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AbstractÐDistributed quantum computing (DQC) holds im-
mense promise in harnessing the potential of quantum computing
by interconnecting multiple small quantum computers (QCs)
through a quantum data network (QDN). Establishing long-
distance quantum entanglement between two QCs for quantum
teleportation within the QDN is a critical aspect, and it involves
entanglement routing Ð finding a route between QCs and ef-
ficiently allocating qubits along that route. Existing approaches
have mainly focused on optimizing entanglement performance for
current entanglement connection (EC) requests. However, they
often overlook the user’s perspective, wherein the user making
EC requests operates under a budget constraint over an extended
period. Furthermore, both QDN resources (quantum channels
and qubits) and the EC requests, reflecting the DQC workload,
vary over time. In this paper, we present a novel user-centric
entanglement routing problem that spans an extended period to
maximize the entanglement success rate while adhering to the
user’s budget constraint. To address this challenge, we leverage the
Lyapunov drift-plus-penalty framework to decompose the long-
term optimization problem into per-slot problems, allowing us to
find solutions using only the current system information. Sub-
sequently, we develop efficient algorithms based on continuous-
relaxation and Gibbs-sampling techniques to solve the per-slot
entanglement routing problem. Theoretical performance guaran-
tees are provided for both the per-slot and long-term problems.
Extensive simulations demonstrate that our algorithm significantly
outperforms baseline approaches in terms of entanglement success
rate and budget adherence.

Index TermsÐQuantum Networks, Distributed Quantum Com-
puting, Entanglement Routing

I. INTRODUCTION

Quantum computing represents a groundbreaking paradigm

with the potential to revolutionize computing and information

processing [1]. It offers unparalleled efficiency in solving spe-

cific problems that classical computers struggle with. However,

in the foreseeable future, commodity Quantum Computers

(QCs) will likely be constrained by a limited number of

quantum bits, also known as qubits. Meanwhile, meaningful

quantum computing applications may demand hundreds or even

thousands of qubits [2]. To address this limitation, researchers

have put forth the concept of Distributed Quantum Computing

(DQC) [3]±[5]. This approach aims to distribute computational

This work is supported in part by NSF under grants 2033681, 2006630,
2044991, 2319780.

tasks among several smaller QCs, interconnected through a

Quantum Data Network (QDN) [6]. By leveraging this dis-

tributed setup, it becomes feasible to tackle more complex

problems that demand a larger quantum resource while making

the most of the available quantum computing capabilities.

Different from quantum key distribution (QKD), which focuses

on creating quantum bits (qubits) for cryptographic key delivery

and has the capability to regenerate and retransmit qubits if

needed [7], QDNs encode data information in the data qubits

and employ quantum teleportation [8] techniques to address the

retransmission challenge due to the no-cloning theorem, which

relies heavily on the stable long-distance entanglement [9].

Quantum entanglement is a fundamental building block that

plays a pivotal role in various applications [10]. To create quan-

tum entanglement between two QCs, such as Alice and Bob,

entangled Bell pairs of photons, known as qubits, are generated

at one side and one of the entangled qubits is transmitted to

the other side through a physical fiber-optic channel. However,

the process faces challenges due to the inherent lossiness of

the optical fiber, resulting in a success rate much less than

one, which is influenced by the physical distance between

Alice and Bob and the material properties of the fiber-optic

channel [11]. Establishing an entanglement link is probabilistic

and unstable, relying on the availability of quantum channels

between the parties and qubits on both ends. To enhance the

probability of successful entanglement, more qubits can be

allocated on both ends, and additional channels can be utilized

if available, effectively increasing the number of attempts made

simultaneously. Nevertheless, quantum channels are limited,

and each quantum node has restricted quantum memory to store

qubits, adding further complexity to the process.

In QDNs, as illustrated in Figure 1, QCs are often geo-

graphically distant from each other and lack direct channel

connections. Instead, they are interconnected through several

other QCs or quantum repeaters (QRs), enabling the establish-

ment of entanglement links only between adjacent quantum

nodes. Fortunately, a process known as quantum swapping

can be employed at intermediary quantum nodes when both

Alice and Bob are connected to the same node [12]. This

process allows the creation of entanglement between Alice and

Bob. By repeating this operation for multiple quantum links
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Fig. 1. Quantum Data Network.

along a route consisting of nodes between Alice and Bob, a

long-distance entanglement connection (EC) can be established.

Though this operation may fail, we can still assume its probabil-

ity approaches 1 due to the most advanced research and related

work [6], [13]. This approach enables effective entanglement

distribution over considerable distances in QDN. Optimizing

the performance of QDN requires meticulous entanglement

routing, consisting both route selection and qubit allocation,

especially in light of the constraints posed by limited quantum

channels and qubit availability. By strategically managing these

valuable resources, QDNs can achieve enhanced efficiency,

robustness, and overall effectiveness in their operations.

A. Related Work

Several researches have been dedicated to addressing the

entanglement routing problem, which involves establishing

long-distance ECs for various source-destination (SD) pairs,

while considering route selection and resource allocation. Early

works focused on specialized network topologies, including

sphere [14], grid [15], ring [16], and star [17] configura-

tions. These studies explored specific network structures to

understand and optimize entanglement routing. In more recent

studies, researchers have considered a general QDN setting,

where ECs are requested by multiple SD pairs [18]. The

primary objective in these studies is to maximize the expected

network throughput, although performance guarantees are not

guaranteed. A further extension of the research [19] has sought

to maximize both throughput and the number of SD pairs

served by the QDN, accompanied by theoretical analyses. This

work addresses the challenge of efficiently utilizing network

resources to support multiple SD pairs concurrently. To enhance

failure tolerance, some approaches [20]±[22] have leveraged

redundant entanglement links in routing. This redundancy en-

sures that even if certain links fail, alternative routes can be

utilized, increasing the robustness of the QDN. Several studies

incorporate the consideration of entanglement connection, a

crucial metric for assessing the quality of remote entanglement

links, into the framework of entanglement routing [22]±[24]. A

qubit allocation algorithm in QDNs was proposed by combining

simulated-annealing and local search [5]. The entanglement

routing scenario in QDNs was extended beyond the time slot

mode to an asynchronous scheme in [6] and an online mode that

processes requests upon arrival, termed as online entanglement

routing [25], both resulting in proactively utilize idle quantum

resources more effectively. Additionally, opportunism has been

introduced to QDNs [26], allowing for the opportunistic estab-

lishment of quantum links and enhancing routing flexibility.

