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procedure. In this paper, we study the general case and achieve sublinear numbers of unallo-
cated goods. Through a new approach, we show that for every ¢ € (0,1/2], there always
exists a (1 — €)-EFX allocation with sublinear number of unallocated goods and high Nash
welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory.
We define the notion of rainbow cycle number R(-) in directed graphs. For alld € N, R(d) is
the largest k such that there exists a k-partite graph G = (U V;, E), in which each part
has at most d vertices (i.e., |V;| < d for all i € [k]); for any two parts V;and V}, each vertex
in V; has an incoming edge from some vertex in V; and vice versa; and there exists no
cycle in G that contains at most one vertex from each part. We show that any upper
bound on R(d) directly translates to a sublinear bound on the number of unallocated
goods. We establish a polynomial upper bound on R(d), yielding our main result. Fur-
thermore, our approach is constructive, which also gives a polynomial-time algorithm
for finding such an allocation.
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1. Introduction

Fair division of resources is a fundamental problem in many disciplines, including computer science, econom-
ics, and social choice theory. The objective is to distribute resources among agents in a fair (no agent is signifi-
cantly unhappy with her allocation) and efficient (there is no other fair allocation that can achieve better total
welfare) manner. Mentions of such problems date back to the Bible and ancient Greek mythology. Today, the
issue of fair division arises in division of labor, inheritance, computing resources, divorce settlements, partner-
ship dissolutions, splitting rent among tenants, splitting taxi fare among passengers, dividing household tasks,
air traffic management, frequency allocation, and so on. In the internet age, the existence of several centralized
platforms and more computational power has triggered substantial interest from the economics and computer
science community to find computationally tractable protocols to allocate resources fairly; see Spliddit (www.
spliddit.org) and Fair Outcomes (www.fairoutcomes.com) for more details on fair division protocols used in
real-life scenarios.
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1.1. Discrete Fair Division

In this paper, we focus on one of the most important open problems in discrete fair division. To this end, we first
describe a typical setup of a problem instance. Given a set N of n agents and a set M of m indivisible goods, the goal
is to determine a partition X = (X3, Xy, ..., X,) of the good set M such that agent i € N receives the bundle X; and
the allocation is fair.

1.2. Envy Freeness up to Any Good Allocations

A quintessential notion of fairness is that of envy freeness; an allocation X is said to be envy free if and only if for
every pair of agents i and j, we have v;(X;) > v;(X;) (i.e., each agent i values her own bundle at least as much as she
values the bundles of other agents). However, such allocations may not always exist; consider a simple example
with two agents having a positive valuation toward a single good. The agent who gets this good is envied by the
one who does not. Therefore, several relaxations of envy freeness have been proposed and studied over the last
15years (Budish [16], Caragiannis et al. [18], Lipton et al. [34]). The most compelling relaxation is envy freeness up to
any good (EFX) proposed by Caragiannis et al. [18], where no agent envies the other agent following the removal of
any single good from the other’s bundle; that is, an allocation X is said to be EFX if and only if for every pair of
agents i and j, we have v;(X;) > vi(X; \ {g}) for all g € X;. It is also regarded as the best analogue of envy freeness in
discrete fair division. Caragiannis et al. [17, p. 528] remarked that “Arguably, EFX is the best fairness analog of
envy-freeness for indivisible items.”

Unfortunately, it is not known whether EFX allocations always exist, even when there are only four agents with
additive valuations despite significant efforts (e.g., see Caragiannis et al. [18], Moulin [37]). Indeed, only recently
was this question resolved affirmatively for three agents with additive valuations by Chaudhury et al. [19]. In fact,
Procaccia [40, p. 118] remarked: “This fundamental and deceptively accessible question is open. In my view, it is
the successor of envy-free cake cutting as fair division’s biggest problem.”

There has been a substantial study on the existence of an EFX allocation in special cases and its relaxations. For
instance, EFX allocations exist when agents’ valuations are identical (Plaut and Roughgarden [39]), binary (Bar-
man et al. [11], Darmann and Schauer [25]), and bivalued (Amanatidis et al. [5], Garg and Murhekar [28]). The two
primary relaxations of EFX are approximate EFX allocations and partial EFX allocations.

e Approximate EFX allocation. An allocation X = (X3, X», ..., X,,) is an a-EFX allocation for some scalar « € (0,1]
if for every pair of agents i and j, we have v;(X;) > a - v;(X; \ {g}) for all ¢ € X;. Plaut and Roughgarden [39] showed
the existence of 0.5-EFX allocations. Amanatadis et al. [3] show that a clever modification of the same approach
leads to a 0.618-EFX allocation.

e Partial EFX allocation. An allocation X = (X;,X5,...,X,) is called a partial EFX allocation if X is EFX and
not all goods are necessarily allocated (i.e., U,/ X; € M). There is always a trivial partial-EFX allocation where
each X; is empty. Therefore, a good partial EFX allocation is the one that has good qualitative and quantitative
guarantees on the unallocated goods. Caragiannis et al. [17] showed that there exists a partial EFX allocation
where every agent gets a bundle that she values at least as much as half of her value for the bundle she receives
in a Nash welfare-maximizing allocation. Here, the Nash welfare of an allocation NW(X) = (Hie[n]vi(Xi))l/ "is
another popular measure of fairness and economic efficiency. Following the same line of work, Chaudhury et al.
[20] showed that there always exists a partial EFX allocation X and a set of unallocated goods P such that

e nobody envies the set of unallocated items: v;(X;) > v;(P) for all i € N; and

e at most n — 1 goods are unallocated: |P| <n —1.

There have been recent interesting studies on the relaxations of EFX allocations. Berger et al. [13] improved the
number of unallocated goods to (1 — 2) when there are 1 agents with additive valuations and to one in case of four
agents. Very recently, Mahara [35] showed how to reduce the number of unallocated goods to (1 — 2) even when
agents have general monotone valuations. We remark that studying relaxations (of EFX allocations) is a systematic
and promising direction to investigate the existence of an EFX allocation. It has been suspected in Plaut and
Roughgarden [39, p. 1062] that EFX allocations may not exist in the general setting: “We suspect that at least for
general valuations, there exist instances where no EFX allocation exists, and it may be easier to find a counterexam-
ple in that setting.”

However, finding counterexamples, at least in the additive setting, seems to be a very challenging task; quite
recently, Manurangsi and Suksompong [36] showed that when agents’ valuations for individual items are drawn
at random from a probability distribution, then EFX allocations exist with high probability. This demands a
nonbrute-force approach to find counterexamples, if any. Thus, finding better relaxations (improving the approxi-
mation factor or reducing the number of unallocated goods in a partial EFX allocation) is a crucial step toward
finding the right answer to this big open question. We achieve exactly this by our first main result.
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Theorem 1. For all ¢ € (0,1/2], we can determine a partial allocation X and a set of unallocated goods P in polynomial
time such that

e Xis(l—¢)-EFXand

o [Pl €O((n/e)"").

We remark that reducing the number of unallocated goods could be quite challenging. Indeed, a corollary on
the bounded-charity result in Chaudhury et al. [20] already establishes that there exists a partial EFX allocation
with at most two goods unallocated when there are three agents. However, removing the last two goods to obtain
an EFX allocation for three agents turns out to be a highly nontrivial task, and the proof by Chaudhury et al. [19]
requires careful and cumbersome case analysis. Furthermore, in the appendix, we show that the technique in
Chaudhury et al. [19] does not extend to four agents with additive valuations for finding a (1 — ¢)-EFX allocation.

In this paper, we develop a novel method that reduces the problem of determining good relaxations of EFX allo-
cations to a combinatorial problem in graph theory. We call it the rainbow cycle number of an integer, defined as
follows.

Definition 1. For any positive integer d, the rainbow cycle number or R(d) is the largest k such that there exists a
directed k-partite graph G = (U Vi, E) such that

1. |Vl <dforallie[k];

2. for any two distinct parts V; and V; in G, every vertex in V; has an incoming edge from a vertex in V;; and

3. there exists no cycle in G that intersects each part at most once.

Let us deduce that R(1) = 1. It is clear that G can be a single vertex and satisfy all the conditions in Definition 1;
thus, R(1) > 1. However, R(1) cannot be larger than one as otherwise, we have two parts V; and V in a graph G,
where there is exactly one vertex each in V; and V. So, let V1 = {a1} and V, = {a,}. By condition (2) in Definition 1,
we must have an edge from 4, to 4, and an edge from a4, to ;. This gives a two-cycle a; — 2, — a;. However, this
cycle contains exactly one vertex from each V; and V5, which contradicts condition (3) in Definition 1.

Similarly, using a more involved argument, we can also determine that R(2) = 2. However, it is not at all clear
what values R(d) takes or if it is finite for all integers d. A key technical result of this paper is a polynomial (in d)
upper bound on R(d).

Theorem 2. For all d > 1, we have R(d) < d* + d. Furthermore, let G be a k-partite digraph with k > d* + d parts of cardi-
nality at most d each such that for every vertex v and any part W not containing v, there is an edge from W to v. Then, there
exists a cycle in G visiting each part at most once, and it can be found in time polynomial in k.

