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Abstract—Firefighters often face the dangerous task of navigating
burning structures to rescue endangered individuals, with
challenges like intense heat, toxic fumes, and debris. We
introduce a rover concept to aid these rescue missions through
autonomous data collection. This rover can climb stairs, detect
distressed sounds, locate individuals, and gather environmental
data. The paper details the design of its power and hardware
components for data operations and movement. Using the
Robotic Operating System (ROS2), telemetry data is automated
in real-time, integrating three NVIDIA Jetson Nanos and two
deep learning models. These models identify individuals via
infrared (IR) video and detect human screams. We discuss the
models’ performance, latency, and integration with the ROS2
framework. We aim to expedite rescue operations, enhancing
safety and survival rates for firefighters and civilians.

Index Terms—autonomous, firefighting, ros2, deep learning, rover

I. INTRODUCTION

This paper proposes using autonomous units powered by the
Robot Operating System 2 (ROS2) and advanced machine
learning algorithms to assist in fire rescue operations. By using
autonomous scouting units, the time needed to locate victims
trapped in a burning building could be reduced, potentially
saving the lives of civilians and reducing firefighters’ overall
exposure to dangerous situations. According to the United
States Fire Administration, 2,840 lives were lost in residential
fires [1]. This paper presents a rocker-bogie-based robotic
vehicle that utilizes machine learning algorithms to detect
people inside burning buildings. The overall design focuses
on mobility in harsh environments, such as burning buildings.
ROS2 is a framework to interface the scream and person
detection algorithms to the rover’s other software subsystems.

A. Bacground

Robot-assisted firefighting is familiar, with several designs
exploring tank-style tracked vehicles for firefighting

applications. Counterweight-assisted tracked vehicles have
shown promise, with excellent performance when scaling
steep obstacles such as stairs and debris [2]. Furthermore, the
use of a rocker-bogie style design is promising due to the
relative mechanical simplicity of the design while maintaining
sufficient performance in scaling objects [3].

Additionally, the complex functionality of modern robotics
has led to ROS2, which implements standard robotics tooling
into an easy-to-use framework [4]. The use of combining
ROS2 with machine learning models has been well explored,
including the use of traditional CNN models [5]. The use of
ROS2 with firefighting-specific machine learning models still
needs to be well explored, as the use of firefighting-specific
machine learning models is still being explored.

II. MATERIALS AND METHODS

A. Power

The rover is powered by a 13Ah Nickel-metal hydride (NiMH)
battery consisting of ten F-cell batteries. The battery’s total
rated capacity is 156.0Wh, with a nominal cell voltage of
1.2V, translating to a nominal pack voltage of 12.0V. However,
when fully charged, the peak cell voltage may reach 1.4V.
The decision to use a NiMH-based battery was based on
the requirements for long service life and high resistance
to damage caused by over-discharging. The battery pack is
rated for a continuous output of 13A, with a 20A fuse
connected inline before reaching a master cutoff switch. Power
is then distributed via WAGO 221 lever-nuts. The two motor
controllers and the DC-DC converter are connected directly to
the 12V output of the battery. The DC-DC converter provides a
5 V supply for the three onboard NVIDIA Jetson Nano single-
board computers. The rover power system is demonstrated in
Fig. 1.
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Fig. 1. A generalized diagram of the rover’s power system.

B. Compute

Three NVIDIA Jetson Nano single-board computers control
the rover. The Jetson Nanos are responsible for data collection,
processing, and controlling the rover’s systems. The Jetson
Nano features a quad-core ARM Cortex-A57 CPU running
at 1.43 GHz with an integrated NVIDIA Maxwell GPU.
The CPU and GPU share 4 GB of system RAM. Storage
is provided by a 32 GB MicroSD card plugged directly
into the Jetson Nano. Each Jetson receives power from its
onboard 5V input barrel jack. NVIDIA provides software
tooling to limit the power consumption for each Jetson to 5
W compared to the default of 10 W. This power rating does
not consider any additional peripherals, so the rover’s power
budget guarantees 15W of power to be available to each Jetson
Nano. Communication is provided via a standard 2.4 GHz Wi-
Fi USB adapter, which connects to an off-the-shelf wireless
router.