B. Our Contribution

However, the majority of existing works on entanglement

routing primarily focus on myopically optimizing entanglement

performance in the current time slot (more precisely, the current

EC requests). A critical aspect is often overlooked: the fact that

ECs are user-requested, and the entire QDN is established and

maintained by the service provider. Consequently, allocating

qubits to generate entanglement links for EC requests during

a time slot incurs a cost charged by the QDN provider. The

allocated qubits are valuable resources that cannot be utilized

by other users during that specific time slot, making efficient

resource allocation essential. Because users typically operate

within a budget to avoid excessive expenses over an extended

period, spanning multiple time slots, strategically spending

this budget in the long-run is crucial for the overall entan-

glement performance. On the other hand, the entanglement

routing problem is significantly complicated by the fact that

EC requests may follow a random process unknown to the

user beforehand, which may depend on the DQC workload

arrival process. As a result, entanglement routing decisions

are inherently coupled across many time slots. Therefore, it

becomes imperative to develop entanglement routing strategies

that take into account the users’ specific requests and budget

limitations in the long term while also ensuring the efficient

utilization of QDN resources.

In this paper, we propose a novel user-centric entanglement

routing approach that balances between maximizing the entan-

glement connection success rates and optimizing the overall

user cost over time. Our main contributions are as follows:

• We formulate a user-centric entanglement routing problem

that jointly considers route selection and qubit allocation

over an extended period to maximize the entanglement

success rate, while respecting the user’s budget constraint.

• To solve this problem efficiently, we leverage the Lya-

punov drift-plus-penalty framework, decomposing the

long-term optimization into per-slot problems. These per-

slot problems can be solved using only current system

information, without requiring knowledge of future EC re-

quest, quantum channel, and qubit availability. We further

design an efficient algorithm to address the challenging

integer program of per-slot entanglement routing.

• We provide theoretical performance guarantees for our al-

gorithms, for both the per-slot and the long-term problems.

• Through extensive simulations, we demonstrate the effi-

ciency and superiority of our approach, showcasing its

significant outperformance compared to baseline methods.

II. BACKGROUND

Before delving into our system model and presenting the

entanglement routing problem, we provide some essential back-

ground information on QDN as a foundation.
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Fig. 2. Quantum Teleportation and Entanglement Swapping.

1) Qubit: A qubit, or quantum bit, serves as the fundamental

building block of quantum information. Unlike classical binary

bits confined to 0 or 1 states, a qubit can exist in a coherent

superposition of these states, represented as α|0⟩ + β|1⟩ [27].

There are various physical implementations of qubits, but

for quantum communication transmitted through optical fiber-

based quantum channels, photonic qubits emerge as the most

promising candidates [28].

2) Quantum Entanglement: Quantum entanglement is a re-

markable state that involves multiple qubits and cannot be

simply represented by the product of their individual states.

The measurement outcomes of entangled qubits are correlated,

leading to intriguing quantum phenomena. In a two-qubit

system, a pair of entangled qubits, denoted as A and B, form

what are known as Bell pairs. These Bell pairs can exist in one

of two standard bases:
|0A0B⟩±|1A1B⟩√

2
or

|0A1B⟩±|1A0B⟩√
2

[29].

3) Quantum Teleportation: Quantum teleportation is a sig-

nificant application of quantum entanglement and the enabler

of DQC. As illustrated in Figure 2, when Alice and Bob share

an entangled pair of qubits (referred to as ebit), Alice can

teleport the state of another qubit with data information (known

as dbit) to Bob [8]. This process involves Alice performing

a joint measurement (Bell State Measurement) of her dbit

and the shared ebit and then communicating the measurement

result to Bob through a classical channel. Upon receiving the

measurement result, Bob applies certain unitary operations on

his own ebit [30]. As a result, Bob’s ebit obtains the state of the

original dbit, while Alice’s dbit collapses, and the entanglement

between the two ebits is destroyed. This phenomenon allows

for the transfer of quantum information without the physical

movement of particles.

4) Entanglement Swapping: Entanglement swapping is a

crucial technique for creating long-distance entanglement. The

process of entanglement swapping is depicted in Figure 2. Here

is an example scenario: Alice shares an entangled pair of qubits

with a third party, Carol, while Bob also shares a qubit pair with

Carol. By performing the swapping operation on her qubits,

Carol can teleport the state of her qubit, initially entangled

with Alice, to Bob. Consequently, Alice and Bob effectively

share an entangled pair of qubits, even though they are not

directly connected to each other. This enables the establishment

of long-distance entanglement between distant parties [12]. For

the purpose of this work, we assume a successful swapping

operation, as recent advancements have significantly increased

its success rate to approximately one [13], which is also a

reasonable setting in the state-of-the-art work [6]. Moreover, the

failure probability of swapping can also be considered as part

of the overall failure probability of establishing entanglement

connections, just incorporating a product term in Equation 2.

5) Quantum Data Network: In the QDN, quantum nodes

represent nodes that can be either QCs or QRs. These quantum

nodes are interconnected through quantum channels, forming

edges in the QDN graph. All quantum nodes possess the

capability to perform entanglement swapping and establish en-

tanglement with other nodes, but have a limited qubit capacity

due to quantum memory constraints. Additionally, quantum

channels are inherently lossy, and the success rate of a single

attempt to create entanglement can be as low as 2.18 × 10−4

[11]. To establish long-distance entanglement, a route must be

determined from the source to the destination. Subsequently, a

sequence of quantum links along this route is generated, and

swapping operations are performed at nodes along the route.

The typical time for entanglement to decohere is approximately

1.46 seconds [31], while the time required for a single entan-

glement attempt is around 165µs [31]. In a time slot, defined as

the entanglement duration, thousands of attempts can be made

for a single quantum link. Efficient utilization of qubits and

quantum channels is critical for the success of long-distance

entanglement establishment in the QDN.

