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Abstract—Topological quantum codes, such as toric and sur-
face codes, are excellent candidates for hardware implementation
due to their robustness against errors and their local interactions
between qubits. However, decoding these codes efficiently remains
a challenge: existing decoders often fall short of meeting re-
quirements such as having low computational complexity (ideally
linear in the code’s blocklength), low decoding latency, and
low power consumption. In this paper we propose a novel bit-
flipping (BF) decoder tailored for toric and surface codes. We
introduce the proximity vector as a heuristic metric for flipping
bits, and we develop a new subroutine for correcting degenerate
multiple errors on adjacent qubits. Our algorithm has quadratic
complexity growth and it can be efficiently implemented as it does
not require operations on dynamic memories, as do state-of-art
decoding algorithms such as minimum weight perfect matching
or union find. The proposed decoder shows a decoding threshold
of 7.5% for the 2D toric code and 7% for the rotated planar code
over the binary symmetric channel.

Index Terms—Surface codes, topological codes, bit flipping,
decoding algorithm, quantum error correction.

I. INTRODUCTION

UANTUM computers make use of the principles of

quantum mechanics to perform computations. Quantum
states are fragile and very sensitive to errors, and thus it is
crucial to implement quantum error correction techniques to
protect quantum information. A very important class of quan-
tum codes are topological codes, specifically surface and toric
codes [1], as they can be implemented on a planar quantum
chip. Decoding of surface codes is typically performed using
the minimum-weight-perfect-matching (MWPM) decoder [2];
although MWPM provides excellent decoding performance, its
computational complexity makes it infeasible for large-scale
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implementation. Because of this, many alternative approaches
have been studied to lower the decoding complexity of surface
codes. The most promising alternative is the union-find (UF)
decoder [3], although many other classes of decoders have
been proposed, such as tensor network decoders [4] (which
are implementations of maximum likelihood decoding), re-
normalization group decoders [5], neural network based de-
coders [6], maxSAT decoders [7] and cellular-automaton de-
coders [8]. On the other hand, message passing decoders
such as belief propagation (BP) have shown to be effective
for decoding surface codes when paired with MWPM and
UF [9], or with post-processing techniques such as ordered
statistics decoding (BP-OSD) [10]. Also, serial scheduling
and re-initialization of BP has been shown to provide good
decoding performance [11].

Bit flipping (BF) decoders are a class of iterative decoding
algorithms known to be very fast and efficient [12], although
generally they provide lower performance than BP. In general,
BF decoders do not perform well on surface codes, mainly
because of the very low column weight of the parity check
matrix, and also because of error degeneracy, which refers to
the property of quantum codes where multiple error patterns
of the same weight can correspond to the same syndrome.
Nevertheless, because of its extremely low complexity, BF is
still attractive in the scenario of decoding topological codes;
indeed, the latency constraint that a quantum decoder should
meet is very tight, to prevent the so-called backlog problem
[13]. Moreover, it is essential that the decoder has a low power
consumption, as it has to be embedded in a cryogenic envi-
ronment with a strict power budget [14]. This makes hardware
implementation of the decoder a crucial aspect; unfortunately,
state-of-art decoders such as MWPM or UF do not allow an
efficient hardware implementation, mainly because they make
use of complex data structures, which require random memory
access and dynamic memory allocation, which are known
to be less efficient as they introduce latency and increase
circuit complexity as well as power consumption. In contrast,
the BF algorithm, due to its simplicity, only requires static
memories with fixed access, thus having a distinct advantage
for hardware implementation.

In this paper, we develop a BF algorithm which is capable
of decoding surface codes. In the proposed approach, instead
of considering the number of unsatisfied checks as in con-
ventional BF, each bit is assigned a heuristic weight which
is the entry of what we call proximity vector. The proximity
vector is the sum of different contributions called individual
influences, and each individual influence is associated with an
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unsatisfied check. Ultimately, bits connected with checks with
low entries in the proximity vector will be flipped first, while
bits connected with checks with high entries in the proximity
vector will be flipped last. After each flip, the proximity vector
is updated in an efficient manner. To deal with high-weight
consecutive errors, i.e., errors occurring on a set of adjacent
qubits, which are particularly harmful for iterative decoders,
we design an iterative matching procedure that runs after BF
and that is able to correct these errors. We show that our
decoder has an asymptotic complexity of O(n?), where n is
the code’s blocklength, and we provide simulation results that
show a comparison, in terms of performance, with MWPM,
UF and traditional BF. Although our decoder is not able to
correct up to the minimum distance of the code, we show that
it has a good performance while also being more feasible for
hardware implementation than UF and MWPM.

The rest of the paper is organized as follows. In Section
IT we introduce the preliminaries of quantum error correction.
In Section Il we present an overview of the main decoding
algorithms for topological codes. In Section IV we define
the proximity vector and how it can be computed efficiently.
Section V provides a detailed description of our proposed
decoder. In Section VI we carry out a complexity analysis
and a comparison with other state-of-art decoders. In Section
VII we analyze the hardware implementation aspects for
UF, MWPM and the proposed decoder. Finally, Section VIII
presents simulation results.

II. PRELIMINARIES
A. Stabilizer formalism

Consider the n-fold Pauli group,
G, 2 {cBi® - ®cB, :ce{+l,+i},B; € {I,X,Y,Z}},

where I = [191.X = [41.Y = [0 5].Z = [ 4. Bvery
non-identity Pauli operator P € §G,, has eigenvalues +1 and
any two Pauli operators in G,, either commute or anti-commute
with each other. The weight of a Pauli operator P is defined
as the number of non-identity elements in the tensor product.