C. Sensors

The rover is equipped with a Bosch BME680 environmental
data sensor that monitors temperature, humidity, pressure, and
the presence of volatile organic compounds (VOCs) in the air.
The sensor is connected directly to the I2C bus that is exposed
on Jetson 2’s General Purpose Input/Output (GPIO) header.
This sensor enables the rover to collect and analyze critical
environmental data in real-time, providing valuable insights
into the surrounding environment. The rover also features a
front-facing active illumination infrared camera connected to

Jetson 3 via a flexible ribbon cable. The Jetson Nano uses
the Camera Serial Interface (CSI) protocol to communicate
with the camera. The camera is equipped with an array of
infrared LEDs controlled by a photo-resistor, which turns
on the LEDs in dark conditions, enabling the camera to
operate effectively in low-light conditions. Lastly, Jetson 1
has a standard USB microphone for scream detection. The
microphone is a general-purpose design with a focus on
unidirectional reception.

III. SOFTWARE STACK

The robot software stack uses Xubuntu 20.04 to run the
Robot Operating System 2 (ROS) Foxy Edition. Xubuntu is a
lightweight Linux distribution; the advantage is that it leaves
resources for running Artificial Intelligence (AI) models on
the Jetson Nano. ROS, which supports C++ and Python 3.x,
provides an array of software libraries and tools for robotics
applications. In particular, ROS allows us to transfer data
between the Jetson Nanos using a publisher/subscriber server
and send commands from the end user to the robot using an
action/client-server. All three Jetson Nanos and the end user
computer are connected to the same WiFi network, allowing
communication. The data that is being transmitted can be
described as follows and can be visualized in Fig. 2.

• Jetson 1
– Publishes true or false if a scream is detected

• Jetson 2
– Publishes environmental data using the BME680

sensor (heat, humidity, air pressure, air quality)
– Executes action input from the user and commands

the motor controllers
• Jetson 3

– Publishes true or false if a person is detected
• Client Computer

– Sends user input to Jetson 2
– Subscribes and displays data from all of the Jetson

Nanos
1) Publisher/Subscriber Function: A publisher
is run and subscribed on the client computer,
publisher master function.py. The purpose of this function
is to synchronize the data coming in. Each Jetson publishes
data at different rates, which is time-stamped on receipt. The
subscriber function.py will hold on to the received data until
it receives a publication from publisher master function.py
and will then output all of the data the subscriber holds to the
end user. Old data will be used if no new data updates the
subscriber. Without this master publisher, the code depends
on one of the three Jetsons for when it can output data,
potentially creating a bottleneck. Another advantage to the
master publisher is that the end-user has one place locally to
change the data output frequency.
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Fig. 2. ROS Data Transmission

By default, publishers and subscribers in ROS can
transmit nineteen data types, and the type of data being
published/subscribed must be defined using messages.
Messages are data types the user can create in ROS; messages
can be compared to C++ structs. An example of a .msg for
transferring BME680 data can be shown in ??. Furthermore, in
this message, we are telling ROS that in a single publishing
event, we will transfer several float64 type variables called
temp, humidity, pressure, gas iaq, and an int64 type variable
called gas ohm. This .msg file is imported for both the
publisher and the subscriber.

In Algorithm 1, we can see a pseudo implementation of a
publisher in Python. This example shows how .msg files are
imported and used. In this example, once the code starts,
an instance of the MinimalPublisher Node is created, which
then starts running by the rclpy.spin function (not shown). On
instantiation, the MinimalPublisher instance will create itself
as a publisher, passing parameters signifying what kind of
data will be outputted, in our case, the BME message type.
Once the object initialization is complete, it will run in the
timer callback function, which populates the variables defined
in the message file with data from the board. This is then
published every 5 seconds until the program is ended.

On the other side, shown in Algorithm 2, will similarly create
an instance of MinimalSubscriber and starts running with
the same rclpy.spin function. The subscriber will define itself
as a subscriber and subscribe to the BME and master. This
means that the BME callback function runs once a BME
message is received., as seen in Algorithm 3. Similarly, the
master callback function is run.
2) Action/Client Server: The action/client-server works
similarly to the publisher/subscriber in concept. In our
implementation, the client (run on the client computer) will

Algorithm 1 BME Publisher Python Implementation
Require: import rclpy, board
Require: import adafruit_bme680
Require: from rclpy.node import Node
Require: from pub_package.msg import BME

1: class MinimalPublisher(Node):
2: def init (self):
3: super(). init (’BME publisher’)
4: self.publisher = self.create publisher(BME,

’topic’, 10)
5: self.timer = self.create timer(.5,

self.timer callback)
6: def timer callback(self):
7: msg = BME()
8: msg.temp = get temperature()
9: msg.pressure = get pressure()

10: msg.humidity = get humidity()
11: msg.gas ohm = get gas ohm()
12: msg.gas iaq = get gas iaq()
13: self.publisher .publish(msg)
14: self.get logger().info(”Publishing...”)