III. SYSTEM MODEL

A. Quantum Data Network

We consider a QDN represented by an undirected graph G =
⟨V, E⟩, where V is the set of quantum nodes and E is the set of

edges. Each edge e = (u, v) ∈ E connects two nodes v and u.

Each quantum node v ∈ V is equipped with a limited number

of Qv qubits. However, the available qubits Qt
v can change over

time, denoted by t, as some qubits may be occupied by other

users. This occupancy is considered as an exogenous process.

In order for two quantum nodes v, u ∈ V to be connected by an

edge e ∈ E , there must be at least one quantum channel (i.e.,

physical fiber-optical wire) between them. Let W t
e represent the

number of available quantum channels on edge e, which can

also vary over time depending on the usage by other users.

B. Quantum Entanglement Link

In the QDN, a quantum link can be established on an edge

e = (v, u) using one qubit on node v, one qubit on node u,

and a quantum channel on e. However, successful entanglement

establishment is not guaranteed on every quantum channel. Let

p̃e denote the success probability of establishing entanglement

on one quantum channel between nodes v and u during a

single attempt. This probability depends on both the physical

properties of the channel material and the length of the quantum

channel. Typically, p̃e is low. To increase the probability of

successful entanglement, nodes v and u can utilize multiple

quantum channels and make multiple attempts on each channel

within a given time slot. Assuming that the outcomes of these
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attempts are independent, the success probability on a single

channel after A attempts is given by pe = 1− (1− p̃e)
A.

Now, if ne channels are used for establishing a quantum link

between v and u, the overall success probability is given by:

Pe(ne) = 1− (1− pe)
ne , (1)

where Pe(ne) represents the probability of successfully estab-

lishing a quantum link using ne channels.

C. Problem Formulation

We are primarily focused on addressing the entanglement

routing for a single quantum user within a QDN. This user’s

objective is to establish ECs for between source-destination

(SD) pairs over a specified duration of time slots, denoted as

T . In each time slot t, the user aims to find routes among the

QDN for a particular set of SD pairs, denoted as Φt, which

may depend on the DQC requirements. We assume an upper

bound F on the size of Φt, ∀t. It’s important to note that the

set of SD pairs may vary over time.

In our scenario, each SD pair, denoted as ϕ ∈ Φt, consists

of a source node, represented by s(ϕ), and a destination node,

represented by d(ϕ). Additionally, there exists a set of potential

routes, denoted as R(ϕ), associated with each SD pair ϕ. We

assume an upper bound R on the size of this set. It’s important

to highlight that the candidate setR(Φ) can be pre-computed by

choosing routes with shorter lengths/hops to minimize its size.

Alternatively, any established shortest path finding algorithm,

such as Dijkstra’s Algorithm, can be employed for this purpose

[32]. A route r ∈ R(ϕ) is defined as a subset of graph edges,

denoted as E , that form a connected route between the source

node s(ϕ) and the destination node d(ϕ). We assume an upper

bound L on the length of a route r. To establish EC between

the source and destination, qubits need to be allocated among

the nodes along the selected route.

Given a specific qubit allocation N (r) = {ne(r), ∀e ∈ r} for

a route r, the entanglement success rate can be calculated as

the product of the success probabilities of the individual edges

on that route as follows:

P (r,N (r)) =
∏

e∈r

Pe(ne(r)). (2)

Here, Pe(ne(r)) denotes the success probability of edge e when

ne(r) qubits are allocated on e. It is worth noting that although

we assume each SD pair makes a single EC request between the

source and destination, the extension to multiple EC requests

from a single SD pair is straightforward. In such cases, we can

treat each entanglement connection request as a separate SD

pair, each with a single EC request.

It is important to note that the success rate of entanglement

swapping can also be viewed as a product term in Equation 2

for establishing entanglement connections. For simplicity, we

choose to disregard the impact of entanglement swapping, given

recent advancements that have substantially elevated its success

rate to approximately one [13]. This assumption aligns with the

current state-of-the-art work as well [6].

Objective: The quantum user’s objective is to optimize the

entanglement success rate over T time slots (t = 0, 1, ..., T−1)

by selecting a route for each SD pair and allocating qubits

along those routes. In order to ensure fairness among the SD

pairs and distribute quantum network resources appropriately,

we adopt the concept of proportional fairness [33]. The goal is

to maximize the following objective function:

T−1
∑

t=0

∑

φ∈Φt

logP (rt(ϕ),N t(rt(ϕ))). (3)

Here, rt(ϕ) represents the chosen route for SD pair ϕ in time

slot t, and N t(rt(ϕ)) denotes the qubit allocation along this

route. The objective function sums over all time slots and SD

pairs, and the logarithm of the entanglement success rate is

used to capture proportional fairness.

Capacity Constraints: In order to solve the aforementioned

maximization problem, it is necessary to take into account the

capacity constraints of the quantum network. These constraints

arise from varying qubit capacity Qt
v of each node v ∈ V and

varying quantum channel capacity W t
e of each edge e ∈ E .

The qubit capacity constraint can be expressed as follows:
∑

φ∈Φt

∑

e∈rt(φ)

1e(v)n
t
e(r

t(ϕ)) ≤ Qt
v, ∀v ∈ V, ∀t. (4)

This equation ensures that the total number of qubits allocated

to node v from the selected routes rt(ϕ) of all SD pairs ϕ
in time slot t does not exceed the qubit capacity Qt

v of that

node. Similarly, the quantum channel capacity constraint can

be formulated as:
∑

φ∈Φt

1rt(φ)(e)n
t
e(r

t(ϕ)) ≤W t
e , ∀e ∈ E , ∀t. (5)

This inequality ensures that the total number of qubits allocated

to edge e from the selected routes rt(ϕ) of all SD pairs ϕ in

time slot t does not exceed the quantum channel capacity W t
e

of that edge. In both equations, the indicator function 1X (x) is

utilized, where 1X (x) = 1 if x ∈ X and 1X (x) = 0 otherwise.

Budget Constraint: In addition to capacity constraints, the

usage of the quantum network incurs costs for the quantum user.