By dropping the phase factor ¢, the Pauli group G, is

isomorphic to IF%" [10], such that

C®X“Z‘Zi = (X1, ey T | 215 0y Z0)- (D

=1
In this representation, the commutation relation between two
Pauli operators p; = (x1]z1) and ps = (X2|z2) can be
computed by checking that the symplectic inner product is
Zero:

X1Z2' +2z1x27 =0 mod 2. )

A stabilizer group & is an Abelian subgroup of G,,, and
an [n,k,d] stabilizer code is a 2*-dimensional subspace
C of the Hilbert space (C?)®™ that satisfies the condition
S |¥) = |¥), VS, € §,|¥) € C. Thus, the code C is
defined as the common +1-eigenspace of the stabilizer group
S. The stabilizer group S is generated by a set of n — k
independent generators Si, ..., S,,—j that can be represented
using a matrix S, called the stabilizer matrix, whose (3, j)
element is given by the Pauli operator corresponding to the

j-th qubit in the i-th stabilizer. The minimum distance d is
defined as the minimum weight of an element of N(S) \ S,
where N(S) is the normalizer' of S. Elements in N(S)\ S
are also called logical operators.

Applying the mapping (1) to the stabilizer matrix S, we
obtain an (n — k) X 2n binary matrix:

H=[Hx | Hy] 3)

which we call the parity check matrix of C. Since the corre-
sponding stabilizers of S commute with each other, it is easy
to check using (2) that

HxHZ +H;HY =0 mod 2. 4)

B. Error model and syndrome

In the depolarizing error model, errors are Pauli operators
such that e € {I, X, Z, Y }®"; each error on the i-th qubit e;
can either be a bit flip (X), a phase flip (Z) or both (Y'), each
with probability ¢/3, while the probability of no error (I) is
equal to 1 —e. Using the Pauli-to-binary mapping of (1), a Pauli
error e can be also be modeled as a 1 x 2n binary vector e =
[ex ez]. Given a Pauli error e, the corresponding syndrome
s € {0,1}"* can be computed using the symplectic inner
product such that

s = eXHE + eZH§ mod 2. 5

Obviously, if e € S we have s = 0. More generally, any Pauli
error can be expressed as a combination of a frue error ey,
a stabilizer S; and a logical operator L; such that e = e; +
S;+L;, with S; € Sand L; € N(S)\S; since, by definition,
elements of L; and S; commute with each other (thus, their
syndrome is zero), the syndrome s is only dependent on the
true error e;; moreover, any error estimate of the type € =
e; + S, is a valid error estimate. This phenomenon is known
as error degeneracy. It is well known that, if the minimum
distance of a stabilizer code is much higher than the weight
of its stabilizer elements, there will be many degenerate errors
of the same weight [15].

C. Calderbank-Shor-Steane codes

An [n,kx — kz,d] Calderbank-Shor-Steane (CSS) code C
is a stabilizer code constructed using two classical [n, kx, dx]
and [n,kz,dz] codes Cx and Cyz, respectively, where
d > min{dx,dz} and Cz C Cx [16]. Note that kx, kz and
dx, dz correspond to the dimensions and minimum distances
of C'z and C'x, respectively. The parity check matrix of the
CSS code C has the form

_[H; o

where Hx and H; are the parity check matrices of Cx
and C'z, respectively, and the commutativity condition of (4)
reduces to HyHZ = 0 mod 2. To correct depolarizing errors
on the qubits, a syndrome s is computed such that

s = [sx sz, @)

I'The normalizer subgroup N (S) of a group S is the subgroup of S which
is invariant under conjugation.
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where sy = exH. mod 2 and sz = ezH% mod 2.
Because of the structure of H, X and Z errors can be
corrected independently using H; and Hx, respectively. In
this paper we consider a bit-flip channel, where each qubit
experiences an X error with probability p, and remains correct
with probability 1 — p. In other words, we fix ez = 0,
while elements in ex can be 1 with probability p or 0 with
probability 1 —p. Hence we only consider H; and sx, which
for simplicity we will denote as H and s, respectively. Note
that the bit-flip channel that we consider and the depolarizing
error model are closely related: indeed, assuming that X and Z
errors are decoded separately, we can model the depolarizing
channel as two binary symmetric channels with probability of
error p, = p, = %e; assuming that dx = dyz, is possible
to switch from the logical error rate curve over a binary
symmetric channel to the logical error rate under depolarizing
noise by re-scaling it of a factor of 3/2 [17].

It is convenient to introduce the notion of Tanner graph
[18]. A Tanner graph is a bipartite graph defined from H,
such that it has two sets of nodes V = {vy,vs,...,v,} and
C ={c1,ca, ..., i} called variable nodes and check nodes,
respectively, and there is an edge between v; and ¢; if and only
if h; ; = 1. A check node ¢; is said to be satisfied if s; = 0,
and unsatisfied if s; = 1. The degree of a variable or check
node is defined as the number of its incident edges. We define
the distance between two nodes ¢ and j to be the number of
variable nodes belonging to the shortest path between 7 and j.

D. Surface and toric codes

Surface codes [1] are a widely known class of CSS codes.
These are derived from the tessellation of the topological
surface in squares, in such a way as to form a lattice. Generally,
a surface code is characterized by an L x L lattice, where L
is the size of the horizontal (or vertical) dimension. In the
lattice we can identify vertices as X checks, edges as qubits
and squares as Z checks. Although there are several types of
surface codes, in this paper we focus on the rotated planar
codes [19], with parameters [L2,1, L] (L being the size of
the lattice) for the description of the decoder. The matrix
Hx is the incidence matrix between vertices and edges, and
the matrix Hy is the incidence matrix between squares and
edges. The two Tanner graphs corresponding to Hx and H
are isomorphic and they obviously correspond to a lattice as
well, as depicted in Fig. 1 for the rotated planar code. We
also consider toric codes, which are again characterized by a
L x L lattice, such that the edges and vertices at the boundaries
coincide. The toric code has parameters [2L2,2, L].

III. DECODING OF TORIC AND SURFACE CODES

In this section we summarize the state-of-the-art decoders
for toric and surface codes, and motivate our contribution.

