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Abstract. We study the problem of fairly allocating a set of indivisible goods among n 
agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most 
compelling fairness notion in this context. However, the existence of an EFX allocation has 
not been settled and is one of the most important problems in fair division. Toward resolv
ing this question, many impressive results show the existence of its relaxations. In particu
lar, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not 
allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a 
systematic way to tackle the main question. For example, follow-up works on three- and 
four-agents cases, respectively, allocated two more unallocated goods through an involved 
procedure. In this paper, we study the general case and achieve sublinear numbers of unallo
cated goods. Through a new approach, we show that for every ε ∈ (0, 1=2], there always 
exists a (1 � ε)-EFX allocation with sublinear number of unallocated goods and high Nash 
welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. 
We define the notion of rainbow cycle number R(·) in directed graphs. For all d ∈ N, R(d) is 
the largest k such that there exists a k-partite graph G � (∪i∈[k]Vi, E), in which each part 
has at most d vertices (i.e., |Vi | ≤ d for all i ∈ [k]); for any two parts Vi and Vj, each vertex 
in Vi has an incoming edge from some vertex in Vj and vice versa; and there exists no 
cycle in G that contains at most one vertex from each part. We show that any upper 
bound on R(d) directly translates to a sublinear bound on the number of unallocated 
goods. We establish a polynomial upper bound on R(d), yielding our main result. Fur
thermore, our approach is constructive, which also gives a polynomial-time algorithm 
for finding such an allocation.

Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engi
neering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Infor
mation Science and Engineering [Grant CCF-1750436]. 

Keywords: discrete fair division • EFX allocations • rainbow cycle number

1. Introduction
Fair division of resources is a fundamental problem in many disciplines, including computer science, econom
ics, and social choice theory. The objective is to distribute resources among agents in a fair (no agent is signifi
cantly unhappy with her allocation) and efficient (there is no other fair allocation that can achieve better total 
welfare) manner. Mentions of such problems date back to the Bible and ancient Greek mythology. Today, the 
issue of fair division arises in division of labor, inheritance, computing resources, divorce settlements, partner
ship dissolutions, splitting rent among tenants, splitting taxi fare among passengers, dividing household tasks, 
air traffic management, frequency allocation, and so on. In the internet age, the existence of several centralized 
platforms and more computational power has triggered substantial interest from the economics and computer 
science community to find computationally tractable protocols to allocate resources fairly; see Spliddit (www. 
spliddit.org) and Fair Outcomes (www.fairoutcomes.com) for more details on fair division protocols used in 
real-life scenarios.
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1.1. Discrete Fair Division
In this paper, we focus on one of the most important open problems in discrete fair division. To this end, we first 
describe a typical setup of a problem instance. Given a set N of n agents and a set M of m indivisible goods, the goal 
is to determine a partition X � 〈X1, X2, : : : , Xn〉 of the good set M such that agent i ∈ N receives the bundle Xi and 
the allocation is fair.

1.2. Envy Freeness up to Any Good Allocations
A quintessential notion of fairness is that of envy freeness; an allocation X is said to be envy free if and only if for 
every pair of agents i and j, we have vi(Xi) ≥ vi(Xj) (i.e., each agent i values her own bundle at least as much as she 
values the bundles of other agents). However, such allocations may not always exist; consider a simple example 
with two agents having a positive valuation toward a single good. The agent who gets this good is envied by the 
one who does not. Therefore, several relaxations of envy freeness have been proposed and studied over the last 
15 years (Budish [16], Caragiannis et al. [18], Lipton et al. [34]). The most compelling relaxation is envy freeness up to 
any good (EFX) proposed by Caragiannis et al. [18], where no agent envies the other agent following the removal of 
any single good from the other’s bundle; that is, an allocation X is said to be EFX if and only if for every pair of 
agents i and j, we have vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj. It is also regarded as the best analogue of envy freeness in 
discrete fair division. Caragiannis et al. [17, p. 528] remarked that “Arguably, EFX is the best fairness analog of 
envy-freeness for indivisible items.”

Unfortunately, it is not known whether EFX allocations always exist, even when there are only four agents with 
additive valuations despite significant efforts (e.g., see Caragiannis et al. [18], Moulin [37]). Indeed, only recently 
was this question resolved affirmatively for three agents with additive valuations by Chaudhury et al. [19]. In fact, 
Procaccia [40, p. 118] remarked: “This fundamental and deceptively accessible question is open. In my view, it is 
the successor of envy-free cake cutting as fair division’s biggest problem.”

There has been a substantial study on the existence of an EFX allocation in special cases and its relaxations. For 
instance, EFX allocations exist when agents’ valuations are identical (Plaut and Roughgarden [39]), binary (Bar
man et al. [11], Darmann and Schauer [25]), and bivalued (Amanatidis et al. [5], Garg and Murhekar [28]). The two 
primary relaxations of EFX are approximate EFX allocations and partial EFX allocations. 

• Approximate EFX allocation. An allocation X � 〈X1, X2, : : : , Xn〉 is an α-EFX allocation for some scalar α ∈ (0, 1]

if for every pair of agents i and j, we have vi(Xi) ≥ α · vi(Xj \ {g}) for all g ∈ Xj. Plaut and Roughgarden [39] showed 
the existence of 0.5-EFX allocations. Amanatadis et al. [3] show that a clever modification of the same approach 
leads to a 0.618-EFX allocation.

• Partial EFX allocation. An allocation X � 〈X1, X2, : : : , Xn〉 is called a partial EFX allocation if X is EFX and 
not all goods are necessarily allocated (i.e., ∪i∈[n]Xi ⊆ M). There is always a trivial partial-EFX allocation where 
each Xi is empty. Therefore, a good partial EFX allocation is the one that has good qualitative and quantitative 
guarantees on the unallocated goods. Caragiannis et al. [17] showed that there exists a partial EFX allocation 
where every agent gets a bundle that she values at least as much as half of her value for the bundle she receives 
in a Nash welfare-maximizing allocation. Here, the Nash welfare of an allocation NW(X) � (

Q
i∈[n]vi(Xi))

1=n is 
another popular measure of fairness and economic efficiency. Following the same line of work, Chaudhury et al. 
[20] showed that there always exists a partial EFX allocation X and a set of unallocated goods P such that

• nobody envies the set of unallocated items: vi(Xi) ≥ vi(P) for all i ∈ N; and
• at most n � 1 goods are unallocated: |P | ≤ n � 1.
There have been recent interesting studies on the relaxations of EFX allocations. Berger et al. [13] improved the 

number of unallocated goods to (n � 2) when there are n agents with additive valuations and to one in case of four 
agents. Very recently, Mahara [35] showed how to reduce the number of unallocated goods to (n � 2) even when 
agents have general monotone valuations. We remark that studying relaxations (of EFX allocations) is a systematic 
and promising direction to investigate the existence of an EFX allocation. It has been suspected in Plaut and 
Roughgarden [39, p. 1062] that EFX allocations may not exist in the general setting: “We suspect that at least for 
general valuations, there exist instances where no EFX allocation exists, and it may be easier to find a counterexam
ple in that setting.”

However, finding counterexamples, at least in the additive setting, seems to be a very challenging task; quite 
recently, Manurangsi and Suksompong [36] showed that when agents’ valuations for individual items are drawn 
at random from a probability distribution, then EFX allocations exist with high probability. This demands a 
nonbrute-force approach to find counterexamples, if any. Thus, finding better relaxations (improving the approxi
mation factor or reducing the number of unallocated goods in a partial EFX allocation) is a crucial step toward 
finding the right answer to this big open question. We achieve exactly this by our first main result.

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number 
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Theorem 1. For all ε ∈ (0, 1=2], we can determine a partial allocation X and a set of unallocated goods P in polynomial 
time such that 

• X is (1 � ε)-EFX and
• |P | ∈ O((n=ε)4=5

).

We remark that reducing the number of unallocated goods could be quite challenging. Indeed, a corollary on 
the bounded-charity result in Chaudhury et al. [20] already establishes that there exists a partial EFX allocation 
with at most two goods unallocated when there are three agents. However, removing the last two goods to obtain 
an EFX allocation for three agents turns out to be a highly nontrivial task, and the proof by Chaudhury et al. [19] 
requires careful and cumbersome case analysis. Furthermore, in the appendix, we show that the technique in 
Chaudhury et al. [19] does not extend to four agents with additive valuations for finding a (1 � ε)-EFX allocation.

In this paper, we develop a novel method that reduces the problem of determining good relaxations of EFX allo
cations to a combinatorial problem in graph theory. We call it the rainbow cycle number of an integer, defined as 
follows.

Definition 1. For any positive integer d, the rainbow cycle number or R(d) is the largest k such that there exists a 
directed k-partite graph G � (∪i∈[k]Vi, E) such that 

1. |Vi | ≤ d for all i ∈ [k];
2. for any two distinct parts Vi and Vj in G, every vertex in Vi has an incoming edge from a vertex in Vj; and
3. there exists no cycle in G that intersects each part at most once.
Let us deduce that R(1) � 1. It is clear that G can be a single vertex and satisfy all the conditions in Definition 1; 

thus, R(1) ≥ 1. However, R(1) cannot be larger than one as otherwise, we have two parts V1 and V2 in a graph G, 
where there is exactly one vertex each in V1 and V2. So, let V1 � {a1} and V2 � {a2}. By condition (2) in Definition 1, 
we must have an edge from a1 to a2 and an edge from a2 to a1. This gives a two-cycle a1 → a2 → a1. However, this 
cycle contains exactly one vertex from each V1 and V2, which contradicts condition (3) in Definition 1.

Similarly, using a more involved argument, we can also determine that R(2) � 2. However, it is not at all clear 
what values R(d) takes or if it is finite for all integers d. A key technical result of this paper is a polynomial (in d) 
upper bound on R(d).

Theorem 2. For all d ≥ 1, we have R(d) ≤ d4 + d. Furthermore, let G be a k-partite digraph with k > d4 + d parts of cardi
nality at most d each such that for every vertex v and any part W not containing v, there is an edge from W to v. Then, there 
exists a cycle in G visiting each part at most once, and it can be found in time polynomial in k.

