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1*, Julie C. AlemanID

2, Joseph W. Veldman1

1 Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United
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Abstract

Charcoal fragments preserved in soils or sediments are used by scientists to reconstruct fire

histories and thereby improve our understanding of past vegetation dynamics and human-

plant relationships. Unfortunately, most published methods for charcoal extraction and anal-

ysis are incompletely described and are therefore difficult to reproduce. To improve the stan-

dardization and replicability of soil charcoal analysis, as well as to facilitate accessibility for

non-experts, we developed a detailed, step-by-step protocol to isolate charcoal from soil

and to efficiently count and measure charcoal fragments. The extraction phase involves the

chemical soaking and wet sieving of soils followed by the collection of macrocharcoal

(�500 μm). The analysis phase is performed semi-automatically using the open-source

software ImageJ to count and measure the area, length, and width of fragments from light

stereo microscope images by means of threshold segmentation. The protocol yields clean

charcoal fragments, a set of charcoal images, and datasets containing total charcoal mass,

number of fragments, and morphological measurements (area, length, and width) for each

sample. We tested and validated the protocol on 339 soil samples from tropical savannas

and forests in eastern lowland Bolivia. We hope that this protocol will be a valuable resource

for scientists in a variety of fields who currently study, or wish to study, macroscopic char-

coal in soils as a proxy for past fires.

Introduction

In a process called charcoalification, the thermal degradation of plants produces the black, car-

bon-rich material known as charcoal [1]. After a fire, charcoal fragments are incorporated into

soils or sediments (sometimes after being transported by water, wind, or humans), where they

can persist for thousands to millions of years; indeed, the oldest charcoal fragments recovered

to date are from the late Silurian period (~420 Myr) [2–5]. The study of charcoal in soils and

sediments provides valuable information on past fire regimes, climate change, plant commu-

nity composition, vegetation dynamics, and human-vegetation relationships, including plant
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Citation: Ruiz-Pérez J, Aleman JC, Veldman JW

(2024) Reproducible protocol for the extraction

and semi-automated quantification of macroscopic

charcoal from soil. PLoS ONE 19(7): e0304198.

https://doi.org/10.1371/journal.pone.0304198

Editor: Joe Uziel, Israel Antiquities Authority,

ISRAEL

Received: November 17, 2023

Accepted: May 7, 2024

Published: July 12, 2024
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use and landscape modification. Charcoal analysis is an established practice in paleoecology

that includes the identification of distinct charcoal types, the quantification of charcoal abun-

dance, and the measurement of light absorption/reflectance of charcoal fragments as proxies

for different components of past fire regimes, including fire frequency, intensity, severity, and

extent [6–15]. These approaches allow researchers to infer spatio-temporal interactions

between plant communities and fires, sometimes as a response to climate changes or human

activities such as deforestation or agriculture [7, 8, 16, 17]. In archaeological contexts, the

examination of charcoal assemblages contributes to our understanding of ancient human use

of plants as, for example, food, fuel, and building material [3, 17]. Furthermore, charcoal is

extensively used to establish chronological frameworks of past events through radiocarbon

dating (i.e., the age determination of charcoal by measuring its carbon-14 content) [18].

Several methods have been developed to reconstruct fire histories using charcoal preserved

in soils and sediments. Although the study of soil and sedimentary charcoal is based on slightly

different premises, both generally involve a two-phase process of extraction of charcoal frag-

ments followed by analysis of the charcoal assemblages [8, 11, 19]. Conventional extraction

techniques include: 1) preparation of petrographic thin sections of sediment [20, 21]; 2) recov-

ery of charcoal together with pollen grains from sedimentary records using standard pollen

extraction procedures [20, 22]; 3) dispersion (and occasionally bleaching or digestion) of soil

or sediment followed by filtration through one or various nested sieves [23–26]; 4) density sep-

aration of sediments using heavy liquid with a specific gravity of 2.2 g/cm3 with optional

bleaching [27]; 5) water flotation of soils [28]; 6) dry or wet sieving of soils [28, 29]; and 7)

hand-picking or hand-sorting soil charcoal under binocular magnifying lens [28, 29]. The

analysis of extracted charcoal may then proceed in a variety of ways to gather information on

fire regimes, fuel types, and chronologies of fire occurrence. In addition to the taxonomic anal-

ysis of charcoal assemblages and radiocarbon dating of charcoal fragments, the most common

approach to analyze charcoal in paleofire reconstructions is through quantification of the

number of fragments and 2-dimensional morphological measurements, such as fragment area,

length, and width [6, 7, 18, 19, 30, 31].

