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Abstract—Autism Spectrum Disorder (ASD) is a common 

neurodevelopmental disorder whose biological cause is still not 

well understood. Due to this, as well as the gradual onset patterns 

of the disorder’s symptoms, early identification and diagnosis of 

ASD proves to be challenging. This study aimed to provide a 

potential early diagnostic tool for ASD by training machine 

learning classifiers with linear and nonlinear postural control data 

features. For the research methodology, center of pressure (COP) 

data for 38 children ages 5-16 was collected using a force plate 

during both eyes opened and eyes closed conditions. Each trial was 

20 seconds, and three trials were completed for each condition. 

The raw data was preprocessed, and six COP variables were 

calculated for each trial: anteroposterior (AP) displacement, 

mediolateral (ML) displacement, elliptical sway area, COP travel 

distance, AP multiscale entropy complexity, and finally, ML 

multiscale entropy complexity. After preprocessing, these data 

features were trained to seven machine learning models to classify 

participants as having ASD or typical development (TD). Our 

experiment showed that all seven machine learning models could 

appropriately classify participants with an accuracy of 79% and 

above. The best classification performance had an accuracy of 

almost 97% and was done by the model that utilized the random 

forest algorithm for classification. Additionally, the data feature 

that was the most important across machine learning algorithms 

was AP complexity. These results have strengthened the validity 

of a machine learning approach for early ASD diagnosis. In future 

research, more data should be collected beyond the 38 

participants obtained in this study, or data augmentation should 

be done to generate more data to train the models. Future research 

should also put efforts into obtaining more robust and 

representative datasets, exploring best multiscale entropy 

parameter values, and exploring why certain data features 

influence classification more than others. 

Keywords—Autism Spectrum Disorder, machine learning, 

postural control, data features, early diagnosis 

I. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a neurodevelopmental 
disorder that affects 1.85% of children in the US, and its 
prevalence is increasing globally [1]. However, there is no direct 
clinical test for diagnosing ASD. Instead, ASD is diagnosed by 
observing behavior characterized as deficits in social 
communication, excessively repetitive behaviors, restricted 
interests, and an insistence on sameness [2]. Children with ASD 
also commonly experience motor skill deficits manifesting as 
atypical gait and poor postural control [3]. 

Postural control is maintaining the balance of the body’s 
center of pressure (COP). An individual's COP is the projection 
of their center of mass onto the ground, and stability is achieved 
when the COP is within their base of support, which during 
standing includes both feet and the space between them [4]. It is 
vital to the development of children because children with better 
stability are more likely to lead more active and social lifestyles. 
However, literature has established the fact that children with 
ASD experience reduced postural stability [5]. Postural control 
and stability are mainly regulated by the vestibular, visual, and 
somatosensory systems [6]. A standard measure of these 
systems' effectiveness is using a kinetic device such as a force 
platform [6]. Using this device allows for ease in tracking the 
COP of a subject. COP tracking is essential to the early 
diagnosis of ASD in young children, as many studies have found 
that children with ASD have more significant sway 
displacement, sway areas, and sway velocities compared to their 
neurotypical counterparts [5]. 

Children with ASD have been found to have low postural 
complexity compared to age-matched children without ASD 
[7]. Complexity is a nonlinear measure of a system's 
irregularity. To find a system's complexity, the entropy must 
first be calculated. There are many methods for calculating 
entropy, but multiscale entropy is preferable to other methods 
because it quantifies the overall complexity of a system over 
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multiple time scales, which reflects the dynamics of the human 
body [7]. 

To create a tool to assist clinicians with ASD diagnoses, we 
trained machine learning algorithms to detect if a child has ASD 
based on their postural stability. Machine learning was used 
because of its ability to handle large and irregular datasets [8]. 
In addition, several previous studies have used simple 
supervised machine learning algorithms to detect postural 
characteristics [9][10]. Each of the many different types of 
machine learning algorithms has its benefits and detriments, so 
we selected several to evaluate the effectiveness of the models. 
This study aimed to create an early diagnostic tool that uses both 
linear and nonlinear measures of postural stability to train a 
machine learning algorithm to categorize children by whether 
they had ASD or were neurotypical. 

II. METHODOLOGY 

A. Participants 

The participants in this study were children who attended an 
Autism Summer Camp and typical development (TD) children 
from the surrounding community between 2021 and 2023. The 
ages of the children ranged from 5 to 16. There were 38 total 
participants analyzed, and the two types of participants in this 
study were categorized as follows: 

1) Children with a formal ASD diagnosis from a licensed 

professional represented the ASD group. 