Algorithm 2 BME Subscriber Python Implementation
Require: import rclpy, time
Require: from rclpy.node import Node
Require: from BME_package.msg import BME
Require: from master_package.msg import

Master
1: class MinimalSubscriber(Node):
2: def init (self):
3: super(). init (’subscriber’)
4: self.subscription = self.create subscription(BME,
5: ’topic’, self.BME callback, 10)

6: self.subscription = self.create subscription(Master,
7: ’topic’, self.master callback, 10)

8: self.subscription
9: # Set Default Values

10:
11: def BME callback(self, msg):
12: self.temp = msg.temp
13: self.humidity = msg.humidity
14: self.pressure = msg.pressure
15: self.gas ohm = msg.gas ohm
16: self.gas iaq = msg.gas iaq
17:
18: def master callback(self, msg):
19: self.print data()
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Algorithm 3 BME.msg
1: float64 temp
2: float64 humidity
3: float64 pressure
4: float64 gas iaq
5: int64 gas ohm

ask the server (run on Jetson 2) to execute a key command.
The rover’s keyboard inputs are as follows:

• W - Forwards
• A - Turn Left
• S - Backwards
• D - Turn Right
• E - Stop
• Q - Quit

Once the server receives one of these inputs, a function
corresponding to each key will run, setting the motor PWM
parameters—the RPi.GPIO library is used to interface with
the motor controllers via PWM, which are changed in the
corresponding functions for forwards, backward, left, right,
and stop. The purpose of having Q as an option is to allow a
graceful exit for the motors. It is a standard error that abruptly
turning off the PWM output can cause issues in the following
use of PWM.

Unlike the publisher/subscriber server, the action/client-server
uses actions consisting of three parts: a goal, feedback, and
result. What ROS calls ”goal” is the request sent by the client
to the server to execute. In our basic implementation of the
rover, we created the Motor action. This uses a char data type
to transmit the input (the goal) and then receives a String
confirmation log indicating whether the goal was executed
correctly (the feedback/result).

The action/client-server implementation runs similarly to
the publisher/subscriber code implementation with ROS.
Both of the servers are dependent on receiving data from
another computer. What is done with the data once received
separates the two servers. In the action/client-server, two-way
communication ensures that the goal is executed correctly. The
code also behaves similarly; the client node starts, and a goal
is sent to the server (keyboard input), which will then execute
its callback function and finally return a confirmation result.
The exact process can be done using a publisher/subscriber
function; however, we chose to go with the action/client-server
to improve scalability for our basic WASD implementation.
For example, there are plans to add autonomous navigation in
the future, which can take advantage of the feedback function
to execute more commands.

A. Deep Learning Models

1) Introduction to Improved AI Model Pipeline: While prior
research in this project led to the development of two AI
Models, the CNN – Person Detection Model and the LSTM –
Scream detection model, these models proved too slow for our
specific use case. As a result, the team decided to redevelop the
AI model pipeline with an edge computing endpoint in mind.
The team opted to utilize two pre-trained edge computing-
based models: YAMNet and MobileNetv2.
2) Rationale for Model Selection: We selected these models
based on their demonstrated efficacy and efficiency in
performing various audio classification and object detection
tasks. This choice proved advantageous for our pipeline, given
the constraints of computational power and GPU memory
compared to our primary workstations, initially employed to
develop the preliminary model set.
3) MobileNetV2: Person Detection: For our person detection,
we used MobileVNet2 to detect objects and classify human
presence from the live video stream provided by the
infrared camera. MobileNetV2 is also a pre-trained neural
network optimized for mobile and embedded devices. Google
researchers developed an optimized version of the original
MobileVNet architecture.

MobileNetV2 was trained on the ImageNet dataset, a
large collection of images with more than one million
examples spanning over a thousand categories. It has achieved
state-of-the-art performance on several image classification
benchmarks, including the ImageNet Classification challenge.
4) YAMNet: Scream Detection: For scream detection, we
used YAMNet to classify the recorded audio samples from
Jetson Nano 1 as screams or non-screams. YAMNet is a
pre-trained deep neural network designed and developed by
Google researchers for Audio analysis. The model is a variant
of the MobileNet architecture.

YAMNet was trained on the AudioSet dataset, a large-scale
collection of labeled audio events developed by Google.
The dataset contains over two million 10-second sound
clips that cover multiple audio categories, including musical
instruments, animal sounds, environmental sounds, and, for
our use case, human speech.
5) Model Integration in the Current System: During the
integration process, the models had to be developed to
allow seamless integration with the current data pipeline.
Specifically, we had to ensure that the CIS Camera and USB
Microphone were still appropriately utilized with no issues.