Charcoal quantification (i.e., counting and measurement of charcoal fragments) is usually

performed with the naked eye, a stereo microscope, or a compound microscope, depending

on the size of the charcoal fragments. Manual analysis of charcoal is a time-consuming and

subjective task that can be replaced with semi-automated or fully automated analysis of micro-

scope images or live videos using a microscope camera and image software with integrated

digital measurement tools. Image thresholding (i.e., classification of pixels into two classes

using a cut-off value to differentiate dark charcoal fragments from the background) and auto-

mated counting and measurement of isolated charcoal is a conventional method, often carried

out using software such as the open-source ImageJ or the proprietary WinSEEDLE (Regent

Instruments Inc.) [32–38]. In CharTool, a suite in ImageJ, users first select each charcoal frag-

ment manually, then the software automatically delimits the fragment by edge detection (i.e.,

recognition of boundaries between objects based on pixel intensity values and variation across

neighboring pixels), and finally collects 21 morphometric measurements (e.g., area, perimeter,

circularity) [39]. In addition to thresholding and edge detection, convolutional neural net-

works, a machine learning method used in computer vision, have provided promising results

in charcoal detection and morphological classification [40].

While a variety of methods for extracting and quantifying charcoal exist, including several

detailed protocols [24, 26, 32, 41, 42], we are unaware of any published protocols that compre-

hensively and precisely detail both the extraction and quantification steps combined. More-

over, methods are seldom described in publications containing charcoal data, which limits the

reproducibility of results and the accessibility by non-experts or junior researchers to charcoal
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research [43]. We came to these conclusions after conducting a systematic review of the meth-

ods employed in charcoal studies. We assessed the reporting practices of procedures to extract

and analyze charcoal fragments from either soil or sediment samples in 100 publications ran-

domly selected from the existing literature (see S1 Appendix for details on the assessment

methodology and S1 File to access the results [44]). Our review, which included publications

from 1986 through 2023, showed that sieving is the most common technique to isolate macro-

scopic charcoal (74%, n = 100). Furthermore, we found that most quantification analyses (i.e.,

counting and measurement) are done manually (82%, n = 94), despite the availability of (semi-

)automatic image processing methods since the early 1990s [33, 35, 39, 40]. We also confirmed

methodological gaps in reporting: none of the studies reported complete protocols for extrac-

tion and analysis, whether cited or described in detail. Among details omitted, 94% of studies

lacked detail on how samples were treated before being processed and 72% did not sufficiently

describe how charcoal was isolated (n = 100). Of studies that used chemicals during the extrac-

tion (n = 49), 94% did not specify how chemicals were applied. Of studies that quantified char-

coal after isolation (n = 99), 41% did not provide details about how the analysis was

conducted. Of the publications in which image software was used for quantification (n = 12),

none provided the code, details of the workflow, or software configuration.

In this paper, we present in detail a simple, reproducible, step-by-step protocol for the

extraction, counting, and measurement of charcoal fragments from soil samples as a proxy for

past fires. It is intended for both scientists with experience in the study of charcoal as well as

for novices who wish to learn and implement these techniques. The protocol consists of two

major phases: extraction of charcoal and analysis of fragments (Fig 1). First, the extraction

entails the dispersion and digestion of the soil, washing it through a sieve, and collecting the

isolated charcoal fragments. Second, the quantification involves taking stereo microscope

images of the extracted charcoal and the automated counting and measurement of the frag-

ments using an ImageJ macro provided with the protocol.