The decoding of toric and surface codes is usually carried
out using the MWPM algorithm [2]. After measuring the
syndrome, a complete graph is constructed, where each vertex
represents an unsatisfied check; each edge is assigned a
weight, which is the minimum number of qubits separating
the two checks connected by the edge; this weight assignment

Fig. 1: Tanner graph for the [9,1,3] rotated planar code.
Circles (with black labels) correspond to variable nodes, while
squares (with red labels) correspond to check nodes.

is done using Dijkstra’s algorithm [20]. Then, the blossom
algorithm [21] is run on this graph, with the goal of finding
the minimum weight perfect matching. Since the overall
complexity of the MWPM decoder on an L x L lattice is
O(L®log L) [22], many efficient implementations have been
proposed to reduce this complexity: for instance, in [2] a
fully parallel implementation is proposed, able to run with a
complexity of O(1), given a uniform 2-D array of finite speed
processing elements and an external memory able to store all
the detection events and matching data for the entire duration
of a hypothetical computation, while Higgott et al. proposed,
in [22], that each unsatisfied check could be restricted to
be matched within a local neighborhood, or that Dijkstra’s
algorithm could be optimized to avoid an all-to-all search
[23]. The main competitor of MWPM is the UF decoder [3].
This decoding scheme is also divided into two parts: first,
the syndrome validation process is carried out, where clusters
are defined to initially correspond to each unsatisfied check,
and are then iteratively grown to absorb the nearest check
neighbors. A cluster stops growing when it contains an even
number of unsatisfied checks, and two clusters merge together
if they touch each other. After all the clusters have stopped
growing, the peeling decoder is run on each cluster. The
complexity of the UF decoder, in its efficient implementation
proposed in [3], is almost linear in the blocklength. There
are also several alternative approaches to UF, which are able
to improve the decoding latency. For instance, in [24], the
authors propose a spanning tree (ST) matching decoder which
is able to correct up to the code distance. In addition, they
also propose a lower complexity decoder, called the rapid-fire
decoder, which is able to improve the decoding latency at the
cost of some performance degradation.

Message passing decoders such as BP are, in principle, not
suitable for topological codes, mainly because of the presence
of weight-4 symmetric stabilizers that behave as trapping sets
for the decoder [25]; because of this, several techniques have
been developed to improve the performance of BP on these
codes. One of the most common approaches is to apply the
well-known ordered statistics technique after several rounds
of BP [10]; this decoder is known as BP-OSD and has a
complexity of O(n?), thus making it infeasible for large-scale
implementation.

For the majority of decoders proposed for topological
codes, low decoding error probability comes with the price
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of increased decoding complexity. MWPM, for instance, has
a complexity that is cubic in the blocklength and it is known to
be infeasible in practice; the efficient implementations avail-
able, in particular those of [22] and [23], offer a significant
speedup that still vanishes for large blocklength. Another
major issue in decoders for topological codes, which is often
overlooked, is the hardware implementation aspect of the
algorithms. In fact, the vast majority of these decoders turn
out to be inefficient when implemented on FPGAs. It is well-
known that fixed and predictable access to pre-allocated mem-
ory is much faster than random access to irregular, pointer-
based dynamic memory; in particular, FPGAs are particularly
suitable for the former type of memory access. Moreover,
modifications of dynamic structures (like adding nodes to a
tree, or modifying its connectivity) are also operations which
are known to introduce a high amount of latency, even when
parallelized, due to the high overhead required. Another aspect
to consider is that the usage of dynamic memories is usually
more expensive in terms of energy consumption, as they often
require additional overhead for their management, as well as
more complex hardware. Also, energy consumption is a critical
aspect of any quantum error correction decoder, as it runs on
a chip which is embedded in a cryogenic environment with
a strict power budget. MWPM and spanning tree decoders,
for example, make use of Dijkstra’s algorithm to construct
syndrome graphs on which they perform the perfect matching.
Dijkstra’s algorithm is not desirable for an efficient FPGA
implementation, primarily due to its inherently sequential
nature and dependence on dynamic data structures (priority
queues).

Similarly, the UF decoder relies on dynamic, pointer-
based data structures and complex tree manipulations. The
two operations, union() and £ind(), often involve traversing
and modifying tree structures, which require frequent pointer
updates and non-uniform memory access patterns.

In this scenario, it seems reasonable to revisit the BF
decoder which utilizes extremely simple update rules that
make it much easier to implement in hardware such as FPGA.
However, because of the low degree of variable nodes in the
Tanner graph of the considered quantum codes (toric codes
are regular with variable degree of 2, while surface codes
also have degree-1 nodes), and because of error degeneracy,
we need to make significant modifications to the traditional
BF algorithm in order to decode toric and surface codes.
We will show that, although these modifications impact on
the asymptotic complexity of the decoder, they significantly
improve the performance of the decoder comparing to that
which uses traditional BF; at the same time, our algorithm does
not make use of any dynamic data structures, and only utilizes
elementary operations on arrays of fixed length which can be
pre-allocated in memory, thus making our decoder particularly
suitable for efficient hardware implementation compared to
the alternatives. Nevertheless, the goal of this paper is to
merely present and explain the algorithm, without presenting
an explicit hardware implementation; an optimized hardware
implementation, together with a detailed comparison with
those of other decoders, requires a specific in-depth study and
is therefore left for future work.

IV. THE PROXIMITY VECTOR

In this section we introduce the proximity vector, a vector
that the decoder uses as a bit flipping criterion. We describe the
rationale behind it, and we describe how it can be efficiently
computed while decoding.