Observe that the definition of the rainbow cycle number (R(·)) is independent of the agents, goods, and valua
tion functions. In the second key result of this paper, we establish a direct relation between the rainbow cycle num
ber and the existence of better EFX relaxations. Finding a good upper bound on the rainbow cycle number can get 
us weaker relaxations of EFX allocations (we can asymptotically improve the number of unallocated goods). For
mally, we have Theorem 3.

Theorem 3. Let ζ(n=ε) be the largest integer d such that d · R(d) ≤ n=ε for ε ∈ (0, 1=2]. Then, there is a (1 � ε)-EFX alloca
tion X and a set of unallocated goods P such that |P | ≤ 4n=(ε · ζ(2n=ε)).

Theorems 2 and 3 imply Theorem 1. We remark that, although we give a polynomial upper bound on R(d), we 
believe that there is further room for improvement. As an illustration, we briefly show that R(2) ≤ 2, which is signifi
cantly better than our upper bound for d� 2 obtained from Theorem 2. We prove this by contradiction. Let us 
assume otherwise, and let V1, V2, and V3 be any three parts of G. We first look into the edges of the induced bipartite 
graph G[V1 ∪ V2]. Without loss of generality, let us assume that vertex b1 in V2 has an incoming edge from vertex a1 
in V1. By condition (2) in Definition 1, a1 has an incoming edge from some vertex in V2. However, this vertex cannot 
be b1 as this will violate condition (3) in Definition 1. This implies that there must be another vertex in V2, say b2 that 
has an edge to a1. Again, by a similar argument, b2 cannot have an incoming edge from a1 and therefore, has an 
incoming edge from another vertex in V1, say that a2 and a2 have the incoming edge from b1 and not b2 (because there 
can be no other vertices in V2). Thus, the induced bipartite graph G[V1 ∪ V2] is a four cycle as shown in Figure 1.

Note that the induced bipartite graph G[V2 ∪ V3] will be isomorphic to G[V1 ∪ V2]. Thus, so far we have the fol
lowing edges in G[V1 ∪ V2 ∪ V3] (Figure 2).

We now look at the edges between the parts V1 and V3. Because G[V1 ∪ V3] is isomorphic to G[V1 ∪ V2], it must 
also be a four cycle, and hence, in G[V1 ∪ V3], there is an edge either from a1 to c1 or from c1 to a1. If there is an edge 
from a1 to c1, then we have a three-cycle a1 → c1 → b2 → a1, which visits each part of G at most once, and thus, this 
is a contradiction. Similarly, if there is an edge from c1 to a1, then also we have a three-cycle a1 → b1 → c1 → a1, 
which visits each part of G at most once, and thus, this is also a contradiction.

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number 
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We suspect that R(d) ∈ O(d). We believe that finding better upper bounds on R(d) is a natural combinatorial 
question, and better upper bounds to R(d) imply the existence of better relaxations of EFX allocations. Therefore, 
investigating better upper bounds on the rainbow cycle number is of interest in its own right, and we leave this as 
an interesting open problem.

1.3. Finding (12«)-EFX Allocations with High Nash Welfare
Let us recall that efficiency is also an important and desirable property of the allocations in fair division. The effi
ciency of an allocation is a measure of the overall welfare the allocation achieves. This is important as an envy-free 
allocation could be otherwise unsatisfactory; consider a simple instance with two agents 1 and 2 and two goods g1 
and g2. Let v1(g1) � v2(g2) � 1 and v1(g2) � v2(g1) � 0. Note that X1 ← {g2} and X2 ← {g1} are an EFX allocation as 
each bundle is a singleton, and following the removal of a single good results in an empty bundle, which is unen
vied. However, there is clearly a better EFX allocation, where the individual and the total welfare are better, 
namely X1 ← {g1} and X2 ← {g2}.

Nash welfare of an allocation X defined as the geometric mean of the valuations of the agents, (
Q

i∈[n]vi(Xi))
1=n, is 

a popular measure of economic efficiency.1 In fact, when agents have additive valuations, then the allocation with 
the highest Nash welfare is also EF1 (another popular fairness notion weaker than EFX). Unfortunately, maximiz
ing Nash welfare is Approximable hard. However, there have been several approximation algorithms (Anari et al. 
[7], Barman et al. [10], Cole and Gkatzelis [22]) that give a constant factor approximation. The best approximation 
ratio is e1=e ≈ 1:445, given by Barman et al. [10].

Similar to the algorithm in Chaudhury et al. [20], we show that with minor modifications to our main algorithm, 
we can determine an allocation that satisfies the conditions in Theorem 1 and simultaneously achieves a 2e1=e ≈

2:88 approximation of the Nash welfare (i.e., in polynomial time, we can find efficient (1 � ε)-EFX allocation with a 
sublinear number of unallocated goods).

Theorem 4. For all ε ∈ (0, 1=2], we can determine a partial (1 � ε)-EFX allocation X and a set of unallocated goods P in 
polynomial time such that |P | ∈ O((n=ε)4=5

) and NW(X) ≥ (1=2:88) · NW(X∗), where X∗ is the allocation with the highest 
Nash welfare.

1.4. Further Related Work
Because the fair division literature is too vast, we restrict here to previous work that appears most relevant and 
refer the reader to recent surveys (Amanatidis et al. [6], Walsh [42]).

Fair division has received significant attention since the seminal work of Steinhaus [41] in the 1940s. Other than 
envy freeness, another fundamental fairness notion is that of proportionality. Recall that, in an envy-free allocation, 

Figure 1. (Color online) Induced bipartite graph G[V1 ∪ V2] when showing R(2) ≤ 2. 

Figure 2. (Color online) Bipartite graph G[V1 ∪ V2 ∪ V3] when showing R(2) ≤ 2. 

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number 
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every agent values her own bundle at least as much as she values the bundle of any other agent. However, in a pro
portional allocation, each agent gets a bundle that is worth 1=n times her valuation on the entire set of goods. 
Because envy freeness and proportionality cannot always be guaranteed while dividing indivisible goods, various 
relaxations of the same have been studied. Alongside EFX, another popular relaxation of envy freeness is envy free
ness up to one good (EF1), where no agent envies another agent following the removal of some good from the other 
agent’s bundle. Although the existence of an EFX allocation is open, EF1 allocations are known to exist for any 
number of agents, even when agents have weakly monotone valuation functions (Lipton et al. [34]). Although EF1 
and EFX are fairness notions that relax envy freeness, the most popular notion of fairness that relaxes proportion
ality for indivisible items is maximin share (MMS), which was introduced by Budish [16]. Although MMS alloca
tions do not always exist (Kurokawa et al. [32]), there has been extensive work to come up with approximate MMS 
allocations (Amanatidis et al. [4], Barman and Krishnamurthy [9], Bouveret and Lemaı̂tre [14], Budish [16], Garg 
and Taki [29], Garg et al. [30], Ghodsi et al. [31], Kurokawa et al. [32]). Some works assume ordinal ranking over 
the goods as opposed to cardinal values (e.g., Aziz et al. [8], Brams et al. [15]).

Alongside fairness, the efficiency of an allocation is also a desirable property. Two common measures of effi
ciency are that of Pareto optimality and Nash welfare. Caragiannis et al. [18] showed that any allocation that has 
the maximum Nash welfare is guaranteed to be Pareto optimal (efficient) and EF1 (fair). Barman et al. [10] give a 
pseudopolynomial algorithm to find an allocation that is both EF1 and Pareto optimal. Other works explore 
relaxations of EFX with high Nash welfare (Caragiannis et al. [17], Chaudhury et al. [20]).

A one-page abstract of our work appeared in Chaudhury et al. [21].
The rest of the paper is organized as follows. In Section 2, we briefly highlight our main techniques used to 

prove our main results (Theorems 1–3). Then, in Section 3, we outline the basic concepts, notations, and techniques 
from existing literature on EFX allocations that will be useful to prove our main results. In Sections 4 and 5, we 
give the proofs of Theorem 3 and Theorem 2, respectively. In Section 6, we show how a minor modification of our 
main algorithm helps us achieve our main result (Theorem 1) with high Nash welfare (efficiency guarantees). 
Finally, in the appendix, we show why the technique from Chaudhury et al. [19] does not extend to a setting with 
four agents with additive valuations.

2. Our Techniques
In this section, we give a brief overview of our key ideas and techniques. We first sketch the key idea that 
relates the number of unallocated goods to the function R(d) (Theorem 3), and then, we briefly show that R(d) is 
finite.

2.1. Relation Between the Number of Unallocated Goods and the Rainbow Cycle Number
A very crucial concept that is often used while studying relaxations of envy freeness in discrete fair division is the 
envy graph of an allocation. Given an allocation X � 〈X1, X2, : : : , Xn〉, the envy graph EX has vertices corresponding to 
the agents, and there is an edge from agent i to agent j in EX if agent i envies agent j (vi(Xi) < vi(Xj)). Without loss of 
generality, one assumes that the envy graph of an allocation is acyclic. If there is a cycle, then one can shift the bun
dles along the cycle, thereby giving every agent in the cycle a strictly better bundle, and the other agents retain 
their previous bundle. Such a procedure reduces the number of edges in the envy graph, and one can continue this 
until EX is cycle free.

Most of the algorithms that have been used to prove the existence of relaxations of EFX allocations (Chaudhury 
et al. [19], Chaudhury et al. [20], Plaut and Roughgarden [39]) maintain a relaxed EFX allocation2 X on the set of allo
cated goods, and as long as the envy graph EX and the set of unallocated goods satisfy some “properties,” they 
determine another relaxed EFX allocation X′, in which φ(X′) ≥ φ(X) + δ for some δ ≥ 1, where φ is an integral 
upper-bounded function. In that case, we say that the relaxed EFX allocation X′ dominates the relaxed EFX alloca
tion X. Because φ is integral and upper bounded, such a procedure will finally converge to a relaxed EFX allocation 
where the envy graph EX and the unallocated goods will not satisfy the said properties, and this will be the final 
allocation of the algorithms.

