

1 **Viewpoint**

2 **Catalyzing climate solutions through energy and carbon education**

3

4 Bruce E. Logan^{a*}, Mim Rahimi^b, Li Li^c, Lea R. Winter^d, Wei Peng^e, Brandi J. Robinson^f

5

6 ^a*Institute of Energy and the Environment, and Department of Civil and Environmental Engineering, The*
Pennsylvania State University, University Park, PA 16802, United States

7

8 ^b*Department of Civil and Environmental Engineering, and Materials Science and Engineering Program,*
University of Houston, Houston, TX 77204, United States.

9

10 ^c*Department of Civil and Environmental Engineering, The Pennsylvania State University, University*
Park, PA 16802, United States.

11

12 ^d*Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520,*
United States.

13

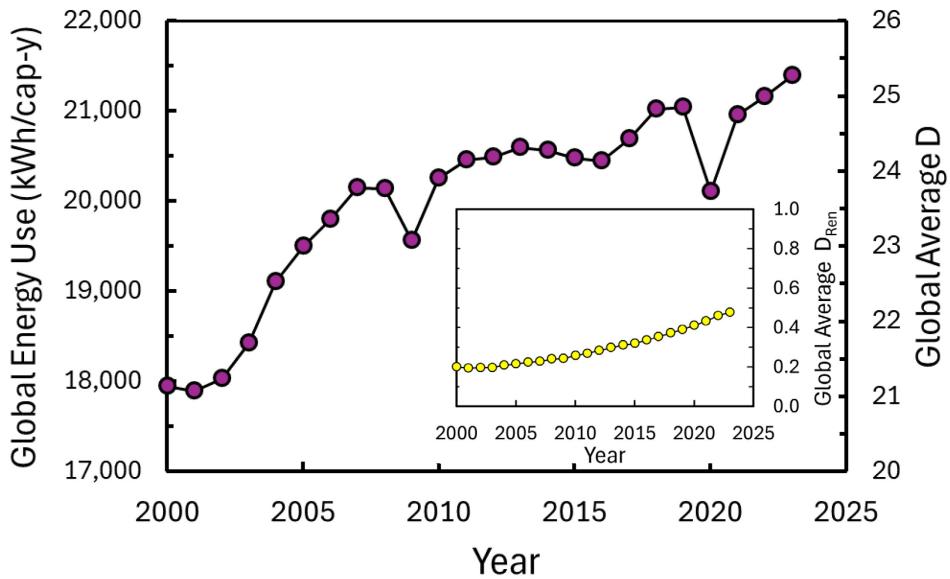
14 ^e*School of Public and International Affairs, and Andlinger Center for Energy and the Environment,*
Princeton University, Princeton, NJ 08544, United States.

15

16 ^f*Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA*
16802, United States

17

18 * Email: blogan@psu.edu


19

20

21 **Keywords:** carbon dioxide, carbon emissions, greenhouse gas emissions, daily energy use, unit D, unit C,
22 climate solutions

23

24 Decades of hard work by scientists, teachers, journalists, and other societal actors have led to
25 general public acceptance that the climate is rapidly changing. The evidence is obvious in record-setting
26 temperatures and the increasing number and severity of wildfires, droughts, and floods. With growing
27 renewable electricity production there is also increasing optimism that we can peak or slightly reduce
28 carbon emissions by 2030 and greatly reduce greenhouse gas emissions by 2050. Despite the rising
29 public awareness about climate change and the rapid growth of renewable energy, however, global CO₂
30 emissions from fossil fuel and energy use per person (capita) continue to increase (**Figure 1**). From 2000
31 to 2023 the average annual per capita global energy use increased by 22%, from 18,000 to 21,000
32 kWh/cap-y. The increasing rate in the past decade appears slower than that between 2000 and 2010, but
33 except for notable declines during the recession of 2010 and COVID-19 in 2020, the rise in energy use
34 continues essentially unabated.

Figure 1. Global annual primary energy use per person (cap) and daily average primary energy use based on D where 1 D is the primary energy relative to daily food energy per person. Inset: average daily renewable energy use in units of D_{Ren}, from 2000 to 2023. (Data source: <https://ourworldindata.org/>)