2) Children with typical neurodevelopment represented the 

TD group and served as the control. 
 

In the ASD group, the sex distribution was two girls and 
twenty-four boys. For the TD group, the sex distribution was 
zero girls and twelve boys. The participants’ parents and 
guardians were informed of the study and the risks associated 
with participating. The participants and their respective parents 
and guardians consented to their child’s participation in the 
study voluntarily. Participants were also screened for prior 
health complications or conditions negatively impacting 
postural control. These participants were not included in the 
dataset. 

B. Equipment Utilized 

The participants’ COP measurements were collected using a 
force plate (Bertec Portable Force plate, Columbus, OH) placed 
on a flat, level surface on top of a blue rubber mat, as shown in 
Fig. 1. The rubber mat was used to keep the force plate in place 
and prevent potential scuffs when in contact with the floor. The 
force plate was connected to a laptop with Bertec Digital 
Acquire 4.1.20 software installed. This software was used to 
collect the raw data of each participant, which was the 
coordinate position of the COP over each 20-second trial. These 
trials were then exported as Excel files for later data processing. 

C. Procedures 

Both groups of children were instructed to stand on the 
force plate without moving to the best of their ability, as shown 
in Fig. 2. They were to stand on the force plate three times with 
their eyes open and closed. Each trial lasted 20 seconds. If the  

 

Fig. 1. Portable Bertec Force Plate resting on the blue rubber mat. 

 
child moved during a trial, the data collected was discarded, 
and the trial was attempted again. If the child no longer wished 
to participate in the study or was too agitated to continue, they 
could stop participating. 

D. Data Analysis 

After data collection, the data from each trial was 
preprocessed to calculate the following values: anteroposterior 
and mediolateral displacement of center of pressure (COP), the 
elliptical sway area, the total distance of COP, and the 
anteroposterior and mediolateral multiscale entropy 
complexities. The machine learning algorithms used were 
logistic regression, k-nearest neighbor, decision trees, random 
forest, gaussian Naïve-Bayes, support vector machine (SVM), 
and discriminant analysis. The machine learning algorithms 
were trained using 80% of the collected data. The remaining 
20% of the data was used for model performance evaluation. 
Each algorithm’s effectiveness was evaluated by its accuracy 
score (1) and F1 score (4) to assess the different outcomes of 
classification when given the test data. 

 

 
#   

 #  
 

 

   
(1) 

 
 

    
 

 
(2) 

 
 

    
 

 
(3) 

1  
2 ∗  ∗ 

   
 

 
(4) 

Accuracy and F1 scores were used. F1 scores are calculated 
when classes do not have equal samples. The four groups for 
analyzing the algorithm’s performance were true positive, false 
positive, true negative, and false negative. The number of false 
positives and false negatives and a quick evaluation of model 
performance were visualized using confusion matrices. The 
features calculated from the raw data were also analyzed using 
the importance of permutation features to determine which 
features were the most influential in classification. Each feature 
was shuffled 50 times to obtain the mean absolute error value. 
Permutation feature importance was run on each model. 
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Fig. 2. A participant is standing on the force plate. 

III. RESULTS 

After the raw data from each participant was preprocessed and 
the COP values were calculated, they were organized and 
exported to one master spreadsheet. Table I compares various 
movement and stability metrics between autism spectrum 
disorder (ASD) and Typically Developing (TD) groups, 
detailing means and standard deviations for each. Metrics such 
as anteroposterior and mediolateral displacement show higher 
averages and variability in ASD, suggesting more pronounced 
movement. Elliptical sway area and distance traveled are also 
noted, with TD individuals traveling further, indicating possibly 
more controlled movement. Entropy measures, reflecting 
randomness in movement, are more significant in TD across 
both anteroposterior and mediolateral directions, as are the 
complexities associated with these entropies, implying that TD 
movements exhibit higher variability and complexity than ASD. 