These costs are associated with the utilization of qubits and the

establishment of quantum links along the routes. Assuming that

the cost is proportional to the number of qubits and quantum

channels used, the cost in time slot t can be expressed as
∑

φ∈Φt

∑

e∈rt(φ) n
t
e(r

t(ϕ)).
To incorporate the cost aspect, we consider a total budget

C that represents the user’s allowance for using the quantum

network over a period of T time slots. The budget constraint

is imposed as follows:

T−1
∑

t=0

∑

φ∈Φt

∑

e∈rt(φ)

nt
e(r

t(ϕ)) ≤ C. (6)

This constraint ensures that the total cost, which is the sum

of the number of qubits and quantum channels used across all

time slots and SD pairs, does not exceed the specified budget.
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Fidelity Constraint: Our work focuses primarily on user-

centric entanglement routing, taking into account a long-

term limited budget thus fidelity is a secondary additional

requirement in our scenario. Previous research typically utilizes

entanglement fidelity to assess the quality of EC [22], [24].

In fact, we can easily integrate a constraint into P1, which

calculates the fidelity of the chosen route and ensures it remains

below the fidelity target in each time slot. This constraint is

analogous to aforementioned capacity constraints. Since it is a

per-slot constraint independent of long-term knowledge, which

is different from the budget constraint, we can easily modify

the per-slot problem P2 by incorporating this constraint while

still utilizing our proposed algorithm outlined in Section IV.

Without affecting our key idea, we do not consider fidelity for

simplicity, which is a reasonable formulation in many recent

studies [6], [19], [21], [25].

In summary, the quantum routing problem can be formulated

as follows:

P1: max
T−1
∑

t=0

∑

φ∈Φt

logP (rt(ϕ),N t(rt(ϕ)))

s.t. Capacity constraints: (4), (5)

Budget constraint: (6)

rt(ϕ) ∈ R(ϕ), ∀ϕ ∈ Φt, ∀t

ne(r
t(ϕ)) ∈ Z++, ∀e ∈ rt(ϕ), ∀ϕ ∈ Φt, ∀t,

where Z++ ≜ {1, 2, ...} are positive integers to ensure con-

nectivity. It is important to note that the capacity constraints

(4) and (5) are short-term constraints that must be satisfied in

each time slot t, while the budget constraint (6) is a long-term

constraint that considers the cumulative usage over T time slots.

We also denote
∑

φ∈Φt logP (rt(ϕ),N t(rt(ϕ))) = u(rt,N t)
for simplicity.

Challenges: There are two primary challenges associated

with directly solving the problem P1. Firstly, the decisions

regarding quantum route selection and qubit allocation have a

correlated impact across different time slots, affecting both the

objective function and the constraints. Allocating a larger qubit

budget in the current time slot can enhance the success rate

of entanglement, but it may potentially degrade performance in

future time slots. However, since we lack prior knowledge of

future EC requests, qubit availability, and channel capacity, we

require an online algorithm that can make decisions without

relying on such information. Secondly, within each time slot t,
there is a sequential order that determines the chosen quantum

route and subsequently the allocation of qubits along that route.

The problem itself is complex due to the discrete nature of the

decision variables and the vast decision space involved. Hence,

it is necessary to employ a low-complexity algorithm capable

of efficiently performing route selection and qubit allocation

within a time slot.

IV. ONLINE USER-CENTRIC ENTANGLEMENT ROUTING

To address the aforementioned challenges, we propose an

online algorithm, called Online uSer-Centric entAnglement

Routing (OSCAR), that breaks down the long-term problem

of route selection and qubit allocation into per-slot problems.

Subsequently, we have developed an efficient algorithm to solve

each per-slot problem individually.

A. Long-Term Problem Decomposition

Our approach is based on the Lyapunov drift-plus-penalty

framework, which utilizes a virtual cost deficit queue qt

to guide the decisions of route selection and qubit allo-

cation in each time slot, ensuring adherence to the long-

term budget constraint. For simplicity, we denote ct =
∑

φ∈Φt

∑

e∈rt(φ) n
t
e(r

t(ϕ)) as the cost incurred in time slot

t. The virtual queue qt evolves according to the following

recursion:

qt+1 = max{0, qt + ct − C/T}, (7)

Intuitively, the virtual queue captures the accumulated violation

of the budget constraint. Thus, our objective is to maximize the

entanglement success rate while minimizing the length of the

virtual queue. We define a constant V > 0 that will be discussed

further in Section V-C.

In each time slot, we formulate the following drift-plus-

penalty maximization problem, denoted as P2:

P2: max V ·
∑

φ∈Φt

logP (rt(ϕ),N t(rt(ϕ)))

− qt ·
∑

φ∈Φt

∑

e∈rt(φ)

nt
e(r

t(ϕ))

s.t. Capacity constraints: (4), (5)

rt(ϕ) ∈ R(ϕ), ∀ϕ ∈ Φt, ∀t

ne(r
t(ϕ)) ∈ Z++, ∀e ∈ rt(ϕ), ∀ϕ ∈ Φt, ∀t.

For simplicity, we define f(rt(Φt),N t(rt(Φt))) as the ob-

jective function. It is important to note that while solving

P2, we consider the virtual queue length qt, as well as the

qubit capacity Qt
v for all v ∈ V and the channel capacity

W t
e for all e ∈ E , as given variables. Thus, the problem

P2 is a per-slot problem that solely relies on the available

current information, without requiring future statistics of EC

requests and qubit/channel capacity. By augmenting the original

objective function (entanglement success rate) with the cost

term weighted by the virtual queue, we dynamically balance the

maximization of performance and the minimization of cost. The

algorithm is summarized in Algorithm 1 and its performance

will be further analyzed in Section V.

B. Solving the Per-Slot Problem

While P2 does not rely on future information, it remains

a challenging problem due to its large decision space as an

integer program. To address this challenge, we initially focus

on solving the qubit allocation problem with a fixed route

selection for the SD pairs in Φt. By obtaining the ªoptimalº

qubit allocation for each route selection, we can subsequently

determine the ªoptimalº quantum routes. For the sake of

simplicity, we will omit the time index t in this subsection.
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Algorithm 1 OSCAR

1: Input: q0 and V
2: Output: rt(ϕ),N t(rt(ϕ)), ∀t ∈ [0, . . . , T ]
3: for t = 1, 2, ..., T do

4: Observe Φt, Qt
v, ∀v ∈ V and W t

e , ∀e ∈ E
5: Solve P2 (See Section IV-B)

6: Update virtual queue qt according to (7)

7: end for

Algorithm 2 Qubit Allocation

1: Input: Route selection r(Φ) = {r(ϕ) : ϕ ∈ Φ}
2: Output: Rounded solution N ∗

3: Obtain the solution Ñ ∗ by addressing P2, wherein the

integer restrictions ne ∈ Z++ are relaxed to ne ≥ 1.