35
 36
 37 ***The path to climate change mitigation starts with education.*** Effectively addressing climate change
 38 begins with widespread education on how fossil fuel energy use and other activities, such as land use
 39 change and certain chemicals (such as refrigerants), contribute to greenhouse gas (GHG) emissions. As
 40 we have seen in other situations,¹ effective climate solutions will ultimately require both education and
 41 policy changes that lead to adoption and enforcement of new laws and regulations. For example, Calorie
 42 labels on food items does not consistently reduce average consumption of higher calorie meals² despite
 43 general acceptance that overeating and obesity contributes to poor health. Warning labels on cigarette
 44 boxes helped reduce smoking but a substantial reduction in the number of smokers was achieved
 45 through new policies and laws that banned smoking in public areas. Successfully addressing climate
 46 change requires widespread education to lead to general knowledge about how our choices and changes
 47 in personal activities influence climate change. Such comprehension could help provide increased public
 48 support for new policies to implement high-impact solutions. Furthermore, public education is often
 49 more effective when it is designed with local to global contexts and considerations in mind. Because
 50 climate solutions must be global in scope and equitable, educational efforts should address the need for
 51 reduction in fossil fuel use by rich countries while also emphasizing increased access to clean and
 52 affordable energy in poorer countries. Understanding how our personal activities fit into the context of
 53 complex systems helps us identify opportunities to initiate systemic changes with even broader impact.
 54 ***Environmental engineers and scientists should lead broad education initiatives on climate***
 55 ***solutions.*** Education about climate and energy should begin as early as possible in our K-12 system, but
 56 immediate dissemination is especially needed at our universities for students that will soon be entering
 57 the workforce. Studies show that students in higher education are extremely concerned about climate
 58 change and they feel powerless to enact solutions³. Education can help engage them in solutions.

59 However, integrating climate solutions into higher education curricula faces several challenges, including
60 leadership to advocate for its importance in crowded degree programs, and effective methods of
61 communication for curriculum development.⁴ We propose here that environmental engineers and
62 scientists rise to the biggest challenge of our time and lead the effort to educate students across the
63 university about climate solutions. Efforts by this group alone will not reach everyone at our campuses,
64 and universities are only a small fraction of the population. However, engineers play a crucial role in
65 developing and implementing technologies that are essential for rapidly curbing carbon emissions.
66 Among engineering disciplines, environmental engineers are unique in their broad training in biology,
67 chemistry, physics, and working on complex and interdisciplinary problems. Environmental engineers
68 have long been leaders in engineering solutions to environmental challenges that concern the public,
69 first in water and health and then in soil and air pollution. They have changed disposal of solid waste in
70 dumps to recycling programs; they have engineered landfills and developed solutions to handling and
71 disposal of hazardous wastes. They have relatively unique skills and training to lead educational efforts
72 on climate solutions. Communication of climate solutions must go beyond engineering programs and
73 include students in all disciplines. Environmental engineers have the experience to provide leadership
74 through collaborations with colleagues in other disciplines such as law, business, and agricultural
75 sciences, enabling effective education across the whole university. Many of these researchers also have
76 opportunities to broaden their impact outside of the university, for example, through engagement with
77 K-12 teachers and students, and other organizations focused on education of diverse communities.

78 ***An educational challenge of units and big numbers.*** A key educational challenge for developing
79 curricula around climate solutions for a broader university audience is how to improve the tangibility of
80 quantifying energy consumption and carbon emissions, which is often muddled by big numbers and
81 esoteric units. Most people do not have the training to equate different energy units, for example, to
82 compare kilowatt-hours of electricity with gallons of gasoline. Many energy units, such as quads
83 (quadrillion BTU) or exajoules, are also just too “big” to sensibly comprehend. Translating energy
84 consumption into carbon emissions is nontrivial. Finally, educating diverse audiences about how to
85 assess the effectiveness of different climate solutions requires the presentation of energy and carbon
86 associated with activities such as choices of food, clothing, and transportation in broadly understandable
87 numbers.

88 ***The D and C approach.*** To make energy use and carbon emissions understandable by everyone, we
89 need to: provide a common terminology to quantify energy use and carbon emissions; avoid big
90 numbers as much as possible; and use numbers with intrinsic meaning that connect to our personal
91 lives. One effective approach is to quantify energy relative to daily food energy used by one average
92 person, and carbon emissions based on the CO₂ that an individual releases every day due to
93 metabolizing that food. In this approach we define 1 D as 2000 Calories or 2000 kilocalories (kcal, or 8.4
94 megajoules), the average energy needed from food each day.⁵ Other energy use by a person each day,
95 such as gasoline for a car or electricity for a home, is then compared to 1 D of daily food energy. For
96 example, using 1 gallon (3.78 liters) of gasoline every day equals 15.2 D, or 15.2 times your daily food
97 energy. We can compare total energy using D to clearly see the magnitude of both excessive energy use
98 and inequities. For example, the US average energy use is 91 D compared to 45 D for Germany and 37 D
99 for China (for 2023), but energy use is only 4.1 D in Ghana and 1.0 D in Ethiopia (2021, most recent
100 numbers). The global average is 25.3 D (2023), and energy increase expressed in units of D has gone up
101 by 4.1 D since 2000 (**Figure 1**). Unfortunately, renewable energy production has not kept pace, with an
102 increase of only 0.28 D over that same period (**Figure 1 inset**).

