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Impact of Virtual Reality on Motor Skill Performance in Children 
with Autism Spectrum Disorder 

 

Abstract 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition often associated with 
delayed motor skills. The Motor Assessment Battery for Children – Second Edition (MABC-2) is 
a standardized motor assessment for identifying motor delays pertaining to ASD. It evaluates 
fine and gross motor tasks across three domains: Manual Dexterity, Aiming & Catching, and 
Balance. These tasks are categorized into three age bands: 3-6, 7-10, and 11-16. Virtual Reality 
(VR) has emerged as a promising intervention in the ASD realm. This study aimed to investigate 
the potential of VR to assist children with ASD in performing the gross motor skills (i.e., ball 
skills and balance) in the MABC-2. The children who participated in the study were attendees of 
a local Autism Summer Camp. Our research focused on adapting motor tasks for ages 7-10 (i.e., 
Age Band 2) to VR, as most campers fell in this age range. Within the VR environment, children 
could observe avatar demonstrations and practice motor skills in a highly immersive setting.  
 
The VR environment featured avatars demonstrating ball skills and balancing tasks. Developed 
with the Unity game engine, 3D software Blender, C# scripting, and mixed reality toolkits, this 
environment was tested on the Meta Quest 2 Oculus. The children's gross motor skill 
performance was scored before and after VR interactions. The test standard scores were 
categorized through a traffic-light scoring system comprising red, amber, and green zones. A 
standard score ≤4 is classified in the red zone, indicating a significant movement difficulty; a 
standard score >4 and ≤7 is classified in the amber zone, indicating a risk for movement 
difficulty; and a standard score >7 is classified in the green zone, indicating no movement 
difficulty detected. Following the VR intervention, we observed a notable improvement in the 
balance score (p < 0.05). Furthermore, using the Random Forest machine learning model, we 
analyzed a combined dataset of MABC-2 scores from 250 children across all age bands from the 
Autism Summer Camp in previous years and the MABC-2 scores from the 18 children in the 
present study. Our analysis revealed that Balance was crucial in classifying children with ASD 
with motor delays, with an importance score of 0.195, nearly double that of Manual Dexterity 
and Aiming & Catching. When the model was exclusively applied to the Balance component 
score, it achieved an impressive accuracy rate of 91% in identifying children with ASD. 
 
In summary, our findings underscore the promise of VR in enhancing balance among children 
with ASD. The Random Forest analysis reaffirmed the significant role of balance in identifying 
children with ASD. Given its precision in detecting children with ASD based on their balance 
performance, we anticipate the potential of future machine learning advancements in this field. 
Our research validates the effectiveness of a VR-based approach and emphasizes the significance 
of collaborative research in providing valuable support to the underserved ASD population. 



 
Introduction 
 
Autism spectrum disorder (ASD) is a neurological and developmental condition affecting 
socialization, interaction, learning, and behavior [1]. According to CDC estimates, about 1 in 36 
children have ASD [2]. Individuals with ASD present a heterogeneous range of symptomatology, 
including persistent deficits in social communication and interaction, such as differences in eye 
contact and body language, a lack of verbal communication, and restrictive, repetitive behaviors 
or fixations on routines, interests, or activities [3]. These deficiencies are classified into levels of 
severity, from Level 1 requiring support to Level 3 requiring very substantial support [3]. 
Children with ASD exhibit temporal dyscoordination in grip strength [4] and impairments in 
reaching and grasping [5], visual-motor integration, and fine motor control [6], including 
handwriting and object control skills [6], [7]. Severe motor impairment is widespread among 
children with ASD, at 79%, and may be detected as early as 12 months of age [8], [9]. 
 
Current research suggests that VR may support motor and social skills in children with ASD 
[10], [11]. VR has also been utilized in conjunction with traditional rehabilitation strategies, with 
improvements in the cognitive and social communication of children with ASD [12]. While the 
effectiveness of VR rehabilitation and interventions varies across applications, from daily life to 
cognitive and social communication skills, VR training has seen improvements and great 
promise in individuals with ASD [13]. However, there is an apparent gap in the current literature 
on full-body motor performance in children with autism. Few studies have considered VR as a 
tool to facilitate children with ASD’s understanding and subsequent replication of specific motor 
movements. While one such study suggested the feasibility of a motion-tracking, VR-based 
exercise game for children and adolescents with ASD, the researchers could not show substantial 
evidence of improving gross motor skills among the participants after the VR intervention [14]. 
Consequently, there is a clear need to expand the scope of VR-based motor performance research 
in children with autism to facilitate early intervention and improve outcomes in adult life.  
 