The proximity vector is a heuristic weight assignment to
the variable nodes and check nodes in the Tanner graph, and
we define it to be the sum of multiple contributions which we
call proximity influences, which we describe hereafter. Let c;
be an unsatisfied check; we want variable and check nodes
neighboring c¢; to have the highest weights, while the weights
should decrease with increasing distance from c;. A simple
way to achieve this is by computing the proximity influence
recursively, as follows:

Definition 1. Let c; be an unsatisfied check, and let all the
other check nodes be satisfied. We define (%) (¢j) tobealxm
vector such that

W=yt
and let v (c;) be a 1 x n vector such that
v =40 . H . )
Then, let ¥\9)(c;) and v\9)(c;) be defined recursively as
{v(@(cj) = v () -HT (10)
vO(c;) =7 (¢;) - H

for £ = 1,2,...,D, D being a fixed positive integer. We call
v (¢j) the proximity influence of c; on qubits (or variable
nodes) of depth {, and v\*)(c;) the proximity influence of c;
on checks of depth (.

We then combine the proximity influence of each unsatisfied
check node to obtain the proximity vectors by adding, for
each variable and check node, the values of each proximity
influence.

Definition 2. Let ¢, ..., ¢, be all the unsatisfied check nodes,
and let v P (c1), ..., v (cy,) and 4P (cy), ...,y P (cr,) be
the respective proximity influences on qubits and checks. We
define v'P) and vP) to be the proximity vectors on qubits
and check nodes of depth D, respectively, such that:
v =3 vP)(e) (11)
AP =30 AP ()
It is also possible to define v'P) and vP) by setting v(©) = s,
and then using (9) and (10) directly.

Since the value of D will be fixed in the rest of the paper, we
simply refer to the proximity influences as v(c;) and v(c;),
and to the vectors as v and ~. By construction, the values
of the influences v(c;) and ~(c;) are highest for the nearest
neighbors of c;, and decrease with increasing distance of a
variable (check) node from c;. To see this, it is convenient to
write (P 4(P) in the following recursive way. Let N (c;) C
V' be the neighborhood of check node c;, and N (vj) cC
the neighborhood of variable node v;; we define N d(Cj) cVv
to be the depth-d neighborhood of c;, i.e., the shortest path
between c¢; and its depth-d neighbors has length 2d — 1; we
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can also define N(v;) C C'in a similar way. For every check
node c;, € C and variable node v, € V:

i 1—1 i—1
1) =) + X enion ()
7 i—1 1—1
v (e)) = v () + T ewioy ().

For ¢ = 0 we have 1/(50) (¢j) = 1 for all variable nodes v, €
N (c;) and O otherwise; for i = 1 we have V,gl)(cj) = 1 for all
variable nodes v, € N?(c;); moreover, z/tgl)(cj) > 1 for all
variable nodes v, € N(c;). Let r >4+ 1 and m < i+ 1; in
general we have yg” (¢;) = 0 for all variable nodes in N (¢;),
v§7(¢;) = 1 for all variable nodes in N+ (c;), and v (c;) >
1 for variable nodes in N (¢;). In other words, the value of
the proximity influence for each node at distance 2d—1 from c;
remains O until the d+1 iteration, and then increases according
to (12). This means that, fixing the number of iterations, the
closer is a node to c¢;, the higher is the proximity influence
for that node. A similar argument can be made for v(c;).

The proximity vector on qubits v and on checks = is the
natural superposition of all of the influences exerted by all of
the unsatisfied checks. As a result, variable and check nodes
which are more distant from unsatisfied nodes (we say more
isolated) will have a lower weight assigned, while variable
and check nodes that are near to many unsatisfied checks
will have higher weights assigned. Note that this definition of
proximity vector is heuristic, and alternative definitions can be
provided to capture the individual influence of a check node.
Our definition of proximity vector is convenient for the reason
that it only involves integer values, thus it can be stored using
a fixed (and low) number of bits.

1) Efficient computation of the proximity vector

In our decoder, it is essential to update the proximity vectors
on checks and qubits after each flip: in other words, after a
bit is flipped, its neighboring checks will be satisfied?, and
their influence should be removed from the proximity vector.
Specifically, if the flipping of variable node v; causes its two
neighboring check nodes c¢; and ¢;, to become satisfied, the
updated proximity vectors shall be

{7, =~ — (v(¢;) +~(cx))

Vi =v— (v(e) +v(c)).

12)

13)

To take into account this update of the vector after each flip,
one could in principle recompute (11), setting v(9) = &,
where s’ is the updated syndrome after the bit flip; however,
this would negatively impact the complexity of the algorithm,
as each bit flip would require an additional ¢(nd, + md.)
operations (multiplication of sparse matrices).

Instead, we exploit the labeling we have assigned to variable
and check nodes in the surface code. The idea is to pre-
compute the proximity influence of an arbitrary check node
over a larger surface code, say ~y(c1),v(c1), store it prior to
the decoding process, and then compute online v(¢;),v(c;)
when needed by appropriately permuting vy(c;) and v(cq). We
illustrate this process for the rotated surface code, although it
can be extended for other types of surface codes. Assume that

2Because of the nature of our decoder, each bit flip never generates new
unsatisfied checks.

we label the variable nodes with non-negative integers row-
wise in increasing order and we do the same for the check
nodes; an example is provided in Fig. 1 for a rotated code
with L = 3. Consider the Tanner graphs G; of a rotated code
with L = Ly, and Gy of an L}, x L} surface code , such that
Ly > Ly and LY > L. Let c?}%zf” € N1 be the labels of
the variable and check nodes of G, and ,ch), 1152) € N5 be
the labels of the variable and check nodes of G, respectively.
There are two injective mappings ¢, : Lgl) — /3&2) and
Oy - ES}) — 552) from the labels of the check and variable
nodes of Gy to the labels of the check and variable nodes of Gs.
Leti,j € £V, Assume that we have calculated v(cg,(s)) and
(¢4, (i)) for some arbitrary check node c; using (10) on Go,
and that we now wish to compute v(c;) and ~y(c;), for some
J # i, by appropriately permuting v(c4_¢;)) and v(cy,_(;)). Let
pe be the number of check in each row of Gy and p,,, pye be
the number of variable nodes in even and odd rows of G,
respectively. By exploiting the indexing we have defined for
the check and variable nodes, we can define a vertical shift
oy and an horizontal shift o:
_ 9e() be(i)
Oy = LTJ - LTL . (14)
Oy = d’c(]) mod p. — ¢C(Z) mod p. ,
Note that o, and o, can also assume negative values. Depend-
ing on the surface code we are considering, it is possible to
express the index transformation in closed form, using o, and
oy. Let ke, k. € £? and ky, k€ £, We can express a
coordinate shift using two linear maps from k. to k., and from
k, to k! respectively, such that