103 Carbon emissions are similarly normalized using food consumption by defining 1 C as the amount of
104 CO₂ emitted from an average person due to metabolizing 1 D of food (based on based on oxidation of
105 proteins, carbohydrates, and lipids to CO₂). On average this baseline of 1 C equates to 2 pounds (0.9 kg)
106 of CO₂ per day emitted from eating food. C calculations show where large reductions in CO₂ emissions
107 are possible. For example, if a person stopped using 1 gallon of gasoline per day, that would reduce their
108 personal emissions by 10 C, which is 22% of the US average for all fossil fuel use of 45 C (2022), and 71%
109 of the total global average of 14 C.

110 Education on energy and carbon emissions using D and C is just the start. Once we understand
111 energy use normalized by D and C, it becomes easier to relate to larger numbers used for a country. For
112 example, 45 C equates to 5.1 gigatons (Gt) annually for the US population, directly translating gigatons to
113 daily averages. This use of C therefore allows us to examine how our actions impact CO₂ emissions using
114 commonly relatable metrics, thus combatting the feeling of powerlessness in reducing GHG emissions in
115 our own daily lives while also making involvement in climate solutions accessible to non-experts.

116 Environmental systems are inherently complex, and it will take more than just knowing D and C to
117 evaluate the full impacts of efforts to make changes in carbon emissions. A system life cycle analysis
118 could be used to more comprehensively investigate options that aim to reduce CO₂ emissions but could
119 result in new indirect sources of CO₂ emissions and lead to other unwanted adverse impacts on the
120 environment. For example, lowering direct emissions by driving an electric vehicle would need to be
121 balanced against the impacts of obtaining critical minerals, as their extraction, processing, and transport
122 might also contribute to emissions and adversely influence local communities. More broadly, creation of
123 new solar cells and extensive use of batteries require careful consideration of the material sourcing and
124 recycling. Beyond systems thinking, we must also engage students in employing future thinking to
125 understand how the decisions we make in our systems today either lead to or impede us from realizing
126 the future to which we aspire.

127 The next steps for you? If you are an educator, think about how you can incorporate education on
128 energy use and climate solutions into your curriculum. Environmental engineers can help provide
129 methods for making calculations and thus climate solutions more accessible, but all educators need to
130 think about how to best use this information within their own primary fields. Widespread education at
131 universities will create a knowledgeable workforce capable of driving global laws and regulations that
132 effectively reduce GHG emissions and ensure equitable and fair access to clean energy.

133

134 ■ AUTHOR INFORMATION

135 **Biography**

136 Professor Bruce Logan is an Evan Pugh University Professor in the Department of Civil &
137 Environmental Engineering, and Director of the Institute of Energy and the Environment (IEE) at
138 Penn State. His research is focused on renewable energy production using bioelectrochemical
139 systems for the development of an energy sustainable water infrastructure, desalination, green
140 hydrogen and methane gas production, and education on energy and climate solutions. He is the
141 author or co-author of several books and over 550 refereed publications (>120,000 citations, h-
142 index=167; Google scholar). Dr. Logan is a member of the US National Academy of Engineering (NAE),
143 an international member of the Chinese Academy of Engineering (CAE), and a fellow of AAAS,
144 AEESP, and several other professional organizations.

145

146 ■ ACKNOWLEDGMENTS

147 This article was enabled by support of the National Science Foundation (NSF) Grant # 2402605 on
148 "Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
149 Workshop".

150

151 ■ REFERENCES

152 (1) Attari, S. Z.; DeKay, M. L.; Davidson, C. I.; Bruin, W. B. d., Public perceptions of energy
153 consumption and savings. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, (37), 16054-16059.
154 (2) VanEpps, E. M.; Roberto, C. A.; Park, S.; Economos, C. D.; Bleich, S. N., Restaurant Menu
155 Labeling Policy: Review of Evidence and Controversies. *Current Obesity Reports* **2016**, *5*, (1), 72-80.
156 (3) Thompson, T., Young people's climate anxiety revealed in landmark survey. *Nature* **2021**, *597*,
157 605.
158 (4) Padhra, A.; Tolouei, E., Embedding climate change education into higher-education
159 programmes. *Nature Climate Change* **2023**, *13*, (11), 1154-1157.
160 (5) Logan, B. E., *Daily energy use and carbon emissions*. John Wiley and Sons, Inc.: 2022.
161