For the MobileNetv2 Model, this proved to be a simple
procedure as the team could utilize NVIDIA’s boilerplate code
for Object Detection found in their online tutorials [6]. This
code allowed TensorRT to power the MobileVNet2 model
in the background, allow faster inference time, and, more
importantly, allow seamless integration of our CIS Camera.
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After a few modifications to the code, we can extract Person
Detection in a Boolean value and by an actual image of the
person detected.

The YAMNet model was integrated by building upon the
code provided by Google [7]. Instead of calling from an API
to provide inference, the model was downloaded from the
TensorFlow Hub as a TF2.0 Saved model .pb file. From here,
it was loaded into the model using TensorFlow’s built-in load
function. From here, we modified our code to create 16khz
Wav files from the USB microphone’s live recordings and used
these recordings to provide the most probable prediction.
6) AI Model pipeline ROS2: In the finalization stage of
the AI Model Pipeline, the team recognized the need for
an effective communication method to relay the variety of
positive values generated from the inference of both pipelines.
The team decided to implement ROS2 directly into the system.
In particular, the real-time publisher-subscriber model allowed
constant surveillance of the AI model’s positive output. This
ensures timely identification and communication of positive
classification across all the Rovers systems.

IV. PHYSICAL CONSTRUCTION

The primary design goal of the rover is the ability to navigate
harsh environments. The rover should be able to climb stairs
and maneuver around obstacles in tight spaces. Additionally,
several design decisions were made to improve the ability to
redesign and repair the rover as the design phase progressed.
1) Rocker Bogie: The rocker-bogie design was chosen due to
it is versatility in rugged terrain. A functional requirement of
the rover is the ability to climb stairs, which is essential when
navigating multi-story buildings. One of the most considerable
benefits of the rocket-bogie design is that it is mechanically
simple to implement, requires no additional actuators, and
allows the rover to scale objects higher than the wheels’
diameter. The rover can climb various obstacles in our testing,
including stairs and shipping boxes. The rocker-bogie system
allows the front and middle wheels to articulate together on a
shared pivot while the rear wheel maintains a fixed position,
providing support as the rover scales an object. Fig. 3 shows
the side view of the rover with the rocker-bogie point at the
front of the rover. Fig. 4 shows the side view of the actual
rover climbing a monitor box with the rocker-bogie adapting
to the climbing as it moves forward.
2) Parts: Below defines a list of parts used for the rover in
Table I. The structural frame of the rover consists of 1.5 in
PVC diameter pipes connected together via friction fit and
secured together with a bolt. PVC pipe was used due to it’s
relatively low cost,high availability. The PVC sections were
cut using a standard miter saw. Once the PVC is cut, it was
then sanded down with a belt sander and hammered together
to form the complete section.

The base plate of the rover is made from 0.5 cm acrylic, which
was cut from a vertical band saw. Once the piece had been

Fig. 3. A side view of the rover showing the rocker bogie pivot point.

Fig. 4. A side view of the rover as it scales a an obstacle.

cut, the spacers were sanded down to remove imperfections.
The electronics sitting on the base plate are mounted using
brass standoffs. After drilling holes with a standard hand drill,
the standoffs were screwed into the acrylic using a wrench.
Finally, combining the frame and the base plate, we can add
the motors and wire the rover for testing and software stack
implementation. Fig. 5 shows the view of the Jetson Nanos
and other peripherals on top of the acrylic base.

V. INITIAL RESULTS

1) AI Model pipeline speedup: Below, we have outlined
the inference time the current pipeline averages over three
runs compared to the previous implementation. The results
reveal a substantial overall reduction in the inference time
that can also improve the real-time processing capabilities
shown in Table II. The original LSTM-based Scream Detection
model averaged a Total AI Pipeline time of 215.7 seconds.
We can then compare it to the new 3.1-second average that
the YAMNet model provides. One thing to note in the new
YAMNet model is that the most time-consuming process is
the 3-second data recording. This showcases that the YAMNet
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TABLE I
A PARTS LISTING FOR THE ROVER

Category Components

Physical Components

4x 7”x1.5” PVC
2x 6”x1.5” PVC
2x 5”x1.5” PVC
2x 4”x1.5” PVC
2x 2”x1.5” PVC
2x 1.5” PVC Caps
6x 1.5” 90degree PVC Elbows
4x 1.5” 45degree PVC Elbows
1x 12”x18”x0.2 Acrylic
4x 3”x0.5” Acrylic Spacers
6x Adjustable Pipe Clamps
6x 5” Rubber RC Tires