Observe that the definition of the rainbow cycle number (R(-)) is independent of the agents, goods, and valua-
tion functions. In the second key result of this paper, we establish a direct relation between the rainbow cycle num-
ber and the existence of better EFX relaxations. Finding a good upper bound on the rainbow cycle number can get
us weaker relaxations of EFX allocations (we can asymptotically improve the number of unallocated goods). For-
mally, we have Theorem 3.

Theorem 3. Let C(n/¢) be the largest integer d such that d - R(d) < n/e for € € (0,1/2]. Then, there is a (1 — €)-EFX alloca-
tion X and a set of unallocated goods P such that |P| < 4n/(e-C(2n/¢)).

Theorems 2 and 3 imply Theorem 1. We remark that, although we give a polynomial upper bound on R(d), we
believe that there is further room for improvement. As an illustration, we briefly show that R(2) < 2, which is signifi-
cantly better than our upper bound for d=2 obtained from Theorem 2. We prove this by contradiction. Let us
assume otherwise, and let V4, V5, and V3 be any three parts of G. We first look into the edges of the induced bipartite
graph G[V7 U V,]. Without loss of generality, let us assume that vertex b; in V5 has an incoming edge from vertex a;
in V3. By condition (2) in Definition 1, a; has an incoming edge from some vertex in V,. However, this vertex cannot
be b, as this will violate condition (3) in Definition 1. This implies that there must be another vertex in V5, say b, that
has an edge to a;. Again, by a similar argument, b, cannot have an incoming edge from a; and therefore, has an
incoming edge from another vertex in V3, say that a, and a, have the incoming edge from b; and not b, (because there
can be no other vertices in V). Thus, the induced bipartite graph G[V1 U V5] is a four cycle as shown in Figure 1.

Note that the induced bipartite graph G[V, U V3] will be isomorphic to G[V; U V]. Thus, so far we have the fol-
lowing edges in G[ V1 U V, U V3] (Figure 2).

We now look at the edges between the parts V; and V3. Because G[V; U V3] is isomorphic to G[V7 U V5], it must
also be a four cycle, and hence, in G[V; U V3], there is an edge either from 4, to ¢; or from c; to a,. If there is an edge
from a4 to c1, then we have a three-cycle a; — ¢; — b, — a1, which visits each part of G at most once, and thus, this
is a contradiction. Similarly, if there is an edge from c; to a4, then also we have a three-cycle iy — by — ¢; — a3,
which visits each part of G at most once, and thus, this is also a contradiction.
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Figure 1. (Color online) Induced bipartite graph G[V; U V] when showing R(2) <2.
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We suspect that R(d) € O(d). We believe that finding better upper bounds on R(d) is a natural combinatorial
question, and better upper bounds to R(d) imply the existence of better relaxations of EFX allocations. Therefore,
investigating better upper bounds on the rainbow cycle number is of interest in its own right, and we leave this as
an interesting open problem.

1.3. Finding (1—¢)-EFX Allocations with High Nash Welfare

Let us recall that efficiency is also an important and desirable property of the allocations in fair division. The effi-
ciency of an allocation is a measure of the overall welfare the allocation achieves. This is important as an envy-free
allocation could be otherwise unsatisfactory; consider a simple instance with two agents 1 and 2 and two goods g;
and g». Let v1(g1) = v2(g2) =1 and v1(g2) = v2(g1) = 0. Note that X; « {g»} and X, < {g1} are an EFX allocation as
each bundle is a singleton, and following the removal of a single good results in an empty bundle, which is unen-
vied. However, there is clearly a better EFX allocation, where the individual and the total welfare are better,
namely X; « {g1} and Xp < {g>}.

Nash welfare of an allocation X defined as the geometric mean of the valuations of the agents, ([ [, vi(X; )"

a popular measure of economic efficiency.' In fact, when agents have additive valuations, then the allocation w1th
the highest Nash welfare is also EF1 (another popular fairness notion weaker than EFX). Unfortunately, maximiz-
ing Nash welfare is Approximable hard. However, there have been several approximation algorithms (Anari et al.
[7], Barman et al. [10], Cole and Gkatzelis [22]) that give a constant factor approximation. The best approximation
ratio is e!/¢ ~ 1.445, given by Barman et al. [10].

Similar to the algorithm in Chaudhury et al. [20], we show that with minor modifications to our main algorithm,
we can determine an allocation that satisfies the conditions in Theorem 1 and simultaneously achieves a 2¢'/¢ ~
2.88 approximation of the Nash welfare (i.e., in polynomial time, we can find efficient (1 — ¢)-EFX allocation with a
sublinear number of unallocated goods).

Theorem 4. For all € € (0,1/2], we can determine a partial (1 — €)-EFX allocation X and a set of unallocated goods P in
polynomial time such that |P| € (9((;/1/5—:)4 %) and NW(X) > (1/2.88) - NW(X*), where X* is the allocation with the highest
Nash welfare.

1.4. Further Related Work
Because the fair division literature is too vast, we restrict here to previous work that appears most relevant and
refer the reader to recent surveys (Amanatidis et al. [6], Walsh [42]).

Fair division has received significant attention since the seminal work of Steinhaus [41] in the 1940s. Other than
envy freeness, another fundamental fairness notion is that of proportionality. Recall that, in an envy-free allocation,

Figure 2. (Color online) Bipartite graph G[V; U V, U V3] when showing R(2) <2.
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every agent values her own bundle at least as much as she values the bundle of any other agent. However, in a pro-
portional allocation, each agent gets a bundle that is worth 1/n times her valuation on the entire set of goods.
Because envy freeness and proportionality cannot always be guaranteed while dividing indivisible goods, various
relaxations of the same have been studied. Alongside EFX, another popular relaxation of envy freeness is envy free-
ness up to one good (EF1), where no agent envies another agent following the removal of some good from the other
agent’s bundle. Although the existence of an EFX allocation is open, EF1 allocations are known to exist for any
number of agents, even when agents have weakly monotone valuation functions (Lipton et al. [34]). Although EF1
and EFX are fairness notions that relax envy freeness, the most popular notion of fairness that relaxes proportion-
ality for indivisible items is maximin share (MMS), which was introduced by Budish [16]. Although MMS alloca-
tions do not always exist (Kurokawa et al. [32]), there has been extensive work to come up with approximate MMS
allocations (Amanatidis et al. [4], Barman and Krishnamurthy [9], Bouveret and Lemaitre [14], Budish [16], Garg
and Taki [29], Garg et al. [30], Ghodsi et al. [31], Kurokawa et al. [32]). Some works assume ordinal ranking over
the goods as opposed to cardinal values (e.g., Aziz et al. [8], Brams et al. [15]).

Alongside fairness, the efficiency of an allocation is also a desirable property. Two common measures of effi-
ciency are that of Pareto optimality and Nash welfare. Caragiannis et al. [18] showed that any allocation that has
the maximum Nash welfare is guaranteed to be Pareto optimal (efficient) and EF1 (fair). Barman et al. [10] give a
pseudopolynomial algorithm to find an allocation that is both EF1 and Pareto optimal. Other works explore
relaxations of EFX with high Nash welfare (Caragiannis et al. [17], Chaudhury et al. [20]).

A one-page abstract of our work appeared in Chaudhury et al. [21].

The rest of the paper is organized as follows. In Section 2, we briefly highlight our main techniques used to
prove our main results (Theorems 1-3). Then, in Section 3, we outline the basic concepts, notations, and techniques
from existing literature on EFX allocations that will be useful to prove our main results. In Sections 4 and 5, we
give the proofs of Theorem 3 and Theorem 2, respectively. In Section 6, we show how a minor modification of our
main algorithm helps us achieve our main result (Theorem 1) with high Nash welfare (efficiency guarantees).
Finally, in the appendix, we show why the technique from Chaudhury et al. [19] does not extend to a setting with
four agents with additive valuations.

2. Our Techniques

In this section, we give a brief overview of our key ideas and techniques. We first sketch the key idea that
relates the number of unallocated goods to the function R(d) (Theorem 3), and then, we briefly show that R(d) is
finite.

2.1. Relation Between the Number of Unallocated Goods and the Rainbow Cycle Number

A very crucial concept that is often used while studying relaxations of envy freeness in discrete fair division is the
envy graph of an allocation. Given an allocation X = (X3, Xy, ..., X;;), the envy graph Ex has vertices corresponding to
the agents, and there is an edge from agent i to agent j in Ex if agent i envies agent j (vi(X;) < vi(X;)). Without loss of
generality, one assumes that the envy graph of an allocation is acyclic. If there is a cycle, then one can shift the bun-
dles along the cycle, thereby giving every agent in the cycle a strictly better bundle, and the other agents retain
their previous bundle. Such a procedure reduces the number of edges in the envy graph, and one can continue this
until Ex is cycle free.