k. =ke+ 05 + oype
kl’[j - kv + o0z + Uy(pvo +pve)~
Thus, we have vi (cy, () = Vi, (Co,(5)) and Y: (o, (j)) =
Y. (Co,(s))» for all &/ and k; finally, we apply the inverse
mappings ¢_ !, ¢, to all the elements in the codomain
of these functions, such that v,(c;) = 1/¢U(q)(c¢c(j§) and
Yp(€j) = V. () (Co.(j)) for any g € £ and pE £V, This
procedure is illustrated in Algorithm 1, where j € cé” is
the label of the check nodes of which we want to compute the
proximity vectors. An example of the application of Algorithm
1 is illustrated in Fig. 2. Specifically, we pick G; to be a
L1 = 3 rotated code and G5 to be a 4 x 5 surface code.
The example illustrates how to shift the proximity vectors
from cg_(0)=g O cg_(2)=15- In Fig. 2(a) the proximity metrics
(¢, (0)) and v(cy, (0)) are assumed to be pre-computed;
in Fig. 2(b) we want to compute ~(c2) and v(cg), which
is mapped to Y(ce,(2)=15) and v(cg, (2)=15). We compute
0, = 1 and o, = 1 and apply (15) to each variable and
check node. The reader can verify that, for instance, check
node 7 is mapped to check node 14, and thus to check node
¢-1(14) = 1 in the L = 3 surface code. On the other hand,
check node 2 is mapped to check node 9, which doesn’t belong
to the image of ¢, and thus y(cy-1(c,)) = 0. The values for
L4, LY are such that the mapping in (14) gives the correct
result for every o, 0,, which happens for L5, L§ > L + D.
2) Auxiliary proximity influence
We also define an auxiliary proximity influence of a check
node c;, that we denote as a(c;).

15)
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Algorithm 1 Shift_influence
Input:
Global: v(cy, (1)), ¥(cg.(1))s L2, bv, b
Output: vy(c;), v(c;)

 ky, ke + [1, L3
Compute o, 0, using (14)
Compute k!, k/, using (15)
Vd);l(k;))(cj') — vk, (1))
'qugl(kg)(cj) Y. (Cs.1))
return

A i > ey

Definition 3. The auxiliary proximity influence o(c;) is a
1 x n vector such that o;(c;) is the length of the shortest
path between the variable node v; and the check node c;. For
example, if a variable node v; is directly connected to c;, then
O[i(Cj) =1

Note that the proximity influences v(c;) and a(c;) share
the same non-zero positions, but in general they have different
values: while v(c;) will have higher values for the variable
nodes close to ¢;, in a(c;) the variable nodes connected to ¢,
will have value 1, those at distance 2 will have value 2, and so
on. We can compute a(c;) in a similar way to v(c;). Thus, it
is sufficient to construct a(c;) offline, and apply Algorithm 1
to create a(c;), for any j. We illustrate in Section V-B how
we make use of the auxiliary proximity influence to correct
errors. Finally, we define two subroutines, illustrated in Algo-
rithm 2 and Algorithm 3. The Compute_proximity_vector
subroutine takes as input the syndrome s and generates the
proximity vectors v and -y, using Algorithm 1 to compute
individual influences and summing them up according to (11).
The Shift_and_remove subroutine takes as input the residual
syndrome s’, as well as the proximity vectors v and ~, and
updates them using (13).

Algorithm 2 Compute_proximity_vector
Input: s
Global: v(c;), v(c1), L
Output: v, v

Lk+Fk|sg=1

22 v,y 0

3: for k € k do
4 v(ek),v(ck) < Shift_influence(k)
55y v+
6
7
8

v v+v(c)
. end for
: return

V. PROGRESSIVE-PROXIMITY BIT-FLIPPING

We are now ready to describe our proposed decoder, which
we call Progressive-Proximity Bit-Flipping (PPBF). It is illus-
trated in Algorithm 4, and it is composed of two decoding
steps: the first is called Preliminary BF, and the second is
called Iterative matching; these two algorithms are illustrated
in Algorithm 5 and Algorithm 6, respectively.

6

0 5

(1 (]
50) ()10
6 [] 111
16 () (21
12 [} 117
27 () () 32
18 [ ] []23
38 () ()43

25 26 27 28
1@ F+—O—1+—O—1+O—1F+—O—13—0O—"02
44 45 46 a7 48

(a) The depth-1 influence of cg (highlighted in red) is computed
on a 4 x 5 surface code. The node label of cg corresponds to
the node ¢y in the L. = 3 rotated code.

5

0
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16 () O 21
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27 () ()32
18 [} 123
38 () ()43
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u+—0O—11—0O10—0O100O10—0O"02
44 45 46 47 48

(b) The influence of Fig. 2(a) is shifted to the node ci5 on the
4 x 5 surface code: in this case, o, = 1 and o, = 1. Then,
the values of the shifted metrics are assigned to the nodes of
the L = 3 rotated code according to the illustrated mapping
between labels.