Fig 1. Diagram of the protocol showing the main steps of the charcoal extraction and analysis phases.

https://doi.org/10.1371/journal.pone.0304198.g001
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The extraction phase of the protocol disperses and digests 20 g of dry soil for 24 hours in a

100 mL solution of 2.5% sodium hexametaphosphate (Na6P6O18) and 5% hydrogen peroxide

(H2O2)—prepared as a 1:1 mixture of 50 mL of 5% sodium hexametaphosphate and 50 mL of

10% hydrogen peroxide. Then, to separate and concentrate macroscopic charcoal fragments

from finer soil particles, the soil is rinsed through a 500-micron mesh sieve. Previous charcoal

studies have used a variety of different chemicals to disperse, digest, and bleach soils and sedi-

ments prior to isolation; among them, mild concentrations of sodium hexametaphosphate and

hydrogen peroxide have proven to be safe for charcoal produced at moderate to high tempera-

tures (i.e., > 400˚C) and are effective in organic- and clay-rich soils and sediments [24, 45–48].

But note that, for studies interested in recovering charcoal produced at low temperatures (i.e.,

250–400˚C), oxidants like hydrogen peroxide should be avoided or milder concentrations and

exposure times should be tested beforehand [49, 50]. Additionally, to obtain consistent extrac-

tions in case some aspect of the protocol causes any bias, soil samples should always receive

the same treatment (e.g., consistent soil dry weight and identical chemical volume, concentra-

tion, and exposure times) [24, 46, 47]. When compared to other extraction methods, the proto-

col’s sieving technique is fast, reliable, and minimizes mechanical pressure that can damage

charcoal fragments [24, 27, 51]. In our protocol, we preferred a 500-micron mesh over smaller

sizes to capture only large macrocharcoal for two main reasons. First, macrocharcoal

(�500 μm) tends to be incorporated into the soil within a few meters of where it was produced,

as opposed to smaller charcoal that is more readily transported long distances [2, 13, 14, 52,

53]. Second, smaller charcoal may originate from larger fragments affected by taphonomic

processes, which would bias the interpretation of fragment counts and sizes.

For the analysis of charcoal fragments in ImageJ [38], we wrote a macro code to batch pro-

cess charcoal images, detect fragments via threshold segmentation, and then calculate the num-

ber, area, length, and width of the fragments. Even though such an automated approach is

gaining importance, researchers tend not to make macros publicly accessible [36], design mac-

ros for specific analyses that are difficult to customize for other contexts [35], or otherwise do

not describe methods with reproducible detail [34, 37, 46, 54, 55]. For this reason, we have

made available the ImageJ macro code in this protocol. It is a simple and short code that can be

easily modified if desired (e.g., to incorporate additional measurements). The code generates a

user-friendly interface that allows analysts to set the scale of the images in different units (i.e.,

microns, mm, and cm), choose between manual and automatic threshold methods (i.e., custom

adjustment of the minimum and maximum threshold values or calculation of threshold values

with algorithms included in ImageJ), to activate watershed segmentation (i.e., automatic separa-

tion of fragments in contact), and to set automatic filling of holes within charcoal [56].

Materials and methods

Ethics statement

This study was approved by the Bolivian Ministry of the Environment and Water under permit

number CAR/MMAYA/VMABCCGDF/DGBAP/MEG N˚ 0286/2022. Soil samples were

shipped to the Laboratory of Fire Ecology and Savanna Conservation at Texas A&M University

(College Station, Texas, USA) in accordance with permit number P330-22-00089 issued by the

Animal and Plant Health Inspection Service of the United States Department of Agriculture.