Most of the algorithms that have been used to prove the existence of relaxations of EFX allocations (Chaudhury
etal. [19], Chaudhury et al. [20], Plaut and Roughgarden [39]) maintain a relaxed EFX allocation® X on the set of allo-
cated goods, and as long as the envy graph Ex and the set of unallocated goods satisfy some “properties,” they
determine another relaxed EFX allocation X’, in which ¢(X’) > ¢(X) + 6 for some 6 > 1, where ¢ is an integral
upper-bounded function. In that case, we say that the relaxed EFX allocation X’ dominates the relaxed EFX alloca-
tion X. Because ¢ is integral and upper bounded, such a procedure will finally converge to a relaxed EFX allocation
where the envy graph Ex and the unallocated goods will not satisfy the said properties, and this will be the final
allocation of the algorithms.

We now highlight another crucial concept used in these algorithms. The envy graph Ex does not provide any
information on an agent’s valuations of the bundles formed by adding unallocated goods to the current bundles
of the allocation. This information is crucial when we want to create another dominating relaxed EFX allocation
by allocating some of the unallocated goods and unallocating some of the already allocated goods. The algorithms
in Chaudhury et al. [19] and Chaudhury et al. [20] make use of this information through other concepts. For in-
stance, Chaudhury et al. [19] and Chaudhury et al. [20] define champions® and champion graphs. Given an allocation
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Figure 3. (Color online) Illustration of a group champion graph.
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as champions all agents w.r.t g,.
by champions all agents w.r.t g.

Notes. We have an instance with six agents Ujc[4)a; and Uje[»;b; and two unallocated goods, namely g, and g;. The agents Uje(4)a; find g, valuable,
and the agents Uje[y)b; find g, valuable. The envy graph Ex of the instance is shown in the left panel. Ex shows that s(a2) = a1, s(a4) = a3, and
s(by) = b1. Also, we have that agent a, champions all the agents with respect to (w.r.t.) g, and that b, champions all the agents w.r.t. g;. The group
champion graph (right panel) has two parts: V,, corresponding to g, and V,, corresponding to ;. V, contains the sources of all the agents who
find g, valuable, namely a; and a3. Similarly, V, contains b;. There is an edge from a; to b; as a, (which is reachable from a; in Ex) champions b,
w.r.t. g,. Similarly, there is an edge from b, to a4, and a3 as b, (which is reachable from b, in Ex) champions a3 w.r.t. g.

X and an unallocated good g, we say that an agent i is a champion for agent j w.r.t. g if there is a set S C X; U {g}
such that v,(X;) < (1 —¢)-v;(S) and no agent (including i and j) envies S up to a factor of (1 — ¢), following the
removal of a single good (i.e., for all £ € [1], we have (1 — &) - v,(S \ {h}) < v/(X,) for all h € S).* A champion graph
w.r.t. an unallocated good g has vertices corresponding to the agents (similar to the envy graph), and there is an
edge from agent i to agent j if agent i champions agent j w.r.t. . Depending on the configuration of the envy graph
and the champion graphs (one for each unallocated good), the current (1 — ¢)-EFX allocation X is transformed into
another (1 — ¢)-EFX allocation X’ such that X’ dominates X. However, when the number of agents is large, there
are several different possible configurations of the champion graphs and the envy graph, and it is very hard and
tedious to come up with better update rules. In this paper, we introduce the notion of a group champion graph,
which is significantly more insightful and well structured than the champion graphs.

Given a (1 — ¢)-EFX allocation X and a set of unallocated goods M’, we define the group champion graph. To
this end, for each agent a € [n], we assign a unique source s(a) in Ex such that a is reachable from s(a) in Ex (if there
are multiple sources from which a is reachable in Ex, then pick one source arbitrarily). The group champion graph
of M’ is a |M’|-partite graph G = (Ugem V, E), in which each part V, contains a copy of the assigned sources of all
the agents who find ¢ “valuable.” An agent a finds g valuable if v,({g}) > ¢ - v,(X;). There is an edge from vertex
s(a) in V, to s(a’) in V}, if and only if 2 champions s(a’) w.r.t. g (see Figure 3 for an illustration). At a high level, the
group champion graph encodes the most relevant information from all the champion graphs. We make this point
more explicit by briefly explaining how group champion graphs help us prove Theorem 3.

We first observe that if there is an unallocated good g and an agent i such that the other agents do not envy (X; U
{g})\ &’ up to a factor of (1 — ¢) for all ¢’ € X; U {g}, then we allocate g to i. Thus, we assume that for each unallo-
cated good g and each agent i, there is an agent j that envies (X; U {g¢}) \ ¢’ up to a factor of (1 — ¢) for some
g’ € X; U {g}. In particular, this implies that every unallocated good is valuable to some agent because if there is a
good g that is not valuable to any agent (i.e., v;,({g}) < € - vi(X;) for all i € [1]), then we can simply allocate g to a
source s in Ex as no agent will envy the bundle X, U {g} up to a factor of (1 — ¢); for all i € [n], we have that v;(X;) >
vi(X;) (as s is unenvied) and ¢ - v;(X;) > v;({g}), implying that (1 + €)v;(X;) > v;(X; U {g}) and further implying that
vi(Xi) > (1 —¢)-v(X;s U {g}). Now, we classify the set of unallocated goods into two categories depending on how
many agents find them valuable. We fix an integer d <n and define “high-demand goods” and “low-demand
goods.” A high-demand good is valuable to more than d agents, and a low-demand good is valuable to at most 4
agents. We show in Section 4 that if the number of high-demand goods is more than 211/(¢ - d), then we can deter-
mine a dominating (1 — ¢)-EFX allocation from the existing (1 — ¢)-EFX allocation. Thus, we may assume that the
number of high-demand goods is at most 211/(ed). We now bound the number of low-demand goods. Let M" be
the set of low-demand goods. We construct the group champion graph G = (Ugem~ Vg, E) of M”, in which part V,,
contains the assigned sources of the agents who find g valuable. Note that for all g € M”, g is not valuable to more
than d agents. Thus, |V, | <d for all g € M”. Now, consider any two parts V, and V}, in G. By our assumption, for
all a € V), there is an agent who envies (X, U {g}) \ ¢’ up to a factor of (1 — ¢) for some good g’ € X, U {g}, implying
that for each a in V), there are agents who champion a w.r.t. g. We prove in Section 4 that because a is a source in
Ex, the agents who champion a w.r.t. ¢ must find ¢ valuable. Therefore, for all a € V}, there is a source s(a’) € Vg,
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where a’ champions a w.r.t. g. Thus, every vertex in V}, has an incoming edge from a vertex in V. In Section 4, we fur-
ther show that whenever G has a cycle that visits each part at most once, then we can determine a (1 — ¢)-EFX alloca-
tion that dominates X. Therefore, we can assume that G has no cycle that visits each part at most once. Because G is an
|M" |-partite graph that satisfies the conditions in Definition 1, we have that the number of low-demand goods is
M| < R(d). Therefore, the total number of unallocated goods is 2n/(d¢) + R(d) € O(max(2n /(e - d),R(d))). By choos-
ing the appropriate value for d, we arrive at the statement of Theorem 3.

We now elaborate that R(d) is indeed upper bounded, which then establishes the existence of (1 — ¢)-EFX alloca-
tions with a sublinear number of unallocated goods.

2.2. Upper Bounds on the Rainbow Cycle Number

We briefly show that for any d € N, R(d) is finite. Consider a k-partite graph G = (Uje[x) Vi, E) in Definition 1. For all
ielk], let Vi={(i,1),(;2),...,(i, | Vi])}. For all i<j and i’ <j’, we say that the directed bipartite graphs G[V; U V]
and G[V; U V; ] have the same configuration if and only if for each directed edge from vertex (i, a) to (j, b) (and
equivalently, from (j,b’) to (i,a’)) in G[V; U V], there is an edge from (i’,a) to (j", b) (and equivalently, from (j’,b’) to
(,a’)) in G[Vy U V] and vice versa. We first show that if there are 44 parts in G, say without loss of generality
(w.lo.g.) V1, Vy,...,Vy, such that the induced directed bipartite graph G[V; U V;] has the same configuration for
all 1 <i<j <4d, then there exists a cycle in G that visits each part at most once.

Consider the parts V; and V; and the induced directed bipartite graph G[V; U V;]. Because every vertex in one
part has an incoming edge from a vertex in the other part, G[V; U V;] is cyclic. Let the simple cycle be C = (1,i1) —
(2,i2) = (1,i3) — - — (2,i3) — (1,i1) for some f < d. Because all the induced bipartite graphs G[V; U V;] have the
same configuration for all 1 <i < j < 4d, we can claim that for all £ € [], for each edge (1,iz¢—1) = (2,i2¢) in C, there
is an edge from (2€ —1,iy,_1) to (4d — £, iz) in G[ V1, Vag_,] (note that 26 — 1 <4d — € as £ < < d). Similarly for
all ¢ € [B], for each edge (2,iz¢) — (1,i2¢+1) in C (28 + 1 is to be interpreted as one), there is an edge from (4d — ¢, i)
to (20 + 1, in41) in G[ Vi1, Vag—¢] (again, note that 2 + 1 < 4d — € as € < f < d). This implies that there is a cycle C’' =
(1,i1) = (4d — 1,i2) — (3,i3) — (4d — 2,iy) — - — (4d — B,izp) — (1,71) in G. Clearly, C visits each part of G at most
once. Therefore, there cannot be 4d parts in G such that the induced directed bipartite graph G[V; U V] has the
same configuration forall 1 <i <j <4d.

