [13], however we
will only consider Margulis construction for this paper.

Margulis shows that if the set of generators are chosen such
that there is no multiplicative relation between them, the girth
of the graph grows as log p; moreover, he gives an explicit
construction of the generating set for any degree satisfying
this property. Let η be a sufficiently large integer, and let us
select r + 1 distinct pairs (mi, qi), with 1 ≤ i ≤ r + 1, such
that gcd(mi, qi) = 1 and 0 ≤ mi ≤ η/2, 0 ≤ qi ≤ η/2. For
each pair, there exist a matrix

Ci =

(
mi ai
qi bi

)
∈ SL(2,Z) (6)

such that |ai|, |bi| < η/2. Each generator gi is then given by

gi = Ci

(
1 η
0 1

)
C−1

i , ∀ i = 1, .., r + 1. (7)

The generating set is defined as S = {g1, ..., gr}, with
S−1 = {g−1

1 , ..., g−1
r }. Because each gi ∈ SL(2, ηZ),

Margulis shows that there exist no nontrivial multiplicative
relation between the generators, and that the girth of the code
grows as O(log n/ log r). Generally, it is sufficient to choose
η <
√
7r.

B. Quantum Margulis construction

The construction from Margulis can be extended to fit the
design proposed in Section IV. Let G = SL(2,Zp), with
p prime. We use Margulis’ method to obtain a set S of r
generators and its inverse S−1; for simplicity, let us assume
r even, so that we can divide S in two subgroups of equal
size r/2, such that S = {A,B}; similarly we can split
S−1 = {A−1, B−1}. Let A act on the left and B act on
the right. We construct the left-right Cayley complex as in
Section IV, and associate the correspondent quantum code.
The structure of the parity check matrices HX ,HZ is very
similar to the one of the classical Margulis code. Qubits are
associated with two distinct copies of G (namely, V0 and V1),
and X,Z checks are associated with a copy of G (namely, CX

and CZ , respectively). The graph ΓX = ((V0∪V1)∪CX , EX)
can be subdivided into two subgraphs: ΓX0 = (V0∪CX , EA),
which is the Cayley graph of G with respect of A acting on
the left, and ΓX1 = (V1 ∪ CX , EB), which is the Cayley
graph of G with respect of B acting on the right. Similarly,
the graph ΓZ = ((V0 ∪ V1) ∪ CZ , EZ) can be subdivided

Authorized licensed use limited to: University of Arizona. Downloaded on February 10,2025 at 19:18:44 UTC from IEEE Xplore.  Restrictions apply. 



Code n k dv dc g
P5G8D5 240 8 {2,3} 5 8
P7G8D5 672 4 {2,3} 5 8
P11G8D5 2640 4 {2,3} 5 8
P7G6D6 672 10 3 6 6
P7G6D7 672 6 {3,4} 7 6
P7G6D8 672 4 4 8 6

TABLE I: Parameters of the quantum Margulis codes.

into two subgraphs: ΓZ0 = (V0 ∪ CZ , EB−1), which is the
Cayley graph of G with respect of B−1 acting on the right, and
ΓZ1 = (V1∪CZ , EA−1), which is the Cayley graph of G with
respect of A−1 acting on the left. The parity check matrices
HX ,HZ are the incidence matrices of ΓX ,ΓZ , respectively.
The quantum code has length n = 2(p2 − 1)p, regular variable
degree dv = r, and regular check degree dc = 2r. Because
both HX and HZ have |G| rows and 2|G| columns, the rate
of the quantum code Rq → 0 for n → ∞; however, because
they always have redundant rows, we are able to construct
finite length codes with non-trivial dimension2. We reserve to
improve the rate of these codes in future work.

Because the structure of the code is essentially unchanged,
we show that Margulis’ argument for the girth can also be
applied to our construction.

Proposition 1. The girth of the two parity check matrices of
the quantum Margulis code increases as O(log n/ log 2dc).

Proof. By design we have that s ∈ SL(2, ηZ), for each
s ∈ S. Because of this property, Margulis showed that
the Cayley graph Cay(G,S ∪ S−1) has girth increasing as
O(log n/ log dc), with dc = r/2. In our construction, in
order to have matrix HX to have the same degrees as the
classical construction, we need two sets of generators A,B
both of cardinality r, which means that the total generating
set is actually of size 2r, and dc = r. Let us now consider
Cay(G,A∪B ∪A−1 ∪B−1); notice that the fact that A acts
on the left is irrelevant, as the Cayley graph (G,A) with A
acting on the left is isomorphic to the Cayley graph (G,A)
with A acting on the right via the map g 7→ g−1 [12]. Thus
we can apply the proof of Margulis to Γ and get that its girth
increases as O(log n/ log 2dc).