We now highlight another crucial concept used in these algorithms. The envy graph EX does not provide any 
information on an agent’s valuations of the bundles formed by adding unallocated goods to the current bundles 
of the allocation. This information is crucial when we want to create another dominating relaxed EFX allocation 
by allocating some of the unallocated goods and unallocating some of the already allocated goods. The algorithms 
in Chaudhury et al. [19] and Chaudhury et al. [20] make use of this information through other concepts. For in
stance, Chaudhury et al. [19] and Chaudhury et al. [20] define champions3 and champion graphs. Given an allocation 
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X and an unallocated good g, we say that an agent i is a champion for agent j w.r.t. g if there is a set S ⊆ Xj ∪ {g}

such that vi(Xi) < (1 � ε) · vi(S) and no agent (including i and j) envies S up to a factor of (1 � ε), following the 
removal of a single good (i.e., for all ℓ ∈ [n], we have (1 � ε) · vℓ(S \ {h}) ≤ vℓ(Xℓ) for all h ∈ S).4 A champion graph 
w.r.t. an unallocated good g has vertices corresponding to the agents (similar to the envy graph), and there is an 
edge from agent i to agent j if agent i champions agent j w.r.t. g. Depending on the configuration of the envy graph 
and the champion graphs (one for each unallocated good), the current (1 � ε)-EFX allocation X is transformed into 
another (1 � ε)-EFX allocation X′ such that X′ dominates X. However, when the number of agents is large, there 
are several different possible configurations of the champion graphs and the envy graph, and it is very hard and 
tedious to come up with better update rules. In this paper, we introduce the notion of a group champion graph, 
which is significantly more insightful and well structured than the champion graphs.

Given a (1 � ε)-EFX allocation X and a set of unallocated goods M′, we define the group champion graph. To 
this end, for each agent a ∈ [n], we assign a unique source s(a) in EX such that a is reachable from s(a) in EX (if there 
are multiple sources from which a is reachable in EX, then pick one source arbitrarily). The group champion graph 
of M′ is a |M′ | -partite graph G � (∪g∈M′ Vg, E), in which each part Vg contains a copy of the assigned sources of all 
the agents who find g “valuable.” An agent a finds g valuable if va({g}) > ε · va(Xa). There is an edge from vertex 
s(a) in Vg to s(a′) in Vh if and only if a champions s(a′) w.r.t. g (see Figure 3 for an illustration). At a high level, the 
group champion graph encodes the most relevant information from all the champion graphs. We make this point 
more explicit by briefly explaining how group champion graphs help us prove Theorem 3.

We first observe that if there is an unallocated good g and an agent i such that the other agents do not envy (Xi ∪

{g}) \ g′ up to a factor of (1 � ε) for all g′ ∈ Xi ∪ {g}, then we allocate g to i. Thus, we assume that for each unallo
cated good g and each agent i, there is an agent j that envies (Xi ∪ {g}) \ g′ up to a factor of (1 � ε) for some 
g′ ∈ Xi ∪ {g}. In particular, this implies that every unallocated good is valuable to some agent because if there is a 
good g that is not valuable to any agent (i.e., vi({g}) ≤ ε · vi(Xi) for all i ∈ [n]), then we can simply allocate g to a 
source s in EX as no agent will envy the bundle Xs ∪ {g} up to a factor of (1 � ε); for all i ∈ [n], we have that vi(Xi) ≥

vi(Xs) (as s is unenvied) and ε · vi(Xi) ≥ vi({g}), implying that (1 + ε)vi(Xi) ≥ vi(Xs ∪ {g}) and further implying that 
vi(Xi) ≥ (1 � ε) · vi(Xs ∪ {g}). Now, we classify the set of unallocated goods into two categories depending on how 
many agents find them valuable. We fix an integer d < n and define “high-demand goods” and “low-demand 
goods.” A high-demand good is valuable to more than d agents, and a low-demand good is valuable to at most d 
agents. We show in Section 4 that if the number of high-demand goods is more than 2n=(ε · d), then we can deter
mine a dominating (1 � ε)-EFX allocation from the existing (1 � ε)-EFX allocation. Thus, we may assume that the 
number of high-demand goods is at most 2n=(εd). We now bound the number of low-demand goods. Let M′′ be 
the set of low-demand goods. We construct the group champion graph G � (∪g∈M′′ Vg, E) of M′′, in which part Vg 
contains the assigned sources of the agents who find g valuable. Note that for all g ∈ M′′, g is not valuable to more 
than d agents. Thus, |Vg | ≤ d for all g ∈ M′′. Now, consider any two parts Vg and Vh in G. By our assumption, for 
all a ∈ Vh, there is an agent who envies (Xa ∪ {g}) \ g′ up to a factor of (1 � ε) for some good g′ ∈ Xa ∪ {g}, implying 
that for each a in Vh, there are agents who champion a w.r.t. g. We prove in Section 4 that because a is a source in 
EX, the agents who champion a w.r.t. g must find g valuable. Therefore, for all a ∈ Vh, there is a source s(a′) ∈ Vg, 

Figure 3. (Color online) Illustration of a group champion graph. 

Notes. We have an instance with six agents ∪i∈[4]ai and ∪i∈[2]bi and two unallocated goods, namely ga and gb. The agents ∪i∈[4]ai find ga valuable, 
and the agents ∪i∈[2]bi find gb valuable. The envy graph EX of the instance is shown in the left panel. EX shows that s(a2) � a1, s(a4) � a3, and 
s(b2) � b1. Also, we have that agent a2 champions all the agents with respect to (w.r.t.) ga and that b2 champions all the agents w.r.t. gb. The group 
champion graph (right panel) has two parts: Vga corresponding to ga and Vgb corresponding to gb. Vga contains the sources of all the agents who 
find ga valuable, namely a1 and a3. Similarly, Vgb contains b1. There is an edge from a1 to b1 as a2 (which is reachable from a1 in EX) champions b1 
w.r.t. ga. Similarly, there is an edge from b1 to a1 and a3 as b2 (which is reachable from b1 in EX) champions a3 w.r.t. gb.
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where a′ champions a w.r.t. g. Thus, every vertex in Vh has an incoming edge from a vertex in Vg. In Section 4, we fur
ther show that whenever G has a cycle that visits each part at most once, then we can determine a (1 � ε)-EFX alloca
tion that dominates X. Therefore, we can assume that G has no cycle that visits each part at most once. Because G is an 
|M′′ | -partite graph that satisfies the conditions in Definition 1, we have that the number of low-demand goods is 
|M′′ | ≤ R(d). Therefore, the total number of unallocated goods is 2n=(dε) + R(d) ∈ O(max(2n=(ε · d), R(d))). By choos
ing the appropriate value for d, we arrive at the statement of Theorem 3.

We now elaborate that R(d) is indeed upper bounded, which then establishes the existence of (1 � ε)-EFX alloca
tions with a sublinear number of unallocated goods.

2.2. Upper Bounds on the Rainbow Cycle Number
We briefly show that for any d ∈ N, R(d) is finite. Consider a k-partite graph G � (∪i∈[k]Vi, E) in Definition 1. For all 
i ∈ [k], let Vi � {(i, 1), (i, 2), : : : , (i, |Vi | )}. For all i < j and i′ < j′, we say that the directed bipartite graphs G[Vi ∪ Vj]

and G[Vi′ ∪ Vj′ ] have the same configuration if and only if for each directed edge from vertex (i, a) to (j, b) (and 
equivalently, from (j, b′) to (i, a′)) in G[Vi ∪ Vj], there is an edge from (i′, a) to (j′, b) (and equivalently, from (j′, b′) to 
(i′, a′)) in G[Vi′ ∪ Vj′ ] and vice versa. We first show that if there are 4d parts in G, say without loss of generality 
(w.l.o.g.) V1, V2, : : : , V4d, such that the induced directed bipartite graph G[Vi ∪ Vj] has the same configuration for 
all 1 ≤ i < j ≤ 4d, then there exists a cycle in G that visits each part at most once.

Consider the parts V1 and V2 and the induced directed bipartite graph G[V1 ∪ V2]. Because every vertex in one 
part has an incoming edge from a vertex in the other part, G[V1 ∪ V2] is cyclic. Let the simple cycle be C � (1, i1) →

(2, i2) → (1, i3) → ⋯→ (2, i2β) → (1, i1) for some β ≤ d. Because all the induced bipartite graphs G[Vi ∪ Vj] have the 
same configuration for all 1 ≤ i < j ≤ 4d, we can claim that for all ℓ ∈ [β], for each edge (1, i2ℓ�1) → (2, i2ℓ) in C, there 
is an edge from (2ℓ� 1, i2ℓ�1) to (4d � ℓ, i2ℓ) in G[V2ℓ�1, V4d�ℓ] (note that 2ℓ� 1 < 4d � ℓ as ℓ ≤ β ≤ d). Similarly for 
all ℓ ∈ [β], for each edge (2, i2ℓ) → (1, i2ℓ+1) in C (2β+ 1 is to be interpreted as one), there is an edge from (4d � ℓ, i2ℓ)
to (2ℓ+ 1, i2ℓ+1) in G[V2ℓ+1, V4d�ℓ] (again, note that 2ℓ+ 1 < 4d � ℓ as ℓ ≤ β ≤ d). This implies that there is a cycle C′ �

(1, i1) → (4d � 1, i2) → (3, i3) → (4d � 2, i4) → ⋯→ (4d � β, i2β) → (1, i1) in G. Clearly, C visits each part of G at most 
once. Therefore, there cannot be 4d parts in G such that the induced directed bipartite graph G[Vi ∪ Vj] has the 
same configuration for all 1 ≤ i < j ≤ 4d.