We now rephrase the question about an upper bound on R(d). Let D be the set of all configurations of a directed
bipartite graph, where the number of vertices in each part is at most d and every vertex has an incoming edge. We
treat D as a set of colors and note that |D| € 29@) Now, consider a complete graph K, with vertex set [11], where
the vertex £ € [n] corresponds to part V,, in G. For all 1 <i <j<n, we color/label the edge (i, j) in K,, with a color
from D. The color on the edge (i, j) corresponds to the configuration of the directed bipartite graph G[V; U V;].
Clearly, R(d) must be strictly smaller than the largest n such that every coloring of the edges of K, with colors from
D contains a monochromatic clique of size 4d. This value of n corresponds to the (multicolor) Ramsey number (Dies-
tel [26]) R(n1,n2,...1np|), in which n; = 4d for all i € [|D]]. This number is finite, and the current best-known upper
bounds on it are exponential in |D| and d (Conlon and Ferber [23], Diestel [26], Erdds and Szekeres [27], Lefmann
[33]). Therefore, R(d) is also bounded. However, this upper bound is very large and only provides a weak version
of Theorem 1. This necessitates the study of finding “good” upper bounds on R(d): in particular, upper bounds
that are polynomial in d. We address this in Section 5 by showing that R(d) € O(d*).

3. Preliminaries and Tools

A fair division instance is given by the three tuple ([11], M, V), where [n] is the set of agents, M is the set of indivisi-
ble goods, and V = {v1(),v2(), . ..,v,4()}, where each v; : 2M 5 R denotes the valuation function of agent i. We
assume that agents have additive valuations (i.e., for all i € [n], we have v;(S) = desvi({g}) for all S € M). For the

ease of notation, we write v;(g) instead of v;({g}) and similarly, v;(S U g) for v;(S U {g}). We assume that v;(g) can be
accessed in constant time for any 7 and g. For a fixed 0 <€ <1 and an allocation X = (X3, ..., X,), we say that an
agent i

e envies a set S of goods if v;(X;) < v;(S);

e heavily envies a set S of goods if v;(X;) < (1 — €)vi(S);

e strongly envies a set S of goods if it heavily envies a proper subset of S; and

e is a most envious agent for a set S of goods if there exists a subset Z C S such that i heavily envies Z and no agent
strongly envies Z. The pair (i, Z) is called a most-envious-agent-witness pair for S. We emphasize that the most envi-
ous agent of the set S is not necessarily the agent with the highest envy for S, but it is the agent who envies a subset
of S that no other agent strongly envies.
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An agent envies (heavily envies, strongly envies) an agent j if it has these feelings for the set X;. Clearly, strong
envy implies heavy envy implies envy. An allocation X" e-strongly Pareto dominates an allocation X or equivalently,
X" >ppy) X if and only if v;(X]) > v;(X;) for all i € [1] and for some agent j € [1], we have (1 — ¢) - v;(X}) > v;(X)).

At a high level, our algorithm is similar to previous algorithms used to prove the existence of relaxations of EFX
allocations (Chaudhury et al. [19], Chaudhury et al. [20], Plaut and Roughgarden [39]). Our algorithm always
maintains a (1 — ¢)-EFX allocation on the set of allocated goods, and as long as the current allocation and the set of
unallocated goods P satisfy “some properties,” it determines another (1 — ¢)-EFX allocation that e-strongly Pareto
dominates the previous (1 — ¢)-EFX allocation. Because the valuation of an agent for the entire good set is
bounded, this procedure will eventually converge to a (1 — ¢)-EFX allocation, where the current allocation and the
set of unallocated goods do not satisfy these properties. The bulk of the effort goes into determining the right prop-
erties under which one can come up with update rules that transform one (1 — ¢)-EFX allocation into a “better”
(1 — ¢)-EFX allocation. We briefly recollect the update rules used in Chaudhury et al. [20] and Lipton et al. [34].

3.1. Envy Cycle Elimination (Lipton et al. [34])

The envy graph Ex of a (1 — ¢)-EFX allocation X has the agents as its vertex set, and there is an edge from vertex i to
vertex j in Ex if agent i envies agent j (i.e., v;(X;) < v;(X;)). The paper by Lipton et al. [34] shows that whenever Ex
has a cycle, then one can determine another (1 — ¢)-EFX allocation X’ in which no agent has a worse bundle and
Ex is acyclic. Formally, we have Lemma 1.

Lemma 1 (Lipton et al. [34]). Consider a (1 — ¢)-EFX allocation X. If there is a cycle in Ex, then in polynomial time, we
can determine a (1 — €)-EFX allocation X' such that vi(X/) > vi(X;) for all i € [n], and Ex. is acyclic.”

3.2. Update Rules in Chaudhury et al. [20]
We modify the update rules in Chaudhury et al. [20] slightly, as we are dealing with (1 — ¢)-EFX allocations and
not EFX allocations. These rules are more involved and make essential use of the concept of a most envious agent.

Lemma 2. Consider an allocation X and a set S C M. If there is an agent who heavily envies the bundle S, then we can
determine a most-envious-agent-witness pair (t, Z) for S in O(n - |S|?) time. If there is an agent who strongly envies S, then
t strongly envies S.

Proof. Let i be an agent who heavily envies S. We construct a sequence (t¢,Z,) as follows; initially, we set #; to i
and Z; to S. Assume that (t;_1,Z¢_1) is defined. If no agent (including f,_1) strongly envies Z,_;, then we stop.
Otherwise, let i be an agent such that v;(Xy) < (1 —¢)-vy(Z,_1 \ {g}) for some g€ Z;_1. We set t, to i’ and Z, to
Ze-1\{g} and continue. We will eventually stop as with every next pair in the sequence, the size of the set Z,
decreases by one. Say we stop at ¢". Then, we have an agent ¢, that heavily envies the subset Z, of S. Moreover,
no agent strongly envies Z,. Thus, (t,Z,) is a most-envious-agent-witness pair.

If there is an agent who strongly envies S, then £ > 1, and hence, ¢ heavily envies a proper subset of S. Thus,
tp strongly envies S.

It is clear that we can determine the pair in O(n - |S|?) time; the maximum length of the sequence constructed
is |S| +1 as the size of the set Z; = |S| + 1 —£. We need time O(n|S|) to determine v;(S) for all i and can update
any such value in time O(1) after the removal of an element. For each value of ¢, it takes O(n- |Z;|) = O(n- |S|)
time to find (tz,1, Z¢41). Thus, the total time needed is O(n - |S|?). O

For an allocation X and a set S of goods that is heavily envied by some agent, let (¢, Z) be the pair returned by the
procedure in Lemma 2. Now, for notational convenience only, we introduce a slightly different definition of cham-
pions. We call t the champion of S and Z the corresponding witness. We now state the update rules.

3.3. Update Rule U; (Chaudhury et al. [20])

The first rule is the simplest. It is applicable whenever we can allocate an unallocated good to an unenvied agent (a source
in Ex) without creating any strong envy. In this case, we simply allocate this good to the corresponding source. This cre-
ates another (1 — ¢)-EFX allocation where no agent gets a worse bundle and the number of unallocated goods decreases.

Lemma 3 (U (Chaudhury et al. [20])). Consider a (1 — €)-EFX allocation X. If there is a source s in Ex and an unallocated
good g such that no agent strongly envies X; U g, then X' =(X1,Xy,...,X;Ug, ..., Xy) is a (1 — €)-EFX allocation and
vi(X]) > vi(X;) for all i € [n].

Note that there can be at most m consecutive applications of this rule as the number of unallocated goods decreases
by one every time we apply this update rule. The remaining rules are applicable whenever there are either “valuable”
goods unallocated or if “too many” goods are unallocated. We state the second update rule.
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3.4. Update Rule U, (Chaudhury et al. [20])

This update rule is applicable if there is an agent i € [1] who heavily envies the set of unallocated goods P. In this
case, let t be the champion of P and Z be the corresponding witness. In X’, one assigns Z to t and changes the pool
to X; U (P \ Z). The resulting allocation X’ is EFX and &-strongly Pareto dominates X.

Lemma 4. (U (Chaudhury et al. [20])). Consider a (1 — €)-EFX allocation X, and let P be the set of unallocated goods. If
there is an agent i€ [n] that heavily envies P, then in polynomial time, we can determine a (1 — ¢)-EFX allocation
X’ >PD(¢) X.

The third update rule is a refinement of envy-cycle elimination.

3.5. Update Rule U; (Chaudhury et al. [20])

This rule is applicable whenever the number of unallocated goods is at least the number of agents. Chaudhury
et al. [20]) shows that when the number of unallocated goods is larger than the number of agents and when rule U;
is no longer applicable, then in polynomial time, we can find a set of sources s1, sy, .. .,s¢ in Ex; a set of unallocated
goods g1,%2, . ..,8¢; and a set of agents ty, 15, ..., t; such that each t; is reachable from s; in Ex, the paths from s; to t;
for all i € [£] are disjoint, and f; is the champion of X;,,, U gi1 (indices are modulo ¢). Then, one essentially proceeds
as in cycle elimination. Let Z;;1 € X;,., U gi+1 be the witness corresponding to t;. For each I, one assigns Z;;1 to t;,
and to each agent on the path from s; to t; except for ¢;, one assigns the bundle owned by the successor on the path.
The resulting allocation X’ is EFX and e-strongly Pareto dominates X.