Machine learning has broad applications in medical health, revolutionizing diagnostics [15], 
[16], treatment and healthcare assistance approaches [16], and exhibits promise in elevating 
medical decision-making [17] and enhancing patient outcomes [18]. Additionally, machine 
learning has been utilized to support children with conditions such as ASD [19] or 
Developmental Coordination Disorder [20], demonstrating its capacity for tailored and effective 
interventions. This utilization underscores the technology's potential to contribute to a better 
understanding, early detection based on medical information, and personalized assistance for 
individuals facing these challenges.  
 
Thus, the main aims of this study were twofold: (1) to determine whether VR aids children with 
ASD’s understanding and performance of motor movement tasks, and (2) to utilize machine 
learning to classify children with ASD based on their degree of motor delay. Using 3D modeling 



and animations, we developed a multimodal VR environment using Unity and applied statistical 
analysis to assess the motor behavior of children with ASD post-VR. We employed a Random 
Forest machine learning model to determine the most essential feature in determining MABC-2 
scores and zones. Based on previous literature, it was hypothesized that children with ASD 
would have a statistically significant increase in their MABC-2 scores after participating in the 
VR experience.  
 
Methods 
 
Participants  
 
This study included a sample of 18 children (male = 17, female = 1) with ASD between the ages 
of 5 and 16 from a local Autism Summer Camp. Parents and caregivers received written 
information about the study and provided written consent for children to participate. Research 
assistants received child protection training, and background checks were initiated. The study 
began after Institutional Review Board (IRB) approval. Only children who met the inclusion 
criteria: (1) could follow directions, and (2) were willing and able to perform all movement tasks 
took part in the study. A total of six children (aged 7-10) (male = 5, female =1) in Age Band 2 
completed the VR portion of the study.  
 
The Motor Assessment Battery for Children – Second Edition (MABC-2)  
 
The MABC-2 is widely used to identify movement difficulties across populations, e.g., children 
with ASD [21], [22]. The MABC-2 is separated into three age bands (3-6, 7-10, and 11-16 years 
old), each with eight fine and gross motor tasks composed of Manual Dexterity, Aiming & 
Catching, and Balancing [21]. Each task’s raw score is converted into an item standard score. 
The summation of the item standard scores for each of the three components of the MABC-2 is 
converted using age-adjusted percentiles into the standard score for each component. The sum of 
all items’ standard scores results in the total test score expressed as a total standard score 
corresponding to three zones, deemed the Traffic Light system. Children with an MABC-2 
standard score at or below four are classified in the red zone, denoting significant movement 
difficulty; those with a standard score greater than four and equal to or less than seven are 
classified in the amber zone and are at risk of motor delay. All children with a score greater than 
seven are categorized in the green zone, with no movement difficulty detected [21]. As such, 
identifying motor difficulties through the MABC-2 provides opportunities for early intervention. 
It is critical to do so as the delayed motor skills often exhibited by children with ASD can 
significantly impact future motor ability and social behavior [23]. 
 
Development of Virtual Environments and Scenarios 
 



The VR development process in Fig. 1 involved five key steps. The Unity game engine and XR 
interaction packages created immersive environments compatible with VR hardware (i.e., the 
Meta Quest 2). Secondly, modeling and animation were achieved using tools like the Unity Asset 
Store, Mixamo, and Blender, enabling the creation of intricate 3D assets and customizable avatar 
movements. Additionally, the VR environment was programmed with C# within Visual Studio 
Code, enabling the scripting of different interfaces, interactable objects, and avatar animations to 
ensure dynamic user engagement. Subsequent hardware setup included configuring the Meta 
Quest 2 headset, a computer, and motion controllers, facilitating streamlined development and 
updates via the Android platform in Unity. Lastly, testing and deployment were conducted using 
the XR device simulator in Unity, allowing for debugging via a headset-independent preview of 
the VR environment.  
 

 

 
Fig. 1. Illustration of steps in the VR development process. 