TABLE I.  MEANS OF DATA FEATURES 

Data Features 
Mean (Standard Deviation) 

ASD TD 

Anteroposterior Displacement (m) 0.060 (0.037) 0.033 (0.016) 

Mediolateral Displacement (m) 0.065 (0.058) 0.037 (0.015) 

 

Elliptical Sway Area (m2) 0.004 (0.007) 0.00 (0.001) 

Distance Travelled (m) 0.819 (0.638) 2.164 (1.876) 

Anteroposterior Entropy 0.289 (0.105) 0.463 (0.224) 

Mediolateral Entropy 0.270 (0.111) 0.412 (0.222) 

Anteroposterior Entropy Complexity 1.123 (0.407) 2.488 (1.224) 

Mediolateral Entropy Complexity 1.050 (0.442) 2.207 (1.536) 

 

After training via stratified k-fold cross-validation, all 
models could classify participants appropriately as either ASD 
or TD with accuracy scores above 79% and F1 scores above 
84%. Table II lists each of the classifiers, their accuracy scores, 
and their F1-scores. Table II presents the performance 
evaluation of various classifiers distinguishing ASD and TD 
individuals. The evaluation metrics include accuracy and F1 
scores, essential indicators of model effectiveness, particularly 
in datasets where the balance between classes might be a 
concern. The best-performing model was the random forest 
model, with an accuracy score of about 97% and an F1-score of 
97%. The model demonstrated superior capability in classifying 
participants, highlighting its effectiveness in handling complex 
patterns and interactions within the data. 

TABLE II.  MODEL PERFORMANCE EVALUATION VIA ACCUARY AND F1-
SCORES 

Classifier 
Accuracy Scores 

Test Set Accuracy Score F1 Score 

Logistic Regression 0.83 0.88 

K-Nearest Neighbor 0.86 0.9 

Decision Tree 0.93 0.94 

Random Forest 0.97 0.97 

Naïve-Bayes 0.79 0.84 

SVM 0.79 0.86 

Discriminant Analysis 0.93 0.95 

 

Fig. 3 contains confusion matrices for several classifiers 
distinguishing ASD and TD individuals. The Random Forest 
model shows the most effective performance, accurately 
identifying all true negatives and most true positives with no 
false positives and only two false negatives. On the other hand, 
the Naïve-Bayes and Support Vector Machine classifiers 
demonstrate more modest results, with higher instances of false 
positives and false negatives. Logistic Regression and 
Discriminant Analysis classifiers perform relatively well, with 
fewer false positives and a balanced detection of true positives 
and negatives. Decision Tree and K-Nearest Neighbor models 
also show good efficacy, with a balanced classification 
performance characterized by a slightly higher number of true 
positives. Overall, these confusion matrices reveal substantial 
variations in the effectiveness of each classifier in correctly 
identifying ASD and TD participants, highlighting the strength 
of ensemble methods like Random Forest in handling such 
classification tasks. 

Each model was evaluated using the importance of 
permutation features to determine which feature was the most 
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influential to classification. A ranking system determines which 
feature was the most influential across all models. Since there 
were eight total features, features were ranked 0-8 per model, 
with eight indicating that one feature was the most influential 
and one being the least influential. Some models did not have 
results for all features, so those were ranked zero. Table III 
depicts the rankings across models. Fig. 4 depicts that AP 
complexity was the most influential data feature for 
classification across all models tested. Path distance and ML 
complexity were the second and third most influential, 
respectively. 

 

Fig. 3. Confusion Matrices for each of the seven machine learning classifiers 
analyzed. 

TABLE III.  RANKED FEATURES IMPORTANCE 

 

 

 

Fig. 4. Data features are ranked by influence using the importance of 
permutation features. 

IV. DISCUSSION 

This study used a machine learning approach to examine the 
differences between children with ASD and TD children using 
postural control. Our results showed that all the machine 
learning algorithms selected could accurately differentiate 
between the groups with an accuracy of at least 79%. All the 
models were able to distinguish ASD versus TD participants 
with generally good accuracy, but the best classification 
performance was seen in the random forest model. Random 
forest is an easy-to-use and flexible algorithm that tends to yield 
high accuracy in classification tasks even without 
hyperparameter fine-tuning. Its strength lies in using many 
decision trees by splitting various nodes and randomly choosing 
features to create the decisions. This method is robust and leaves 
out little to no outliers, which may be why it worked well with 
our dataset. Even though random forest performed the best in 
this study, future related research should still employ other 
algorithms. Every dataset is different; thus, different algorithms 
might work better or worse for various experiments, even if the 
datasets present similar data. For instance, in a previous study 
that assessed postural control data for training machine learning 
classifiers for ASD diagnosis, the best classification was done 
by the Naïve-Bayes model [11]. However, in our study, the 
Naïve-Bayes model was one of the lower-performing classifiers. 
Therefore, trying several models and comparing classification 
performance across the chosen algorithms would be good 
practice in follow-up research. 
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The implicitly defined parameters were used in our machine 
learning models since they did not negatively affect the accuracy 
of any models. However, in future studies, experimentation with 
hyperparameter fine-tuning may be beneficial due to parameter 
selection having the ability to impact the performance of a 
model greatly. Parameter modification may also be helpful if a 
new data set is employed since a change in data may alter the 
performance of the models tested. Parameter selection also 
affects the data preprocessing stage regarding entropy and 
complexity calculations. The embedding dimension (m) of our 
sample entropy-based multiscale entropy function was six, and 
the tolerance (r) was 0.25. These values were based on the 
recommendations for the COP time series of previous studies, 
but the preferred m- and r-values are determined case-by-case 
[12]. Preliminary work to ensure appropriate parameter 
selection based on each unique dataset can ensure that optimal 
results are attained and that they are representative. 