Lemma 5 (Us (Chaudhury et al. [20])). Consider a (1 — €)-EFX allocation X. If there exists a set of sources s1,5y, . ..S¢ in
Ex; a set of unallocated goods g1,>,...,8¢; and a set of agents ty,ta,...,t, such that each t; is reachable from s; in Ex, the
paths from s; to t; for all i € [€] are disjoint, and t; is the champion of X;,,, U gi+1 (indices are modulo £), then in polynomial
time, we can determine a (1 — ¢)-EFX allocation X’ >pp() X.

4. Relating the Number of Unallocated Goods to the Rainbow Cycle Number

In this section, we give the proof of Theorem 3 (i.e., we show how any upper bound on R(d) allows us to obtain a
(1 — ¢)-EFX with sublinear many goods unallocated). More precisely, we show that given a (1 — ¢)-EFX allocation
X, if Ex is acyclic, the update rules U; and U, are not applicable, and the number of unallocated goods is larger
than 4n/(e - C(2n/¢)), then rule U is applicable. Therefore, for most of this section, we proceed under the assump-
tion that

Exis acyclic and the update rules U; (Lemma 3) and U, (Lemma 4) are not applicable. *)

We start with some definitions. We first make an observation about the agents who could potentially strongly
envy X, U g, where s is a source in Ex and g is an unallocated good.

Observation 1. Consider an unallocated good g and any source s in Ex. If agent i heavily envies X, U g, then g is
valuable to agent i.

Proof. We have v;(X;) < v;(X;) because s is a source of Ex and v;(X;) < (1 — €)v;(X; U g) because i heavily envies
X5 U g. Thus, v;(X;) < (1 — €)(vi(X;) + vi(g)), and hence, (1 — €)vi(g) > evi(X;). O

Note that under assumption (*) for each unallocated good g and each source s in the envy graph, there is an
agent who strongly envies X; U g (because the conditions of the update rule U; in Lemma 3 are not satisfied).
Thus, each unallocated good is valuable to some agent. Now, we make a classification of the unallocated goods
based on the number of agents who find them valuable. To be precise, given an allocation X, we classify the unallo-
cated goods into two categories: high-demand goods Hx and low-demand goods Lx. A good g belongs to Hy if it is valu-
able to at least d+ 1 agents and to L if it is valuable to at most 4 agents. We will choose the exact value of d later
(right now, just think of it as any integer less than 7). Observe that the set of unallocated goods P = Hx U Lx. To
prove our claim, it suffices to show that when |Hx| + |Lx| > 4n/(e - {(2n/¢)), the rule Uj is applicable. To this end,
we first make a simple observation about |Hx]|.

Observation 2. Under assumption (*), we have |Hx| <2n/(¢ - d).

Proof. For each good g € Hx, let 17, be the number of agents who find g valuable. By definition of Hx, we have
that 1, > d, and hence, > 1, > |Hx|d. We next upper bound }_ 7, by 1-(2/¢) by showing that at most 2/¢ unal-

n
located goods are valuable to any agent. o
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Consider any agent i. By assumption (*) rule, U, is not applicable, and hence, the value of the unallocated
goods to i is at most 1/(1 — €)v;(X;). This is at most 2v;(X;) because ¢ < 1/2. Any valuable good has a value at least
€vi(X;) for i. Thus, the number of unallocated goods valuable to i is at most 2/e. O

We nextbound |Lx|. In particular, we show that |Lx| < R(d). To this end, we introduce the notion of group cham-
pion graph G.

4.1. Group Champion Graph

Recall that we are operating under assumption (*), and hence, Ex is acyclic. Given Ex and the sources in Ex, we fix an
arbitrary total order < among the sources. To each agent 4, we assign a source s(a) such that a is reachable from s(a) in
the envy graph Ex (note that a can coincide with s(a)). If a is reachable from multiple sources, we pick s(a) to be the
source with the highest rank in the order <. However, once picked, s(a) is fixed and remains unique throughout our
algorithm and its analysis. Let k := | Lx|. For each g € Lx, let Q, be the set of all agents who find g valuable. By defini-
tion of Lx, we have |Q, | < d for all g € Lx. We now define a k-partite graph G = (Uger, Vg, E), in which the part V,, cor-
responding to ¢ consists of copies of the sources assigned to the agents in Q,: formally, V, = {(g,s(a))|a € Q. }. For any
goods g and / and agents 2 € Q, and b € Qy, there is an edge from (g,s(a)) in V, to (h,s(b)) in V}, if and only if a is the
champion of X, U g. We now make a claim about the set of edges between V, and V},in G forany g,/ € Lx.

Lemma 6. Under assumption (*), consider any g,h € Lx. Then, each vertex in V), has an incoming edge from a vertex
in V.
g

Proof. Consider any vertex (i,s(b)) € V). By assumption (*), there is an agent who strongly envies the bundle
X,p) U 8. Otherwise, rule U; would be applicable. By Observation 1, all agents who strongly envy X, U g con-
sider ¢ valuable and hence, belong to Q,. Let a be the champion of X,;) Ug. By Lemma 2, a strongly envies
Xs@) U g and hence, belongs to Q,. Thus, there is an edge from (g,s(a)) in V, to (h,s(b)) in V), (by the construction
of G). O

Now, we claim that the existence of a cycle that visits each part of G at most once would imply the existence of a
(1 — ¢)-EFX allocation that e-strongly Pareto dominates the existing (1 — ¢)-EFX allocation.

Lemma 7. Given a cycle C in G that contains at most one vertex from each V,, for all ¢ € Lx, we can determine a
(1 — &)-EFX allocation X’ >pp(s) X in polynomial time.

Proof. Let C = (gi+1,5:) — (Qi+2,Si+1) — -+ — (gj+1,sj) — (gis1,5i) be a cycle in G that visits each part at most once. It
will become clear why we index the ¢’s starting at i+ 1. Consider the sequence s;,s;41, .. .,s;. If all the sources in
this sequence are not distinct, there exists a contiguous subsequence s;,s; 11, ...,sy where all the sources are dis-
tinct and s;41 = sy withi <’ <j’ <j (index j+1 is to be interpreted as ).

We now work with the sequence sy,sy.1,...,57 where all the sources are distinct and s;41 =sy. For all
te i’ +1,j’ +1], the existence of the edge (g¢,5¢-1) — (g¢+1,5¢) implies the existence of an agent t,_; such that t;_4
is the champion of X, U g, and s(t;_1) =s¢—1 (i.e., t,—1 is reachable from s,_; in Ex). Furthermore, note that the
paths from s;_1 to f,_; for all £€[i’ +1,j +1] are disjoint. Assume otherwise, and let there be an intersection
between paths from s, to t, and from s, to t, and w.l.o.g. s, <s,. Note that because the paths intersect, both ¢, and
t, are reachable from s, and s, <s,, we have s(t,) # s,, which is a contradiction. Because the sources sy, s;+1,...,s;
are distinct, the agents ay,a;41, . ..,a; are also distinct (as each agent has a unique source assigned). Therefore, we
have distinct sources sy, ...,s; in Ex; distinct goods gjr11,8i7+1,...,8j; and distinct agents t;,...t; that satisfy the
conditions under which the update rule U; (Lemma 5) is applicable. By applying U;, we can get a (1 — ¢)-EFX
allocation X’ >pp(,) X.

We clarify a boundary case of this analysis. Note that in principle, the length of the contiguous subsequence
could be also one (i.e., i’ =j’). In this case, it means that there is an agent t;, reachable from s; in Ex, who is the
champion of X;, U g4 (i.e., the most envious agent of X,, U g;11 is reachable from s;, and thus, we apply rule Us;
and get a (1 — ¢)-EFX allocation X" >pp() X). O

With Lemma 7, we are now ready to give an upper bound on |Lx|. Observe that | Lx | equals the number of parts
in G. Now, the question is how many parts can G have such that it does not admit a cycle that visits each part at
most once. This is where we upper bound |Lx | with the rainbow cycle number.

Lemma 8. Consider a (1 — ¢)-EFX allocation X. If |Lx| > R(d), there is a (1 — ¢)-EFX allocation X’ >pp(.) X.