We now rephrase the question about an upper bound on R(d). Let D be the set of all configurations of a directed 
bipartite graph, where the number of vertices in each part is at most d and every vertex has an incoming edge. We 
treat D as a set of colors and note that |D | ∈ 2O(d2). Now, consider a complete graph Kn with vertex set [n], where 
the vertex ℓ ∈ [n] corresponds to part Vn in G. For all 1 ≤ i < j ≤ n, we color/label the edge (i, j) in Kn with a color 
from D. The color on the edge (i, j) corresponds to the configuration of the directed bipartite graph G[Vi ∪ Vj]. 
Clearly, R(d) must be strictly smaller than the largest n such that every coloring of the edges of Kn with colors from 
D contains a monochromatic clique of size 4d. This value of n corresponds to the (multicolor) Ramsey number (Dies
tel [26]) R(n1, n2, : : : n |D | ), in which ni � 4d for all i ∈ [ |D | ]. This number is finite, and the current best-known upper 
bounds on it are exponential in |D | and d (Conlon and Ferber [23], Diestel [26], Erdős and Szekeres [27], Lefmann 
[33]). Therefore, R(d) is also bounded. However, this upper bound is very large and only provides a weak version 
of Theorem 1. This necessitates the study of finding “good” upper bounds on R(d): in particular, upper bounds 
that are polynomial in d. We address this in Section 5 by showing that R(d) ∈ O(d4).

3. Preliminaries and Tools
A fair division instance is given by the three tuple 〈[n], M,V〉, where [n] is the set of agents, M is the set of indivisi
ble goods, and V � {v1(), v2(), : : : , vn()}, where each vi : 2M → R≥0 denotes the valuation function of agent i. We 
assume that agents have additive valuations (i.e., for all i ∈ [n], we have vi(S) �

P
g∈Svi({g}) for all S ⊆ M). For the 

ease of notation, we write vi(g) instead of vi({g}) and similarly, vi(S ∪ g) for vi(S ∪ {g}). We assume that vi(g) can be 
accessed in constant time for any i and g. For a fixed 0 < ɛ < 1 and an allocation X � (X1, : : : , Xn), we say that an 
agent i 

• envies a set S of goods if vi(Xi) < vi(S);
• heavily envies a set S of goods if vi(Xi) < (1 � ε)vi(S);
• strongly envies a set S of goods if it heavily envies a proper subset of S; and
• is a most envious agent for a set S of goods if there exists a subset Z ⊆ S such that i heavily envies Z and no agent 

strongly envies Z. The pair (i, Z) is called a most-envious-agent-witness pair for S. We emphasize that the most envi
ous agent of the set S is not necessarily the agent with the highest envy for S, but it is the agent who envies a subset 
of S that no other agent strongly envies.
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An agent envies (heavily envies, strongly envies) an agent j if it has these feelings for the set Xj. Clearly, strong 
envy implies heavy envy implies envy. An allocation X′ ε-strongly Pareto dominates an allocation X or equivalently, 
X′ >PD(ε) X if and only if vi(X′

i ) ≥ vi(Xi) for all i ∈ [n] and for some agent j ∈ [n], we have (1 � ε) · vj(X′
j ) ≥ vj(Xj).

At a high level, our algorithm is similar to previous algorithms used to prove the existence of relaxations of EFX 
allocations (Chaudhury et al. [19], Chaudhury et al. [20], Plaut and Roughgarden [39]). Our algorithm always 
maintains a (1 � ε)-EFX allocation on the set of allocated goods, and as long as the current allocation and the set of 
unallocated goods P satisfy “some properties,” it determines another (1 � ε)-EFX allocation that ε-strongly Pareto 
dominates the previous (1 � ε)-EFX allocation. Because the valuation of an agent for the entire good set is 
bounded, this procedure will eventually converge to a (1 � ε)-EFX allocation, where the current allocation and the 
set of unallocated goods do not satisfy these properties. The bulk of the effort goes into determining the right prop
erties under which one can come up with update rules that transform one (1 � ε)-EFX allocation into a “better” 
(1 � ε)-EFX allocation. We briefly recollect the update rules used in Chaudhury et al. [20] and Lipton et al. [34].

3.1. Envy Cycle Elimination (Lipton et al. [34])
The envy graph EX of a (1 � ε)-EFX allocation X has the agents as its vertex set, and there is an edge from vertex i to 
vertex j in EX if agent i envies agent j (i.e., vi(Xi) < vi(Xj)). The paper by Lipton et al. [34] shows that whenever EX 
has a cycle, then one can determine another (1 � ε)-EFX allocation X′ in which no agent has a worse bundle and 
EX′ is acyclic. Formally, we have Lemma 1.

Lemma 1 (Lipton et al. [34]). Consider a (1 � ε)-EFX allocation X. If there is a cycle in EX, then in polynomial time, we 
can determine a (1 � ε)-EFX allocation X′ such that vi(X′

i ) ≥ vi(Xi) for all i ∈ [n], and EX′ is acyclic.5

3.2. Update Rules in Chaudhury et al. [20]
We modify the update rules in Chaudhury et al. [20] slightly, as we are dealing with (1 � ε)-EFX allocations and 
not EFX allocations. These rules are more involved and make essential use of the concept of a most envious agent.

Lemma 2. Consider an allocation X and a set S ⊆ M. If there is an agent who heavily envies the bundle S, then we can 
determine a most-envious-agent-witness pair (t, Z) for S in O(n · |S |2) time. If there is an agent who strongly envies S, then 
t strongly envies S.

Proof. Let i be an agent who heavily envies S. We construct a sequence (tℓ, Zℓ) as follows; initially, we set t1 to i 
and Z1 to S. Assume that (tℓ�1, Zℓ�1) is defined. If no agent (including tℓ�1) strongly envies Zℓ�1, then we stop. 
Otherwise, let i′ be an agent such that vi′ (Xi′ ) < (1 � ε) · vi′ (Zℓ�1 \ {g}) for some g ∈ Zℓ�1. We set tℓ to i′ and Zℓ to 
Zℓ�1 \ {g} and continue. We will eventually stop as with every next pair in the sequence, the size of the set Zℓ 
decreases by one. Say we stop at ℓ∗. Then, we have an agent tℓ∗ that heavily envies the subset Zℓ∗ of S. Moreover, 
no agent strongly envies Zℓ∗ . Thus, (tℓ∗ , Zℓ∗ ) is a most-envious-agent-witness pair.

If there is an agent who strongly envies S, then ℓ ≥ 1, and hence, tℓ∗ heavily envies a proper subset of S. Thus, 
tℓ∗ strongly envies S.

It is clear that we can determine the pair in O(n · |S |2) time; the maximum length of the sequence constructed 
is |S | + 1 as the size of the set Zℓ � |S | + 1 � ℓ. We need time O(n |S | ) to determine vi(S) for all i and can update 
any such value in time O(1) after the removal of an element. For each value of ℓ, it takes O(n · |Zℓ | ) � O(n · |S | )

time to find (tℓ+1, Zℓ+1). Thus, the total time needed is O(n · |S |2). w

For an allocation X and a set S of goods that is heavily envied by some agent, let (t, Z) be the pair returned by the 
procedure in Lemma 2. Now, for notational convenience only, we introduce a slightly different definition of cham
pions. We call t the champion of S and Z the corresponding witness. We now state the update rules.

3.3. Update Rule U1 (Chaudhury et al. [20])
The first rule is the simplest. It is applicable whenever we can allocate an unallocated good to an unenvied agent (a source 
in EX) without creating any strong envy. In this case, we simply allocate this good to the corresponding source. This cre
ates another (1 � ε)-EFX allocation where no agent gets a worse bundle and the number of unallocated goods decreases.

Lemma 3 (U1 (Chaudhury et al. [20])). Consider a (1 � ε)-EFX allocation X. If there is a source s in EX and an unallocated 
good g such that no agent strongly envies Xs ∪ g, then X′ � 〈X1, X2, : : : , Xs ∪ g, : : : , Xn〉 is a (1 � ε)-EFX allocation and 
vi(X′

i ) ≥ vi(Xi) for all i ∈ [n].

Note that there can be at most m consecutive applications of this rule as the number of unallocated goods decreases 
by one every time we apply this update rule. The remaining rules are applicable whenever there are either “valuable” 
goods unallocated or if “too many” goods are unallocated. We state the second update rule.
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3.4. Update Rule U2 (Chaudhury et al. [20])
This update rule is applicable if there is an agent i ∈ [n] who heavily envies the set of unallocated goods P. In this 
case, let t be the champion of P and Z be the corresponding witness. In X′, one assigns Z to t and changes the pool 
to Xt ∪ (P \ Z). The resulting allocation X′ is EFX and ε-strongly Pareto dominates X.

Lemma 4. (U2 (Chaudhury et al. [20])). Consider a (1 � ε)-EFX allocation X, and let P be the set of unallocated goods. If 
there is an agent i ∈ [n] that heavily envies P, then in polynomial time, we can determine a (1 � ε)-EFX allocation 
X′ >PD(ε) X.

The third update rule is a refinement of envy-cycle elimination.

3.5. Update Rule U3 (Chaudhury et al. [20])
This rule is applicable whenever the number of unallocated goods is at least the number of agents. Chaudhury 
et al. [20]) shows that when the number of unallocated goods is larger than the number of agents and when rule U1 
is no longer applicable, then in polynomial time, we can find a set of sources s1, s2, : : : , sℓ in EX; a set of unallocated 
goods g1, g2, : : : , gℓ; and a set of agents t1, t2, : : : , tℓ such that each ti is reachable from si in EX, the paths from si to ti 
for all i ∈ [ℓ] are disjoint, and ti is the champion of Xsi+1 ∪ gi+1 (indices are modulo ℓ). Then, one essentially proceeds 
as in cycle elimination. Let Zi+1 ⊆ Xsi+1 ∪ gi+1 be the witness corresponding to ti. For each I, one assigns Zi+1 to ti, 
and to each agent on the path from si to ti except for ti, one assigns the bundle owned by the successor on the path. 
The resulting allocation X′ is EFX and ε-strongly Pareto dominates X.

Lemma 5 (U3 (Chaudhury et al. [20])). Consider a (1 � ε)-EFX allocation X. If there exists a set of sources s1, s2, : : : sℓ in 
EX; a set of unallocated goods g1, g2, : : : , gℓ; and a set of agents t1, t2, : : : , tℓ such that each ti is reachable from si in EX, the 
paths from si to ti for all i ∈ [ℓ] are disjoint, and ti is the champion of Xsi+1 ∪ gi+1 (indices are modulo ℓ), then in polynomial 
time, we can determine a (1 � ε)-EFX allocation X′ >PD(ε) X.