The results of the permutation feature showed that across all 
machine learning models, the three most influential data 
features were AP complexity, path distance, and ML 
complexity. Compared to the raw data collected, this is a logical 
conclusion. The difference between the average AP complexity 
of children with ASD and children with typical development 
was 1.365, the most significant difference from all features. Path 
distance had the second most significant difference of 1.345 m, 
and ML complexity had the third with a difference of 1.157. 
None of the other six features had more substantial differences 
than one, reflected in Fig. 4 by the drop between the ML 
complexity and displacement bars. Although the results of the 
raw data and the permutation analysis agree, they conflict with 
previous studies in this field. Multiple prior studies have found 
that there was no significant difference in AP complexity 
between children with ASD and children with typical 
development and found that ML complexity was the feature that 
had an essential difference between the two groups [7][11]. 
Various factors, such as different participants, equipment, and 
testing environments, may explain conflicting study results. 
Future studies must be done to investigate this discrepancy. 

Although the study results were generally positive, some 
limitations and challenges should be addressed in future 
research to ensure more progress is made in machine learning 
for early ASD diagnosis. Firstly, our study had a relatively small 
dataset, which was the root of many initial challenges in creating 
well-performing models. In machine learning, the more data a 
model must learn from, the better it performs. This is because it 
allows the model to gain a robust understanding of the 
variability that can be available. Therefore, it can better classify 
participants that may not fit a particular pattern. A common 
issue faced with smaller datasets is overfitting, meaning the 
model becomes too accustomed to the patterns in a particular 
small set of data and poorly evaluates new/unseen data that it 
wasn’t trained with. Stratified k-fold cross-validation training is 
a common technique to alleviate the issue of overfitting, and it 
effectively solved our overfitting problem. In the future, it 
would be beneficial to acquire more participants beyond the 38 
participants we had or to perform data augmentation to generate 
more data from the small amount available. 

Another limitation lies in selecting parameters for entropy 
(as briefly mentioned before). There is no clear set of rules for 

how parameters are chosen for entropy because the 
physiological connection between ASD, entropy, and postural 
control data is not yet clearly understood. Therefore, the 
certainty of our parameter selections in our dataset could be 
higher. A great avenue for future research could be exploring 
parameter selection for multiscale entropy to evaluate postural 
complexity. 

V. CONCLUSION 

In conclusion, this study has strengthened the validity of a 
machine learning approach to early ASD diagnosis using 
postural control data features. At the very least, it presents a 
valid preliminary step to clinical evaluation for ASD diagnosis 
via the American Psychiatric Association's Diagnostic and 
Statistical Manual, Fifth Edition (DSM-5). In future related 
research studies, more investigation should be done on the best 
multiscale entropy parameter values for postural complexity 
analysis since limited research is available. Furthermore, future 
studies should also try to obtain more participants as well as a 
more representative distribution of ASD children. Additionally, 
the dataset lacked female participants, so having more females 
could lead to a more robust dataset and better classification 
results. If obtaining more data and access to children with ASD 
poses a problem, another suggestion would be to perform data 
augmentation via an encoder so that the machine learning 
models can be trained on data generated from a small amount of 
existing data. This would allow for a more robust data training 
and validation process for the models and avoid common issues 
with smaller datasets, such as overfitting. 

 Overall, the results of our study show that there is strong 
potential that machine learning classifiers could aid in the 
streamlined and efficient early diagnosis of ASD in younger 
children. Many improvements could be made in future research 
studies that can further validate this approach to ASD diagnosis 
as well as begin to strengthen knowledge on specific aspects of 
postural control that best aid in the early diagnosis of ASD. 
Gaining a clearer understanding of what features most aid in 
diagnosis can also have many implications for better 
understanding the biological basis and causes behind ASD. 
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