4: ªDown-roundº and allocate surplus

1) Qubit Allocation: Our approach to tackle the qubit

allocation problem involves utilizing continuous relaxation.

Specifically in Algorithm 2, for a given route selection r(Φ) =
{r(ϕ) : ϕ ∈ Φ}, we solve P2 (with a fixed r(Φ)) by

relaxing the integer constraints ne ∈ Z++ to ne ≥ 1. Let

Ñ ∗ = {ñ∗
e ∈ R : ∀e ∈ r(ϕ), ∀ϕ ∈ Φ} be the optimal

solution obtained from solving the relaxed problem. We then

apply rounding to each ñ∗
e to obtain an integer solution, denoted

as n∗
e . To ensure the satisfaction of capacity constraints, we

initially perform a ªdown-roundingº operation on ñ∗
e for every

edge e, and then allocate any surplus to the edges on the node

or edge if possible. This rounding strategy guarantees that the

rounded solution N ∗ adheres to the capacity constraints, and

for all e ∈ r(ϕ), ϕ ∈ Φ, we have:

n∗
e ≥ 1 and ñ∗

e − n∗
e ≤ 1. (8)

Next, we analyze the sub-optimality gap using the continu-

ous relaxation approach. We begin by demonstrating that the

continuous-relaxed problem P2 (with a fixed r(Φ)) is a convex

optimization problem.

Proposition 1. The continuous-relaxed problem P2 with a fixed

r(Φ) is a convex optimization problem.

Proof. Since the constraints in the problem are linear, it suffices

to demonstrate that the objective function is concave. For a

given route selection r(Φ) = {r(ϕ) : ϕ ∈ Φ}, the objective

function in P2 can be expressed as:

V ·
∑

φ∈Φ

∑

e∈r(φ)

logPe(ne(r(ϕ))− q ·
∑

φ∈Φ

∑

e∈r(φ)

ne(r(ϕ))

=
∑

φ∈Φ

∑

e∈r(φ)

(V · logPe(ne(r(ϕ))− q · ne(r(ϕ))) .

Thus, it suffices to prove that logPe(ne) is concave. Since 1−
pe ∈ (0, 1), Pe(ne) is concave. According to the composition

rule [34], logPe(ne) is also concave. This concludes the proof.

Algorithm 3 Route Selection

1: Input: Initial route selection r
0

2: Output: Optimal route selection r
∗

3: for k = 1, 2, ... do until stable

4: Randomly select a SD pair ϕ
5: Virtually modify its selection r̃(ϕ)
6: r̃

k ← (r̃(ϕ), {rk−1(ϕ′)}φ′ ̸=φ)
7: Allocate the qubits for r̃k by Algorithm 2

8: Compute probability η by (15)

9: With probability 1 − η, keep r
k = r

k−1; With proba-

bility η, change r
k = r̃

k

10: end for

Let f(N ) denote the objective function of P2 when the route

selection is fixed, and N opt be the optimal integer solution.

Proposition 2. The sub-optimality gap betweenN opt andN ∗ is

upper-bounded by f(N opt)−f(N ∗) ≤ V FL log(2−pmin) ≜ ∆,

where pmin = mine∈E pe.

Proof. We examine the two terms in the objective function

separately and denote:

f1(N ) = V ·
∑

φ∈Φ

∑

e∈r(φ)

logPe(ne(r(ϕ))), (9)

f2(N ) = q ·
∑

φ∈Φ

∑

e∈r(φ)

ne(r(ϕ)). (10)

Consider the optimal solution Ñ ∗ of the continuous-relaxed

problem and its rounded solution N ∗.

f1(Ñ
∗)− f1(N

∗)

=V ·
∑

φ∈Φ

∑

e∈r(φ)

(logPe(ñ
∗
e(r(ϕ)))− logPe(n

∗
e(r(ϕ))))

≤V ·
∑

φ∈Φ

∑

e∈r(φ)

(logPe(2)− logPe(1)) (11)

=V ·
∑

φ∈Φ

∑

e∈r(φ)

log(2− pe)

≤V FL log(2− pmin). (12)

Inequality (11) is due to the concavity of the logarithm,

and it follows from the relation (8). Inequality (12) uses the

monotonicity of the logarithm.

On the other hand, it is obvious that f2(Ñ
∗) − f2(N

∗) ≥
0 due to the down-rounding operation. Therefore, we have

f(Ñ ∗) − f(N ∗) ≤ V FL log(2 − pmin). Moreover, since Ñ ∗

solves the relaxed problem, we have f(Ñ ∗) ≥ f(N opt) and

hence f(N opt)− f(N ∗) ≤ V FL log(2− pmin).

Proposition 2 demonstrates that our continuous-relaxation

approach produces a ∆-optimal solution for the per-slot prob-

lem P2 with any given selected routes r(Φ). The remaining

step to complete the solution for P2 is to determine the route

for each ϕ ∈ Φ.
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2) Route Selection: With the computed qubit allocation

N ∗(r) for any given route selection r, determining the route

is a straightforward process:

r
∗ = arg max

r∈×φ∈Φ
R(φ)

f(r,N ∗(r)). (13)

In other words, we perform an exhaustive search on all possible

route combinations for the SD pairs in Φ and select the combi-

nation with the highest per-slot objective value by applying the

qubit allocation algorithm. Note that the candidate set R(Φ)
can be computed beforehand by selecting routes with shorter

lengths/hops to reduce its size or using any other existing

shortest path finding algorithm such as Dijkstra’s Algorithm

[32]. Let ropt and N opt(ropt) be the optimal joint route selection

and qubit allocation solution. Then, the solution produced by

our approach, namely r
∗ and N ∗(r∗), is also ∆-optimal, i.e.,

f(ropt,N opt(ropt))− f(r∗,N ∗(r∗)) ≤ ∆. (14)

However, due to the combinatorial nature of the route space

for each SD pair in Φ, the exhaustive search approach is only

effective in certain special scenarios where either the number

of SD pairs in a time slot is small or the number of candidate

routes for each SD pair is small. Although these special

scenarios have practical significance (e.g., when the QDN have

pre-computed only one or a small number of candidate routes

for each SD pair or when the EC request rate is low), in

the remainder of this section, we develop a low-complexity

approach based on Gibbs sampling (GS) [35] that can handle

the general scenario.