Proof. Recall that |Lx| =k, where k is the number of parts in G. Note that each part of G corresponds to the
sources assigned to the agents who find a particular good in Lx valuable (Q, for some g € Lx). By definition of
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Ly, there are at most d agents who find a good in Lx valuable. Thus, each part has at most d vertices. Again, by
Lemma 6, between any two parts V, and V;, of G, each vertex in Vj, has an incoming edge from a vertex in V.
Therefore, by Definition 1, we have that if k > R(d), then there exists a cycle C in G that visits each part at most
once. Once we have C, by Lemma 7, we can determine a (1 — ¢)-EFX allocation X’ >pp() X. O

Given a (1 — ¢)-EFX allocation X such that |Lx| > R(d), Lemma 8 only gives the existence of a (1 — ¢)-EFX alloca-
tion X’ >pp(¢) X. However, to determine X’ in polynomial time, one needs to find a cycle C in G that visits each part
at most once when |Lx| > R(d) in polynomial time. Let us remark that this is a nontrivial problem in general, remi-
niscent of the well-known k-Pata and k-CycLE problems, which are nondeterministic polynomial-time complete
(Cygan et al. [24]). Here, the input is a (di-)graph G and an integer k, and the objective is to determine if there is a
path (cycle) on at least k-distinct vertices of the graph. These problems can be solved in 2°® - poly(n) time using
techniques based on color coding, hash functions, and splitters (Alon et al. [2], Cygan et al. [24], Naor et al. [38]). In
particular, we can reduce k-PATH to the following problem in polynomial time. Find a k-path in a colorful graph on
n vertices, whose vertices have been colored with O(poly(k) - log 1) colors, such that every vertex of the k-path has
a distinct color. However, for our purposes, the construction of the cycle C in G is a part of the proof of Theorem 6
(described in Section 5); we show that in polynomial time, one can find a cycle in a (d* + d)-partite digraph, in
which each part has at most d vertices and for any two parts V and V' in the digraph, every vertex in V' has an
incoming edge from some vertex in V and vice versa. This implies that if [Lx| > d* +d, then in polynomial time,
we can determine a cycle C in G that visits each part at most once and then determine a (1 — ¢)-EFX allocation
X’ >pp(e) X by applying Us. This also implies that R(d) < d* + d. Therefore, we have Lemma 9.

Lemma 9. Consider a (1 — &)-EFX allocation X. If |Lx| > d* +d, then in polynomial time, we can determine a (1 — &)-EFX
allocation X' >pp(s) X.

4.2. Putting it Together

We give the existence proof and indicate the appropriate changes required for the polynomial-time algorithm. We
start with an empty allocation, which is trivially a (1 — ¢)-EFX. Then, the algorithm iteratively maintains a
(1 — ¢)-EFX allocation X and a pool of unallocated goods. In each iteration, the algorithm first makes Ex acyclic in
polynomial time by Lemma 1. Thereafter, the algorithm checks whether any one of the update rules U, and U,
is applicable. If U, is applicable, then it determines a (1 — ¢)-EFX allocation X’, where v;(X}) > v,(X;) for all i € [n]
and the number of unallocated goods reduces. If U, is applicable, then it determines a (1 — ¢)-EFX allocation
X" >pp(e) X. If neither U; nor U, is applicable, then it determines the sets Hx and Lx. By Lemma 2, we have
|Hx| <2n/(e-d). If |Lx| < R(d) < d* +d, then it returns the allocation X. Otherwise, it determines a cycle that visits
each part of G at most once and then determines (1 — ¢)-EFX allocation X’ >pp.) X by applying update rule Us, as
in Lemma 8.If |Lx| > d* +d, the cycle can be determined in polynomial time. Therefore, when the algorithm termi-
nates, we have that |Hx| <2n/(¢ -d) and |Lx| < R(d) < d* +d, implying that the total number of unallocated goods
is |[Hx| + |Lx| <2-max(2n/(e - d), R(d)) < 2-max(2n/(e - d),2d*).

We now state the explicit value of d first for the existence proof. We choose d as the largest integer such that
R(d) <2n/(ed) (ie., d=C(2n/¢e)). Recall that {(2n/¢) is defined as the largest integer d such that d-R(d) <2n/e.
Therefore, the number of unallocated goods is at most 4n /(e - {(2n/¢)).

For the algorithmic result, we choose d as the smallest integer such that 211/(¢ - d) < 2d*. Then, d = [(n/ 8)1/ >, and
the number of unallocated goods is at most 4|'(n/£)1/5'|4 € O((n/e)4/5) asnje>1.

It only remains to show that the algorithm will terminate. We prove a polynomial bound on the number of itera-
tions. The bound applies to the existence and the algorithmic version. To this end, note that in each iteration, after
removing cycles from Ey, our algorithm determines a new (1 — ¢)-EFX allocation X’ through one of the following
procedures:

e applying U;,

e applying U, or

e determining a cycle C that visits each part in G at most once and then applying Us.

Note that the initial envy-cycle elimination and subsequent application of all of the procedures ensure that
vi(X]) = vi(X;) for all i € [n] (Lemmas 1 and 3-5). Thus, throughout the algorithm, the valuation of an agent never
decreases. Note that there cannot be more than m consecutive applications of U,, as the number of unallocated goods
decreases with each application of U;. Every time we apply U, or Us, we ensure that X’ >pp.) X, implying that the
valuation of some agent improves by a factor of at least (1 + ¢). Because each agent’s valuation is bounded by W =
maxier,v;(M) and the valuation of an agent never decreases throughout the algorithm, we can have at most
poly(n,m,log W,1/¢) many iterations that involve applications of U, and Uj. Therefore, the total number of itera-
tions of our algorithm is m - (iterations involving application of U, or Us), which is also poly(n,m,log W,1/¢).
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Notice that in the algorithmic case, each of the iterations can also be implemented in polynomial time; U; and U,
can be implemented in polynomial time (Lemmas 3 and 4). When |Lx| > 2d* > d* + d, then in polynomial time, we
can determine the cycle C and apply Uz (Lemma 9). We can now state the main result of this section.

Theorem 5. There exists a (1 — €)-EFX allocation X and a set of unallocated goods P such that |P| <4n/(e-C(2n/¢)). In

polynomial time, we can find a (1 — €)-EFX allocation and a set P of unallocated goods such that |P| € O((n/ 5)4/ 2.

Note that any upper bound on the rainbow cycle number will imply an upper bound on the number of unallo-
cated goods.

5. Bounds on the Rainbow Cycle Number

In this section, we give the proof of Theorem 2. We briefly recall the setup. There is a k-partite digraph G =
(Ui Vi, Ec) such that each part has at most d vertices. For every pair of distinct parts V; and V;, every vertex in V;
has an incoming edge from some vertex in V. There is no cycle in G that visits each part at most once. Our goal is
to establish an upper bound on k.

We now introduce some helpful notations and concepts. For each i € [k], we represent the vertices in the part V;
as (i, vertex id) (i.e., Vi ={(i,1),(,2),...,(i, | Vi])}). For any positive integer d and a,b € [d], we use 04(a, b) to denote
(a—1)-d+b. Note that 1 <g4(a,b) <d*. The o4(a,b) captures the lexicographic ordering among the pairs Uy
Uper)(a, b). For any Boolean vector u € {0,1}", we use u[k] to refer to the kth coordinate of the vector 1. We introduce
the simple yet crucial notion of representative set for a set of Boolean vectors. Given a set D of r-dimensional Boolean
vectors, the set BC D is a representative set of D if and only if {€|a[£]} =1 for some a € D = {£|b[¢]} =1 for some
b € B. We first make an observation about the size of B.

Observation 3. Given any set D of r-dimensional Boolean vectors, there exists a representative set B C D of size
at most r.

Proof. For each coordinate ¢ € [r], we do; if there is a vector a € D with a[f] =1, we put one such vector into B.
Clearly, |B| <r. O

We prove Theorem 2 by contradiction. To be precise, we show that if k > d* + d, then there exists a cycle in G that
visits every part at most once. Moreover, this cycle can be found in time polynomial in k.

We construct the cycle in two steps. We first show the existence of a part V; such that there is a directed cycle
that visits only the parts V;, V4, V5, ..., V;and moreover, each of the parts V4, V5, ..., V; at most once. In the sec-
ond step, we replace the vertices in V; in this cycle by vertices in distinct parts.

For each ordered pair (i,f) € [d] X [d] and ¢ € [k] \ [d], we define a d*-dimensional vector 1; j,¢ as follows; for all
x €[d] and y € [d], we set u;; [o4(x,y)] =1 if and only if there exists a path (i,x) — (£,z) — (j,y) in G for some
(£,z) € V¢ (i.e., if there exists a path from vertex (i, x) in V; to vertex (j, y) in V; through some vertex in V). Other-
wise, we set u; ; ([oq(x,y)] = 0. .

Let £ = [k] \ [d]. For each ordered pair (i,) € [d] X [d], we construct the sets B"/ and £"/ as follows. For each (i, j)
taken in the increasing order of 0,(i, ), define £/ = £ and B/ as a representative vector set of {u; jelte L7} of size
at most d”. A set B'/ of this size exists because our vectors have dimension d°. Then, we set £ = £\ {{|u; ;¢ € B/}
At most, d° elements are removed from £ in each iteration.

For clarity, we write £/ to denote the set £ at the end of the construction. Observe that |£/| > 1. This holds
because we start with a set of size larger than d* and remove at most d elements in each of the d” iterations.