Protocol

The protocol described in this peer-reviewed article is published on protocols.io (https://dx.

doi.org/10.17504/protocols.io.kxygx9xr4g8j/v1) and is included for printing as S1 Protocol

with this article.
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Expected results and validation

We used the protocol to process 339 soil samples corresponding to 18 cores of ~2 m depth col-

lected in tropical dry forests and savannas from the Chiquitania region of eastern lowland

Bolivia (see S2 Appendix for more details on the samples [44]). Of the 339 samples, 297 con-

tained charcoal, from which we obtained a total of 2,480 fragments �500 μm. Overall, the sam-

ples exhibit considerable variation in anthracomass (i.e., total mass of extracted charcoal),

number of fragments, and size. Charcoal mass ranged from 0 to 23.3 mg per gram of dry soil,

with a mean of 0.4 and median of 0.1. Charcoal abundance ranged from 0 to 18.9 fragments

per gram of dry soil, with a mean of 0.4 and a median of 0.2 (Fig 2A). Total charcoal area ran-

ged from 0 to 33.5 mm2 per gram of dry soil, with a mean of 0.7 and a median of 0.2 (Fig 2B).

Fig 2. Histograms of charcoal abundance and size obtained from 339 test soil samples. (A) Abundance expressed

in number of fragments counted per gram of dry soil. (B) Total area expressed in mm2 per gram of dry soil. White bars

correspond to samples without charcoal and gray bars represent samples containing charcoal. Note that the interval

values in the x-axes are non-linear.

https://doi.org/10.1371/journal.pone.0304198.g002
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To assess the effectiveness of the methodology and to give examples of the data that can be

produced with the protocol, we randomly selected a subset of 100 of the 339 samples pro-

cessed. First, we provide results of the extraction of charcoal fragments as the dry weight of the

initial soil sample and the dry weight of the isolated fragments in S2 File [44]. These weights

are typically used to calculate charcoal concentration per unit of soil mass or volume [28]. Sec-

ond, we provide 463 JPG images taken under a light stereo microscope of the extracted char-

coal along with an empty image with a scale bar in S1 Dataset [44]. We collected images at 12x

magnification using an Olympus SZX7 stereo microscope (eyepiece WHSZ10X-H, objective

DFPL1.5X-4) and an Olympus LC30 camera (C-mount adapter U-TV0.5XC-3). These images

are used by the ImageJ macro code of the protocol to analyze charcoal (see example in Fig 3)

and can also be used for additional measurements or validation of results (as reported below).

Third, in S2 Dataset [44], we provide the raw output files that generates the macro: 1) a CSV

file that reports the analysis parameters, date of analysis, and software versions; 2) a CSV file

with the counting and measurement results; and 3) outline images in JPG format of the char-

coal fragments detected. Count data can be processed to generate a file with the total number

of fragments per sample as in S3 File, while the measurements of each fragment (i.e., area,

length, and width) can be saved as in S4 File [44]. Number and area are standard metrics uti-

lized to reconstruct fire regimes [6–8, 19], whereas length to width ratio offers information

about the type of fuel (i.e., grasses tend to produce longer and thinner charcoal fragments than

woody plants) [30, 54, 57, 58]. Note that this protocol provides data as concentration per unit

mass of dry soil and that the age determination of the soil samples would be required to estab-

lish a chronological framework for the reconstruction and interpretation of fire histories [59,

60]. Outline images help to determine the accuracy of the charcoal fragments detected in Ima-

geJ and to control for any extraneous particles that might be erroneously identified as

charcoal.

Fig 3. Microscope images of charcoal fragments and outline images generated by the ImageJ macro. Example of charcoal fragments under the light stereo

microscope in transmitted light at 12x magnification (A, B, C), and the resulting outline images after the analysis (D, E, F, respectively).

https://doi.org/10.1371/journal.pone.0304198.g003
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We validated the count and measurement data produced automatically by the ImageJ

macro against manual measurements of 100 fragments (S5 File [44]). We randomly selected