Electrical Components

6x 12v 20RPM Motors
2x 20A Motor Controllers
3x NVIDIA 4GB Jetson Nanos
1x IR Ribbon Camera
1x USB Microphone
1x 12V to 5V DC-DC Converter
1x 12V 13Ah NiMH Battery

Miscellaneous

Nuts and Bolts
16 AWG Wire
Power Switch
M&F XT60 Connectors
Wago Wire Nuts
Standoffs
Velcro

Fig. 5. The view of the deck of the rover, where the Jetson Nanos, motor
controllers, and IR camera is located.

pipeline is mainly constrained by how much data the team
chose to gather before using the data for inference. This new
speedup allows the model to be better suited for a time-
sensitive application that needs to detect screams as soon as
they occur.

TABLE II
TABLE OF AI MODEL PIPELINE SPEEDUP.

AI Pipeline Pre-Optimization Post-Optimization
Scream Detection 215.7 3.1
Person Detection 30.9 8.05e-5

Similarly, the Person Detection model exhibits a reduction
from 30.9 seconds to 8.05e-5 seconds using the MobileVNet2
architecture. This reduction will allow the ability to scale
the AI models utilizing the increased speedup in classifying
humans in a time-critical environment.
2) AI Model Training and Testing: The LSTM and the
YAMNet networks were trained from the same dataset found
in [11]. The LSTM model showed stable training and
validation learning curves, as seen in Fig. 6. The model
converges just below 96% accuracy in its validation at 50
epochs. Its classification performance can be analyzed in
its confusion matrix in Fig. 7. Some misclassifications are
due to similar frequency components and signal-to-noise
(SNR) ratio variations presented in the dataset samples. The
correlation of the alarms to conversations can be complex
in distinguishing low SNR from the alarm and mimicking
frequency components in the high SNR conversation samples.

Fig. 6. The Accuracy vs. Epoch graph for the LSTM model.

The YAMNet network learning curves are shown in Fig.
8. The curves show a lower performance of the validation
curve at 70 epochs with an accuracy of 91%. The overall
classification performance of the YAMNet network is seen
in Fig. 9. The large misclassification of the alarms to the
conversation improved from the LSTM network; however,
other misclassifications in other labels increased and showed
why the validation curve is at a lower performing curve. These
initial training and testing performance metrics show that the
results in Table II show that the networks require more time
to analyze the complexity of the screaming-detection feature.
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Fig. 7. The confusion matrix of the LSTM model.

The whole is to continue improving people’s critical detection
at its lowest latency computation determination.

Fig. 8. The Accuracy vs. Epoch graph for the YAMNET model.

VI. CONCLUSIONS

In this research, we have presented a study on integrating
the Robot Operating System (ROS) with advanced machine
learning models to enhance fire rescue operations. Our work
has culminated in several significant findings and contributions
that can substantially impact emergency response. The
development and optimization of the person recognition and
scream detection models can accurately recognize victims in
a fire, with excellent performance on power-limited systems.
We have demonstrated that by leveraging the flexibility and
adaptability of ROS, coupled with the power of machine
learning algorithms, it is possible to develop intelligent

Fig. 9. The confusion matrix of the YAMNet model.

and autonomous systems capable of effectively addressing
complex and dynamic fire rescue scenarios. The Rocker-bogie
suspension design shows promise to provide a high degree of
mobility without using sophisticated actuators or mechanical
legs. The rocker-bogie suspension design has a long history
in aerospace and is easily adapted to the harsh conditions that
may be experienced when scouting a burning building.

A. Future Work

One crucial aspect of our future work involves integrating a
3D LiDAR system for mapping the vehicle’s surroundings as
it navigates a building. This will allow firefighters to better
pinpoint the location of victims and the current position of the
vehicle. The addition of a sound localization system would
improve the rover’s ability to locate a victim trapped in a
burning building. By combining the localization system with
the existing scream detection model, the approximate position
of a person could be relayed back to firefighters to assist in
rescue operations.

The current rover uses 2.4 Ghz WiFI to communicate between
the rover and firefighters. Although WiFI allows for real-
time video and audio to be streamed to first responders,
a secondary, LoRa-based communication link would allow
for the commands and telemetry to be exchanged between
the rover and the fire truck. Lastly, we are exploring the
incorporation of reinforcement learning-based algorithms to
allow for coordination between multiple autonomous units.
Using many drone and rover bases, autonomous units could
increase the speed at which victims are located by utilizing a
divide-and-conquer approach to navigating the building.
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