Observation 4. Consider distinct ordered pairs (i,j) € [d] x [d] and (7',j’) € [d] x [d]. The sets {€|u; ;¢ € B/} and
{C|uy,j,¢ € B''} are disjoint.
Proof. Let us assume without loss of generality that d4(i,j) < 04(7,j’). Consider any ¢ such that u; ;,, € B"/. Then, ¢

is removed from £ at the end of the iteration for the pair (7, j) and hence, does not belong to £ at the beginning of
the iteration for the pair (7/,’). Consequently, uy (¢ B’/ (by definition of B/, if u; y , € B’/ then €€ £L). O

At the end of the construction, we arbitrarily pick a £ € £ (this is possible as £ # 0). Now, we make a small
observation about the vector u; ¥ foralli,je [d].
Observation 5. For all i,j € [d], if u;;;[q] =1 for some g€ [d?], then there exists a vector u;, € B"/ such that
ui,]’,l’ [q] =1.
Proof. Observe that £/ C £"/. Therefore, I € L. By definition, B"/ is a representative vector set of {u; et € L},
Therefore, by the definition of representative set, there exists a vector u; ; » € B"J such that u; pelgl=1. O



Downloaded from informs.org by [2620:0:¢00:4037::12f] on 18 February 2025, at 20:18 . For personal use only, all rights reserved.

Chaudhury et al.: Improving EFX Guarantees Through Rainbow Cycle Number
Mathematics of Operations Research, 2024, vol. 49, no. 4, pp. 2323-2340, © 2023 INFORMS 2335

We are now ready for the construction of a cycle that visits each part at most once. We first show that there exists
a cycle Cin G that visits only the parts V3, V3, ..., V;and each of the parts V7, ..., V,;at most once (i.e., the only part
it may visit more than once is V;). See Figure 4 for an illustration.

Let (f ,wq) be an arbitrary vertex in V;. We construct a path

(€, wo) = (1,01) = - — (i — 1,0i-1) = (£, wi-1) = (i,0:) = (£,w;) = - — (d,04) — (,w,)

by starting at (¢, wy) and tracing backward. We start in (¢,w4). Assume that we already traced back to (€, w;) with
i=d initially. By the construction of G, there must be an edge from some vertex (i, v;) in V; to (Z’ ,w;) in V;, and there
must be an edge from some vertex (Z ,wi—1) in V; to (i,v;) in V. Thus, there is the path (2 ,wi1) — (4,0;) — (Z’ ,w;) in
G. We keep continuing this procedure until we reach (,wy).

Because the part V; can have at most d vertices, by the pigeonhole principle, there must be i and j with 0 <i <j <
d such that w; =w;. Let C be the subpath from (€, w;) to (¢, wj): that is,

C = (Z/wi) - (l + 1,U[+1) - (z/wH—l) e (lej?l) - (],'U]) - (2ij)
Observe that C visits all the parts of G except V; at most once. We now show that by using “bypass” parts, we can
make the cycle simple. For clarity, we rewrite C as
C=(i+1,0u1) = (£, wi1) >+ — (E/wjfl) - (j,v) = (z/wj) — (i+1,0i41).
5.1. Making the Cycle Simple
Forallg € [i +1,/], consider the subpath
(0], Uq) - (g/ wq) - (q +1, vq+1)
of C (index j+1 is to be interpreted as i+1). The existence of such a subpath in G implies that u, .., 7[04(vg,v441)]

=1. By Observation 5, we know that there is a vector uy 4.1,¢, € B79+! such that Ug,q41,L, [04(vg,v441)] = 1. This

Figure 4. (Color online) Illustration of the first part of the construction.
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Notes. The cycle in the figure visits the parts V3, V5, and V3 exactly once and the part V; three times. It is given by (@ ,wz) — (1,01) — (Z’ ,wW1) —
(2,02) = (£,w2) — (3,03) — (£, w3).
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implies that there exists a part ng and a vertex (é’q,yq) in part ng such that there is a subpath
(q,99) = (Lg,y9) = (g +1,0541).

By Observation 4, we have that {; # £, for all g # q". Therefore, we have a simple cycle C’" in G that visits each part
in G at most once; namely,

C' =(i+1,0i11) = (Cix1, Yir1) = - — (G-1,y-1) = (,0) = (£, y7) = (i +1,0i41).

See Figure 5 for an illustration of this entire procedure.
Therefore, if k > d* + d, then there exists a cycle in G that visits each part at most once. Moreover, this cycle can
be found in time polynomial in k. With this, we arrive at the main result of this section.

Figure 5. (Color online) Illustration of the existence of a cycle that visits every part at most once.
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Notes. We take the instance in Figure 4, where there exists a cycle C that visits every part other than V; at most once. The edges of the cycle C are
light in color. The figure shows how to obtain a cycle C’ that visits every part at most once from C. The edges of C’ are dark in color. For all
i € [3], we replace the subpath in C of the form (i,v;) — (£,w;) = (i+1,v;11) (3+1 is to be interpreted as one) by (i,v;) — (£;,y;) = (i+1,0vi11) to
getC'.
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Figure 6. (Color online) Illustration of the construction of d-partite graph G that satisfies all the conditions in Definition 1 for
d = 2 (left panel) and d = 3 (right panel).
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Theorem 6. For all d > 1, we have R(d) < d* + d. Furthermore, let G be a k-partite digraph with k > d* + d parts of cardi-
nality at most d each such that for every vertex v and any part W not containing v, there is an edge from W to v. Then, there
exists a cycle in G visiting each part at most once, and it can be found in time polynomial in k.

An improved upper bound on R(d) would imply a better bound on the number of unallocated goods. However,
we show that an exponential improvement (e.g., R(d) € poly(log(d))) is not possible by showing a linear lower
bound (i.e., R(d)>d)). However, this still leaves room for polynomial improvement, and we suspect that
R(d) € O(d). This would imply the existence of a (1 — ¢)-EFX allocation with O(y/n/¢) many goods unallocated.
For a polynomial-time algorithm, the construction of a cycle as in Theorem 6 would have to be polynomial time.
However, we remark that this is an initiation study for determining (1 — ¢)-EFX allocations with a sublinear num-
ber of unallocated goods, and we use concepts like the group champion graph that are natural extensions of the
champion graph. We believe that this still leaves room for developing more sophisticated concepts and techniques
that may reduce the number of unallocated goods to o(+/1/¢).

5.2. Lower Bound on R(d)

We show that R(d) > d. We construct a d-partite graph G = (Uje[4)V;, E) such that each part V; has d vertices; for all
pairs of parts V;and V;, every vertex in V; has an incoming edge from a vertex in V; and vice versa; and there exists
no cycle that visits each part at most once.

We now define the edges in G. Let V; ={(7,0),(i,1),...,(i,d — 1)}. Consider any i and j such that i <j. For each
0<{<d—1,wehave an edge from (i,{) in V; to (j,{) in V;, and there is an edge from (j,£) in V; to (i, ({ + 1) mod d)
in V; (see Figure 6 for an illustration). One can easily verify that for all parts V; and V}, every vertex in part V;
has an incoming edge from part V; and vice versa. It suffices to show that G admits no cycle that visits each part at
most once.

Lemma 10. There exists no cycle in G that visits each part at most once.

Proof. We prove by contradiction. Assume that there is a cycle C = (i1, {1) — (i2,{2) = -+ — (i, {,) — (i1, £1) that
visits each part at most once (i.e., iy # i, for all x,y € [r]). From here on, all the indices are modulo r. Note that by
the construction of the edges of G, for all g € [r], we have {1 = {; if iy <ig1 and €511 = (£; + 1) mod d if iy > ig1.
Let #; = [{q € [r]]i; > ij+1}| (recall that 7+1 is one). The existence of the cycle C in G implies that £; = ({1 +#)
modd.

Because i, # i, for all x,y € [r] and there exists the cycle C in G, there are indices 4" and ¢ such that iy > i,
and iyr <igy1, further implying that 1 <#; <r—1. Because G has d parts, we have r <d, implying that 1 <#
<d —1. However, this implies that ({; +#;) modd # {1, which is a contradiction. O

6. Finding Efficient (1—¢)-EFX Allocations with a Sublinear Number of Unallocated
Goods

We note that like the algorithms in Chaudhury et al. [20] and Plaut and Roughgarden [39], our algorithm is flexible

with the initialization (i.e., starting with any initial (1 — ¢)-EFX allocation X, it can determine a final (1 — ¢)-EFX

allocation Y with at most O((n/¢) ) many goods unallocated and v;(Y;) > v;(X;) for all i € [n]). This is a conse-

quence of the fact that the valuation of an agent never decreases throughout our algorithm. Therefore, our algo-

rithm maintains the welfare of the initial allocation. Thus, if we choose the initial (1 — ¢)-EFX allocation carefully,
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we can also guarantee high Nash welfare for our final (1 — ¢)-EFX allocation with sublinear many goods unallo-
cated. To this end, we use an important result from Caragiannis et al. [17] about determining partial EFX alloca-
tions with high Nash welfare in polynomial time.

Theorem 7 (Caragiannis et al. [17]). In polynomial time, we can determine a partial EFX allocation X such that
NW(X) > 1/(2.88) - NW(X"), where X* is the Nash welfare-maximizing allocation. In fact, the result in Caragiannis et al.
[17] shows the existence of partial EFX allocations that achieve a 1/2 approximation of the Nash welfare. However, in poly-
nomial time, one can only find a partial EFX allocation with a 1/2.88 approximation of the Nash welfare.