Fig. 2: Example of shifting of the proximity influence. The
labeling on the variable (black) and check (red) nodes inside
the parentheses is the labeling for the L = 3 rotated code,
while the labeling outside the parentheses is the one for the
4 x 5 surface code. In this example, we compute the influence
of cy5(2) by shifting the influence of cg(g). The nodes colored
in gray are the ones with a non-zero proximity metric; notice
how some of the values are discarded after shifting, i.e. the
values of ¢g and cy6.

A. Preliminary BF

In the preliminary BF step of Algorithm 5, the vector u
containing the number of unsatisfied checks for each variable
node is first computed (line 3), and only variable nodes
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Algorithm 3 Shift_and_remove

Input: v, v, s’

Global: v(c;1), v(c1), L

Output: v/,

cjeglsi=1

v+—v

Y =

for k € j do
v(ek),v(cg) < Shift_influence(k)
vV v —v(c)
v ' = v(ek)

end for

: return

B A A S

Algorithm 4 Progressive-Proximity Bit-Flipping
Input: s, H
Qutput:

I: v, < Compute_proximity_metric(s)
2: &,8,V + Preliminary BF(s,H,v)

3: & « Iterative_matching($, H,~)

4: return

involved in two unsatisfied checks will be considered for
flipping. Among all the variable nodes i such that u; = 2,
we flip the one which achieves the minimum value of the
proximity vector v, (lines 7-8); then, the proximity vector
is updated using Algorithm 3, such that the influence of the
checks satisfied after the flip is removed from v’ (line 10).
The residual syndrome is then computed (line 11) and another
iteration is performed, until there are no variable nodes ¢ such
that u; = 2.

Algorithm 5 Preliminary_BF

Input: s, H, v
Output: &, §, v/
e« 0

1

2: §+ s
Fu+s-H

4: V' v

5: 8+ {iel,n]:u; =2}
6: while S # 0 do

7 J « arg min v}

i€S
8: éj — éj @1
9: s’ < é&-HT mod 2
10: V' + Shift_and_remove(r/,,s’)
11: §<sads
12: u+s-H

13: end while
14: return €, S

B. The iterative-matching routine

Here we present the iterative matching routine, which is
specified in Algorithm 6. A matching decoder is a decoding
algorithm specifically tailored for surface codes, which aims
to pair together couples of unsatisfied checks, estimating the
qubits on the shortest path connecting them as being in error.

This comes from the fact that every error on the surface
code can be interpreted as a path on the lattice, and the two
endpoints of this path are the two unsatisfied checks generated
by the error; however, errors occurring on boundary qubits
only generate one unsatisfied check. To address this issue,
it is common to add additional “dummy” unsatisfied check
nodes to the boundaries of the surface code, as proposed
in [2] (notice that this is not necessary for the toric code).
These checks are illustrated in black in Fig. 3. We utilize
the proximity vector - to match pairs of unsatisfied checks
together; specifically, we start by identifying the unsatisfied
check ¢; with the lowest proximity vector entry -; (line 4)
calling it a pivot node, and compute its auxiliary proximity
influence a(c;). Among all the other unsatisfied checks, we
pick the one at the smallest distance from the pivot (if there
is more than one candidate at the same distance, we choose
the check c; with lowest proximity vector entry «y;); we call
this the target node (line 9), and denote its distance from the
pivot by ¢. After computing the auxiliary vector a(c;), we
compute a(c;)+ a(c;); the result of this operation is a vector
such that if the k-th element is equal to 6 + 1, the variable
node vy, belongs to the shortest path between c¢; and c;. If the
number of entries of a(c;) + a(c;) that are equal to 6 + 1
is equal to ¢, it means that there is only one shortest path
between c; and c;, that corresponds to the most likely error
matching that syndrome; on the other hand, if the number
of entries of a(c;) + a(c;) that are equal to 6 + 1 is larger
than 4, it means that the corresponding error is degenerate, as
there is more than one shortest path between ¢; and c;. An
example of this is illustrated in Fig. 3, where there are two
possible paths of length 2 between c3 and c7, and the number
of variable nodes such that a(c3) + a(c7) = 3 is more than
2. In the first case, it is sufficient to flip all the variable nodes
associated with the value § + 1, while in the latter case one of
the possible degenerate errors must be chosen. We distinguish
these two scenarios in line 13. To pick one among the possible
paths, we compute the auxiliary influence of a third check
node c,, of position such that it is horizontally aligned with
c; and vertically aligned with c;; lines 16-22 are dedicated to
computing the position z. In particular, we define o, to be the
horizontal shift between c¢; and c; and o, to be the vertical
shift between ¢; and ¢;. Once a(c,) is computed in lines 22-
23, it is easy to check that the variable nodes vy such that
ak(¢;) +ag(c,) = o, + 1 are those connecting ¢; and ¢, and
those such that o (c;) 4+ ag(c,) = 0,41 are those connecting
¢j and c, thus we can flip all of them simultaneously in line
26.

C. Decoding of toric codes

In the case of toric codes it is possible to simplify the
computation of the proximity vectors. Consider a [2L2,2, L]
toric code. The proximity vector of an arbitrary check node
is pre-computed on the same code (there is no need to use
a larger code), therefore for each node label i we have
¢(i) = 4; to perform the permutation from a node i to a
node j, o, and o, are computed using (14), and for each
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(a) Proximity influence of depth 2 for the check node c7;
different colorings of variable nodes correspond to their distance
from c7: orange nodes are at distance 1, yellow at distance 2.

(c) Combination of the previous two proximity influences:
variable nodes which were assigned yellow and orange are now
colored red; those nodes which were assigned yellow and yellow
are now deep yellow. Finally, the variable nodes which were
assigned orange/white or yellow/white have maintained their
color. The set of red variable nodes coincide with the union
of all the possible error patterns that satisfy the matching, i.e.,
{’07, UlZ} and {’Ug, Ulg}.

Fig. 3: Example of the usage of the auxiliary proximity
influence of checks in Algorithm 6. In the example, c3 and c7
are unsatisfied checks, and the decoder has to find the shortest
path between them, assuming it starts with c; as pivot.