100 fragments from S4 File and collected the corresponding light stereo microscope images

from S1 Dataset [44]. We first counted all charcoal fragments �500 μm on each image and

then manually measured each selected fragment in ImageJ (version 1.54d for Microsoft Win-

dows with Java version 1.8.0_345). In Analyze -> Set Scale, we set the scale values using the

same parameters as the defaults in the macro of the protocol: distance in pixels of 185.75,

known distance of 1000, and unit of length in microns. We opened each image separately and

measured the length and width of each fragment using the tool Straight Line (i.e., fifth tool

from the left on the ImageJ toolbar) and the area by drawing the perimeter with the tool Poly-
gon Selections (i.e., third tool from the left on the ImageJ toolbar). We recorded every measure-

ment in a results table by pressing Ctrl + M after drawing each line and perimeter. In R

(version 4.1.1 for Microsoft Windows) [61], we analyzed the relationship between the auto-

matic and manual quantifications using simple linear regressions (Fig 4). We found a perfect

fit for number of fragments and high correlations for area (F(1, 98) = 678,400, p = <0.001, R2

= 0.99), length (F(1, 98) = 30,390, p = <0.001, R2 = 0.99) and width (F(1, 98) = 7,443, p =

<0.001, R2 = 0.98). These results confirm that the macro generates robust values, which have a

1:1 relationship or close to it, depending on the metric, to those obtained manually. The obvi-

ous difference between the macro and measuring each fragment manually was that the later

took 1–5 minutes on average per fragment, varying with the fragment size and shape, while in

ImageJ it only required ~0.2 seconds on average per fragment on a computer with an AMD

Ryzen 7 PRO 5750GE 3.20 GHz, 32 GB of RAM, and Microsoft Windows 10 version 22H2.

Conclusion

The protocol we present in this paper offers a simple step-by-step guide to isolate charcoal

fragments from soil samples and obtain data necessary to interpret charcoal assemblages as a

proxy for past fires. It is fast and inexpensive, preserves macrocharcoal fragments, and pro-

vides unbiased, accurate charcoal counts, and measurement data. After completion of the pro-

tocol, charcoal mass, number of fragments, and morphological measurements (i.e., area,

length, and width) are generated from each sample (e.g., supporting files mentioned above). In

addition, the set of charcoal images collected for analysis in ImageJ, together with the outline

images produced after analysis, constitute a valuable record for prospective (re)analyses, vali-

dation controls, and reproducibility assessments, particularly if these images are made avail-

able as raw data upon publication of the results. Furthermore, the protocol produces clean

extractions of charcoal, which can be archived for future analyses, such as radiocarbon dating,

morphological or taxonomic identifications, and fire temperature estimations [3, 9, 10, 17, 18,

62, 63]. Another added advantage to the protocol is that the extraction procedure and the

counting and measurement method are independent, and therefore the extraction protocol

can be used for purposes other than quantifying charcoal fragments (e.g., radiocarbon dating),

while the counting and measurement method can be performed on charcoal samples obtained

following other extraction techniques (e.g., flotation, density separation).

Despite the strengths of the protocol, it is also subject to some limitations. First, as with any

oxidant, the hydrogen peroxide used in the protocol should be avoided or tested before use to

avoid damaging charcoal formed at �400˚C [49, 50]. Second, given that the thresholding tech-

nique relies on fixed cut-off values, the results of the image analysis should always be super-

vised to control for possible over- or underestimation of the charcoal size and false positives

(i.e., dark particles other than charcoal automatically classified as charcoal) that need to be

removed [19, 37]. Third, while the four metrics collected by the ImageJ macro in this protocol
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are among the most utilized in charcoal studies [6, 7, 19], anyone wishing to collect additional

morphological metrics would need to incorporate these into the code. Finally, the data files

generated by the ImageJ macro may require additional preparation for analysis (e.g., sum the

fragments identified to obtain the total number of fragments per sample) or for archiving in a

data repository (e.g., generate metadata files to make results reusable and interoperable).

Fig 4. Validation of the results obtained with the ImageJ macro against manual quantification. (A) Abundance of charcoal fragments in 100 images. (B)

Area of 100 fragments expressed in mm2. (C) Length of 100 fragments expressed in mm. (D) Width of 100 fragments expressed in mm.

https://doi.org/10.1371/journal.pone.0304198.g004
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