4. Relating the Number of Unallocated Goods to the Rainbow Cycle Number
In this section, we give the proof of Theorem 3 (i.e., we show how any upper bound on R(d) allows us to obtain a 
(1 � ε)-EFX with sublinear many goods unallocated). More precisely, we show that given a (1 � ε)-EFX allocation 
X, if EX is acyclic, the update rules U1 and U2 are not applicable, and the number of unallocated goods is larger 
than 4n=(ε · ζ(2n=ε)), then rule U3 is applicable. Therefore, for most of this section, we proceed under the assump
tion that

(*) EX is acyclic and the update rules U1 (Lemma 3) and U2 (Lemma 4) are not applicable:

We start with some definitions. We first make an observation about the agents who could potentially strongly 
envy Xs ∪ g, where s is a source in EX and g is an unallocated good.

Observation 1. Consider an unallocated good g and any source s in EX. If agent i heavily envies Xs ∪ g, then g is 
valuable to agent i.

Proof. We have vi(Xs) ≤ vi(Xi) because s is a source of EX and vi(Xi) < (1 � ε)vi(Xs ∪ g) because i heavily envies 
Xs ∪ g. Thus, vi(Xi) < (1 � ε)(vi(Xi) + vi(g)), and hence, (1 � ε)vi(g) > εvi(Xi). w

Note that under assumption (*) for each unallocated good g and each source s in the envy graph, there is an 
agent who strongly envies Xs ∪ g (because the conditions of the update rule U1 in Lemma 3 are not satisfied). 
Thus, each unallocated good is valuable to some agent. Now, we make a classification of the unallocated goods 
based on the number of agents who find them valuable. To be precise, given an allocation X, we classify the unallo
cated goods into two categories: high-demand goods HX and low-demand goods LX. A good g belongs to HX if it is valu
able to at least d + 1 agents and to LX if it is valuable to at most d agents. We will choose the exact value of d later 
(right now, just think of it as any integer less than n). Observe that the set of unallocated goods P � HX ∪ LX. To 
prove our claim, it suffices to show that when |HX | + |LX | > 4n=(ε · ζ(2n=ε)), the rule U3 is applicable. To this end, 
we first make a simple observation about |HX | .

Observation 2. Under assumption (*), we have |HX | < 2n=(ε · d).

Proof. For each good g ∈ HX, let ηg be the number of agents who find g valuable. By definition of HX, we have 
that ηg > d, and hence, 

P
gηg > |HX |d. We next upper bound 

P
gηg by n · (2=ε) by showing that at most 2=ε unal

located goods are valuable to any agent.
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Consider any agent i. By assumption (*) rule, U2 is not applicable, and hence, the value of the unallocated 
goods to i is at most 1=(1 � ε)vi(Xi). This is at most 2vi(Xi) because ε ≤ 1=2. Any valuable good has a value at least 
εvi(Xi) for i. Thus, the number of unallocated goods valuable to i is at most 2=ε. w

We next bound |LX | . In particular, we show that |LX | ≤ R(d). To this end, we introduce the notion of group cham
pion graph G.

4.1. Group Champion Graph
Recall that we are operating under assumption (*), and hence, EX is acyclic. Given EX and the sources in EX, we fix an 
arbitrary total order ⋏

 among the sources. To each agent a, we assign a source s(a) such that a is reachable from s(a) in 
the envy graph EX (note that a can coincide with s(a)). If a is reachable from multiple sources, we pick s(a) to be the 
source with the highest rank in the order ⋏. However, once picked, s(a) is fixed and remains unique throughout our 
algorithm and its analysis. Let k :� |LX | . For each g ∈ LX, let Qg be the set of all agents who find g valuable. By defini
tion of LX, we have |Qg | ≤ d for all g ∈ LX. We now define a k-partite graph G � (∪g∈LX Vg, E), in which the part Vg cor
responding to g consists of copies of the sources assigned to the agents in Qg: formally, Vg � {(g, s(a)) |a ∈ Qg}. For any 
goods g and h and agents a ∈ Qg and b ∈ Qh, there is an edge from (g, s(a)) in Vg to (h, s(b)) in Vh if and only if a is the 
champion of Xs(b) ∪ g. We now make a claim about the set of edges between Vg and Vh in G for any g, h ∈ LX.

Lemma 6. Under assumption (*), consider any g, h ∈ LX. Then, each vertex in Vh has an incoming edge from a vertex 
in Vg.

Proof. Consider any vertex (h, s(b)) ∈ Vh. By assumption (*), there is an agent who strongly envies the bundle 
Xs(b) ∪ g. Otherwise, rule U1 would be applicable. By Observation 1, all agents who strongly envy Xs(b) ∪ g con
sider g valuable and hence, belong to Qg. Let a be the champion of Xs(b) ∪ g. By Lemma 2, a strongly envies 
Xs(b) ∪ g and hence, belongs to Qg. Thus, there is an edge from (g, s(a)) in Vg to (h, s(b)) in Vh (by the construction 
of G). w

Now, we claim that the existence of a cycle that visits each part of G at most once would imply the existence of a 
(1 � ε)-EFX allocation that ε-strongly Pareto dominates the existing (1 � ε)-EFX allocation.

Lemma 7. Given a cycle C in G that contains at most one vertex from each Vg, for all g ∈ LX, we can determine a 
(1 � ε)-EFX allocation X′ >PD(ε) X in polynomial time.

Proof. Let C � (gi+1, si) → (gi+2, si+1) → ⋯→ (gj+1, sj) → (gi+1, si) be a cycle in G that visits each part at most once. It 
will become clear why we index the g’s starting at i + 1. Consider the sequence si, si+1, : : : , sj. If all the sources in 
this sequence are not distinct, there exists a contiguous subsequence si′ , si′+1, : : : , sj′ where all the sources are dis
tinct and sj′+1 � si′ with i ≤ i′ < j′ ≤ j (index j + 1 is to be interpreted as i).

We now work with the sequence si′ , si′+1, : : : , sj′ where all the sources are distinct and sj′+1 � si′ . For all 
ℓ ∈ [i′ + 1, j′ + 1], the existence of the edge (gℓ, sℓ�1) → (gℓ+1, sℓ) implies the existence of an agent tℓ�1 such that tℓ�1 
is the champion of Xsℓ ∪ gℓ and s(tℓ�1) � sℓ�1 (i.e., tℓ�1 is reachable from sℓ�1 in EX). Furthermore, note that the 
paths from sℓ�1 to tℓ�1 for all ℓ ∈ [i′ + 1, j′ + 1] are disjoint. Assume otherwise, and let there be an intersection 
between paths from sa to ta and from sb to tb and w.l.o.g. sa ⋏ sb. Note that because the paths intersect, both ta and 
tb are reachable from sb, and sa ⋏ sb, we have s(ta) ≠ sa, which is a contradiction. Because the sources si′ , si′+1, : : : , sj′

are distinct, the agents ai′ , ai′+1, : : : , aj′ are also distinct (as each agent has a unique source assigned). Therefore, we 
have distinct sources si′ , : : : , sj′ in EX; distinct goods gj′+1, gi′+1, : : : , gj′ ; and distinct agents ti′ , : : : tj′ that satisfy the 
conditions under which the update rule U3 (Lemma 5) is applicable. By applying U3, we can get a (1 � ε)-EFX 
allocation X′ >PD(ε) X.

We clarify a boundary case of this analysis. Note that in principle, the length of the contiguous subsequence 
could be also one (i.e., i′ � j′). In this case, it means that there is an agent ti′ , reachable from si′ in EX, who is the 
champion of Xsi′ ∪ gi′+1 (i.e., the most envious agent of Xsi′ ∪ gi′+1 is reachable from si, and thus, we apply rule U3 
and get a (1 � ε)-EFX allocation X′ >PD(ε) X). w

With Lemma 7, we are now ready to give an upper bound on |LX | . Observe that |LX | equals the number of parts 
in G. Now, the question is how many parts can G have such that it does not admit a cycle that visits each part at 
most once. This is where we upper bound |LX | with the rainbow cycle number.

Lemma 8. Consider a (1 � ε)-EFX allocation X. If |LX | > R(d), there is a (1 � ε)-EFX allocation X′ >PD(ε) X.

Proof. Recall that |LX | � k, where k is the number of parts in G. Note that each part of G corresponds to the 
sources assigned to the agents who find a particular good in LX valuable (Qg for some g ∈ LX). By definition of 
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LX, there are at most d agents who find a good in LX valuable. Thus, each part has at most d vertices. Again, by 
Lemma 6, between any two parts Vg and Vh of G, each vertex in Vh has an incoming edge from a vertex in Vg. 
Therefore, by Definition 1, we have that if k > R(d), then there exists a cycle C in G that visits each part at most 
once. Once we have C, by Lemma 7, we can determine a (1 � ε)-EFX allocation X′ >PD(ε) X. w

Given a (1 � ε)-EFX allocation X such that |LX | > R(d), Lemma 8 only gives the existence of a (1 � ε)-EFX alloca
tion X′ >PD(ε) X. However, to determine X′ in polynomial time, one needs to find a cycle C in G that visits each part 
at most once when |LX | > R(d) in polynomial time. Let us remark that this is a nontrivial problem in general, remi
niscent of the well-known K-PATH and K-CYCLE problems, which are nondeterministic polynomial-time complete 
(Cygan et al. [24]). Here, the input is a (di-)graph G and an integer k, and the objective is to determine if there is a 
path (cycle) on at least k-distinct vertices of the graph. These problems can be solved in 2O(k) · poly(n) time using 
techniques based on color coding, hash functions, and splitters (Alon et al. [2], Cygan et al. [24], Naor et al. [38]). In 
particular, we can reduce K-PATH to the following problem in polynomial time. Find a k-path in a colorful graph on 
n vertices, whose vertices have been colored with O(poly(k) · log n) colors, such that every vertex of the k-path has 
a distinct color. However, for our purposes, the construction of the cycle C in G is a part of the proof of Theorem 6
(described in Section 5); we show that in polynomial time, one can find a cycle in a (d4 + d)-partite digraph, in 
which each part has at most d vertices and for any two parts V and V′ in the digraph, every vertex in V′ has an 
incoming edge from some vertex in V and vice versa. This implies that if |LX | > d4 + d, then in polynomial time, 
we can determine a cycle C in G that visits each part at most once and then determine a (1 � ε)-EFX allocation 
X′ >PD(ε) X by applying U3. This also implies that R(d) ≤ d4 + d. Therefore, we have Lemma 9.