Fig. 4: Addition of the extra check as described in Section V-B.
The blue variable nodes are the depth-1 influence of the extra
check, and the darker ones are those which will be flipped. In
the example, o, = o, = 1.

ke ky KL KL €

k. = {{k’c +o0,} mod L +
L|(k.—1)/L] +o,L} mod L?
ki, = {{ky+0,} mod L +
L|(k,—1)/L| + QUyL} mod 2L?
To explain this procedure, we note that the toric code is
composed of L rows of L check nodes, for a total of L?
checks, and 2L rows of L variable nodes, for a total of 2L2
variable nodes. The labels in each row are shifted cyclically
modulo L by the term k.40, mod L, which returns a value
in [0, L—1]. Adding L|(k.—1)/L] returns a value in the same
row of k. but shifted by o,. Finally, a shift of o, modulo
L? is applied to get the final label which will be in the same
column but a different row. A similar reasoning is applied for
k,. The rest of the algorithm remains the same.

[1,2L?] we apply

(16)

VI. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the proposed
PPBF decoder. The computation of the proximity vector for
c1 is done offline and only once, thus it does not contribute
to the computational complexity of the algorithm.

A. Complexity of Algorithms 1, 2 and 3

Algorithms 1, 2 and 3 are extensively used in every decod-
ing iteration, therefore it is crucial that their computational
complexity is low. Algorithm 1 simply applies (14) and (15)
to shift the proximity influences; this can be done with com-
plexity O(1). Algorithm 3 applies Algorithm 1 to update the
proximity vector; since we update the proximity vector after
every flip, Algorithm 1 is applied twice (every flip satisfies two
check nodes) for every Algorithm 3 call. Thus, Algorithm 3
has the same order of complexity as Algorithm 1. Finally, since
Algorithm 2 is applied just once offline to compute ~(c1) and
v(c1), it does not contribute to the decoding complexity; in
any case, similarly for Algorithm 3, it only involves calling
Algorithm 1 |s]| times, thus it has the same complexity. We then
conclude that the computational complexity of Algorithms 1,
2 and 3 is O(1). We also want to stress that, since the entries
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Algorithm 6 Iterative_matching

Input: &, s, H, v
Global: ¢, ¢,

Output:
I: S+ s
29
3: while |$| > 0 do
4; i+ argminvy' | § =1 > Pivot.
1€[1,m]
5: t« 8
6: t; <0
7: a(c;) « Shift_influence(i)
8  j«jlti>0Aci(e) >0
9: j < arg min c(¢;) A arg min +/ > Target.
J€j JEJ
10: a(c;) < Shift_influence(j)

1: 6 cj(e)
12: £k |v(e)+or(c)=0+1
13: if |f| = 0 then

14: ég—er D1

15: else

16: Get o, using (14)

17: Get o, using (14)

18: 24 6.1 (Pe(2) + 0upe)

19: a(c,) < Shift_influence(z)

20: f1 < k| vk(e) +vp(e,) = Az +1
21: fo < k| vp(cj)+up(c,) =Ay+1
22: éfl’f2 — éfl,fQ @1

23: end if

24: s’ <+ é&-HT mod 2

25: 7' < Shift_and_remove(:,~,s’)

26: S+ sps

27: end while
28: return €

of the proximity vectors are integers with bounded values, and
since Algorithms 1, 2 and 3 only involve elementary operations
such as integer summation, the memory usage and the runtime
of the algorithm will generally be low compared to those of
other algorithms with similar computational complexity, but
that use floating point calculations.

B. BF decoding complexity

Assuming that comparing elements of u and v has a
negligible impact on the complexity, the only meaningful
contribution comes from Algorithm 3 and the computation
of u (lines 10 and 12 of Algorithm 5), which both have
complexity O(n).

C. Iterative matching complexity

In each iteration of Algorithm 6, all of the operations can
be performed in O(1), except for the argmin function which
is performed in O(n); since the procedure is repeated for
each pair of unsatisfied checks, namely |s|/2 times, making
the complexity of the algorithm proportional to O(n|s|), and

since |s| = O(m) [22], m being the number of check
nodes, and since m = O(n) (for instance, for the toric code
we have m = n/2) we have that the complexity of our

decoder is O(n?). The MWPM complexity is in the order
of O(n'?logn?), but efficient implementations are available
that achieve very small runtime for relatively small values
of n [22]. The Union Find decoder [3] achieves an almost-
linear complexity of O(«(n)n), where a(n) is the inverse of
Ackermann’s function [26], which has been shown to be linear
for practical values of n.

VII. HARDWARE IMPLEMENTATION ASPECTS

The major advantage of our algorithm in comparison to
UF, MWPM and ST is that it does not require the storage
of data structures that require dynamic memory allocation.
In this paragraph, we first analyze the UF, MWPM and ST
decoders in terms of their usage of dynamic memory, then
we show how PPBE, in contrast, only requires static access to
pre-allocated memory, thus providing advantages in terms of
latency, hardware usage, and energy consumption.