Our algorithm follows an iterative process as described in

Algorithm 3 and operates as follows. Initially, each SD pair

ϕ ∈ Φ randomly selects a route r0(ϕ) ∈ R(ϕ) from the

candidate set, and the qubit allocation N (r0) is computed.

In each iteration k, one SD pair, chosen randomly (say ϕ),

virtually modifies its current route selection to r̃(ϕ), while the

routes for the remaining SD pairs remain unchanged. Denoting

r̃
k = (r̃(ϕ), {rk−1(ϕ′)}φ′ ̸=φ), the qubits are then allocated

according to the algorithm from the previous subsection, re-

sulting in the objective function value f(r̃k,N (
r̃
k)). The

algorithm proceeds by computing the difference in objective

function values: f(r̃k,N ∗(r̃k))−f(rk−1,N ∗(r̃k−1)), and then

updating the route selection decision based on this difference.

Specifically, with probability η, the route selection remains the

same as in the previous iteration, i.e., r
k = r

k−1, and with

probability 1 − η, the route selection changes, i.e., rk = r̃
k.

The probability η is calculated as:

η =

(

(1 + exp
f(r̃k,N ∗(r̃k))− f(rk−1,N ∗(r̃k−1))

γ

)−1

,

(15)

where γ > 0 is a parameter controlling the degree of ex-

ploration versus exploitation (i.e., the level of randomness).

Consequently, changing the route selection is more likely to

occur if the new route selection r̃
k results in a higher objective

value.

Remark: (1) In combinatorial optimization, it is widely

recognized that purely greedily selecting better decisions can

often lead to local optima. To avoid getting stuck in local

optima, our algorithm incorporates a probabilistic exploration

mechanism, even when it may result in worse performance than

the current decision. However, such an algorithm is known to

possess an asymptotic convergence rate. Specifically, as γ → 0,

the algorithm converges to the global optimal solution with a

probability of 1. (2) The convergence rate of our algorithm

can be further improved by allowing multiple SD pairs to

simultaneously evolve their route selection in each iteration,

as long as they do not share common edges in the candidate

route set. This simultaneous evolution is particularly beneficial

when the SD pairs are spatially far apart, as it enables them

to explore different parts of the solution space concurrently.

By diversifying the exploration, our algorithm becomes more

efficient in converging towards the global optimum.

C. Performance Analysis

In this section, we present a theoretical performance analysis

for the proposed quantum routing and qubit allocation algo-

rithm. As a reminder, our algorithm for the per-slot problem

produces a ∆-optimal solution at each time slot t. The level of

∆-optimality achieved is exact when route selection employs

exhaustive search (which is effective with a small F and

a small R) and asymptotic when route selection employs

the low-complexity algorithm from the previous subsection.

Furthermore, we introduce the following assumption, which is

essential for the feasibility of the system:

Assumption 1. The cost budget C satisfies C ≥ FLT .

This assumption ensures that there is a sufficient cost bud-

get to establish at least one quantum route for each source-

destination (SD) pair in each time slot. In the worst case

scenario, each link in the route utilizes at least one quantum

channel. Meeting this budget requirement is crucial for the

minimum operation of the system.

Theorem 1. Under Assumption 1, solving the per-slot problem

P2 with ∆-optimality in each time slot t ensures the following

bound on the constraint violation:

1

T

T−1
∑

t=0

ct −
C

T
≤

√

(q0)2

T 2
+

2(∆ +B − V FL log(pmin))

T
−

q0

T
.

(16)

Proof. The Lyapunov drift of the virtual queue length is

δ(t) =
1

2
[(qt+1)2 − (qt)2] ≤

1

2
[(qt + ct − C/T )2 − (qt)2]

=qt(ct − C/T ) +
1

2
(ct − C/T )2 = qt(ct − C/T ) +B,

(17)
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where B is finite constant and it exists because the

qubit/channel capacity is upper bounded.

V ·
∑

φ∈Φt

logP (rt(ϕ),N t(rt(ϕ)))− δ(t)

≥V ·
∑

φ∈Φt

logP (rt(ϕ),N t(rt(ϕ)))− qt ·
∑

φ∈Φt

∑

e∈rt(φ)

nt
e(r

t(ϕ)))

+ qtC/T −B

≥
∑

φ∈Φt

∑

e∈r̃t(φ)

(V logPe(1)− qt · 1)−∆+ qtC/T −B

≥V FL log(pmin) + qt(CT − V FL)−∆−B

≥V FL log(pmin)−∆−B.
(18)

The first inequality obtained is by plugging the bound (17) on

δ(t). The second inequality holds due to the ∆-optimality of our

per-slot solution. Specifically, we consider a particular solution

that chooses route r̃(ϕ) for SD pair ϕ ∈ Φ, and uses a single

quantum channel on each edge. Clearly, the route selection

and qubit allocation produced by our algorithm performs no

worse than this solution by a constant ∆. The third inequality

is due to the monotonicity of the entanglement success rate

and V logPe(1) − qt < 0. The last inequality holds due to

Assumption 1.

Denote D ≜ ∆ + B − V FL log(pmin) > 0. Since
∑

φ∈Φt logP (rt(ϕ),N t(rt(ϕ))) < 0 always holds, we have

δ(t) ≤ D. Because 1
2 [(q

T )2 − (q0)2] =
∑T−1

t=0 δ(t) ≤ DT ,

we then have qT ≤
√

(q0)2 + 2DT . According to the virtual

queue dynamics, qt+1 ≥ qt + ct − C/T . This leads to

1

T

T−1
∑

t=0

ct −
C

T
≤

1

T

T−1
∑

t=0

(qt+1 − qt) =
qT − q0

T

≤

√

(q0)2

T 2
+

2D

T
−

q0

T
. (19)

Remarks: Theorem 1 provides valuable insights into the

budget constraint’s behavior with respect to system param-

eters, the initial queue length q0 and the parameter V . As

T approaches infinity, the budget constraint is asymptotically

satisfied. For a finite T , the right-hand-side (RHS) of the

constraint decreases as the initial queue length q0 increases.