 
In Fig. 1, the Unity game engine in (1) offers a powerful platform for developing the VR 
environment, providing a range of features that enable the development of an immersive and 
interactive experience. Its seamless integration with VR hardware, including devices like the 
Meta Quest 2, simplified the creation of VR environments such as virtual rooms, sunlight, and 
scenes. In addition, the XR interaction toolkit offered pre-built components and tools specifically 
designed for extended reality experiences, including user hand-tracking. Integrating XR 



interaction packages enhanced the development of the environment, supplying pre-built 
components for tasks such as object manipulation and user input. Tennis balls, boards, pegs, 
paper, tables, pens, and other virtual objects, as displayed in Fig. 2, were collected from XR 
interaction toolkits. Additionally, mats and bean bags were constructed from Unity 3D objects. 
This comprehensive toolset ensured a cohesive and effective approach to VR development. 
 

 
 

Fig. 2. Interactable Objects in VR. 
 
The modeling and animation of the VR environment were constructed using the Unity Asset 
Store, Mixamo, and Blender in step (2) in Fig. 1. Blender, a robust 3D modeling software, played 
a pivotal role in crafting the immersive virtual environment by enabling the creation of intricate 
3D assets. Animations from Mixamo were edited by changing bone structures and animation 
clips in Blender. One such animation was altered with Blender to generate an avatar catching a 
ball with both hands from the initial clip of the avatar catching the ball with one hand, as seen in 
Fig. 3. 
 



 

 
Fig. 3. Modifying character animation with Mixamo and Blender. 

 
The programming of the VR environment, including user interface, interactable objects, VR 
hand-tracking, and avatar animation control, was completed using the C# programming language 
within Visual Studio Code in step (3) in Fig. 1. C# scripts in Unity were the backbone for 
implementing dynamic behaviors and interactions within the VR environment, e.g., walking, 
catching, and throwing. These scripts were created within Visual Studio Code, defining the 
functionality of GameObjects, such as a tennis ball, and dictating how GameObjects responded 
to user input and interacted with each other and the environment. In Fig. 4, for example, the ball 
was attached to a C# script, enabling it to interact with the wall and bounce back to the boy-
avatar. This streamlined the development process and ensured effective user interactions within 
the VR environment. Seven movement tasks (Placing Pegs, Drawing Trail, Catching with Two 
Hands, Throwing Beanbag onto Mat, One-Board Balance, Walking Heel-to-Toe Forwards, and 
Hopping on Mats) in Age Band 2 of the MABC-2, two of which are displayed in Fig. 4, were 
replicated in VR. Additionally, male and female avatars were programmed to demonstrate these 
tasks, except for the fine motor tasks Placing Pegs and Drawing Trail. 
 



 
 
Fig. 4.  Avatars performing the MABC-2 Tasks Catching with Two Hands (top) and Hopping on 

Mats (bottom) in VR. 
 

The hardware setup for the VR environment consisted of the Meta Quest 2 headset, a computer, 
and motion controllers in step (4) in Fig. 1. The computer was connected to the Meta Quest 2, 
allowing for ease of access in setting up the VR environment, making updates to the code, and 
adding 3D animations. Because the Meta Quest 2 operates on the Android platform, the VR 
environment was deployed and updated using the Android platform in Unity.  
 
The VR environment was tested using the XR device simulator in Unity, allowing for the testing 
and previewing of the VR experience within the Unity editor before deploying the code to a 
physical VR headset in step (5) in Fig. 1. Doing so enabled adjustments to avatar and virtual 
object placement within the environment and for scripting and animation issues to be identified 
and addressed. Additionally, to observe users while immersed in the virtual environment, the 
computer seamlessly streamed wirelessly through devices, utilizing the support provided by 
Meta's application. 
 
Procedures 
 



Children’s performance was assessed at a local elementary school gym. The MABC-2 was 
administered by the primary investigators and trained research assistants. During MABC-2, 
chronological age was calculated to determine the appropriate movement tasks according to the 
corresponding age band. The primary investigators used the MABC-2 Examiner’s Manual to 
score each task accurately. Each child received verbal instructions and demonstrations before 
performing each motor skill task. They were also provided additional training and practice trials 
as needed. Before the assessment, each child was asked to write their name on a sheet of paper to 
determine their preferred hand. The order of evaluation generally followed that as listed on the 
MABC-2 Examiner’s Manual, testing fine motor before gross motor skills. 
 

 
 

Fig. 5. The procedures of MABC-2 data collecting pre- and post-VR. 
 