The UF algorithm uses tree structures to represent clusters.
Each tree is expanded at each iteration, and eventually trees
are merged together. The functions that operate on trees in the
UF algorithm are called union() and find(). The function
find() can be decomposed in three fundamental operations:
i) traversal, where the function navigates through the nodes
of the tree, ii) comparison, where the function checks if the
node is the root or not, and 4ii) path compression, where the
structure of the tree is modified such that each leaf points
directly to the root. The function union() can be decomposed
into the operations of ¢) find, where the function applies
find() to a pair of nodes to find their respective root, i7)
comparison, where the function compares the size of two trees
(the smallest is embedded in the largest), i) linking, where
the function updates the pointers of the nodes to merge the
trees, and iv) size update, where the size of the new tree
is updated. We also highlight that the size and number of
trees that need to be stored is not known a priori, and the
access to each tree is frequent and unpredictable. On the other
hand, MWPM and ST both make use of Dijkstra’s algorithm,
which also makes use of trees as data structures. At each
iteration, the node at the shortest distance is extracted from
the tree, and the tree is updated after the node is extracted.
This operation has a similar nature to the traversal and path
compression steps of UF. Since at each iteration one single
node is extracted, and the tree consequently updated, Dijkstra’s
algorithm is intrinsically sequential and thus hard to make par-
allel. Moreover, the adjacency matrix of the syndrome graph
created with Dijkstra’s algorithm has unknown dimension,
and thus requires dynamic memory allocation for storage. In
comparison, PPBF only requires the storage of ~(c;) and
v(c1), which are two integer vectors of length n, and the
value L which is an integer. Moreover, the knowledge of the
map ¢ is required, which it is represented by two length-n
vectors. The algorithm does not make use of dynamic data
structures, but only uses arrays and integers of fixed dimension
which can be pre-allocated in memory, increasing the hardware
efficiency. The algorithm has a fixed and predictable access to
the arrays, indeed all the functions which act on arrays are
element-wise operations, which can be made parallel (except
for the arg min function). Finally, the proximity vectors can be
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Decoder Memory alloc. Data type Access to data
UF Dynamic Pointer-based Irregular
MWPM/ST Dynamic Pointer-based Irregular

PPBF Static Array Element-wise

TABLE I: Summary of the memory usage of the analyzed
decoders.

10°

Logical Error Rate

10®
102 107!
Crossover probability
Fig. 5: Performance of our decoder on planar rotated codes
of different sizes, assuming a BSC. The threshold, which is
around 7%, is highlighted.

normalized and stored with finite precision. For these reasons,
our algorithm possesses unique advantages for hardware im-
plementation compared to the competing approaches. In Table
I we summarize our analysis. UF and MWPM/ST decoder
make use of pointer-based data structures, such as trees, which
are accessed in an irregular manner and also modified by
the algorithm, thus requiring dynamic memory allocation. In
comparison, PPBF only makes use of static data structures
as arrays, which can be pre-allocated, and that are modified
element-wise only.

VIII. RESULTS

In this section we present simulation results for toric and
rotated surface codes. We perform our simulation assuming a
bit-flip channel and assume perfect syndrome measurements,
and we compare our decoder with MWPM and UF. We have
investigated, through simulations, the best value of D for each
rotated and toric code. We found that, as long as D > L, its
value does not impact significantly on the performance of the
decoder. The reason for the condition D > L is to ensure that
all the check and variable nodes have a non-zero proximity
vector regardless of the check node of reference; if this is not
the case, there might be situations in line 9 of Algorithm 6
where no target node is detected. For each data point in the
plotted curves, the simulation was run until either 100 logical
errors were obtained or 10° error vectors were processed. In
Fig. 5 we plot simulation results of our decoder on rotated
planar codes over the BSC. The threshold can be seen to occur
around 7%. In Fig. 6 we plot simulation results of our decoder
on toric codes over the bit-flip channel. For comparison, the

Logical Error Rate

107
102 107"

Crossover probability
Fig. 6: Performance of the proposed decoder on toric codes
of different sizes, assuming a BSC. The threshold, which is
around 7.5%, is highlighted.

threshold of MWPM on toric code is 10.3% [1], while that of
UF is 9.9% [3]. As can be seen from the figure, the threshold
is around 7.5%; to obtain the threshold for the depolarizing
channel, it is sufficient to multiply the threshold value by 3/2
[17]. In Figs. 7 and 8 we highlight the comparison between
PPBF, traditional BF and MWPM for the rotated and toric
codes with L = 13 (for the latter, we also add the performance
of the UF decoder for comparison). For the traditional BF, in
each iteration we flip all of the bits involved in two unsatisfied
checks, and we run it for a maximum of 100 iterations. As
expected, MWPM, having higher complexity, achieves the best
performance, both in terms of threshold and waterfall; the UF
presents slightly worse performance than MWPM, although
it has significantly lower complexity. Our decoder exhibits a
different slope compared to the other decoders, meaning that
it does not take fully advantage of the distance of the code.
Nevertheless, it still achieves good performance, comparable
to that of MWPM and UF; we also need to stress that our
decoder is a hard-decision decoder, while MWPM and UF
both utilize soft information. Comparing to the classical BF
decoder, the PPBF shows a significantly lower error rate.

IX. CONCLUSION

We have presented a new decoder for surface and toric
codes which is able to achieve a very good decoding per-
formance with reasonably low decoding complexity, which
is particularly suitable for efficient hardware implementation
compared to state-of-art decoders. First, we have defined a
novel heuristic called the proximity influence, which assigns
weights to variable and check nodes in the neighborhood of an
unsatisfied check; we also showed that the proximity influence
of a check node ¢; can be efficiently obtained by appropriately
permuting the influence of an arbitrary node c; which is
computed offline and stored in memory. The total contribution
of the influences of all of the unsatisfied checks is called the
proximity vector, and we exploit it as a metric for flipping
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Fig. 7: Comparison of BF, PPBF and MWPM for the distance
13 rotated code.
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Fig. 8: Performance comparison between our decoder, tradi-

tional BE, MWPM and UF for the distance 13 toric code over
the BSC.

bits. To deal with error degeneracy and low variable node
degrees of toric and surface codes, we designed the iterative
matching procedure, which is employed after a round of serial
BF. Future work could include improving the performance
of the decoder using decoding diversity, i.e., running several
rounds of PPBF, each one using a different variation of the
proximity metric, and choosing as error estimate the one with
least weight. Also, methods to incorporate soft information
on the qubits or the syndrome into the proposed decoding
algorithm could lead to performance improvement. Adapting
the decoder to work on more general QLDPC codes could also
could also be an interesting direction for future research.
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