In fact, in the limit as q0 approaches infinity, the RHS tends

to 0. This intuitive behavior occurs because a large initial

queue length results in our algorithm applying a significant

penalty to any violation of the budget constraint, leading to a

highly conservative qubit allocation strategy. Moreover, Theo-

rem 1 highlights the impact of the parameter V on the budget

constraint. With a larger value for V , the potential violation

becomes greater (noting that log(pmin) < 0). This observation

aligns with intuition, as a higher value of V indicates that the

algorithm places more emphasis on improving the entanglement

success rate. As a consequence, the algorithm becomes less

cautious in managing the qubit allocation to avoid any budget

constraint violation.

Theorem 2. Under Assumption 1, solving the per-slot problem

P2 with ∆-optimality in each time slot t ensures the following

bounds on the objective of P1

1

T

T−1
∑

t=0

E[u(rt,N t)] ≥ OPT−
∆+B

V
−

(q0)2

2V T
, (20)

where OPT denotes the expected optimal value of the time-

averaged objective given by a possibly randomized offline

algorithm that has complete statistics of all T time slots.

Proof. The proof mostly follows Theorem 4.8 in [36] by

incorporating the q0 term.

Denote r̂
t

and N̂ t as the joint route selection and qubit

selection outcome produced by the offline optimal algorithm

that achieves OPT. Consider the objective function minus drift

V ·
T−1
∑

t=0

u(rt,N t)−
T−1
∑

t=0

δ(t)

≥V ·
T−1
∑

t=0

u(rt,N t)−
T−1
∑

t=0

qt(ct − C/T )−BT

=
T−1
∑

t=0

(

V · u(rt,N t)− qtct
)

+
T−1
∑

t=0

qtC/T −BT

≥
T−1
∑

t=0

(

V · u(r̂t, N̂ t)− qtĉt −∆
)

+
T−1
∑

t=0

qtC/T −BT

=V ·
T−1
∑

t=0

u(r̂t, N̂
t
) +

T−1
∑

t=0

qt(C/T − ĉt)− (∆ +B)T. (21)

The first inequality is due to the bound (17) on δ(t). The second

inequality is because r
t and N t produces a ∆-optimal solution

given qt in time slot t. Here, ĉt is the cost incurred in time slot

t by the offline optimal solution.

Now, taking expectation over the system randomness on both

sides, we have

V ·
T−1
∑

t=0

E[u(rt,N t)]−
T−1
∑

t=0

δ(t)

≥V ·
T−1
∑

t=0

E[u(r̂t, N̂
t
)] +

T−1
∑

t=0

qt(C/T − E[ĉt])− (∆ +B)T

=V · OPT− (∆ +B)T, (22)

where the last equality utilizes E[ĉt] = C/T for the optimal

offline algorithm, which is independent of qt. Finally, noticing
∑T−1

t=0 δ(t) ≥ − 1
2 (q

0)2 and moving it to the right hand side

yields

V ·
T−1
∑

t=0

E[u(rt,N t)] ≥ V · OPT− (∆ +B)T −
1

2
(q0)2.

(23)

Dividing both sides by V T yields the final result.

Remark: Theorem 2 provides important insights into the per-

formance of our algorithm, showing that the expected objective
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value achieved by running the algorithm is approximately opti-

mal, with a constant gap that depends on various factors. Firstly,

the optimality gap is influenced by the system parameters, the

initial queue length q0, and the parameter V . Specifically, with a

larger q0, the optimality gap becomes larger. This observation is

intuitive as a larger initial queue length prompts the algorithm to

act more cautiously in avoiding any budget constraint violation,

which could potentially lead to a sacrifice in entanglement

performance. However, as the time horizon T approaches

infinity, the impact of the initial queue length diminishes,

suggesting that over a sufficiently long duration, the algorithm’s

performance becomes less sensitive to the initial queue length.

Secondly, the optimality gap is affected by the parameter V .

A larger value for V results in a reduced optimality gap.

The reason behind this is that the algorithm places a higher

emphasis on improving the entanglement performance with an

increased V , thereby prioritizing the entanglement success rate

over budget constraint satisfaction.

V. SIMULATION RESULTS

In this section, we conduct an evaluation of our proposed al-

gorithm OSCAR while also comparing its performance against

several baseline methods. Additionally, we delve into an abla-

tion study to assess the impact of various control parameters.

A. Simulation Setup

1) Network Topology: To create a random QDN topology

for benchmarking purposes, we adopt the following procedure.

Initially, we select a predefined number of nodes within a

100 × 100 unit square area,. Subsequently, we utilize the

Waxman graph [37] to generate the specific topology. This

model establishes edges between nodes u and v with a proba-

bility of β exp
(

− d(u,v)
αdmax

)

, where d(u, v) denotes the Euclidean

distance between nodes u and v, and dmax represents the

longest distance among any pair of nodes in the network.

The two control parameters α and β govern the characteristics

of the generated topology. It is important to note that this

generation approach has been previously employed in various

works focusing on quantum networks [20], [24].

2) Default Parameters: In the default configuration, the

QDN consists of 20 nodes, each with a random qubit capacity

following a discrete uniform distribution U [10, 16]. The gener-

ation of edges between nodes is performed using α = 0.5 and

β = 0.5, resulting in an average node degree of approximately

4. The channel capacity of each generated edge is also chosen

randomly from U [5, 8]. The probability of successfully estab-

lishing a quantum link is 2×10−4 per attempt, and during each

time slot, 4000 attempts can be made. The user operates under

a total qubit cost budget of C = 5000 over a period of T = 200
time slots. Additionally, the number of source-destination (SD)

pairs varies randomly in each time slot, following U [1, 5].
For the Lyapunov control parameter, we set V = 2500, and

the initial value is q0 = 10 by default. Furthermore, the GS

parameter γ is set to 500. To obtain reliable results, we conduct

5 trial simulations and present the averaged outcomes.