Following the initial assessments to establish a control (pre-VR) MABC-2 score, participants 
were immersed in a virtual environment using the Meta Quest 2. In this virtual environment, they 
could observe the avatars and interact with the virtual objects within a virtual room, thus 
allowing them to practice the performance tasks while wearing the headset, as seen in Fig. 6. In 



addition, a timer was displayed for the static One-Board Balance task. The researchers accessed 
the casting mode on the Meta Quest 2 through a computer to observe the children in virtual 
reality. Participants were asked to perform the required movement task for both left and right 
conditions if necessary. Finally, participants were scored again post-VR on the tasks they 
practiced in the real world. The pre-VR and post-VR MABC-2 data collection process is 
illustrated in Fig. 5. 
 

 
 

Fig. 6. Children with ASD performing MABC-2 tasks in VR. 
 
Data Analysis 
 
The sum of the pre-VR item standard scores for the Manual Dexterity, Aiming & Catching, and 
Balancing components of the MABC-2 were standardized for each component, yielding a 
component score for each domain. Additionally, the total sum of all item standard scores, the 
total test score, was converted into an overall standard score used to determine the extent of 
motor delay.  
 
Descriptive data were used for children’s pre-VR total standard scores and previous MABC-2 
data (ages 5-16, Age Bands 1-3, n = 250) collected from children attending the Autism Summer 
Camp from 2010-2019 and 2022. All outliers were removed from previous MABC-2 data; none 
were present in pre-VR MABC-2 data. Post-VR MABC-2 data were obtained from 6 children in 
Age Band 2 who completed MABC-2 practice in VR. Notably, the VR intervention lacked the 
Threading Lace task, a component of Manual Dexterity for Age Band 2, resulting in the absence 
of data for this category; however, Aiming & Catching and Balancing tasks were fully 
implemented in VR. Consequently, a paired t-test was only conducted on pre- and post-VR 



Aiming & Catching and Balance standard scores (n = 6), and an independent 2 sample t-test was 
only performed on post-VR (2023) and (2010-2019, 2022) Aiming & Catching and Balance 
standard score data. An additional single sample t-test was performed upon pre-VR MABC-2 
and norm MABC-2 data across all Manual Dexterity, Aiming & Catching, and Balance 
components. For all t-tests, results were considered significant if p-values were less than 0.05. 
 
Feature analysis using the Random Forest machine learning model was executed upon a 
combined dataset of current control (2023) and previous MABC-2 data (2010-2019, 2022), for a 
total of (n = 268) data points classified into red, amber, and green zones. This analytic process to 
determine the most significant feature is demonstrated in Fig. 7. Combining multiple decision 
trees and the Random Forest model offered improved predictive performance and robustness to 
overfitting. Moreover, the importance score in the Random Forest model was calculated based 
on the frequency with which each feature was used for splitting the data across all trees, with 
higher scores indicating a more significant contribution to predictive accuracy. 
 

 

 
Fig. 7. Machine learning analysis process 

 
Results 
 
Descriptive data of pre-VR scores showed that 88.9% of standard scores for children with ASD 
were in the red zone, thus demonstrating significant motor delays; only 5.5% of children were in 
the amber and green zones. Total standard scores for post-VR scores could not be calculated, as 
only seven of the eight motor tasks in Age Band 2 of the MABC-2 were implemented in VR; 
only standard scores for the Aiming & Catching and Balance categories were calculated. 
Descriptive data of previous MABC-2 data (n = 250) revealed that the majority of children with 
ASD (86.8%) had or were at risk of developing significant motor delays, with 64% and 22.8% of 
them classified in the red zone and amber zone, respectively. Only 13.2% of the children with 
ASD were classified in the green zone. Paired t-test results showed that there was no significant 
difference between the mean Aiming & Catching standard score before and after VR; however, 
the mean Balance standard score after VR was significantly greater (p < 0.05) than before VR, 
with the absolute value of the t-statistic at 2.076, compared to the left-tailed t critical value of 
2.015. These standard scores are displayed in Table 1.  