Let X be the partial EFX allocation that achieves a 2.88 approximation of the Nash welfare. We run our algorithm
starting with X as the initial allocation. The final (1 — ¢)-EFX allocation with sublinear many unallocated goods is
also a 2.88 approximation of the Nash welfare as the valuations of the agents in the final allocation are at least their
valuations in X. Therefore, we have the following theorem.

Theorem 8. In polynomial time, we can determine a (1 — €)-EFX allocation X with O((n/ 8)4/ %) goods unallocated such
that NW(X) > 1/(2.88) - NW(X"), where X* is the Nash welfare-maximizing allocation. Furthermore, using the existence of
partial EFX allocations with 1/2 approximation to Nash welfare (Caragiannis et al. [17]), there exists a (1 — ¢)-EFX alloca-
tion X with O((n/ e)*) goods unallocated such that NW(X) >1/2- NW(X").
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Appendix. Limitations of the Approach in Chaudhury et al. [19]

In Chaudhury et al. [19], an algorithmic proof to the existence of an EFX allocation is shown for three agents with additive valua-
tions. We briefly sketch the proof technique in Chaudhury et al. [19] and then, highlight why it does not work for determining
(1 — e)-EFX allocations with just four agents for arbitrarily small €. It would be interesting to investigate whether we can rule out
proving existence of (1 — ¢)-EFX for larger values of ¢ (e.g., ¢ = 1/3) using the technique in Chaudhury etal. [19].

Let the three agents be 4, b, and ¢, and for any allocation X, let ¢(X) be the vector (v,(X,), vp(X}p), vc(Xc)). The algorithm starts
with an empty allocation, which is trivially EFX, and as long as there is an unallocated good, the algorithm determines another
EFX allocation X’ such that ¢(X’) is lexicographically larger than ¢(X) (i.e., either v,(X}) > v,(X,) or v,(X}) = v,(X,) and vy(X]) >
up(Xp) or (X)) = va(Xa), vp(X}) = vp(Xp), and vc(X]) > v.(X,)). In this paper, we show that such a technique cannot be used to
show the existence of (1 — ¢)-EFX allocations for four agents.

We remark that our instance builds on the instance in Chaudhury et al. [19] that is used to show the existence of a partial EFX
allocation, which is not Pareto dominated by any complete EFX allocation. We now construct an instance I with four agents, say
{a,b,c,d} with additive valuations and nine goods {g;|i € [9]}. Let ¢(X) = (va(X4), vp(Xp), ve(Xc), v4(X4)). We show a (1 — ¢)-EFX
allocation X of eight goods among four agents. Then, we show in any complete (1 — ¢)-EFX allocation, that the valuation of agent
a will be strictly less than (almost half of) her valuation in X. This shows that for any complete (1 — ¢)-EFX allocation Y, we have
that ¢(X) is lexicographically larger than ¢(Y).

The full description of our instance is captured by Table A.1. We choose our ¢ < 1. The subinstance defined by the agents b, c,
and d and the goods Ujc[¢1gi U g9 is the instance in Chaudhury et al. [19] used to show the existence of a partial EFX allocation,

Table A.1. An instance where showing that the technique in Chaudhury et al. [19] cannot be
used to determine (1 — ¢)-EFX allocations with four agents.

81 82 83 84 85 86 87 38 &9
a 0 0 0 0 0 0 6 4 0
b 16 4 24 4 0 34 31 0 2
c 10 0 18 8 20 0 29 0 6
d 0 0 0 0 18 20 19 0 4

Notes. In particular, given a (1 —¢)-EFX allocation X and the unallocated good go, there is no complete
(1 — &)-EFX allocation where the valuation of agent a does not strictly decrease (i.e., in any complete (1 — ¢)-EFX
allocations Y, we have v,(Y,) < v,(X,)).
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which is not Pareto dominated by any complete EFX allocation. We now specify the allocation X:

X, =1{g7,88} Xy =1{92,83,84}
X =1{g1,85} Xi=1{g6}.

The good gy is unallocated. We will show that in any complete (1 — ¢)-EFX allocation, agent a cannot have both g and gs. This
would imply that agent a’s valuation in any final (1 — ¢)-EFX allocation is strictly less than her valuation in X (as agent a’s valua-
tion for all goods other than g7 and g5 is zero). We prove this claim by contradiction. So, assume that Y is a complete (1 — ¢)-EFX
allocation and {g7,gs} CY,. Note that v,(g7) =31, v.(g7) =29, and v4(g7) = 19. Because Y, contains at least one other good
(namely, gs), each of the agents b, ¢, and d needs to be allocated bundles that they value at least 31, 29, and 19, respectively.

First, consider the case that g € Y},. Then, we have v,(Y}) > 34. Now, to ensure v,(Y;) > 19, we need to allocate g5 and go to d,
as d values all the other goods zero. We are left with goods g1, 2, 3, and gu. In order to ensure v.(Y.) > 29, we definitely need to
allocate g1, g3, and g4 to c. Now, even if we allocate the remaining good g, to b, we have v,(Y}) = v,({g2,86}) =38 < (1 — ¢)-40 =
(1—¢) vp({g1,83}) < (1 —¢€) - vp(Ye \ ga). Therefore, b will strongly envy c. Thus, g6 ¢ Y.

If g6 ¢ Y}, and v,(Y}) > 31, Y}, must contain g3 (the total valuation for b of all the goods other than g3, g6, g7, and gs is less than
31). Now, we consider some more subcases.

Let us first assume that g1 € Y}. Because Y}, already contains g; and g3, the goods that can be allocated to ¢ and d are g, g4,
95, 86, and go. In order to ensure v.(Y,) > 29, we need to allocate g4, g5, and go to c. Now, even if we allocate all the remaining
goods (g2 and ge) to d, we have v,(Y,) = v4({g3,86}) =20 < (1 —¢)- 22 = (1 — ¢) - v4({g5,87}) < (1 — €) - v4(Y \ g4). Therefore, d will
strongly envy c.

Thus, g1 ¢ Y),. Because neither g; nor g¢ belong to Y}, the only way to ensure that v,(Y}) > 31 is to at least allocate g, g3, and g4
to b (we can allocate more). Similarly, given that the goods not allocated yet are g1, g5, g6, and go, the only way to ensure that
v:(Yc) 229 is to allocate at least g3 and g5 to c. Similarly, the only way to ensure v,(Yy) > 19 now is to allocate at least g to d.
Now, we only have to allocate gg. We show that adding go to any one of the existing bundles will cause a violation of the
(1 — &)-EFX property.

e Adding g to Y,.. b, ¢, and d strongly envy a as v,(Y;) =32 < (1 —¢)-33 = (1 — &) - v({g7,g9}) < (1 — &) - v(Y,, \ gg). Similarly,
we have v,(Y)=30<(1—¢)-35=(1—¢)-v:({g7,89}) < (1 — &) - v(Y, \ gs) and v,(Y4) =20 < (1 —¢)-23 = (1 — ¢) - v4({g7,80}) <
(1— ) va(Ya \ gs).

e Adding g9 to Y. c strongly envies bas v:(Y,) =30 < (1 —¢)-32=(1—¢) - v:({g3,84,87}) = (1 — &) - vc(Y} \ £2).

e Adding go to Y.. d strongly envies c as v4(Y4) =20 < (1 —¢)-22 = (1 — ¢) - v4({g5,89}) = (1 — &) - va(Yc \ §1)-

o Adding g9 to Y. b strongly envies d as v,(Y,) =32 < (1 —¢)-34=(1—¢) - v,(g6) = (1 — ) - vp(Yg \ g0)-

This shows that {g7,gs} & Y, for any complete (1 — ¢)-EFX allocation Y. This implies that agent a’s valuation in Y is strictly less
than her valuation in X, implying that ¢(X) is lexicographically larger than ¢(Y). This shows that the approach from Chaudhury
etal. [19] cannot be generalized to guarantee (1 — ¢)-EFX allocation when there are four or more agents.

Endnotes

"1t implies other notions of efficiency, like Pareto optimality. An allocation X =(Xi,...,X,) is Pareto optimal if there is no allocation
Y =(Y1,...,Yy,), where vi(Y;) > v;(X;) for all i € [1] and v;(Y;) > v;(X;) for some j.

2Gee (1 — ¢)-EFX allocation in Chaudhury et al. [19] and Chaudhury et al. [20] and 1/2-EFX allocation in Plaut and Roughgarden [39].
3 They are called the “most envious agents” in Chaudhury et al. [20].

“ Because we are dealing with (1 — )-EFX allocations and not EFX allocations, we have changed the definition of champions and champion
graphs appropriately. Chaudhury et al. [19] and Chaudhury et al. [20]) also use this definition in their algorithms as the polynomial-time
algorithms also deal with (1 — ¢)-EFX allocations. Furthermore, for notational convenience, we will use a slightly different definition of cham-
pions in the future sections (mentioned in Section 3).

® Let C be an envy cycle. For each edge (i, j) of the cycle, one assigns in X’ the bundle X; to i. One continues in this way as long as there is a
cycle in the envy graph.
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