Lemma 9. Consider a (1 � ε)-EFX allocation X. If |LX | > d4 + d, then in polynomial time, we can determine a (1 � ε)-EFX 
allocation X′ >PD(ε) X.

4.2. Putting it Together
We give the existence proof and indicate the appropriate changes required for the polynomial-time algorithm. We 
start with an empty allocation, which is trivially a (1 � ε)-EFX. Then, the algorithm iteratively maintains a 
(1 � ε)-EFX allocation X and a pool of unallocated goods. In each iteration, the algorithm first makes EX acyclic in 
polynomial time by Lemma 1. Thereafter, the algorithm checks whether any one of the update rules U1 and U2 
is applicable. If U1 is applicable, then it determines a (1 � ε)-EFX allocation X′, where vi(X′

i ) ≥ vi(Xi) for all i ∈ [n]

and the number of unallocated goods reduces. If U2 is applicable, then it determines a (1 � ε)-EFX allocation 
X′ >PD(ε) X. If neither U1 nor U2 is applicable, then it determines the sets HX and LX. By Lemma 2, we have 
|HX | ≤ 2n=(ε · d). If |LX | ≤ R(d) ≤ d4 + d, then it returns the allocation X. Otherwise, it determines a cycle that visits 
each part of G at most once and then determines (1 � ε)-EFX allocation X′ >PD(ε) X by applying update rule U3, as 
in Lemma 8. If |LX | > d4 + d, the cycle can be determined in polynomial time. Therefore, when the algorithm termi
nates, we have that |HX | ≤ 2n=(ε · d) and |LX | ≤ R(d) ≤ d4 + d, implying that the total number of unallocated goods 
is |HX | + |LX | ≤ 2 · max(2n=(ε · d), R(d)) ≤ 2 · max(2n=(ε · d), 2d4).

We now state the explicit value of d first for the existence proof. We choose d as the largest integer such that 
R(d) ≤ 2n=(εd) (i.e., d � ζ(2n=ε)). Recall that ζ(2n=ε) is defined as the largest integer d such that d · R(d) ≤ 2n=ε. 
Therefore, the number of unallocated goods is at most 4n=(ε · ζ(2n=ε)).

For the algorithmic result, we choose d as the smallest integer such that 2n=(ε · d) ≤ 2d4. Then, d � ⌈(n=ε)1=5
⌉, and 

the number of unallocated goods is at most 4⌈(n=ε)1=5
⌉

4
∈ O((n=ε)4=5

) as n=ε ≥ 1.
It only remains to show that the algorithm will terminate. We prove a polynomial bound on the number of itera

tions. The bound applies to the existence and the algorithmic version. To this end, note that in each iteration, after 
removing cycles from EX, our algorithm determines a new (1 � ε)-EFX allocation X′ through one of the following 
procedures: 

• applying U1,
• applying U2, or
• determining a cycle C that visits each part in G at most once and then applying U3.
Note that the initial envy-cycle elimination and subsequent application of all of the procedures ensure that 

vi(X′
i ) ≥ vi(Xi) for all i ∈ [n] (Lemmas 1 and 3–5). Thus, throughout the algorithm, the valuation of an agent never 

decreases. Note that there cannot be more than m consecutive applications of U1, as the number of unallocated goods 
decreases with each application of U1. Every time we apply U2 or U3, we ensure that X′ >PD(ε) X, implying that the 
valuation of some agent improves by a factor of at least (1 + ε). Because each agent’s valuation is bounded by W �

maxi∈[n]vi(M) and the valuation of an agent never decreases throughout the algorithm, we can have at most 
poly(n, m, log W, 1=ε) many iterations that involve applications of U2 and U3. Therefore, the total number of itera
tions of our algorithm is m · (iterations involving application of U2 or U3), which is also poly(n, m, log W, 1=ε). 
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Notice that in the algorithmic case, each of the iterations can also be implemented in polynomial time; U1 and U2 
can be implemented in polynomial time (Lemmas 3 and 4). When |LX | ≥ 2d4 ≥ d4 + d, then in polynomial time, we 
can determine the cycle C and apply U3 (Lemma 9). We can now state the main result of this section.

Theorem 5. There exists a (1 � ε)-EFX allocation X and a set of unallocated goods P such that |P | ≤ 4n=(ε · ζ(2n=ε)). In 
polynomial time, we can find a (1 � ε)-EFX allocation and a set P of unallocated goods such that |P | ∈ O((n=ε)4=5

).

Note that any upper bound on the rainbow cycle number will imply an upper bound on the number of unallo
cated goods.

5. Bounds on the Rainbow Cycle Number
In this section, we give the proof of Theorem 2. We briefly recall the setup. There is a k-partite digraph G �

(∪i∈[k]Vi, EG) such that each part has at most d vertices. For every pair of distinct parts Vi and Vj, every vertex in Vj 
has an incoming edge from some vertex in Vi. There is no cycle in G that visits each part at most once. Our goal is 
to establish an upper bound on k.

We now introduce some helpful notations and concepts. For each i ∈ [k], we represent the vertices in the part Vi 
as (i, vertex id) (i.e., Vi � {(i, 1), (i, 2), : : : , (i, |Vi | )}). For any positive integer d and a, b ∈ [d], we use σd(a, b) to denote 
(a � 1) · d + b. Note that 1 ≤ σd(a, b) ≤ d2. The σd(a, b) captures the lexicographic ordering among the pairs ∪a∈[d]

∪b∈[d](a, b). For any Boolean vector u ∈ {0, 1}
r, we use u[k] to refer to the kth coordinate of the vector u. We introduce 

the simple yet crucial notion of representative set for a set of Boolean vectors. Given a set D of r-dimensional Boolean 
vectors, the set B ⊆ D is a representative set of D if and only if {ℓ |a[ℓ]} � 1 for some a ∈ D � {ℓ |b[ℓ]} � 1 for some 
b ∈ B. We first make an observation about the size of B.

Observation 3. Given any set D of r-dimensional Boolean vectors, there exists a representative set B ⊆ D of size 
at most r.

Proof. For each coordinate ℓ ∈ [r], we do; if there is a vector a ∈ D with a[ℓ] � 1, we put one such vector into B. 
Clearly, |B | ≤ r. w

We prove Theorem 2 by contradiction. To be precise, we show that if k > d4 + d, then there exists a cycle in G that 
visits every part at most once. Moreover, this cycle can be found in time polynomial in k.

We construct the cycle in two steps. We first show the existence of a part Vℓ̃ such that there is a directed cycle 
that visits only the parts Vℓ̃ , V1, V2, … , Vd and moreover, each of the parts V1, V2, … , Vd at most once. In the sec
ond step, we replace the vertices in Vℓ̃ in this cycle by vertices in distinct parts.

For each ordered pair (i, j) ∈ [d] × [d] and ℓ ∈ [k] \ [d], we define a d2-dimensional vector ui, j, ℓ as follows; for all 
x ∈ [d] and y ∈ [d], we set ui, j, ℓ[σd(x, y)] � 1 if and only if there exists a path (i, x) → (ℓ, z) → (j, y) in G for some 
(ℓ, z) ∈ Vℓ (i.e., if there exists a path from vertex (i, x) in Vi to vertex (j, y) in Vj through some vertex in Vℓ). Other
wise, we set ui, j, ℓ[σd(x, y)] � 0.

Let L � [k] \ [d]. For each ordered pair (i, j) ∈ [d] × [d], we construct the sets Bi, j and Li, j as follows. For each (i, j) 
taken in the increasing order of σd(i, j), define Li, j � L and Bi, j as a representative vector set of {ui, j, ℓ |ℓ ∈ Li, j} of size 
at most d2. A set Bi, j of this size exists because our vectors have dimension d2. Then, we set L � L \ {ℓ |ui, j, ℓ ∈ Bi, j}. 
At most, d2 elements are removed from L in each iteration.

For clarity, we write Lf to denote the set L at the end of the construction. Observe that |Lf | ≥ 1. This holds 
because we start with a set of size larger than d4 and remove at most d2 elements in each of the d2 iterations.

Observation 4. Consider distinct ordered pairs (i, j) ∈ [d] × [d] and (i′, j′) ∈ [d] × [d]. The sets {ℓ |ui, j, ℓ ∈ Bi, j} and 
{ℓ |ui′, j′, ℓ ∈ Bi′, j′ } are disjoint.

Proof. Let us assume without loss of generality that σd(i, j) < σd(i′, j′). Consider any ℓ such that ui, j, ℓ ∈ Bi, j. Then, ℓ 
is removed from L at the end of the iteration for the pair (i, j) and hence, does not belong to L at the beginning of 
the iteration for the pair (i′, j′). Consequently, ui′, j′, ℓ ∉ Bi′, j′ (by definition of Bi′, j′ , if ui′, j′, ℓ ∈ Bi′, j′ , then ℓ ∈ Li′, j′ ). w

At the end of the construction, we arbitrarily pick a ℓ̃ ∈ Lf (this is possible as Lf ≠ ∅). Now, we make a small 
observation about the vector ui, j, ℓ̃ for all i, j ∈ [d].

Observation 5. For all i, j ∈ [d], if ui, j, ℓ̃ [q] � 1 for some q ∈ [d2], then there exists a vector ui, j, l′ ∈ Bi, j such that 
ui, j, l′ [q] � 1.