 
TABLE I 

MEAN STANDARD SCORES FROM 2023 DATA  

 
 
An independent 2-sample t-test conducted on post-VR and previous years’ MABC-2 data 
showed that the mean Aiming & Catching standard score was significantly greater in previous 
years’ data compared to the post-VR data when assuming equal variances as determined by a 
Two-sample F-test for variance. Further testing demonstrated no significant difference between 
the mean Balance standard score in the post-VR group and previous years’ MABC-2 data, 
assuming equal variances as determined by a Two-sample F-test for variance. A single-sample t-
test on current control MABC-2 standard scores (M = 2.389) compared to the norm MABC-2 
data with a mean of ten showed that children with ASD were significantly delayed in all MABC-
2 components (Manual Dexterity, Aiming & Catching, Balance). A comparison of norm MABC-
2 and pre- and post-VR mean standard scores for Aiming & Catching and Balance is shown in 
Fig. 8.  
 

 
 

Fig. 8. Mean MABC-2 Aiming & Catching and Balance standard scores for population norms 
and children with ASD pre- and post-VR. 

 
Random Forest Model 
 
We used a Random Forest machine learning model to analyze the aggregate data from 2010-
2019 and 2022-2023 and determine the importance of the features. The results revealed that the 



Balance component score (B_CS) attained the highest importance score of 0.195, as 
demonstrated in Fig. 9. This score was more than and nearly double that of the Aiming & 
Catching component score (AC_CS) and Manual Dexterity component score (MD_CS), 
respectively. This implies that B_CS significantly impacts the classification model, suggesting 
that it plays a crucial role in distinguishing and predicting the target variable (zone code) 
compared to MD_CS and AC_CS. 
 

 
Fig. 9. MABC-2 importance scores using Random Forest machine learning. 

Note: B_CS = Balance component score, MD_CS = Manual Dexterity component score, AC_CS 
= Aiming & Catching component score. 

 
Furthermore, we investigated the potential impact of the Balance component score (B_CS) on 
classifying children by degree of motor delay. Using Random Forest, we classified children into 
the three zones of the Traffic Light system: red, amber, and green. Fig. 10 illustrates the initial 
accuracy rate of 91%, suggesting that focusing solely on the Balancing task could be a promising 
approach in future research for diagnosing children with ASD. Furthermore, it may guide the 
development of interventions and targeted activities, as focusing on enhancing or assessing 
Balancing skills may be more impactful in addressing specific motor challenges. 



 
Fig. 10. Classifier-based balance component score (Accuracy: 91%) 

 
Discussion 
 
Our preliminary findings highlight the potential benefits of VR training for improving specific 
motor skills, particularly balancing, in children with ASD. However, further research is needed 
to explore the broader implications and potential benefits of VR interventions for motor skill 
development for this population. In this study, the number of participants who completed the 
Aiming & Catching, and Balancing tasks was limited to only six children, as only a few were 
comfortable wearing the VR headset and understood the instructions in the virtual environment. 
The small sample size and limited geographical spread of our study limits the study’s 
generalizability, as the findings may not represent the broader population of children with ASD. 
Additionally, during the post-VR MABC-2 assessment, it was observed that the children were 
more impatient and rushed through the tasks. Individual variability among post-VR scores was 
high–some children saw a marked increase, whereas others saw a decrease in their MABC-2 
score. Furthermore, t-test results may be misleading as assumptions (e.g., independence, random 
sampling, normality, and equal variance) were not fully met. Due to the missing data for one of 
the Manual Dexterity tasks (Threading Lace), we specifically focused on analyzing the 
performance in the Aiming & Catching and Balancing tasks. 
 



Future research with a more prominent and representative, randomized sample with independent 
data, along with improved data collection strategies, is essential to provide more reliable insights 
into the effects of VR interventions on motor skills in children with ASD. Non-parametric testing 
to establish statistical significance may also be necessary. In future studies, we plan to develop 
an immersive VR system using a Cave Automatic Virtual Environment (CAVE), as executed in 
[18], that encompasses all motor tasks across age bands 1 and 3 of the MABC-2. By 
incorporating these tasks into the VR environment, children can interact with virtual objects and 
avatars while performing motor assessments. To ensure accurate and precise tracking of 
participants’ movements, we intend to integrate sensor cameras into the VR setup [18], enabling 
us to capture and analyze the whole-body movements in real-time, providing a comprehensive 
and reliable tool for improving motor competence in children. It may also be particularly 
beneficial for screening and classifying children with ASD when combined with machine 
learning techniques. In conclusion, our results display the potential of a VR environment in 
improving balance skills in children with ASD. Additionally, the significance of balancing tasks 
and the precision of machine learning analysis in identifying children with ASD using balance 
performance suggests the potential of machine learning in screening and classifying children 
with ASD.  
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