V. NUMERICAL RESULTS

In this section, we utilize the construction described in
Section IV to obtain several quantum Margulis codes. For
each code, we perform a Monte Carlo simulation of decoding
with BP-OSD with exhaustive search of order 10 [14], under
depolarizing noise. The decoder runs for a maximum number
of iterations equal to the blocklenght of the code. For each
probability of error, 104 error patterns are simulated; if, after
104 errors, less than 100 logical errors are detected, the
simulation continues with the same probability of error until
100 logical errors are detected. We generate several codes
with different blocklength, dimension, variable/check degree,
and girth, as depicted in Table I. The nomenclature we use

2Note that this is true for SL(2,Zq), but it’s not true in general.

for each code is in the form ”P#G#D#”, where the number
following ”P” is the prime p of the group SL(2, p) used to
construct the code, the number following ”G” is the girth, and
the number following ”D” is the check degree.

In Fig. 2 we illustrate the performance of several codes
constructed with p = 5, 7, 11; all the codes have girth g = 8,
regular check degree dc = 5, and two sets of n/2 variable
nodes, one set with dv = 2 and the other with dv = 3.
Although we also have designed codes with p = 13, its
blocklength of n = 4368 makes it infeasible to decode with
BPOSD. We reserve for future study the analysis of longer
codes. We were able to construct several codes with girth
g = 8 and check degree 5 that perform well under BPOSD
decoding, giving rise to a decoding threshold around 14% (we
stress that the terminology ”threshold” here is slightly abused,
as each code has a different code rate). We reserve for future
study the performance of these codes under different decoders,
ideally with lower decoding complexity. We also stress that,
for this paper, we focused on codes with dv = {2, 3} and
dc = 5, because we find that they generally have higher
girth than, for instance, dv = 3 and dc = 6, and better
decoding threshold. Nevertheless, is is likely that codes in
the (dv = 3, dc = 6) ensemble will have better distance
properties. In Fig. 3, for instance, we fix the code length,
and construct several codes with increasing check degree.
Specifically, we have codes with check degree from 5 to
8. As mentioned earlier, the code with check degree 5,
namely P7G8D5, shows the best performance both in terms of
threshold and error floor; however, the code P7G6D6 seems
to have a better slope, which may be due to better minimum
distance, although its threshold is lower, and its girth g = 6
is also lower, thus giving rise to an error floor. We also
simulate P7G6D7, which has (dv = {3, 4}, dc = 7), and
P7G6D8, which has (dv = 4, dc = 8), and we observe that the
threshold decreases while increasing the variable and check
degrees. Unfortunately, we weren’t able to find codes in these
ensembles with g = 8, and we reserve this task for future
work.

VI. CONCLUSION

We constructed 2BGA codes of blocklength n > 200 by
modifying the construction of Margulis for classical LDPC
codes. A similar ”generalization” can be applied to the class
of Margulis-Ramanujan classical LDPC codes [8]; however,
we were able to design codes with high girth only for block-
lengths of ≈ 5000, which is too high to be decoded efficiently
with the BPOSD decoder. Thus, we reserve the study of these
codes for future work. We obtained new quantum LDPC with
moderate blocklengths and analyzed their performance under
BPOSD decoding. We also extended the result of Margulis on
the girth of the code. A particular subset of quantum Margulis
codes with check degree of 5 shows excellent performance
both in the waterfall and error floor region; however, the code
rate goes to 0 with n→∞, as happens in general for 2BGA
codes. It would be interesting to find ways to improve the
code rate while minimally impacting the minimum distance of
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Fig. 2: Decoding simulation of three quantum Margulis codes
with check degree 5 and increasing blocklength.
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Fig. 3: Comparison of quantum Margulis codes of length 672
and increasing check degree.

the code. Another interesting application of quantum Margulis
codes (and quantum Margulis-Ramanujan codes) is in the
context of quantum expanders [2]–[4], [15], which have been
used to design asymptotically good quantum LDPC codes.
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