3) Baseline Schemes: We compare our proposed algorithm

OSCAR with two baselines:

Myopic-Fixed (MF): In this approach, we adopt a uniform

allocation strategy, evenly distributing the total budget among

each time slot. Consequently, the user’s budget available for

utilization in each time slot is given by C/T . Subsequently, we

address the maximization problem on a per-slot basis, ensuring

adherence to the budget constraint for each slot.

Myopic-Adaptive (MA): One drawback of MF is the poten-

tial for budget waste, as the allocation to each time slot may not

be fully utilized. To tackle this concern, in MA, any remaining

budget is uniformly distributed among the remaining time slots.

Specifically, the budget available for the user in time slot t
becomes (C−C̃)/(T−t), where C̃ represents the total number

of qubits consumed up to that point. The per-slot entanglement

routing problem in MA is resolved in a manner similar to MF.

B. Performance Comparison

In this section, we compare the performance of OSCAR with

the two baseline approaches under the default configuration.

1) Time-evolving Performance: Figure 3 illustrates the time-

evolving performance of OSCAR and two baseline methods in a

specific experiment run, showcasing the average utility, average

EC success rate, and average qubit usage. Notably, OSCAR

outperforms MA and MF with a significantly higher utility and

EC success rate (i.e., 0.9) while effectively adhering to the qubit

budget constraint by the end of T = 200 time slots. Conversely,

the myopic fixed budget allocation approach used by MF leads

to under-utilization of the qubit budget, resulting in a much

lower utility and EC success rate (i.e., 0.83). Although MA

eventually achieves a similar qubit usage to OSCAR by the

end of T = 200 time slots, its final utility and EC success rate

(i.e., 0.875) remain noticeably lower than those of OSCAR. Of

particular concern is the observation that the conservative qubit

allocation employed by MA in the early time slots significantly

lowers the average utility and EC success rate, compared to the

late time slots, implying an unfair distribution of qubit resources

among SD pairs over time. To further validate the fairness

of our method, Figure 4 presents the success rate distribution

of different methods, confirming that OSCAR ensures a much

more equitable allocation among the SD pairs.

2) Impact of Budget: In Figure 5, we explore how the qubit

budget C influences the EC performance of various methods.

As expected, all approaches exhibit improved EC success rates

as the budget is increased, demonstrating the positive impact

of allocating more qubits for establishing entanglement links.

Notably, OSCAR consistently outperforms both MF and MA

across different budget levels. However, it is worth noting

that the performance gap between OSCAR and the baseline

approaches diminishes as the budget becomes larger. This result

is intuitive since ample resources allow for easier establishment

of entanglement links with higher success rates through the

allocation of more qubits. Consequently, this emphasizes the

importance of judiciously distributing qubits, particularly when

the budget is limited.
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(a) Average Utility

ev

(b) Average Success Rate (c) Average Qubits Usage

Fig. 3. Time-evolving Performance of Different Methods.
Fig. 4. Success Rate Distribution.

(a) Average Success Rate (b) Average Qubits Usage

Fig. 5. Impact of Budget.

(a) Average Success Rate (b) Average Qubits Usage

Fig. 6. Impact of Network Size.

3) Impact of Network Size: Figure 6 demonstrates the impact

of network size on the EC performance of different methods

under the same qubit budget. We adjust the Waxman graph

parameter to ensure an average node degree of approximately 4

across all network sizes. As anticipated, all methods experience

reduced EC success rates as the network size increases. This

decline can be attributed to the longer routes required to connect

the source and destination nodes in larger networks. However,

even in the face of this challenge, OSCAR consistently out-

performs both MF and MA across various network scales. This

emphasizes the potential benefits of employing OSCAR in real-

world scenarios where network scales may vary.

C. Impact of Algorithm Parameters

We now investigate the impact of algorithm parameters of

OSCAR on its performance.

1) Impact of control parameter V : The control parameter

V plays a crucial role in striking a balance between maxi-

mizing entanglement performance and adhering to the budget

constraint. When V is larger, greater emphasis is placed on

maximizing utility, while a smaller V prioritizes staying within

the budget constraint. As demonstrated in Figure 7, tuning V
effectively achieves this trade-off. With an increased value of

Fig. 7. Impact of V . Fig. 8. Impact of q0.

V , OSCAR attains higher utility, which highlights its capability

to optimize entanglement performance. However, it is observed

that a larger V also leads to a greater violation of the qubit

budget constraint, indicating that a higher focus on perfor-

mance optimization may come at the expense of exceeding the

allocated qubit resources. This is aligned with our theoretical

results. Hence, the choice of V is crucial and should be tailored

to the specific requirements of the application.

2) Impact of initial virtual queue size q0: Lastly, Figure 8

illustrates the impact of the initial virtual queue value q0

on both entanglement utility and qubit usage. Our simulation

results align with the theoretical analysis, demonstrating that

a larger q0 leads to reduced qubit usage by limiting resource

allocation during the initial time slots. However, setting q0 too

large can have a negative effect on entanglement performance.

Our findings indicate that a relatively small q0, in contrast to

the common practice of setting q0 = 0, proves to be effective

in reducing qubit resource usage while maintaining a nearly

stable entanglement utility.

VI. CONCLUSION

In this paper, we investigated a user-centric entanglement

routing problem in QDNs, a critical facilitator for distributed

quantum computing. Our primary focus was on the cost aspect

of utilizing the QDN to establish quantum entanglement links,

emphasizing the significance of considering the user’s long-

term budget constraint while making entanglement routing

decisions. To address this challenge, we devised a novel

adaptive entanglement routing algorithm, which enables the

efficient discovery of quantum routes between source and

destination quantum nodes, while also allocating appropriate

qubit resources along these routes in an online fashion. Im-

portantly, our algorithm achieves this without relying on future

entanglement connection request statistics or network resource
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dynamics. Theoretical analysis and extensive simulation studies

were conducted. The results demonstrated the superiority of

our approach compared to baselines that adopt a myopic

entanglement routing strategy for current requests only. Our

approach offers practical benefits in terms of cost optimization

and resource allocation, paving the way for more efficient

and scalable quantum communication and computation across

distributed quantum systems.
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