Proof. Observe that Lf ⊆ Li, j. Therefore, l̃ ∈ Li, j. By definition, Bi, j is a representative vector set of {ui, j, ℓ |ℓ ∈ Li, j}. 
Therefore, by the definition of representative set, there exists a vector ui, j, ℓ′ ∈ Bi, j such that ui, j, ℓ′ [q] � 1. w

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number 
2334 Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2323–2340, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

62
0:

0:
e0

0:
40

37
::1

2f
] o

n 
18

 F
eb

ru
ar

y 
20

25
, a

t 2
0:

18
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



We are now ready for the construction of a cycle that visits each part at most once. We first show that there exists 
a cycle C in G that visits only the parts Vℓ̃ , V1, … , Vd and each of the parts V1, … , Vd at most once (i.e., the only part 
it may visit more than once is Vℓ̃ ). See Figure 4 for an illustration.

Let (ℓ̃, wd) be an arbitrary vertex in Vℓ̃ . We construct a path

(ℓ̃, w0) → (1, v1) → ⋯→ (i � 1, vi�1) → (ℓ̃, wi�1) → (i, vi) → (ℓ̃, wi) → ⋯→ (d, vd) → (ℓ̃, wd)

by starting at (ℓ̃, wd) and tracing backward. We start in (ℓ̃, wd). Assume that we already traced back to (ℓ̃, wi) with 
i � d initially. By the construction of G, there must be an edge from some vertex (i, vi) in Vi to (ℓ̃, wi) in Vℓ̃ , and there 
must be an edge from some vertex (ℓ̃, wi�1) in Vℓ̃ to (i, vi) in Vi. Thus, there is the path (ℓ̃, wi�1) → (i, vi) → (ℓ̃, wi) in 
G. We keep continuing this procedure until we reach (ℓ̃, w0).

Because the part Vℓ̃ can have at most d vertices, by the pigeonhole principle, there must be i and j with 0 ≤ i < j ≤

d such that wi � wj. Let C be the subpath from (ℓ̃, wi) to (ℓ̃, wj): that is,

C � (ℓ̃, wi) → (i + 1, vi+1) → (ℓ̃, wi+1) → ⋯→ (ℓ̃, wj�1) → (j, vj) → (ℓ̃, wj):

Observe that C visits all the parts of G except Vℓ̃ at most once. We now show that by using “bypass” parts, we can 
make the cycle simple. For clarity, we rewrite C as

C � (i + 1, vi+1) → (ℓ̃, wi+1) → ⋯→ (ℓ̃, wj�1) → (j, vj) → (ℓ̃, wj) → (i + 1, vi+1):

5.1. Making the Cycle Simple
For all q ∈ [i + 1, j], consider the subpath

(q, vq) → (ℓ̃, wq) → (q + 1, vq+1)

of C (index j + 1 is to be interpreted as i + 1). The existence of such a subpath in G implies that uq, q+1, ℓ̃ [σd(vq, vq+1)]

� 1. By Observation 5, we know that there is a vector uq, q+1, ℓq ∈ Bq, q+1 such that uq, q+1, ℓq [σd(vq, vq+1)] � 1. This 

Figure 4. (Color online) Illustration of the first part of the construction. 

Notes. The cycle in the figure visits the parts V1, V2, and V3 exactly once and the part Vℓ three times. It is given by (ℓ̃ , w3) → (1, v1) → (ℓ̃ , w1) →

(2, v2) → (ℓ̃ , w2) → (3, v3) → (ℓ̃ , w3).
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implies that there exists a part Vℓq and a vertex (ℓq, yq) in part Vℓq such that there is a subpath

(q, vq) → (ℓq, yq) → (q + 1, vq+1):

By Observation 4, we have that ℓq ≠ ℓq′ for all q ≠ q′. Therefore, we have a simple cycle C′ in G that visits each part 
in G at most once; namely,

C′ � (i + 1, vi+1) → (ℓi+1, yi+1) → ⋯→ (ℓj�1, yj�1) → (j, vj) → (ℓj, yj) → (i + 1, vi+1):

See Figure 5 for an illustration of this entire procedure.
Therefore, if k > d4 + d, then there exists a cycle in G that visits each part at most once. Moreover, this cycle can 

be found in time polynomial in k. With this, we arrive at the main result of this section.

Figure 5. (Color online) Illustration of the existence of a cycle that visits every part at most once. 

Notes. We take the instance in Figure 4, where there exists a cycle C that visits every part other than Vℓ̃ at most once. The edges of the cycle C are 
light in color. The figure shows how to obtain a cycle C′ that visits every part at most once from C. The edges of C′ are dark in color. For all 
i ∈ [3], we replace the subpath in C of the form (i, vi) → (ℓ̃ , wi) → (i + 1, vi+1) (3+ 1 is to be interpreted as one) by (i, vi) → (ℓi, yi) → (i + 1, vi+1) to 
get C′.
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Theorem 6. For all d ≥ 1, we have R(d) ≤ d4 + d. Furthermore, let G be a k-partite digraph with k > d4 + d parts of cardi
nality at most d each such that for every vertex v and any part W not containing v, there is an edge from W to v. Then, there 
exists a cycle in G visiting each part at most once, and it can be found in time polynomial in k.

An improved upper bound on R(d) would imply a better bound on the number of unallocated goods. However, 
we show that an exponential improvement (e.g., R(d) ∈ poly(log(d))) is not possible by showing a linear lower 
bound (i.e., R(d) ≥ d)). However, this still leaves room for polynomial improvement, and we suspect that 
R(d) ∈ O(d). This would imply the existence of a (1 � ε)-EFX allocation with O(

ffiffiffiffiffiffiffiffi
n=ε

p
) many goods unallocated. 

For a polynomial-time algorithm, the construction of a cycle as in Theorem 6 would have to be polynomial time. 
However, we remark that this is an initiation study for determining (1 � ε)-EFX allocations with a sublinear num
ber of unallocated goods, and we use concepts like the group champion graph that are natural extensions of the 
champion graph. We believe that this still leaves room for developing more sophisticated concepts and techniques 
that may reduce the number of unallocated goods to o(

ffiffiffiffiffiffiffiffi
n=ε

p
).

5.2. Lower Bound on R(d)

We show that R(d) ≥ d. We construct a d-partite graph G � (∪i∈[d]Vi, E) such that each part Vi has d vertices; for all 
pairs of parts Vi and Vj, every vertex in Vj has an incoming edge from a vertex in Vi and vice versa; and there exists 
no cycle that visits each part at most once.

We now define the edges in G. Let Vi � {(i, 0), (i, 1), : : : , (i, d � 1)}. Consider any i and j such that i < j. For each 
0 ≤ ℓ ≤ d � 1, we have an edge from (i,ℓ) in Vi to (j,ℓ) in Vj, and there is an edge from (j, ℓ) in Vj to (i, (ℓ+ 1) mod d)

in Vi (see Figure 6 for an illustration). One can easily verify that for all parts Vi and Vj, every vertex in part Vj 
has an incoming edge from part Vi and vice versa. It suffices to show that G admits no cycle that visits each part at 
most once.

Lemma 10. There exists no cycle in G that visits each part at most once.

Proof. We prove by contradiction. Assume that there is a cycle C � (i1,ℓ1) → (i2,ℓ2) → ⋯→ (ir,ℓr) → (i1, ℓ1) that 
visits each part at most once (i.e., ix ≠ iy for all x, y ∈ [r]). From here on, all the indices are modulo r. Note that by 
the construction of the edges of G, for all q ∈ [r], we have ℓq+1 � ℓq if iq < iq+1 and ℓq+1 � (ℓq + 1) mod d if iq > iq+1. 
Let #1 � |{q ∈ [r] | iq > iq+1} | (recall that r + 1 is one). The existence of the cycle C in G implies that ℓ1 � (ℓ1 + #1)

mod d.
Because ix ≠ iy for all x, y ∈ [r] and there exists the cycle C in G, there are indices q′ and q′′ such that iq′ > iq′+1 

and iq′′ < iq′′+1, further implying that 1 ≤ #1 ≤ r � 1. Because G has d parts, we have r ≤ d, implying that 1 ≤ #1 
≤ d � 1. However, this implies that (ℓ1 + #1) mod d ≠ ℓ1, which is a contradiction. w

6. Finding Efficient (12«)-EFX Allocations with a Sublinear Number of Unallocated 
Goods

We note that like the algorithms in Chaudhury et al. [20] and Plaut and Roughgarden [39], our algorithm is flexible 
with the initialization (i.e., starting with any initial (1 � ε)-EFX allocation X, it can determine a final (1 � ε)-EFX 
allocation Y with at most O((n=ε)4=5

) many goods unallocated and vi(Yi) ≥ vi(Xi) for all i ∈ [n]). This is a conse
quence of the fact that the valuation of an agent never decreases throughout our algorithm. Therefore, our algo
rithm maintains the welfare of the initial allocation. Thus, if we choose the initial (1 � ε)-EFX allocation carefully, 

Figure 6. (Color online) Illustration of the construction of d-partite graph G that satisfies all the conditions in Definition 1 for 
d � 2 (left panel) and d � 3 (right panel). 
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we can also guarantee high Nash welfare for our final (1 � ε)-EFX allocation with sublinear many goods unallo
cated. To this end, we use an important result from Caragiannis et al. [17] about determining partial EFX alloca
tions with high Nash welfare in polynomial time.

Theorem 7 (Caragiannis et al. [17]). In polynomial time, we can determine a partial EFX allocation X such that 
NW(X) ≥ 1=(2:88) · NW(X∗), where X∗ is the Nash welfare-maximizing allocation. In fact, the result in Caragiannis et al. 
[17] shows the existence of partial EFX allocations that achieve a 1/2 approximation of the Nash welfare. However, in poly
nomial time, one can only find a partial EFX allocation with a 1=2:88 approximation of the Nash welfare.

Let X be the partial EFX allocation that achieves a 2.88 approximation of the Nash welfare. We run our algorithm 
starting with X as the initial allocation. The final (1 � ε)-EFX allocation with sublinear many unallocated goods is 
also a 2.88 approximation of the Nash welfare as the valuations of the agents in the final allocation are at least their 
valuations in X. Therefore, we have the following theorem.

Theorem 8. In polynomial time, we can determine a (1 � ε)-EFX allocation X with O((n=ε)4=5
) goods unallocated such 

that NW(X) ≥ 1=(2:88) · NW(X∗), where X∗ is the Nash welfare-maximizing allocation. Furthermore, using the existence of 
partial EFX allocations with 1/2 approximation to Nash welfare (Caragiannis et al. [17]), there exists a (1 � ε)-EFX alloca
tion X with O((n=ε)4=5

) goods unallocated such that NW(X) ≥ 1=2 · NW(X∗).

Acknowledgments
The authors thank the anonymous reviewers for their detailed reading and great suggestions, which improved the state
ments, the exposition, and the presentation of the main results presented in this paper. In fact, Masoud Seddighin (one of 
the reviewers) observed that the upper bound on R(d) can be improved to O(d3) through a subtle modification to our 
existing algorithm: In particular, the algorithm needs to construct the “bypass parts” (Bi, j’s) between the parts (Vi, Vi+1)

instead of all (Vi, Vj) with (i, j) ∈ [d] × [d] as the final path uses parts only from Bi, i+1, except when q � j, where one can 
use the intermediate part (i.e., part Vℓ̃ ). We do not discuss this improvement in detail in our paper, as there are results 
by Akrami et al. [1] and Berendsohn et al. [12] that improve the bound in our paper using this observation and addi
tional clever techniques.

Appendix. Limitations of the Approach in Chaudhury et al. [19]
In Chaudhury et al. [19], an algorithmic proof to the existence of an EFX allocation is shown for three agents with additive valua
tions. We briefly sketch the proof technique in Chaudhury et al. [19] and then, highlight why it does not work for determining 
(1 � ε)-EFX allocations with just four agents for arbitrarily small ε. It would be interesting to investigate whether we can rule out 
proving existence of (1 � ε)-EFX for larger values of ε (e.g., ε � 1=3) using the technique in Chaudhury et al. [19].

Let the three agents be a, b, and c, and for any allocation X, let φ(X) be the vector 〈va(Xa), vb(Xb), vc(Xc)〉. The algorithm starts 
with an empty allocation, which is trivially EFX, and as long as there is an unallocated good, the algorithm determines another 
EFX allocation X′ such that φ(X′) is lexicographically larger than φ(X) (i.e., either va(X′

a) > va(Xa) or va(X′
a) � va(Xa) and vb(X′

b) >

vb(Xb) or va(X′
a) � va(Xa), vb(X′

b) � vb(Xb), and vc(X′
c) > vc(Xc)). In this paper, we show that such a technique cannot be used to 

show the existence of (1 � ε)-EFX allocations for four agents.
We remark that our instance builds on the instance in Chaudhury et al. [19] that is used to show the existence of a partial EFX 

allocation, which is not Pareto dominated by any complete EFX allocation. We now construct an instance I with four agents, say 
{a, b, c, d} with additive valuations and nine goods {gi | i ∈ [9]}. Let φ(X) � 〈va(Xa), vb(Xb), vc(Xc), vd(Xd)〉. We show a (1 � ε)-EFX 
allocation X of eight goods among four agents. Then, we show in any complete (1 � ε)-EFX allocation, that the valuation of agent 
a will be strictly less than (almost half of) her valuation in X. This shows that for any complete (1 � ε)-EFX allocation Y, we have 
that φ(X) is lexicographically larger than φ(Y).

The full description of our instance is captured by Table A.1. We choose our ε≪ 1. The subinstance defined by the agents b, c, 
and d and the goods ∪i∈[6]gi ∪ g9 is the instance in Chaudhury et al. [19] used to show the existence of a partial EFX allocation, 

Table A.1. An instance where showing that the technique in Chaudhury et al. [19] cannot be 
used to determine (1 � ε)-EFX allocations with four agents.

g1 g2 g3 g4 g5 g6 g7 g8 g9

a 0 0 0 0 0 0 6 4 0
b 16 4 24 4 0 34 31 0 2
c 10 0 18 8 20 0 29 0 6
d 0 0 0 0 18 20 19 0 4

Notes. In particular, given a (1 � ε)-EFX allocation X and the unallocated good g9, there is no complete 
(1 � ε)-EFX allocation where the valuation of agent a does not strictly decrease (i.e., in any complete (1 � ε)-EFX 
allocations Y, we have va(Ya) < va(Xa)).

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number 
2338 Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2323–2340, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

62
0:

0:
e0

0:
40

37
::1

2f
] o

n 
18

 F
eb

ru
ar

y 
20

25
, a

t 2
0:

18
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



which is not Pareto dominated by any complete EFX allocation. We now specify the allocation X:

Xa � {g7, g8} Xb � {g2, g3, g4}

Xc � {g1, g5} Xd � {g6}:

The good g9 is unallocated. We will show that in any complete (1 � ε)-EFX allocation, agent a cannot have both g7 and g8. This 
would imply that agent a’s valuation in any final (1 � ε)-EFX allocation is strictly less than her valuation in X (as agent a’s valua
tion for all goods other than g7 and g8 is zero). We prove this claim by contradiction. So, assume that Y is a complete (1 � ε)-EFX 
allocation and {g7, g8} ⊆ Ya. Note that vb(g7) � 31, vc(g7) � 29, and vd(g7) � 19. Because Ya contains at least one other good 
(namely, g8), each of the agents b, c, and d needs to be allocated bundles that they value at least 31, 29, and 19, respectively.

First, consider the case that g6 ∈ Yb. Then, we have vb(Yb) ≥ 34. Now, to ensure vd(Yd) ≥ 19, we need to allocate g5 and g9 to d, 
as d values all the other goods zero. We are left with goods g1, g2, g3, and g4. In order to ensure vc(Yc) ≥ 29, we definitely need to 
allocate g1, g3, and g4 to c. Now, even if we allocate the remaining good g2 to b, we have vb(Yb) � vb({g2, g6}) � 38 < (1 � ε) · 40 �

(1 � ε) · vb({g1, g3}) ≤ (1 � ε) · vb(Yc \ g4). Therefore, b will strongly envy c. Thus, g6 ∉ Yb.
If g6 ∉ Yb and vb(Yb) ≥ 31, Yb must contain g3 (the total valuation for b of all the goods other than g3, g6, g7, and g8 is less than 

31). Now, we consider some more subcases.
Let us first assume that g1 ∈ Yb. Because Yb already contains g1 and g3, the goods that can be allocated to c and d are g2, g4, 

g5, g6, and g9. In order to ensure vc(Yc) ≥ 29, we need to allocate g4, g5, and g9 to c. Now, even if we allocate all the remaining 
goods (g2 and g6) to d, we have vd(Yd) � vd({g3, g6}) � 20 < (1 � ε) · 22 � (1 � ε) · vd({g5, g7}) ≤ (1 � ε) · vd(Yc \ g4). Therefore, d will 
strongly envy c.

Thus, g1 ∉ Yb. Because neither g1 nor g6 belong to Yb, the only way to ensure that vb(Yb) ≥ 31 is to at least allocate g2, g3, and g4 
to b (we can allocate more). Similarly, given that the goods not allocated yet are g1, g5, g6, and g9, the only way to ensure that 
vc(Yc) ≥ 29 is to allocate at least g1 and g5 to c. Similarly, the only way to ensure vd(Yd) ≥ 19 now is to allocate at least g6 to d. 
Now, we only have to allocate g9. We show that adding g9 to any one of the existing bundles will cause a violation of the 
(1 � ε)-EFX property. 

• Adding g9 to Ya. b, c, and d strongly envy a as vb(Yb) � 32 < (1 � ε) · 33 � (1 � ε) · vb({g7, g9}) ≤ (1 � ε) · vb(Ya \ g8). Similarly, 
we have vc(Yc) � 30 < (1 � ε) · 35 � (1 � ε) · vc({g7, g9}) ≤ (1 � ε) · vc(Ya \ g8) and vd(Yd) � 20 < (1 � ε) · 23 � (1 � ε) · vd({g7, g9}) ≤

(1 � ε) · vd(Ya \ g8).
• Adding g9 to Yb. c strongly envies b as vc(Yc) � 30 < (1 � ε) · 32 � (1 � ε) · vc({g3, g4, g7}) � (1 � ε) · vc(Yb \ g2).
• Adding g9 to Yc. d strongly envies c as vd(Yd) � 20 < (1 � ε) · 22 � (1 � ε) · vd({g5, g9}) � (1 � ε) · vd(Yc \ g1).
• Adding g9 to Yd. b strongly envies d as vb(Ya) � 32 < (1 � ε) · 34 � (1 � ε) · vb(g6) � (1 � ε) · vb(Yd \ g9).
This shows that {g7, g8} ⊈ Ya for any complete (1 � ε)-EFX allocation Y. This implies that agent a’s valuation in Y is strictly less 

than her valuation in X, implying that φ(X) is lexicographically larger than φ(Y). This shows that the approach from Chaudhury 
et al. [19] cannot be generalized to guarantee (1 � ε)-EFX allocation when there are four or more agents.

Endnotes
1 It implies other notions of efficiency, like Pareto optimality. An allocation X � 〈X1, : : : , Xn〉 is Pareto optimal if there is no allocation 
Y � 〈Y1, : : : , Yn〉, where vi(Yi) ≥ vi(Xi) for all i ∈ [n] and vj(Yj) > vj(Xj) for some j.
2 See (1 � ε)-EFX allocation in Chaudhury et al. [19] and Chaudhury et al. [20] and 1/2-EFX allocation in Plaut and Roughgarden [39].
3 They are called the “most envious agents” in Chaudhury et al. [20].
4 Because we are dealing with (1 � ε)-EFX allocations and not EFX allocations, we have changed the definition of champions and champion 
graphs appropriately. Chaudhury et al. [19] and Chaudhury et al. [20]) also use this definition in their algorithms as the polynomial-time 
algorithms also deal with (1 � ε)-EFX allocations. Furthermore, for notational convenience, we will use a slightly different definition of cham
pions in the future sections (mentioned in Section 3).
5 Let C be an envy cycle. For each edge (i, j) of the cycle, one assigns in X′ the bundle Xj to i. One continues in this way as long as there is a 
cycle in the envy graph.
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